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ABSTRACT
Traffic watermarking is an important element in many network se-
curity and privacy applications, such as tracing botnet C&C com-
munications and deanonymizing peer-to-peer VoIP calls. The state-
of-the-art traffic watermarking schemes are usually based on packet
timing information and they are notoriously difficult to detect. In
this paper, we show for the first time that even the most sophisti-
cated timing-based watermarking schemes (e.g., RAINBOW and
SWIRL) are not invisible by proposing a new detection system
called BACKLIT. BACKLIT is designed according to the obser-
vation that any practical timing-based traffic watermark will cause
noticeable alterations in the intrinsic timing features typical of TCP
flows. We propose five metrics that are sufficient for detecting
four state-of-the-art traffic watermarks for bulk transfer and inter-
active traffic. BACKLIT can be easily deployed in stepping stones
and anonymity networks (e.g., Tor), because it does not rely on
strong assumptions and can be realized in an active or passive mod-
e. We have conducted extensive experiments to evaluate BACK-
LIT’s detection performance using the PlanetLab platform. The
results show that BACKLIT can detect watermarked network flows
with high accuracy and few false positives.

1. INTRODUCTION
A traffic watermark is a piece of information embedded into a

network flow. If the traffic watermark is retained in the network
flow, it can be used to correlate network traffic observed at different
network locations. Therefore, traffic watermarking has many im-
portant network security and privacy applications, including iden-
tifying stepping stones used by attackers to hide their true physical
locations [1,2], tracking users visiting sensitive (e.g., pro-terrorism)
Web sites [3], tracing communications among bot-compromised
machines [4], and tracking anonymous peer-to-peer VoIP calls [5].

The state-of-the-art traffic watermarking schemes embed timing-
based watermarks into a network flow by artificially manipulat-
ing packet timing information, such as inflating and deflating inter-
packet delay [2, 3, 6, 7]. The timing-based watermarks have seen
continuous improvement over the last few years, evolving from an
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initial sole focus on usability [1] to robustness [2, 3] and invisibil-
ity [6, 7]. The most recently proposed timing-based watermarks,
such as RAINBOW [6] and SWIRL [7], are invisible as they can
evade the existing detection schemes.

There are two general strategies for mitigating the traffic wa-
termarking threat. The first strategy blindly removes the timing
information brought by traffic watermarks through shaping and/or
padding every flow no matter it is watermarked or not [8–10]. Al-
though it is effective, this strategy introduces significant overhead
such as high latency to all flows and useless packets consuming
bandwidth, making them very difficult to scale. Another strategy
is to first detect watermarked flows and then clean only the suspi-
cious flows. Compared to the first strategy, the detection strategy
introduces much less overhead for identifying watermarked flows
and has the advantages of handling only the suspicious flows and
discovering the existence of watermark stamping devices.

Detecting timing-based watermarks is a very challenging prob-
lem, because they do not have a fixed signature. So far, only a few
detection mechanisms have been proposed [11, 12]. However, they
suffer from two main drawbacks. First, they fail to detect advanced
traffic watermarking schemes, such as RAINBOW and SWIRL, be-
cause these watermarking schemes may not cause anomalies in the
features used by those detections mechanisms. Second, they rely
on strong assumptions for the detection. For example, the detec-
tion system PNR (which is named by concatenating the first let-
ters of the three authors’ last names) [11] assumes that the traffic
sender can inject a timestamp into each packet, but this is not fea-
sible in many scenarios (e.g., a public Web server not controlled
by the detection system). PNR’s another assumption that one-way
packet delay follows the Gaussian distribution also does not always
hold [13]. In Multi-Flow Attack (MFA) [12], the assumptions of
watermarking multiple flows with the same traffic watermark and
modeling the flows as a Markov modulated Poisson process (MMP-
P) do not always hold either [14]. Kiyavash et al. [15] later showed
how MFA can be easily evaded by randomizing the locations of wa-
termarks or using different watermarks for different network flows.

In this paper, we demonstrate for the first time that even the most
advanced timing-based traffic watermarking scheme can be detect-
ed by a practical system. We show this by proposing BACKLIT,
a new system capable of detecting four advanced watermarking
schemes, including the “invisible” RAINBOW and SWIRL, the in-
terval based watermarking (IBW) scheme, and the interval centroid
based watermarking (ICBW) scheme. We design BACKLIT based
on the observation that any practical watermark that artificially per-
turbs packet timing information will cause noticeable alterations in
the intrinsic timing features typical of TCP flows. We first select the
TCP features that can be used for detection purposes, then design
metrics to quantify these features, and finally employ the one-class
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Figure 1: Typical scenarios of using traffic watermarks and BACKLIT.

classifier to detect watermarked flows based on the set of metrics.
Moreover, unlike previous studies that use synthetic and replayed
traffic for their evaluation [2,6,7,12], we evaluate BACKLIT using
live HTTP traffic and SSH traffic through twelve PlanetLab nodes
deployed around the world. The evaluation shows that BACKLIT
can detect the four timing-based watermarking schemes with high
accuracy, often achieving a 100% detection rate and low false pos-
itive rate.

Besides the high detection performance, BACKLIT can also be
readily deployed in real network environments. BACKLIT is much
more practically feasible than PNR and MFA, because it does not
rely on strong assumptions required for PNR and MFA. BACKLIT
is more flexible than PNR and MFA, because BACKLIT can be
deployed as an active or passive system by either generating real
requests or relaying requests from other users to induce response
packets for detection. MFA is a passive-only system that makes
a decision from observed traffic, and PNR is an active-only sys-
tem that sends customized packets to detect the existence of traffic
watermarks. Moreover, unlike PNR, BACKLIT does not need to
modify packets and install special software at the remote server.
In this paper, we focus on TCP flows, because TCP carries about
90% of Internet traffic [16], and popular anonymity networks (e.g.,
Tor [17]) currently only support TCP-based applications. However,
the same idea could be applied to other end-to-end protocols.

The remainder of the paper is organized as follows. Section 2
describes the threat model and Section 3 introduces the state-of-
the-art timing-based traffic watermarks. The design and implemen-
tation of BACKLIT are detailed in Section 4 and Section 5, respec-
tively. We present evaluation results in Section 6. After introducing
related work in Section 7, we conclude the paper with future work
in Section 8.

2. THREAT MODEL
Figure 1 illustrates typical scenarios of using traffic watermarks.

Bob runs a server that hosts sensitive content (e.g., WikiLeaks) that
Alice and Amy visit through an anonymity network (e.g., Tor [17])
and a series of stepping stones [18], respectively. Pete, who has
access to Bob’s network traffic, embeds a sequence of traffic wa-
termarks into the traffic originating from Bob in an attempt to trace
back who is visiting Bob’s server. Ken, Pete’s associate, monitors
the traffic directed towards Alice and Amy. If Ken can correctly de-
code the sequence of watermarks encoded by Pete, he can establish
that Alice and Amy are visiting Bob’s server.

The owner of the anonymity network or stepping stones can in-
stall BACKLIT to determine whether Bob’s traffic is being water-
marked. If that is the case, she can employ various packet padding

and buffering strategies to remove traffic watermarks without af-
fecting all incoming flows [8, 9]. BACKLIT either sends real re-
quests (i.e., active mode) or employs relayed requests from other
users (i.e., passive mode) to induce packets from Bob’s server for
detection. Therefore, Pete cannot distinguish whether the host run-
ning BACKLIT is actually relaying requests on behalf of a real user
(e.g., Alice) or is attemping to discover Pete’s presence. Thus, Pete
cannot selectively avoid watermarking traffic directed from Bob to
BACKLIT. We assume that Pete does not collude with Bob.

As shown in Figure 1, BACKLIT can be strategically deployed
at an exit node of the Tor network or a stepping stone connect-
ing directly to Bob’s server to facilitate the detection. The deploy-
ment flexibility provides the advantage that the traffic observed by
BACKLIT is less affected by noise in comparison with the traf-
fic monitored by Ken, because the traffic observed by Ken has to
pass through more hops within the anonymity network or stepping
stones. Such deployment flexibility has also been used in PN-
R’s [11] and MFA’s [12] experiments where there is no relay node
between the traffic watermark encoder and the detection system.

3. STATE-OF-THE-ART TIMING-BASED
TRAFFIC WATERMARKS

This paper considers four state-of-the-art traffic watermarking
schemes listed in Table 1. The interval based watermarking (IB-
W) scheme [2] and the interval centroid based watermarking (ICB-
W) scheme [3] do not consider invisibility in their design, but the
more recently proposed RAINBOW and SWIRL do. In particu-
lar, RAINBOW and SWIRL introduce much shorter delay to the
packets than IBW and ICBW. Although MFA can detect IBW and
ICBW [12], they can evade the detection by stamping different wa-
termarks to network flows and randomizing the location of water-
marks [15]. As shown in subsequent sections, BACKLIT can detect
all of these watermarking schemes. PNR [11] is not listed in Table
1 because there are no experiment results showing whether PNR
can detect these traffic watermarks.

Table 1: The timing-based traffic watermarking schemes consid-
ered in this paper.

Traffic watermarking Designed for Inserted Evades Evades
scheme invisibility? delay MFA? BACKLIT?

IBW [2] No Long No No
ICBW [3] No Long No No
SWIRL [7] Yes Short Yes No
RAINBOW [6] Yes Short Yes No



3.1 IBW
IBW adjusts the number of packets in selected time intervals to

embed watermarks [2]. Starting from a random offset, the flow to
be watermarked is divided into a series of intervals Ii of the same
length TIBW . Pairs of consecutive intervals are randomly chosen
to encode a bit. As shown in Figures 2(a) and 2(b), to embed a 0,
IBW forces the number of packets in interval Ik to be larger than
that in interval Ik+1 by delaying all packets within Ik−1 to Ik and
those within Ik+1 to Ik+2. To embed an 1, IBW delays packets in
Ik to Ik+1, so that Ik has fewer packets than Ik+1.

3.2 ICBW
ICBW varies the centroid of the packets within selected time

intervals to encode watermarks [3]. Starting from a random off-
set, the target flow is partitioned into a series of intervals of the
same length TICBW . As shown in Figure 2(c), to alter the cen-
troid of the packets in a given interval, ICBW changes each pack-
et’s relative time to the start of its interval from ∆T to ∆T

′
=

αICBW + (TICBW−αICBW )∆T
TICBW

, where αICBW determines the
maximum delay applied to the packets. Before encoding a bit, ICB-
W randomly selects two sets of intervals, say IA and IB , from a
series of consecutive intervals. To encode a 0 (or 1), ICBW forces
the centroid of the packets in IB (or IA) to be larger than that in IA
(or IB) by delaying packets in IB (or IA).

3.3 SWIRL
SWIRL changes the locations of packets within selected time

slots to encode watermarks [7]. Starting from a random offset,
SWIRL divides a flow into a series of intervals of the same length
TSWIRL. It further defines two intervals: the mark interval and the
basic interval. As shown in Figure 2(d), SWIRL partitions a mark
interval TSWIRL into r subintervals of length TSWIRL/r and then
splits each subinterval into m slots. To embed traffic watermarks,
SWIRL first selects a slot i in each subinterval j according to a per-
mutation π(j)(s) = i, where s is a variable determined by the basic
interval’s centroid, and then delays each packet from the original s-
lot to the selected slot. If the original slot’s index is larger than that
of the selected slot, packets will be postponed to the selected slot in
the next subinterval. The delay added to each packet is in the range
of [0, 2(m−1)TSWIRL

mr
] [7].

3.4 RAINBOW
RAINBOW inflates or deflates an inter-packet delay (IPD) by

TRB with equal probability [6]. Let T iRB (i = 1, . . .) denote the
adjustment made to the ith IPD. If T iRB > 0, the IPD will be in-
creased; otherwise, it will be shortened. Since a packet cannot be
delayed for a negative amount of time, RAINBOW sets the delay
of the jth (j = 1, . . .) packet to Tj = T0 +

∑j−1
i=1 T

i
RB , where T0

is a parameter large enough to ensure Tj ≥ 0. Figure 2(e) gives an
example of RAINBOW.

4. BACKLIT
Table 2 summarizes the differences among PNR [11], MFA [12],

and BACKLIT. BACKLIT is more practically feasible, because un-
like PNR and MFA, BACKLIT neither needs a timestamp in each
packet and the cooperation of the remote server, nor relies on traffic
distribution assumptions. Instead, BACKLIT exploits TCP’s intrin-
sic features to expose various traffic watermarks, which are elabo-
rated in Section 4.1.

4.1 Feature selection

Since all timing-based traffic watermarking schemes delay pack-
ets, BACKLIT leverages three TCP features that will be noticeably
altered by traffic watermarks for detection: (1) request-response
time (RRT), the time elapsed between sending the last packet of a
request message from BACKLIT and receiving the first response
packet from the remote server, (2) inter-packet delay (IPD), the
time between two consecutive packets from the remote server, and
(3) burst size, the number of TCP packets sent back-to-back [19].
We calculate the burst size using the method in [19].

Figure 3(a) shows an example of normal IPD, RRT, and burst
size in the absence of traffic watermarks. Upon receiving a request
packet, the server sends back a burst of four packets. If a traffic wa-
termarking scheme delays the fourth response packet, a disturbed
IPD (i.e., denoted by IPD’) will be observed, as shown in Figure
3(b). As a side effect of inflating the IPDs, the burst size will also
be changed. Particularly, if the delay induced by a watermark is
large enough, say not less than the round-trip time (RTT), we can
discern two bursts of packets: one has three packets and the other
has one. Similarly, if a traffic watermarking scheme delays the first
response packet (e.g., the second delay in Figure 3(b)), we could
observe an increased RRT (i.e., denoted by RRT’).

We roughly divide the network traffic into two types: (1) bulk
transfer traffic that contains much more response packets than re-
quest packets. For example, an HTTP request that initiates a large
file download will cause bulk transfer traffic. (2) interactive traffic
that has similar number of request packets and response packet-
s. For instance, an SSH session where the client sends a number of
shell commands and receives relatively short responses (in terms of
content) from the server will result in interactive traffic. Although,
to our best knowledge, the types of traffic to which the existing
traffic watermarking schemes can be applied are not explicitly doc-
umented, we assume that they can be employed to watermark both
bulk transfer traffic and interactive traffic.

We discuss the selected features in bulk transfer traffic and in-
teractive traffic individually for the ease of explaining the anoma-
lies caused by different traffic watermarks. In bulk transfer traffic,
we generally observe a large number of IPD samples and bursts of
packets. Hence, BACKLIT employs them to perform the detection.
In interactive traffic, we generally obtain many RRT samples trig-
gered by requests. If the response to a request does not have many
packets, the number of IPD samples may be limited and the burst
size will not be determined by the TCP congestion control mecha-
nism. In this case, BACKLIT relies only on RRT samples to carry
out the detection. Since a network flow can be either bulk transfer
traffic or interactive traffic or mixed traffic, BACKLIT selects suit-
able features for detection. For example, if an HTTP client sends
many requests, each of which induces a short response, BACKLIT
can obtain many RRT samples and then use them to carry out the
detection. As another example, issuing a command like ls -R /,
which asks a server to respond with a list of all files and directories
on disk, will trigger many back-to-back packets from the server.
In this case, BACKLIT can exploit the IPD samples and the burst
sizes to perform the detection.

In the next three subsections, we use data from watermarked
HTTP flows for bulk transfer traffic and watermarked SSH flows
for interactive traffic to elaborate on the anomalies caused by dif-
ferent traffic watermarks on selected features. We adopt the traffic
watermarking parameters given in the first row of Table 6 in Sec-
tion 6. The experiments were conducted between two hosts with a
minimum RTT of 0.184 seconds if there is no other specification.

4.1.1 RRT
RAINBOW and SWIRL cause two types of anomalies in RRTs.
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Figure 2: Examples of IBW, ICBW, SWIRL and RAINBOW.

Table 2: Comparison of PNR, MFA, and BACKLIT.

Detection Timestamp Assumes an Features Mode Requires cooperation
method required? ideal distribution? from remote server ?

PNR [11] Yes Yes (Gaussian) One-way packet delay Active Yes
MFA [13] No Yes (MMPP) IPD Passive No
BACKLIT No No IPD, RRT, burst size Hybrid No

First, since most response packets will be delayed for some pe-
riods, the mean and the variance of disturbed RRTs will be larg-
er than those of normal RRTs. Second, the absolute difference of
consecutive RRTs, denoted as |∆RRT|, is equal to one or multiple
TRBs in traffic watermarked by RAINBOW and zero or multiple
TSWIRL

mr
in traffic watermarked by SWIRL if there is no noise. It is

worth noting that the case of |∆RRT| = 0 in traffic watermarked by
SWIRL appears only when consecutive responses are delayed for
the same period. The probability of observing such case is extreme-
ly small because each response packet is delayed for a random peri-
od and the time when SWIRL observes a response is determined by
the sending time of a request and the processing time of the server,
both of which are random to SWIRL. BACKLIT leverages the sec-
ond observation to detect RAINBOW and SWIRL because |∆RRT|
could be used to estimate the parameters employed in RAINBOW
and SWIRL. Figure 4(a) illustrates the distribution of ∆RRT in
normal SSH traffic and that in traffic watermarked by RAINBOW
and SWIRL. The bin width is 0.005 seconds. These two distribu-
tions are quite different as most ∆RRT s in normal traffic are in
the range of [−0.005, 0.005], whereas the majority of ∆RRT s in
watermarked traffic fall in the range of [−0.05, 0.05].

IBW and ICBW will inflate RRTs. To clean packets in an in-
terval, IBW delays them to the next interval. Depending on their
locations in an interval, response packets will be delayed for a pe-
riod in (0, TIBW ]. Similarly, ICBW delays response packets in
selected intervals for a period in (0, αICBW ]. Figure 4(b) shows
the distributions of RRTs from normal SSH traffic, traffic water-
marked by IBW, and traffic watermarked by ICBW. It is clear that
IBW and ICBW cause a set of abnormal RRTs that are larger than
the normal RRTs.

4.1.2 IPD
All timing-based watermarking schemes change IPDs. Let ξRTT

be the minimum RTT between BACKLIT and a remote server.
BACKLIT employs IPDs larger than ξRTT to detect IBW and ICB-
W, because they introduce large delays to packets. In normal bulk
transfer traffic, such large IPD samples are usually found from the
intervals between two bursts of packets and such observation has
been used to estimate a TCP flow’s RTT [20]. When IBW and
ICBW delay a batch of packets, abnormal IPDs will be observed
between the first packet in the current burst and the last packet in
the previous burst. Figure 4(c) illustrates IPDs that are larger than
ξRTT in normal HTTP traffic and compares them with IPDs that
are larger than ξRTT in traffic watermarked by ICBW and IBW. We
can see that in normal traffic such IPDs are close to ξRTT , whereas
in traffic watermarked by IBW and ICBW the IPDs are in the range
of (0.5, 0.7) seconds and (0.35, 0.54) seconds, respectively. Note
that the IPDs close to the lower bound (i.e., 0.5 and 0.35) are due to
the delaying of packets within a burst, and those close to the upper
bound (i.e., 0.7 and 0.54) originate from the delaying of the first
packet in a burst.

BACKLIT uses IPDs lower than ξRTT to detect RAINBOW and
SWIRL, because they introduce smaller delays. In normal traffic,
such IPD samples usually come from packets sent back-to-back. It
is worth noting that if two packets are sent back-to-back, then the
normal IPD is close to ξCAP , the time required by the bottleneck
on the network path to transmit a packet [21]. This observation
has been widely used to estimate bottleneck capacity [21]. ξCAP
is generally very small, for example, a 10Mbps link needs only 1.2
ms to transmit a 1500-byte packet. Since RAINBOW and SWIRL



(a) Normal IPD, RRT, and burst size. (b) Disturbed IPD (IPD’), RRT (RRT’), and burst size.

Figure 3: Normal and disturbed inter-packet delay, request-response time, and burst size.

do not know the path from the encoder to the decoder in advance
(i.e., the path is what they want to trace), they cannot set TRB and
TSWIRL
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according to ξCAP . Moreover, if two packets are not sen-

t back-to-back, say the interval between these two packets being
larger than ξCAP , then the IPD will be equal to the original inter-
val if there is no cross traffic [21]. Therefore, although RAINBOW
and SWIRL introduce a small delay to the packets, they disturb
the distribution of IPDs less than ξRTT . Figure 4(d) plots the dis-
tribution of such IPDs in normal HTTP traffic along with that in
traffic watermarked by RAINBOW and SWIRL. In normal traffic
most IPDs approximate ξCAP , whereas in the traffic watermarked
by RAINBOW or SWIRL the majority of IPDs scatter to 0.01-0.06
seconds.

Though RAINBOW may let TRB be larger than or equal to RT-
T, BACKLIT can still detect it, because in the former case it caus-
es similar anomalies as IBW and ICBW do, and in the latter case
RAINBOW leads to abnormal burst size, as will be discussed next.

4.1.3 Burst size
Although RAINBOW may decrease the number of disturbed IPDs

that are lower than ξRTT by setting TRB to ξRTT , doing so will
cause suspicious burst sizes. In bulk transfer traffic, the size of a
burst is approximately equal to the TCP sender’s congestion win-
dow. Since RAINBOW divides the packets in each burst into sev-
eral small groups, many one-packet bursts can be observed. If there
is enough data to send in bulk transfer traffic, a TCP sender seldom
dispatches one packet in an RTT, except for the case in which the
sender is in the timeout state (i.e., retransmitting lost packets) or in
the fast retransmit state with a very small congestion window. We
propose methods to filter out biased samples due to packet losses
in Section 4.3.

To facilitate the explanation, we assume that there are only two
kinds of IPDs: one is equal to ξRTT , and the other is equal to
ξCAP . Since a one-packet burst occurs if two consecutive IPDs are
equal to ξRTT according to the algorithm for computing burst size
in [19], the probability of observing a one-packet burst is equal to
1 − Pw where Pw is the probability that no consecutive IPDs are
equal to ξRTT . Since RAINBOW will increase IPDs to ξRTT with
probability 0.5, according to the Lemma 1 in the Appendix, we can
get the probability of observing one-packet bursts as 1 − L

2
/
(
L
L
2

)
from a sequence of L IPDs. This probability increases quickly with
the length of L. In other words, when RAINBOW uses TRB =
ξRTT to adjust the intervals between packets, we can observe many
abnormal bursts that have only one packet.

Figure 4(e) shows the rate of one-packet bursts in normal HTTP
flows and that in flows watermarked by RAINBOW with TRB ≈
ξRTT . The experiments were carried out between a host in Hong
Kong and three PlanetLab nodes in Japan. It is obvious that the
rate of one-packet bursts in normal flows is very small, whereas

RAINBOW significantly increases it by letting TRB ≈ ξRTT .

4.2 Detection metrics and algorithm
BACKLIT adopts the anomaly detection approach and it marks

a flow as a watermarked one if anomalies are found in any metric
listed in Table 3. We elaborate on the metrics and the detection
algorithm in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Metrics
Of the five metrics in Table 3, BACKLIT uses R and T to detect

IBW and ICBW, and employs Q, D and Z to discover RAINBOW
and SWIRL. Let F represent a flow under inspection. We first
describe how to calculate R and T, because their computation pro-
cedures are similar, and then present how to compute Q and D for
the same reason, and subsequently explain the calculation of Z.

Let L denote a set of IPDs that are larger than ξRTT and ||L|| be
the number of such IPDs. We define a threshold THIPD(k) =
µIPD + kσIPD , where µIPD and σ2

IPD are the mean and the
variance of L in normal flows, respectively. Let MIPD(k) denote
the number of IPDs that are larger than THIPD(k) inF . We define
R as the accumulative rate of IPDs larger than THIPD:

R =

$∑
k=3

MIPD(k)

||L|| , (1)

where $ is the minimum k that causes MIPD(k) = 0. More
precisely, when k increases, the threshold THIPD becomes larger
and MIPD decreases. Since IPD is a limited value, there exists
a k that leads to MIPD(k) = 0, assuming that σIPD > 0. We
let k start from 3, because, according to the one-sided Chebyshev
inequality [22], the probability of having a sample larger than such
threshold is not greater than 1

1+k2
= 0.1.

Similarly, let S represent a set of RRTs that are larger than ξRTT
and ||S|| be the number of such RRTs. We define a threshold
THRRT (k) = µRRT + kσRRT , where µRRT and σ2

RRT are the
mean and the variance of S in normal flows. Let MRRT (k) be the
number of RRTs that are larger than THRRT (k) in F . We define
T as the accumulative rate of RRTs larger than THRRT :

T =

ω∑
k=3

MRRT (k)

||S|| , (2)

where ω is the minimum k that causes MRRT (k) = 0.
Q refers to the similarity between the distribution of IPDs that

are lower than ξRTT in F and that in normal flows. D repre-
sents the similarity between the distribution of absolute ∆RRT (i.e.,
|∆RRT|) in F and that in normal flows. BACKLIT uses Q and D
to detect RAINBOW and SWIRL, because they cause significant
changes in the distribution of IPDs that are smaller than ξRTT and
in the distribution of |∆RRT|.
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(c) IPDs that are larger than minimal RTT.
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(d) IPDs that are smaller than minimal RTT.
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Figure 4: Features in normal traffic and watermarked traffic.

Table 3: Metrics used by BACKLIT to detect timing-based traffic watermarks.
Feature Bulk transfer traffic (e.g., HTTP) Interactive traffic (e.g., SSH) Notation

IBW ICBW RAINBOW SWIRL IBW ICBW RAINBOW SWIRL

Accumulative rate of IPDs larger than THIPD
√ √

R
Accumulative rate of RRTs larger than THRRT

√ √
T

Distribution similarity of IPDs smaller than ξRTT
√ √

Q
Distribution similarity of |∆RRT|s

√ √
D

Rate of one-packet bursts
√

if TRB ≈ ξRTT Z

For Q and D, we calculate the difference between histograms
to quantify the similarity between the distribution in normal traffic
and that in a flow to be inspected. D is used as an example to
illustrate the computation of this similarity. The method comprises
two steps:

1. Construct a histogram, denoted asH∆RTT , for a sequence of
|∆RRT|s. Let ∆RRTmax be the maximum value of |∆RRT|.
Divide the range [0,∆RRTmax] into M disjoint subregions
of equal size, called histogram bins. Let H∆RTT (i) (i =
1, . . . ,M ) be the percentage of |∆RRT|s that fall into the
ith histogram bin.

2. Compute the similarity betweenHNormal
∆RTT from normal flows

and HF∆RTT from F as

D =

max{MNormal,MF}∑
i=1

(HF∆RTT (i)−HNormal
∆RTT (i))2, (3)

whereMNormal andMF are the number of bins inHNormal
∆RTT

and HF∆RTT , respectively. We set HNormal
∆RTT (j) = 0 (or

HF∆RTT (j) = 0) if j > MNormal (or j > MF ).

Z represents the ratio of the number of one-packet bursts to the
total number of bursts. It is applied to bulk transfer traffic, be-
cause as explained in Section 4.1.3 RAINBOW will cause many
one-packet bursts in bulk transfer traffic when TRB = ξRTT .

Figures 5(a), 5(b), 5(c), and 5(d) show the distributions of R and
Q in normal HTTP flows and those in HTTP flows watermarked
by IBW, ICBW, RAINBOW and SWIRL using different parame-
ter settings. Figures 6(a), 6(b), 6(c), and 6(d) show the CDFs of T
and D obtained from normal SSH flows and those in watermarked
SSH flows using different parameter settings. It can be seen that

watermarked flows cause significant changes to Q, R, T, and D,
indicating that these metrics can be used to effectively detect wa-
termarked flows.

4.2.2 Detection algorithm
BACKLIT employs the one-class classifier [23] to capture anoma-

lies in the five metrics, because it does not have watermarked flows
when training the classifier. The one-class (OC) classifier learns
from a single class of samples, which is labeled as the target class.
The OC classifier identifies a boundary around the available data
from the target class such that it includes as much data from the
target class as possible, at the same time minimizing the chance of
accepting outliers [23]. In other words, each datum is classified as
a member of either the target class or the outlier class. The bound-
ary is determined during the training with a given pre-reject ratio
(PR) which is the fraction of rejected training data for the sake of
excluding possible noise in the training data [23]. If all the training
samples belong to the target class, PR can be regarded as a tolerable
false positive rate [24].

When using the one-class classifier to detect traffic watermarks,
the target (outlier) class corresponds to the class of non-watermarked
(watermarked) network flows. We use the false positive rate and
the detection rate to evaluate BACKLIT. The former is ratio of the
number of non-watermarked flows that are mistakenly regarded as
watermarked flows to the total number of non-watermarked flows.
The latter is the ratio of the number of watermarked flows that are
detected by BACKLIT to the total number of watermarked flows.

4.3 Normal profile creation
Before carrying out the detection, we collect data for construct-

ing the normal profiles of RRT, IPD, and burst size before the de-
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Figure 5: The distributions of metrics R and Q in normal HTTP flows and those in HTTP flows watermarked by IBW, ICBW, RAINBOW
and SWIRL using different settings.
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Figure 6: The distributions of metrics T and D in normal SSH flows and those in SSH flows watermarked by IBW, ICBW, RAINBOW and
SWIRL using different settings.

ployment of traffic watermarking schemes. RRT samples are ob-
tained by sending requests to the server and then recording the
timestamp of a request’s last packet (if a request consists of more
than one packet) and the timestamp of the response’s first packet.
The response packet’s acknowledgement number should be equal
to the summation of the request packet’s sequence number and its
payload length. We compute IPDs from the response packets trig-
gered by each single request. We calculate burst size in a flow using
the method outlined in [19].

Since packet loss may lead to biased RRT, IPD and burst size
samples, we exploit TCP’s basic mechanism to filter out potentially
biased samples that match one of the following criteria:

1. Samples containing out-of-order data packets. Nowadays
packet reordering due to network elements is not prevalent,
and most reordered packets are caused by packet retransmis-
sion [25].

2. Samples including data packets that follow three duplicate
ACK packets. These ACK packets suggest that a TCP sender
will use the fast retransmit/fast recovery mechanism to re-
transmit lost packets [26].

3. Samples comprising duplicate packets. This may happen
when ACK packets are lost and then the server consequently
retransmits the unacknowledged data packets.

4. IPDs that are close to or larger than the server’s retransmis-
sion timeout (RTO) value and are followed by retransmitted
packets. This rule is also applied to RRTs that are close to
or larger than the summation of RTO and ξRTT . Even if
there are not retransmitted packets, we can still infer whether
a packet is retransmitted through the identification field in
the IP header (IPID) or the estimated congestion window
(cwnd) [27]. These methods are also employed to determine
whether a one-packet burst is due to packet loss. The serv-
er’s features, such as RTO, IPID, and cwnd can be measured
using TBIT’s method [28].

5. IMPLEMENTATION
We implement IBW, ICBW, RAINBOW and SWIRL on Ubun-

tu Linux (kernel 2.6.35-22) using iptables (version 1.4.4) and
libnetfilter_queue library (version 1.0.0). We add rules

into iptables’s OUTPUT chains to hook outgoing TCP pack-
ets from the service under surveillance (e.g., HTTP, SSH). These
packets are queued in the kernel, and our program acquires them
by invoking libnetfilter_queue. By exploiting the head-
of-blocking feature of the system’s output queue, our program can
delay a batch of packets by holding the first packet for a designated
time period.

For IBW, we implement the interval selection function that choos-
es every second and third intervals to embed information [2]. For an
ICBW interval, our algorithm randomly determines, with a proba-
bility of 0.5, whether packets within that interval will be delayed
or not, because ICBW randomly selects intervals and then delays
packets in selected intervals [3]. For SWIRL, we generate the per-
mutation randomly, because Houmansadr et al. do not describe
how to construct π in [7]. For RAINBOW, we follow [6] to pre-
pare the delay added to each packet in advance and set the upper
bound of T0 to 50ms. Since in practice RAINBOW cannot predict
when the next packet will arrive, we add pre-calculated delay to
each packet independently. It is worth noting that our implemen-
tation does not allow reordered packets (i.e., if the adjusted IPD
is less than zero, it will be set to zero), because frequent packet
reordering is suspicious. Moreover, reordered packets cannot car-
ry watermarks through stepping stones and anonymity networks,
because the TCP/IP stack in a relay node will rearrange reordered
packets and send in-order packets to the next node.

BACKLIT comprises a set of Python scripts and Matlab script-
s that carry out the entire detection procedure. It instructs hosts
to visit the target server through HTTP or SSH, extracts metrics
from the observed traffic, and performs the detection. The detec-
tion module is based on the DD_tools Matlab toolbox 1.7.3 [29]
and the PRTools Matlab toolbox 4.1.4 [30]. We employ the OC
classifier based on support vector data description (SVDD) and de-
tailed information about OC classifiers can be found in [23].

6. EVALUATION

6.1 Experiment settings
As shown in Table 4, most of the previous research on traffic

watermarking used replayed or synthetic traffic for evaluation pur-
poses [2, 6, 7, 12], with the exceptions of ICBW [3] and PNR [11]



which employed live traffic. The use of replayed or synthetic traffic
is inadequate because they cannot legitimately represent TCP’s be-
haviors, such as being responsive to network conditions and adapt-
ing its parameters to the changes. Moreover, replaying packets in
either one or two directions of interactive traffic cannot mimic the
real environment, because the RTT and network conditions on the
path between two hosts in the trace may not be the same as those
on the path between the two hosts replaying the traffic.

We used live HTTP and SSH flows to evaluate BACKLIT. The
four watermarking schemes were deployed on a host in Hong Kong
to embed watermarks into HTTP and SSH connections between the
server and 12 PlanetLab nodes around the world, which are listed
in Table 5.

For experiments using HTTP traffic, curl was run with the op-
tion -max-time on each PlanetLab node to download a large file
from the server for 90 seconds. For experiments using SSH traffic,
we implemented an SSH client based on libssh2 [31] and ran
it on the PlanetLab nodes. Besides using the default settings sug-
gested in [2, 3, 6, 7], we also adopted parameters in line with the
rules suggested by those traffic watermarks. Table 6 summarizes
the parameter settings used in the experiments.

6.2 Evaluating BACKLIT’s false positive rate
To evaluate BACKLIT using HTTP traffic, each PlanetLab n-

ode first downloaded a large file 60 times. Half of the traces were
used to estimate ξRTT and train the OC classifier. The remain-
ing traces were employed to evaluate BACKLIT’s false positive
rate. When evaluating BACKLIT using SSH, we executed a se-
quence of non-existent commands (i.e., input “a” and return). This
is a simple way to test the presence of traffic watermarks. We ob-
served that sending “a” and the return character triggers four pack-
ets from the server. The first two packets echoed “a” and the return
character. The other two packets may contain the error message
(e.g., -bash: a: command not found). Before execut-
ing a new command, BACKLIT slept for 100ms. We executed the
commands for 60 times in each PlanetLab node. Half of the traces
were used to train the OC classifier and the remaining traces were
employed to evaluate BACKLIT’s false positive rate.

We first set PR to 0 and then 0.03. The former indicates that all
normal samples are used to build the detection metrics profiles, and
the latter means that all except one normal sample are employed,
because the training data set consists of 30 samples. Table 7 shows
the false positive rates for detection metrics R, Q, T, and D. We
did not observe any false positive in Z.

For PR = 0, none of the metrics produces false positives. For
PR = 0.03, the metrics may incorrectly identify at most one out of
30 normal samples as a watermarked one. One possible reason for
the false positive is that the sample excluded from the training data
due to PR = 0.03 is not an outlier and should be kept. Another
possible reason is that the boundary determined by the SVDD OC
classifier is too conservative. This is supported by the fact that
some misclassified samples from the testing data set were close
to the boundary, whereas samples from watermarked flows were
far away from the boundary. To remedy this problem, we added
artificially generated outlier data to the training data set, labeled
them as normal data and then re-trained the OC classifier. This
approach helped remove the false positives. The DD_tools toolbox
provides functions, such as gendatout, to generate such outliers
based on existing data.

6.3 Evaluating BACKLIT’s detection rate
To evaluate BACKLIT’s detection rate, we activated each traffic

watermarking scheme one by one and then asked each PlanetLab
node to download the big file 20 times for acquiring watermarked

HTTP traces. To collect watermarked SSH traces, BACKLIT in-
structed each PlanetLab node to enter the SSH commands 20 times.
Setting PR = 0.03 to exclude potential outliers in the training da-
ta set, BACKLIT discovered all the watermarked HTTP flows and
only missed two watermarked SSH flows. One was an SSH flow
watermarked by SWIRL using parameter setting 1 on the path from
a PlanetLab node in France and the other was an SSH flow wa-
termarked by IBW using parameter setting 1 on the path from a
PlanetLab node in Japan (i.e., JP3).

The detection rates for IBW and ICBW are high, because they
delay a set of packets for a long period (i.e., several hundred mil-
liseconds) to facilitate the decoding of traffic watermarks [2,3]. By
exploiting TCP’s basic mechanism, we can filter out long IPDs re-
sulting from packet loss. Such IPDs are similar to the delay intro-
duced by IBW or ICBW and may cause false positives. Although
MFA also exploits the long delay caused by IBW and ICBW, it did
not mention whether such noises were removed and did not report
the false positive rate [12]. We attribute the high detection rates
for RAINBOW and SWIRL to the fact that they aggressively af-
fect contiguous packets, although the introduced delay is small in
comparison with IBW and ICBW. In particular, RAINBOW affects
almost every packet, while SWIRL influences packets in consecu-
tive short intervals.

After investigating the undetected watermarked flows, we found
that both SSH connections were broken up after BACKLIT dis-
patched a few “a” commands. It may be caused by the instability
of the PlanetLab nodes or network congestions. In the flow water-
marked by IBW only part of the response packets were delayed and
the period was short. The reason is that IBW only delays packets
in selected intervals and if a packet is close to the end of a selected
interval it will be delayed for a short period. Similarly, SWIRL on-
ly postponed some response packets and the |∆RRT|s affected by
SWIRL were not obvious. It may be due to network congestion-
s or cross traffic that could have delayed other response packets.
Since existing timing-based traffic watermarking schemes usually
require several hundreds or thousands of packets to embed traffic
watermarks that can be successfully decoded [2, 3, 6, 7], it is diffi-
cult for them to trace short flows. On the other hand, BACKLIT
can increase the sending rate of requests (i.e., in the active mode)
to gain more prolonged RRT samples.

7. RELATED WORK

7.1 Timing-based traffic watermarks
Tracing network communications is motivated by a well-known

security problem, namely detecting stepping-stone attacks. The pi-
oneering work from Staniford-Chen and Heberlein used the thumb-
print of a packets’ content to correlate flows [32]. With the preva-
lence of encrypted payloads, content-based approaches have be-
come less effective [32]. Zhang and Paxson exploited invariant
traffic features, instead of the packet content [18], to detect stepping-
stone attacks. Their method belongs to a class of passive approach-
es that do not perturb the traffic under surveillance. Besides the
ON/OFF patterns employed in [18], many other features have been
examined in recent papers [33,34], for example, packet count, inter-
packet delay and the increasing pattern of TCP sequence number,
to name a few. However, these approaches are vulnerable to normal
time perturbations and chaff packets, and usually require thousands
of packets to be effective [6].

Wang et al. proposed an original method that actively embeds
watermarks into a flow by adjusting the timing of randomly select-
ed packets [1]. Recently, more advanced flow watermarks have
been proposed, which used sophisticated approaches to manipu-



Table 4: Experiment traffic used in this paper, IBW [2], ICBW [3], RAINBOW [6], SWIRL [7], PNR [11], and MFA [12].
Traffic Synthetic SSH Replayed SSH Replayed HTTP Live SSH Live HTTP

Watermarking Schemes IBW, ICBW RAINBOW, SWIRL ICBW
Detection Mechanism MFA MFA PNR†, BACKLIT BACKLIT

† PNR does not indicate the traffic type, which might be live SSH traffic as the experiment was conducted between stepping stones.

Table 5: The 12 PlanetLab nodes used in the experiments.
Country IP Country IP Country IP Country IP Country IP Country IP

FR 132.227.62.25 CH 130.92.70.254 SG 1 137.132.80.106 SG 2 203.30.39.238 FI 193.166.167.5 JP 1 133.68.253.243
JP 2 202.23.159.52 JP 3 150.65.32.68 NZ 132.181.10.57 DE 141.20.103.211 BR 200.17.202.195 US 208.94.63.193

Table 6: Parameters used for each type of traffic watermark.
IBW ICBW SWIRL RAINBOW

Setting 1 TIBW = 0.5s αICBW = 0.35s, TICBW = 0.5s† TSWIRL = 2s,m = 5, r = 30 TRB = 0.005s
Setting 2 TIBW = 0.7s αICBW = 0.5s, TICBW = 0.65s TSWIRL = 2s,m = 5, r = 20 TRB = 0.01s
Setting 3 TIBW = 0.9s† αICBW = 0.65s, TICBW = 0.8s TSWIRL = 2s,m = 5, r = 10 TRB = 0.015s

† The experiment settings used for evaluating MFA [12].

Table 7: False positive rates obtained from the PlanetLab nodes for HTTP and SSH traffic.
Country FR CH SG 1 SG 2 FI JP 1 JP 2 JP 3 NZ DE BR US

PR 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0 0.03

R (HTTP) 0 0.03 0 0.03 0 0.03 0 0 0 0 0 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0
Q (HTTP) 0 0.03 0 0 0 0.03 0 0.03 0 0 0 0 0 0.03 0 0 0 0.03 0 0 0 0.03 0 0.03
T (SSH) 0 0 0 0.03 0 0 0 0.03 0 0 0 0.03 0 0 0 0 0 0 0 0.03 0 0 0 0
D (SSH) 0 0 0 0 0 0.03 0 0.03 0 0.03 0 0 0 0.03 0 0 0 0.03 0 0.03 0 0 0 0

late packet timing information [2, 3, 6, 7] or the traffic rate [35].
Houmansadr et al. [6] classified watermarking schemes into blind
and non-blind, depending on whether the decoder has a priori in-
formation about the flow that is being watermarked. Most exist-
ing watermarking techniques belong to the blind scheme catego-
ry [1–3, 5, 35], whereas RAINBOW [6] is a non-blind scheme.

7.2 Countermeasures
Although various traffic watermarks have been designed, only a

few approaches have been proposed to detect them. PNR [11], a
pioneering work from Peng et al., employs inflated one-way packet
delays to detect the traffic watermarks proposed in [1] and estimates
its parameters. However, PNR adds a timestamp to each packet
and has to handle the synchronization issues. BACKLIT does not
insert information into the packets or involve the cooperation of a
remote server, although this can help detection. Instead, BACKLIT
exploits TCP’s timing features for the detection.

Kiyavash et al. proposed an interesting detection scheme, M-
FA [12], which exploits the observation that when the same water-
marks are embedded to multiple flows simultaneously, there will
be abnormally long idle periods in the aggregated traffic. However,
MFA can be evaded if the encoder randomizes the location of the
watermarks or uses different watermarks on different flows, as re-
ported in their follow-on paper [15]. Moreover, MFA requires mul-
tiple flows for successful detection and assumes that normal traffic
follows the Markov-modulated Poisson process model. BLACK-
LIT can detect watermarks in a single flow and does not make
any assumption about the distribution of normal traffic. Moreover,
BLACKLIT is not affected by the random location of watermarks.

Yu et al. devised an invisible throughput-based traffic water-
marking scheme that uses the direct-sequence spread spectrum the-
ory to hide the watermarks [35]. We proposed an approach ex-
ploiting the features of Pseudo-Noise (PN) codes to detect such

watermarks [36].

8. CONCLUSION
Traffic watermarking is important to many network security and

privacy applications, because it can correlate network flows ob-
served at different locations quickly and accurately. The state-of-
the-art timing-based traffic watermarks can not only survive adver-
sarial network conditions but also evade existing detection method-
s. However, we show in this paper for the first time that all of them
will disturb the intrinsic timing features in TCP flows and propose
a novel system, BACKLIT, to detect them. Our extensive empirical
evaluation has shown that BACKLIT can detect the state-of-the-art
traffic watermarks with high detection rate and low false positive
rate. By exploiting these TCP features, BACKLIT can potentially
be extended to detect other timing-based traffic watermarks. In fu-
ture work, we will differentiate these traffic watermarks based on
different anomalies and exploit the disturbed features to estimate
their parameters.
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APPENDIX
LEMMA 1. Given a sequence of L observations of IPDs, where

Lr IPDs are equal to ξRTT and the remaining IPDs are equal to
ξCAP , the probability that there will be no consecutive IPDs =

ξRTT s is: Pw =
(L−Lr+1

Lr
)

( L
Lr

)
.

PROOF. We define a run of IPDs = ξRTT (or IPDs = ξCAP )
as a sequence of length l ≥ 1 of consecutive IPDs that have a value
equal to ξRTT (or ξCAP ). If there are no consecutive IPDs =
ξRTT , then there are Lr runs of IPDs = ξRTT having length
l = 1, and the number of runs of IPDs = ξCAP is equal to
Lr − 1, Lr + 1, or Lr , because the runs of IPDs = ξRTT and the
runs of IPDs = ξCAP must alternate.

If the value is equal to Lr − 1, then the first observation is
IPD = ξRTT . If it is equal to Lr + 1, then the first observation is
IPD = ξCAP . If the value is equal to Lr , either IPD = ξRTT or
IPD = ξCAP could be the first observation. Since the number of
combinations of putting (L− Lr) IPDs = ξCAP into Lr runs is(
L−Lr−1
Lr−1

)
, the probability that there areLr runs of IPDs = ξRTT

is equal to
(L−Lr−1

Lr
)+(L−Lr−1

Lr−2 )+2∗(L−Lr−1
Lr−1 )

( L
Lr

)
=

(L−Lr+1
Lr

)
( L
Lr

)
.


