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Abstract

Several fundamental security mechanisms for restricting access to network resources rely on the
ability of a reference monitor to inspect the contents of traffic as it traverses the network. How-
ever, with the increasing popularity of cryptographic protocols, the traditional means of inspecting
packet contents to enforce security policies is no longer a viable approach as message contents
are concealed by encryption. In this paper, we investigate the extent to which common applica-
tion protocols can be identified using only the features that remain intact after encryption—namely
packet size, timing, and direction. We first present what we believe to be the first exploratory
look at protocol identification in encrypted tunnels which carry traffic from many TCP connections
simultaneously, using only post-encryption observable features. We then explore the problem of
protocol identification in individual encrypted TCP connections, using much less data than in other
recent approaches. The results of our evaluation show that our classifiers achieve accuracy greater
than 90% for several protocols in aggregate traffic, and, for most protocols, greater than 80% when
making fine-grained classifications on single connections. Moreover, perhaps most surprisingly,
we show that one can even estimate the number of live connections in certain classes of encrypted
tunnels to within, on average, better than 20%.

Keywords: traffic classification, hidden Markov models, network security

1. Introduction

To effectively manage large networks, an administrator’s ability to characterize the traffic within the
network’s boundaries is critical for diagnosing problems, provisioning capacity, and detecting at-
tacks or misuses of the network. Unfortunately, for the most part, current approaches for identifying
application traffic rely on inspecting packets on the wire, which can fail to provide a reliable, or even
correct, characterization of the traffic. For one, that information (e.g., port numbers and TCP flags)
is determined entirely by the end hosts, and thus can be easily changed to disguise or conceal aber-
rant traffic. In fact, such malicious practices are not uncommon, and often occur after an intruder
gains access to the network (e.g., to install a “backdoor”) or when legitimate users attempt to violate
network policies. For example, many chat and file sharing applications can be easily configured to
use the standard port for HTTP in order to bypass simple packet-filtering firewalls. Furthermore,
recent peer-to-peer file-sharing applications such as BitTorrent (Cohen, 2003) can run entirely on

c©2006 Charles V. Wright, Fabian Monrose, and Gerald M. Masson.



WRIGHT, MONROSE AND MASSON

user-specified ports, and Trojan horse or virus programs may encrypt their communication to deter
the development of effective detection signatures.

Even more problematic for such traffic characterization techniques is the fact that with the in-
creased use of cryptographic protocols such as SSL (Rescorla, 2000) and SSH (Ylonen, 1996), fewer
and fewer packets in legitimate traffic become available for inspection. While the growing popu-
larity of such protocols has greatly enhanced the security of the user experience on the Internet—
by protecting messages from eavesdroppers—one can argue that its use hinders legitimate traffic
analysis. Furthermore, we may reasonably expect that the use of encrypted communications will
only become more commonplace as Internet users become more security-savvy. Therefore future
techniques for identifying application protocols and behaviors may only have access to a severely
restricted set of features, namely those that remain intact after encryption.

Clearly, the ability to reliably detect instances of various application protocols “in the dark” (Kara-
giannis et al., 2005) would be of tremendous practical value. For one, armed with this capability,
network administrators would be in a much better position to detect violations of network policies
by users running instances of forbidden applications over encrypted channels (e.g., using SSH’s port-
forwarding feature). Unfortunately, most of the existing work on traffic classification either relies
on inspecting packet payloads (Zhang and Paxson, 2000a; Moore and Papagiannaki, 2005), TCP
headers (Early et al., 2003; Moore and Zuev, 2005; Karagiannis et al., 2005), or can only assign
flows to broad classes of protocols such as “bulk data transfer,” “p2p,” or “interactive” (Moore and
Papagiannaki, 2005; Moore and Zuev, 2005; Karagiannis et al., 2005).

Here we investigate the extent to which common Internet application protocols remain dis-
tinguishable even when packet payloads and TCP headers have been stripped away, leaving only
extremely lean data which includes nothing more than the packets’ timing, size, and direction. We
begin our analysis in §3 by exploring protocol recognition techniques for traffic aggregates where all
flows carry the same application protocol. We then develop tools to enhance the initial analysis pro-
vided by these first tools by addressing more specific scenarios. In §4, we relax the single-protocol
assumption and address protocol recognition with very lean data on individual TCP connections.
These methods might be used to estimate the traffic mix on traces which are believed to contain
several distinct protocols, or as a fine-grained way to verify that a set of connections really does
contain only a single given application protocol. In §5 we relax the assumption that the individual
flows can be demultiplexed from the aggregate and show how, when there is only a single appli-
cation protocol in use, we can nevertheless still glean meaningful information from the stream of
packets and track the number of live connections in the tunnel. We review related work in §6 and
discuss future directions in §7.

2. Data

To be useful in practice, traffic analysis approaches of the type we develop in this paper must be
effective in dealing with the noisy and skewed data typical of real Internet traffic. We therefore
empirically evaluate our techniques using real traffic traces collected by the Statistics Group at
George Mason University in 2003 (Faxon et al., 2004). The traces contain headers for IP packets on
GMU’s Internet (OC-3) link from the first 10 minutes of every quarter hour over a two-month period.
The data set contains traffic for a class B network which includes several university-wide and
departmental servers for mail, web, and other services, as well as hundreds of Internet-connected
client machines. From these traces, we extract inbound TCP connections on the well-known ports
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for SMTP (25), HTTP (80), HTTP over SSL (443), FTP (20), SSH (22), and Telnet (23), as well as
outbound SMTP and AOL Instant Messenger traffic. Since we do not have access to packet payloads
in these traces, we do not attempt to determine the “ground truth” of which connections truly belong
to which protocols.1 Instead, we simply use the TCP port numbers as our class labels, and therefore,
it is likely some connections have been incorrectly labeled. However, because these mislabeled
connections only increase the entropy of the data, the net result will be that we under-estimate the
accuracy our techniques could achieve if given a perfectly-labeled version of the same traces (Lee
and Xiang, 2001).

For each extracted TCP connection, we record the sequence of 〈size, arrival time〉 tuples for
each packet in the connection, in arrival order. We encode the packet’s direction in the sign bit
of the packet’s size, so that packets sent from server to client have size less than zero and those
from client to server have size greater than zero. Since the traces in this data set consist mostly of
unencrypted, non-tunneled TCP connections, a few additional preprocessing steps are necessary to
simulate the more challenging scenarios which our techniques are designed to address. To simulate
the effect of encryption on the traffic in our data set we assume the encryption is performed with a
symmetric block cipher such as AES (Federal Information Processing Standards, 2001), and round
the observed packet sizes up accordingly. We perform our evaluation using a block size of 64 bytes
(512 bits), which is larger than most used in practice, yet still affords a good balance of recognition
accuracy and computational efficiency. If analyzing real traffic encrypted with a smaller block size
(for example, 128 bits), we can always round the observed packet sizes up.

3. Traffic Classification in Aggregate Encrypted Traffic

Here we investigate the problem of determining the application protocol in use in aggregate traffic
composed of several TCP connections which all employ the same application protocol. Unlike
previous approaches such as BLINC (Karagiannis et al., 2005), our approach does not rely on any
information about the hosts or network involved; instead, we use only the features of the actual
packets on the wire which remain observable after encryption, namely: timing, size, and direction.

The techniques we develop here can be used to quickly and efficiently infer the nature of the
application protocol used in aggregate traffic without demultiplexing or reassembling the individual
flows from the aggregate. Such traffic might correspond to a set of TCP connections to a given
host or network, perhaps running on a nonstandard port and identified using techniques like that
of Xu et al. (2005) as comprising a dominant or “heavy hitter” behavior in the network. Our tech-
niques could then be used by a network administrator to determine the application layer behavior.
Furthermore, these techniques are also applicable to certain classes of encrypted tunnels, namely
those which carry traffic for a single application protocol. We address the case of tunneled traffic in
greater detail in §5.

To evaluate the techniques developed in this section, we assemble traffic aggregates for each
protocol using several TCP connections extracted from the GMU data as described in §2. For each
10-minute trace and each protocol, we select all connections for the given protocol in the given trace,
and interleave their packets into a single unified stream, sorted in order of arrival on the link. We then
split this stream into several smaller epochs of constant length s and count the number of packets

1. We have checked randomly-selected subsets of flows for each protocol and verified, using visualization techniques
(Wright et al., 2006), that the behaviors exhibited therein appear reasonable for the given protocols. Examples of
these visualizations are available on the web at http://www.cs.jhu.edu/˜cwright/traffic-viz.
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of several different types (based on size and direction) that arrive during each epoch. Currently, we
group packets into four types; any packet is classified as either small (i.e., 64 bytes or less) or not
(i.e., greater than 64 bytes), and as either traveling from client to server or from server to client. In
general, when we consider M different packet types, this splitting and counting procedure yields a
vector-valued count of packets n̂t = 〈nt1,nt2, . . . ,ntM〉 for each epoch t. An aggregate consisting of
T s-length epochs is then represented by the sequence of vectors n̂1, n̂2, . . . , n̂T . The epoch length
s is typically on the order of several seconds, yielding a sequence length T of about 100 for each
10-minute trace.

3.1 Identifying Application Protocols in Aggregate Traffic

To identify the application protocol used in a single-protocol aggregate, we first construct a k-
Nearest Neighbor (k-NN) classifier which assigns protocol labels to the s-length epochs of time
based on the number of packets of each type that arrive during the given interval.

To build the k-NN classifier, we select a random day in the GMU data for use as a training
set. We then assemble single-protocol aggregates from this day’s traces for each protocol in the
study, yielding a list of vectors n̂1, n̂2, . . . for each such aggregate. To allow for differences in traffic
intensity while preserving the relative frequencies of the different packet types, each resulting vector
of counts n̂t is then normalized so that ∑M

m=1 ntm = 1. Finally, each normalized vector, together with
its protocol label, is added to the classifier.

To classify a new epoch u using the k-NN classifier, we the use Kullback-Leibler distance,
or divergence (Kullback and Leibler, 1951), to determine which k vectors in the training set are
“nearest” to the vector n̂u of counts for the given epoch. The K-L distance is a logical distance
metric in this instance because each normalized vector of counts n̂i essentially represents a discrete
probability mass function over the set of packet types, and the K-L distance is frequently used
to measure the similarity of discrete distributions. One potential drawback of using this distance
metric for our application is that, for vectors of counts n̂i and n̂ j, if n̂it = 0 for some packet type t but
n̂ jt �= 0, then the K-L distance from n̂ j to n̂i is ∞. Clearly, it is not desirable for a single component to
cause such a large increase in the distance, especially when n̂ jt is also small. To avoid this problem,
we apply additive smoothing of the packet counts by initializing all counts for each epoch to one
instead of zero.

Figure 1 plots the true detection rates for the k-NN classifier on s-length epochs of HTTP, HTTPS,
SMTP-out, and SSH traffic for several values of s and k. Recognition rates for most of the protocols
tend to increase with both s and k. Larger values of s mean that each epoch includes packets from a
greater number of connections, so it is not surprising that, as s increases, the mix of packets observed
in a given epoch approaches the mix of packets the protocol tends to produce overall. On the
other hand, smaller values of s allow us to analyze shorter traces and should make it more difficult
for an adversary to successfully masquerade one protocol as another. We leave a more detailed
investigation of the effectiveness of shorter epoch lengths and other countermeasures against active
adversaries for future work. For now, we set s = 10 sec to achieve an acceptable balance between
recognition accuracy and granularity of analysis.

From this simple k-NN classifier with s-length epochs, we can construct a classifier for aggre-
gates that span longer periods of time as follows. Given a sequence of packets corresponding to
a traffic aggregate, we begin by preprocessing it into a sequence of vectors of packet counts and
normalizing each vector just as we did for each of the aggregates in the training set. We then use
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Figure 1: Per-epoch recognition rates for HTTP, HTTPS, SMTP-out and SSH with varying values of s
and k

the k-NN classifier to determine the protocol label for each vector of counts. Finally, given this list
of labels, we simply take its mode—that is, the most frequently-occurring label—as the class label
for the aggregate as a whole.

We evaluate this classifier using traffic from a randomly-selected day distinct from that used for
training. Table 1 shows the true detection (TD) and false detection (FD) rates for the kNN-based
classifier on aggregates assembled from the testing day’s traces, using several values of k. For ex-
ample, when k = 3, Table 1 shows that the classifier correctly labels 100% of the FTP aggregates and
incorrectly labels 1.2% of the other aggregates as FTP. This classifier is able to correctly recognize
100% of the aggregates for several of the protocols with many different values of k, leading us to
believe that the vectors of packet counts observed for each of these protocols tend to cluster together
into perhaps a few large groups. The recognition rates for the more interactive protocols are slightly
lower than those for noninteractive protocols, and appear to be more dependent on the parameter k:
while AIM is recognized better with smaller values of k, the recognition rates for SSH and Telnet
generally tend to improve as k increases.

The results in this section show that, by using the Kullback-Leibler distance to construct a k-
Nearest Neighbor classifier for short slices of time, we can then build a classifier for longer traces
which performs quite well on aggregate traffic where only a single application protocol is involved.
However, we may not always be able to assume that all flows in the aggregate carry the same appli-
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1-NN 3-NN 5-NN 7-NN
protocol TD FD TD FD TD FD TD FD
HTTP 100.0 00.0 100.0 00.0 100.0 00.0 100.0 00.0
HTTPS 100.0 00.0 100.0 01.2 100.0 01.2 100.0 03.6
AIM 91.7 00.0 91.7 00.0 91.7 00.0 83.3 00.0

SMTP-in 100.0 00.0 100.0 00.0 100.0 00.0 100.0 00.0
SMTP-out 100.0 03.6 91.7 03.6 91.7 03.6 75.0 03.6

FTP 100.0 03.6 100.0 01.2 100.0 01.2 100.0 02.4
SSH 75.0 00.0 75.0 00.0 75.0 00.0 75.0 00.0

Telnet 83.3 00.0 100.0 00.0 100.0 00.0 100.0 00.0

Table 1: Protocol detection rates for the k-NN classifier (s = 10sec)
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Figure 2: Detection rates for multi-flow protocol detectors (k = 7,s = 10sec)

cation protocol. For the specific case where the individual TCP connections can be demultiplexed
from the aggregate, we explore techniques in §4 for performing more in-depth analysis to more
accurately identify the protocols.

3.2 An Efficient Multi-flow Protocol Detector

Sometimes, a network administrator may be less concerned with classifying all traffic by protocol,
and interested instead only in detecting the presence of a few prohibited applications in the network,
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such as, for example, the AOL Instant Messenger or similar applications. In this setting, the k-NN
classifier in §3.1 can be easily modified for use as an efficient protocol detector. If we are concerned
only with detecting instances of a given target protocol (or indeed, a set of target protocols), we
simply label the vectors in the training set based on whether they contain an instance of the target
protocol(s). Then, to run the detector on a new trace of aggregate traffic, we split the trace into
several short s-length segments of time as before, and we classify each segment using the k-NN
classifier. We flag the aggregate as an instance of the target protocol if and only if the percentage of
the time slices for which the classifier returns True is above some threshold. This detector can thus
be tuned to be more or less sensitive by adjusting the threshold value.

Figure 2 shows the detection rates for the k-Nearest Neighbor-based multi-flow protocol detec-
tors for AIM, HTTP, FTP, and SMTP-in, with k = 7. In each graph, the x-axis represents the threshold
level, and the plots show the probability that the given detector, when set with a particular threshold,
flags instances of each protocol in the study.

Overall, the multi-flow protocol detectors seem to perform quite well detecting broad classes
of protocol behavior. The detectors for SMTP-in (a) and HTTP (b) are particularly effective at dis-
tinguishing their target protocols from the rest. For example, in Figure 2(b), we see that, for all
threshold values above ≈ 30%, the HTTP detector flags 100% of the simulated HTTP tunnels in our
test set with no false positives. Even with a threshold level of 10%, it flags nothing but HTTP and
HTTPS. The FTP detector’s rates (d) show that, when observed in a multi-flow aggregate, the more
interactive protocols exhibit very similar on-the-wire behaviors; after FTP itself, the FTP detector is
most likely to flag instances of AIM, SSH, and Telnet. Nevertheless, at a threshold level of 60%, the
FTP detector achieves a true detection rate over 90% with no false positives.

Interestingly, Figure 2 also gives us information about the kNN classifier’s ability to correctly
label the individual s-length epochs in each tunnel. The steep drop in correct detections in each plot
occurs approximately when the threshold level exceeds the kNN classifier’s accuracy for the epochs
of the given protocol.

While we have thus far developed techniques which do fairly well in the multi-flow scenario,
frequently it may be reasonable to assume that we can in fact demultiplex the individual flows from
the aggregate, and finer-grained analysis is often desirable for security applications. For example,
consider the scenario where a network administrator uses clustering techniques such as those of Xu
et al. (2005) or McGregor et al. (2004) to discover a set of suspicious connections running on non-
standard ports. Even if the connections use SSL or TLS to encrypt their packets, the administrator
could perform more in-depth analysis to determine the application protocol used in each individual
TCP connection. In the next section, we explore techniques for performing such in-depth analysis,
again using only a minimal set of features.

4. Machine Learning Techniques for the Analysis of Single Flows

We now relax the earlier assumption that all TCP connections in a given set carry the same applica-
tion protocol, but retain the assumption that the individual TCP connections can be demultiplexed.
Our approaches are equally applicable to the case where there is no aggregate, and instead we simply
wish to determine the application protocol(s) in use in a set of TCP connections.

We present an approach based on building statistical models for the sequence of packets pro-
duced by each protocol of interest, and then use these models to identify the protocol in use in new
TCP connections. To model these streams of packets, and to compare new streams to our mod-
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els, we use techniques based on profile hidden Markov models (Krogh et al., 1994; Eddy, 1995).
Identifying protocols in this setting is fairly difficult due to the fact that certain application proto-
cols exhibit more than one typical behavior pattern (e.g., SSH has SCP for bulk data transfer and an
interactive, Telnet-like, behavior), while other protocols like SMTP and FTP behave very similarly
in almost every regard (Zhang and Paxson, 2000a). These similarities and multi-modal behaviors
combine to make accurate protocol recognition challenging even for benign traffic. Nevertheless,
here we show that fairly good accuracy can be achieved using vector quantization techniques to
learn packet size and timing characteristics in the same discrete-alphabet profile HMM.

For each protocol, denoted pi, we build a profile model λi to capture the typical behavior of
a single TCP connection for the given protocol. We train the model λi using a set of training
connections pi1, pi2, . . . , pin collected from known instances of the given protocol pi observed in the
wild. Next, given the set of profile models, λ1, . . . ,λn, that correspond to the protocols of interest
(say AIM, SMTP, FTP), the goal is to pick the model that best describes the sequences of encrypted
packets observed in the different connections.

The overall process for our design and evaluation is illustrated in Figure 3 and entails (i) data
collection and preprocessing (ii) feature selection, modeling and model selection, and finally (iii)
the classification of test data and evaluation of the classifiers’ performance.

Network

Data capture

Padding

log 
transform

Build 
codebook

Quantize 
training data

Preprocess 
training data

Vector 
Quantization

preprocessing

Build 
(mixture) 

models on 
training data

Phase I

Vector 
quantize 
test data 

using 
codebook

Max. 
likelihood

Viteribi

Classify test 
data

VQ (only) 

Phase II Phase III

Figure 3: Process overview for construction of our Hidden Markov Model-based classifiers.

In the following sections we describe in greater detail the design of our Hidden Markov models
(HMMs) and the classifiers we build using them. We begin with an introduction to profile HMMs
and to the Viterbi classifier that we use to recognize protocols. We then present two extensions to
the basic profile HMM-based classifier design: first, a vector quantization approach that allows us
to combine both packet size and timing in the same model to achieve improved recognition rates for
almost all protocols, and second, an efficient method for detecting individual protocols, similar in
spirit to those in §3.2.

4.1 Modeling Protocols with HMMs

We now explain the design and use of the profile hidden Markov models we employ to capture the
behavior exhibited by single TCP connections. Given a set of connections for training, we begin
by constructing an initial model (see Figure 4) such that the length of the chain of states in the
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model is equal to the average length (in packets) of the connections in the training set. Using initial
parameters that assign uniform probabilities over all packets in each time step, we apply the well-
known Baum-Welch algorithm (Baum et al., 1970) to iteratively find new HMM parameters which
maximize the likelihood of the model for the sequences of packets in the training connections.
Additionally, a heuristic technique called “model surgery”(Schliep et al., 2003) is used to search for
the most suitable HMM topology by iteratively modifying the length of the model and retraining.

4.1.1 PROFILE HIDDEN MARKOV MODELS

Our hidden Markov models follow a design similar to those used by Krogh et al. (1994), Eddy
(1995), and Schliep et al. (2003) for protein sequence alignment. The profile HMM (Figure 4)
is best described as a left-right model built around two long parallel chains of hidden states. Each
chain has one state per packet in the TCP connection, and each state emits symbols with a probability
distribution specific to its position in the chain. States in these central chains are referred to as Match
states, because their probability distributions for symbol emissions match the normal structure of
packets produced by the protocol.

To allow for variations between the observed sequences of packets in connections of the same
protocol, the model has two additional states for each position in the chain. One, called Insert,
allows for one or more extra packets “inserted” in an otherwise conforming sequence, between two
normal parts of the session. The other, called the Delete state, allows for the usual packet at a
given position to be omitted from the sequence. Transitions from the Delete state in each column
to Insert state in the next column allow for a normal packet at the given position to be removed
and replaced with a packet which does not fit the profile.

Just as the output symbols in the HMMs used by Krogh et al. (1994) and others to model
proteins represent the different amino acids that make up the protein, the symbols output by states
in our HMM correspond directly to the different types of packets that occur in TCP connections.
In §4.2 we sort packets into bins based on their size (rounded up to a multiple of the hypothetical
cipher’s block size) and direction, so symbols in those models are merely bin numbers. In §4.3 we
use vector quantization to also incorporate timing information in the model, and the output symbols
then become codeword numbers from our vector quantizer.

The main difference between this profile HMM and those used in other domains (Krogh et al.,
1994; Eddy, 1995; Schliep et al., 2003) is that the HMMs used to model proteins have only a
single chain of Match states. In our case, the addition of a second match state per position was
intended to allow the model to better represent the correlation between successive packets in TCP
connections (Wright et al., 2004). Since TCP uses sliding windows and positive acknowledgments
to achieve reliable data transfer, the direction of a packet is often closely correlated (either positively
or negatively) to the direction of the previous packet in the connection. Therefore, the Server
Match state matches only packets observed traveling from the server to the client, and the Client
Match state matches packets traveling in the opposite direction. For example, a transition from a
Client Match state to a Server Match state indicates that a typical packet (for the given protocol)
was observed traveling from the client to the server, followed by a similarly typical packet on its
way from the server to the client. In practice, the Insert states represent duplicate packets and
retransmissions, while the Delete states account for packets lost in the network or dropped by the
detector. Both types of states may also represent other protocol-specific variations in higher layers
of the protocol stack.
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Figure 4: Profile HMM for TCP sequences

4.2 HMM-based Classifiers

Given a HMM trained for each protocol, we then construct a classifier for the task of choosing, in
an automated fashion, the best model—and, hence, the best-matching protocol—for new sequences
of packets. The task of a model-based classifier is, given an observation sequence O of packets,
and a set C of k classes with models λ = λ1,λ2, ...,λk, to find c ∈ C such that c = class(O). We
experimented with two HMM-based classifiers for assigning protocol labels to single flows.

Our first such classifier assigns protocol labels to sequences according to the principle of max-
imum likelihood. Formally, we choose class(O) = argmax

c
P(O | λc), where argmax

c
repre-

sents the class c with the highest likelihood of generating the packets in O. Our second classifier
is similar to the first, but it makes use of the well-known Viterbi algorithm (Viterbi, 1967) for
finding the most likely sequence of states (S) for a given output sequence O and HMM λ. The
Viterbi algorithm can be used to find both the most likely state sequence (i.e., the “Viterbi path”),
and its associated probability Pviterbi(O,λ) = max

S
P (O, S | λ). Given an output sequence O, our

Viterbi classifier finds Viterbi paths for the sequence in each model λi and chooses the class c
whose model produces the best Viterbi path. We can express this decision policy concisely as
class(O) = argmax

c
Pviterbi(O,λc).

In practical terms, the Viterbi classifier finds each model’s best explanation for how the packets
in the sequence were generated (whether by normal application behavior, TCP retransmissions,
etc.), represented by the Viterbi path, and the likelihood of each model’s explanation (i.e., the Viterbi
path probability). It then picks the model that provides the best explanation for the observed packets.

Empirical Evaluation To demonstrate the applicability of our techniques to real traffic, we ran-
domly select 9 days from over a period of one month and extract traces over a 10 hour period
between 10 a.m. and 8 p.m. on each day. For a given experiment, we select one day for use as a
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micro-level equivalence class
protocol TD FD TD FD
AIM 80.80 3.41 80.80 3.41

SMTP-out 73.20 3.07 80.10 1.82
SMTP-in 77.20 4.39 87.80 3.97
HTTP 90.30 2.10 96.70 1.47
HTTPS 88.50 3.24 94.40 2.72
FTP 57.70 2.01 57.70 2.01
SSH 69.10 2.93 71.00 2.88

Telnet 82.90 3.77 86.10 4.08

Table 2: Protocol detection rates for the Viterbi classifier, using packet sizes only

training set. From this day’s traces, we randomly select approximately 400 connections 2 of each
protocol and use these to build our profile HMMs. Then, for each of the remaining 8 days, we ran-
domly select approximately 400 connections for each protocol and use the model-based classifier to
assign class labels to each of them. We repeat this experiment a total of nine times using each day
once as the training set, and the recognition rates we report are averages over the 9 experiments.

By selecting testing and training sets that include the same number of connections for each pro-
tocol, we purposefully exclude from our classifiers any knowledge about the traffic mix in the net-
work, in order to show that our techniques are applicable even when we know nothing a priori about
the particular network under consideration. As a result, we believe the detection rates presented here
could be improved for a given network by including the relative frequencies of the protocols (i.e., as
Bayesian priors). Additionally, while greater recognition accuracy could be achieved by rebuilding
new models more frequently (e.g., weekly), we do not do so, in order to present a more rigorous
evaluation. On a 2.4GHz Intel Xeon processor, our unoptimized classifier can assign class labels to
one experiment’s test set of 3200 connections in roughly 5 minutes.

Table 2 presents our results for the Viterbi classifier when considering only the size and di-
rection of the packets. Again, recall in this case that we make decisions at the granularity of
single flows and potentially have much less information at our disposal than in §3.1. With the
exception of the connections for FTP and SSH, the Viterbi classifier correctly identifies the protocol
more than 73% of the time. Moreover, the average false detection rates for all protocols (i.e., the
probability that an unrelated connection is incorrectly classified as an instance of the given proto-
col) are below 5%. The full confusion matrix is given in Table 4 in Appendix A, and shows that
many of the misclassifications can be attributed to confusions with protocols in the same equiv-
alence class, for example, HTTP versus HTTPS. As such, we also report the true detection (TD)
and false detection (FD) rates when we group protocols into the following equivalence classes:
{[AIM], [HTTP,HTTPS], [SMTP− in,SMTP−out], [FTP], [SSH,Telnet]} where the latter class repre-
sents the grouping of the interactive protocols.

We find the Viterbi classifier to be slightly more accurate than the Maximum Likelihood clas-
sifier in almost every case,3 but the protocol whose recognition rates are most improved with the
Viterbi method is SSH. Unlike the other protocols in this study, SSH has at least two very different
modes of operation—interactive shell (SSH) and bulk data transfer (SCP)—so we are not surprised

2. We choose 400 because it is the largest size for which we can select the same number of instances of each protocol
on every day in the data set.

3. Therefore, due to space constraints we do not provide recognition rates for that classifier.
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micro-level equivalence class
protocol TD FD TD FD
AIM 83.90 2.53 83.90 2.53

SMTP-out 74.40 2.24 79.70 1.60
SMTP-in 79.80 3.34 85.90 3.02
HTTP 78.00 1.09 92.90 0.62
HTTPS 87.20 3.74 91.10 1.88
FTP 58.20 1.81 58.20 1.81
SSH 76.30 8.37 77.80 7.90

Telnet 79.50 2.44 90.70 2.60

Table 3: Protocol detection rates for the Viterbi classifier with 140-codeword VQ

to find that for many SSH sessions, some sequences of states in the HMM for SSH are much more
likely than other state sequences in the same model.

4.3 Vector Quantization for HMMs on Multiple Features

While the results thus far show surprising success for building models of network protocols using
only a single variable, one would suspect that recognition rates could be further improved by includ-
ing both size and timing information in the same model. To evaluate this hypothesis, we employ
a vector quantization technique to transform our two-dimensional packet data into symbols from a
discrete alphabet so that we can then use the same type of models and techniques as used for dealing
with timing or size individually. Our vector quantization approach proceeds as follows: given train-
ing data and viewing each packet as a two-dimensional tuple of 〈inter-arrival time, size〉, we first
apply a log transform to the times to reduce their dynamic range (Feldmann, 2000; Paxson, 1994).
Next, to assign the sizes and times equal weight, we scale the 〈log (time), size〉 vectors into the -1,1
square.

The nature of our models requires that we treat packets differently based on the direction they
travel. We therefore split the packets into two sets: those sent from the client to the server, and those
sent from server to client. We then run the k-means clustering algorithm separately on each set to
find a representative set of vectors, or codewords, for the packets in the given set. For a quantizer
with a codebook of N codewords, for each of the two sets of packets, we begin by randomly selecting
k = N/2 vectors as cluster centroids. Then, in each iteration, for each 〈time, size〉 vector, we find
its nearest centroid and assign the vector to the corresponding cluster. We recalculate each centroid
at the end of each iteration as the vector mean of all the vectors currently assigned to the cluster,
and stop iterating when the fraction of vectors which move from one cluster to another drops below
some threshold (currently 1%).

After clustering both sets of packet vectors, we take the list of centroid vectors as the codebook
for our quantizer. To quantize the vector representation of a packet, we simply find the codeword
nearest the vector, and encode the packet as the given codeword’s index in the codebook. After
performing vector quantization of the packets in the training set of connections, we can then build
discrete HMMs as before, using codeword numbers as the HMM’s output alphabet. In doing so,
we add important information to our models at only a modest cost in complexity and computational
efficiency. Before classifying test connections, we use the codebook built on the training set to
quantize their packets in the same manner.
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Table 3 depicts the results for the Viterbi classifier, using a codebook of 140 codewords.4 By in-
cluding both size and timing information in the same profile model, we are able to recognize interac-
tive traffic more accurately—SSH’s recognition rate is now over 75 percent in the detailed test. Both
protocols in the “interactive” equivalence class show improvement in their coarse-grained recog-
nition rates, and while micro-level recognition of the WWW protocols decreases due to increased
confusions of HTTP as HTTPS and vice versa, the classifier’s ability to identify the equivalence class
of non-interactive sequences remains unchanged.

However, like our previous HMM classifier in §4.2, the vector quantized version still does not
recognize FTP as accurately as the other protocols; its 58% recognition rate is the lowest of any of
our current classifiers. We believe this poor performance is caused by the presence of strong multi-
modal behaviors in the FTP traces; unlike the other protocols in our study, FTP has three common
behavior modes which are very distinct and clearly identifiable in visualizations. (See, for example,
http://www.cs.jhu.edu/˜cwright/traffic-viz.)

4.4 A Protocol Detector for Single Flows

In this section, we evaluate the suitability of our profile HMMs for a slightly different task: identi-
fying the TCP connections that belong to a given protocol of interest. As in §3.2, such a detector
could be used, for example, by a network administrator to detect policy violations by a user running
a prohibited application (such as instant messenger) or remotely accessing a rogue SMTP server over
an encrypted connection.

One approach to this problem would be to simply use the classifiers from Section 4.2, and have
the system flag a detection when a sequence is classified as belonging to the protocol of interest.
However, such an approach is computationally intensive because of the large number of models
required. To classify a sequence of packets, the classifier in Section 4.2 must compute the sequence’s
Viterbi path probability on each protocol’s model before making its decision. So, for example, in
our earlier experiments, for each test sequence we explored Viterbi paths across 8 models. While we
believe this cost to be warranted when we are interested in determining which protocol generated
what connections in the network, at other times one may simply be interested in determining whether
or not connections belong to a target protocol. In this case, we show how to build a detector with
much lower runtime costs by using only two or three models.

To construct an efficient single-protocol detector we adopt the techniques presented by Eddy
et al. (1995) for searching protein sequence databases. As in the previous sections, we build a
profile HMM λP for the target protocol P. We also build a “noise” model λR to represent the overall
distribution of sequences in the network. For the noise model, we use a simple HMM with only
a single state which thus only captures the unigram packet frequencies observed in the network.
Intuitively, this model is intended to represent the packets we expect to see in background traffic, so
we estimate its parameters using connections from all protocols in the study.5

4. Derived empirically by exploring various codebook sizes up to 180 codewords. No significant difference in recogni-
tion ability was observed beyond 140.

5. We note that one might instead train λR on only the set of non-target protocols for each detector. However, doing so
relies on a closed-world assumption and risks over-estimating the detector’s real accuracy because λR is then a model
for all the things that the target protocol specifically is not. In practice, there are simply too many protocols in use on
modern networks for such an approach to be feasible.
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Figure 5: Detection rates for threshold-based protocol detectors for AIM and HTTP

To determine whether an observed sequence O belongs to the protocol of interest P, we calculate
its log odds score as

score(O) = log
Pviterbi(O | λP)
Pviterbi(O | λR)

.

Our general approach is now as follows: We use a holdout set of connections for the target protocol,
distinct from the set used to estimate the model’s parameters, to determine a threshold score TP

for the protocol. This allows us to tune the detector’s false positive and true positive rates. To
set the threshold, we calculate log odds scores for each connection in the holdout set, and set the
threshold in accordance with our desired detection rate. For example, if we wish to detect 90% of all
instances of the given protocol (at the risk of incorrectly flagging many connections that belong to
other protocols), we set the threshold at the log odds score of the held-out connection which scored
in the 10th percentile, so that 90% of all connections in the holdout set score above the threshold.
In our simplest (and most efficient) protocol detector, a test connection whose log odds score falls
above the threshold is immediately flagged as an instance of the given protocol.

The goal, of course, is to build detectors which simultaneously achieve high detection rates for
their target protocols and near-zero detection rates for the other, non-target protocols. To empirically
evaluate the extent to which our protocol detectors are able to do so, we run each detector on a
number of instances of each protocol. For this round of experiments, we select three days at random
from the GMU traces. In each experiment, we designate one of the three randomly-selected days for
use as a training set, then randomly select one of the remaining two days for use as a holdout set and
use the third day as our test set. We then extract 400 connections from the training set for each of the
protocols we want to detect, and use these connections to build one profile HMM for each protocol
and one unigram HMM for the noise model. Similarly, we randomly select 400 connections from
the holdout set for each protocol, and use these to determine thresholds for a range of detection rates
between 1% and 99% for each protocol detector.

Finally, we randomly select 400 connections of each protocol from the test set, and run each
protocol detector on all 3200 test connections. Figure 5 presents the detection rates for the AIM and
HTTP detectors. Such detectors are able to analyze one experiment’s test connections in roughly 15
seconds—around 20 times faster than the full classifier from Section 4.2.
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Figure 6: Detection rates for the improved protocol detectors for SMTP-in FTP

In Fig. 5(a) and 5(b), we see that both the AIM detector and the HTTP detector achieve over
80% true detections while flagging less than 10% of other traffic. Moreover, the HTTP detector, for
example, can be tuned to achieve a near-zero false detection rate yet still correctly identify over 70%
of HTTP connections. Similarly, detectors for HTTPS, SMTP and FTP built on this basic design are
also able to distinguish their respective protocols from most of the other protocols in our test set,
with reasonable accuracy.

However, the FTP and SMTP-in detectors are both prone to incorrectly claim each other’s con-
nections as their own. For example, a SMTP-in detector built in this manner would incorrectly flag
60% of all FTP sessions while detecting only 75% of incoming SMTP. This is not surprising, since
FTP and SMTP share a similar “numeric code and status message” format and generate sequences of
packets that look very similar, even when examining packet payloads. Indeed, the two are so simi-
lar that Zhang and Paxson (2000a) went so far as to use the same rule set to detect both protocols.
Nevertheless, we are able to improve our initial false positive rates for these two protocols using a
technique based on iteratively refining of the set of protocols that we suspect a connection might
belong to.

To build an improved protocol detector, we construct profile HMMs not only for the target pro-
tocol, but also for any other similarly-behaving protocols with which it is frequently confused. As
above, we construct a unigram HMM for the noise model. In the iterative refinement technique,
we first use the simple threshold-based detector described above as a first-pass filter, to determine
if a connection is likely to contain the target protocol. If a connection passes this first filter, we use
the Viterbi classifier (Sec. 4.2) with the models for the frequently-confused protocols to identify
the other (non-target) protocol most likely to have generated the sequence of packets in the con-
nection. Only if the model for the target protocol produces a higher Viterbi path probability than
this protocol’s model, do we flag the connection as an instance of the target protocol. While these
improved detectors operate ≈ 3 times slower than the simple detectors described previously, their
performance is still over 6 times faster than that of the full classifier.

Fig. 6(a) and 6(b) show the detection rates for the iterative refinement detectors for SMTP-in
and FTP, respectively, when the detectors know that incoming SMTP and FTP are frequently con-
fused with each other. While the FTP detector suffers a decrease in true positives with the iterative
refinement technique, it also achieves false positive rates of less than 15% for all protocols, at all
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thresholds. We note that an SMTP detector built in this manner is much less prone to falsely flagging
FTP sessions; its worst false positive rate for FTP is now below 20%. Again, we stress that if better
accuracy rates are required, one can fall back to the design in Section 4.2 at the cost of greater
computational overhead.

5. Tracking the Number of Live Connections in Encrypted Tunnels

In §3, we showed that it is often possible to determine the application protocol used in aggregate
traffic without demultiplexing or reassembling the TCP connections in the aggregate. Then, in §4,
we demonstrated much-improved recognition rates by taking advantage of the better semantics in
the case where we can demultiplex the flows from the aggregate and analyze them individually.

We now turn our attention to the case where we cannot demultiplex the flows or determine
which packets in the aggregate belong to which flows, as is the case when aggregate traffic is en-
crypted at the network layer using IPsec Encapsulating Security Payload (Kent and Atkinson, 1998)
or SSH tunneling. Specifically, we develop a model-based technique which enables us to accurately
track the number of connections in a network-layer tunnel which carries traffic for only a single ap-
plication protocol. As an example of this scenario, consider a proxy server which listens for clients’
requests on one edge network and forwards them through an encrypted tunnel across the Internet to
a set of servers on another edge network. Despite our inability to demultiplex the flows inside such
a tunnel, the technique developed in §3 still enables us to correctly identify the application protocol
much of the time. We now go on to show how we can, given the application protocol, derive an
estimate for the number of connections in the tunnel at each point in time. This technique might be
used, for example, by a network administrator to distinguish between a legitimate tunnel used by a
single employee for access to her mail while on the road, versus a backdoor used by spammers to
inject large quantities of unsolicited junk mail.

Our approach is founded on a few basic assumptions about the behavior of the tunneled TCP
connections and their associated packets. These assumptions, while not entirely correct for real
traffic, nevertheless allow us to employ simple and usable models which, as we demonstrate later,
produce reasonable results for a variety of protocols.

Assumption 1 The process Nt describing the number of connections in the tunnel is a Martingale
(Doob, 1953; Williams, 1991), meaning that, on average, it tends to stay about the same over time.

Assumption 2 The process Nt describing the number of connections in the tunnel is a Gaussian
process. That is, the number of connections Nt in each time slice t follows a Gaussian distribution.

Assumption 3 For each packet type m, each connection in the tunnel generates packets of type m
according to a homogeneous Poisson process with constant rate γm, which is determined by the
application protocol in use in the connection.

Implications It follows from Assumption 1 and Assumption 2 that, in each timeslice, the number
of connections in the tunnel will have a Gaussian distribution with mean equal to the number of
connections in the tunnel during the previous timeslice. From Assumption 3, it follows that during
an interval of length s, the number of type-m packet arrivals will follow a Poisson distribution with
parameter equal to γms. Accordingly, the set of packet rates {γm} provides a sufficiently descriptive
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model for the given application protocol (in this scenario). We use these observations in the follow-
ing section to build models that enable us to extract information about the number of tunneled TCP
connections from the observed sequence of packet arrivals.

5.1 A Model for Multi-Flow Tunnels

To track the number of connections in a multi-flow tunnel, we build a statistical model which relates
the stochastic process describing the number of live connections to the stochastic process of packet
arrivals. For such a doubly-stochastic process, it is natural to again use hidden Markov models.
Here, the hidden state transition process describes the changing number of connections Nt in the
tunnel, and the symbol output process describes the arrival of packets on the link. States in the
HMM therefore correspond to connection counts, and the event that the HMM is in state i at time t
corresponds to the event that we see packets from i distinct connections during time slice t. When
we consider M different types of packets, the HMM’s outputs are M-tuples of packet counts.

To build such a model, we derive the state transition and symbol emission probabilities directly
from two parameters which, in turn, we must estimate based on some training data. These parame-
ters are: first, the standard deviation σ of the number of live connections in each epoch, and second,
the set of base packet rates {γm : packet types m}.

Under Assumption 2, the average number of live connections in a time slice follows a Normal
distribution with mean equal to the average number of live connections in the previous interval and
standard deviation σ. Therefore, the probability of a state transition from state i to state j is simply
the probability that a Normal random variable with mean i and standard deviation σ falls between
j − 0.5 and j + 0.5, and thus, rounded to the nearest integer, is j. Re-expressed in terms of the
standard Normal, we therefore have

ai j = Φ(
( j−0.5)− i

σ
)−Φ(

( j +0.5)− i
σ

).

Due to Assumption 3, that each live connection generates packets independently according to a
Poisson process, we expect the total packet arrival rate to increase linearly with the number of live
connections. Then, when there are j connections in the tunnel, the number of type-m packet arrivals
in an interval of length s will follow a Poisson distribution with parameter equal to jγms. Therefore,
the probability of the joint event that we observe ntm packets of each type m during an interval of
length s, when there are j connections in the tunnel, is given by

b j(n̂t) =
M

∏
m=1

e− jγms ( jγms)ntm

ntm!
.

Parameter Estimation To estimate the two fundamental parameters of our model, {γm} and σ,
we observe the characteristics of real network traffic from a training set of traces. We begin by
preprocessing traces from our training set as described in §3.1, dividing the training trace(s) into
many smaller intervals of uniform length s. For each s-length interval t, we measure (1) the number
of connections Nt in the tunnel during the interval, and (2) n̂t = 〈nt1,nt2, ...,ntM〉, the number of
packets of each type which arrive during the given interval. For each packet type m, we fit a line to
the set of points {(Nt ,ntm)} using least squares approximation, and we derive our estimate for γm as
the slope of this line. That is, γm gives us the rate at which the number of packets observed increases
with the number of connections in the tunnel.
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We estimate σ as the sample conditional standard deviation of the number of connections in the
tunnel Nt during an interval t, given the number Nt−1 in the tunnel in the preceding interval. For the
HMM’s remaining parameter, the initial state distribution π, we simply use a uniform distribution.
In doing so, we refrain from making any assumptions about the traffic intensity on the test network.

5.2 Tracking the Number of Connections

To derive the state sequence that best explains an observed sequence of packet counts (and, hence,
the average number of live connections during each interval), we use the Forward and Backward
dynamic programming variables from the Baum-Welch algorithm (Baum et al., 1970) to calculate
the probability that the HMM visits each state in each time step. The forward variable, αt(i), gives
the probability that, in step t, the model has produced the outputs n̂1, . . . , n̂t and is in state i. We can
define αt recursively:

α1(i) = πibi(n̂1),

αt(i) =
N

∑
j=1

αt−1( j) a ji bi(n̂t).

Similarly, the backward variable, βt(i), gives the probability that the model, starting from state i in
step t, produces the remaining outputs n̂t , . . . , n̂T . It is also defined recursively:

βT (i) = 1,

βt(i) =
N

∑
j=1

bi(n̂t) ai j βt+1( j).

With this, we can calculate the probability that the model is in state i at time step t as

P(state i at time t) =
αt(i)βt(i)

∑N
j=1 αt( j)βt( j)

and we can calculate the most-likely individual state at time t as

φt = argmax
i

P(state i at time t)

which reduces to
φt = argmax

i
αt(i)βt(i).

And thus φt is our estimate of the number of connections Nt in the tunnel at time step t.

5.3 Empirical Results

To evaluate the effectiveness of our approach in practice, we randomly select one day in the GMU
data set for use as a training set and one day as a test set. We use a collection of traces from several
hours on the training day to learn the model’s parameters and construct a HMM for each protocol.
We then simulate tunnels for each of the protocols in each 10-minute trace from the designated
testing day, by assembling aggregates as we did in §3. Instead of using all traces in the data set
as before, in this section we simulate traffic for an encrypted proxy server by selecting only those
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Figure 7: Actual and estimated number of connections in simulated tunnels for AIM, HTTP, HTTPS,
and SSH in the 12:00 trace on the testing day

connections which go to the most common IP addresses in each 10-minute trace. For each protocol,
we split its tunnel into several short time slices and derive the corresponding sequence n̂1, n̂2, ..., n̂T

of packet counts. We then use the given protocol’s model to derive a sequence of estimates for the
number of connections in the tunnel during each slice.

Often, our model is able to closely track the number of live connections in the tunnel, although
it can under- or over-estimate at times. Figure 7 shows the actual number of connections Nt and the
model’s estimates φt for AIM, HTTP, HTTPS, and SSH in the 10-minute GMU trace for 12:00 noon, the
busiest period on the testing day. The models for AIM and HTTPS are able to track the true number of
connections in their tunnels especially well: on average, their predictions differ from true number
of connections by only 22% and 19%, respectively. Between time ticks 45 and 90, the HTTPS model
tracks large swings in the population size, and the AIM model follows the general trend quite closely
between 30 and 100 time ticks.

The model for HTTP, on the other hand, has some difficulty with this particular trace; while such
errors do not occur in all traces, we include this example to demonstrate some of the weaknesses of
our current assumptions. We suspect the large spike at around 20 ticks may be due to already-open

2763



WRIGHT, MONROSE AND MASSON

persistent connections suddenly requesting pages and thus generating a burst of packets. Between
40 and 65 ticks, the HTTP tunnel produces a sequence of packets where the relative frequencies of the
different packet types are out of proportion to those on the training day. The model can find no state
with a non-negligible probability of generating such a traffic mix, and so sets its estimate for the
number of HTTP connections in the tunnel to zero. Despite some intermittent errors as exemplified
here, because our technique operates in near-real time, an administrator could observe an encrypted
tunnel for many such windows of time and then still derive a good estimate for the traffic intensity in
the tunnel. In the short term, we hope to improve these results by using Viterbi training to improve
the model’s initial parameters.

6. Related Work

While traffic classification has recently been the subject of much research, all but one of the ap-
proaches we are aware of require significantly more information about the flows, or only group
flows into broad categories such as “bulk data transfer,” “p2p,” or “interactive.” Zhang and Paxson
(2000a) present one of the earliest studies of techniques for network protocol recognition without
using port numbers, based on matching patterns in the packet payloads. Dreger et al. (2006) and
Moore and Papagiannaki (2005) present similar approaches to that of Zhang and Paxson, but apply
more sophisticated analyses which require payload-level inspection. More closely related to our
work is that of Early et al. (2003), where a decision tree classifier that used n-grams of packets was
proposed for distinguishing among flows from HTTP, SMTP, FTP, SSH and Telnet servers based on
average packet size, average inter-arrival time, and TCP flags. Moore and Zuev (2005) use Bayesian
analysis techniques on similar data from packet headers to classify flows as belonging to one of sev-
eral broad categories. Bernaille et al. (2006) build a classifier based on k-means clustering of the
sizes of the first five packets in each connection to identify application protocols “on the fly.” Be-
cause the focus of that work is on speed rather than security, they do not consider all packets in the
connection as we do.

A direct comparison of our empirical results with those of the above approaches is not feasible
at this time because there is currently no (realistic) shared data set on which to evaluate the various
techniques side-by-side. In fact, in the preliminary stages of this work (Wright et al., 2004), we
attempted to do just that by evaluating our preliminary classifier on network traces from the MIT
Lincoln Labs Intrusion Detection Evaluation (Lippmann et al., 2000). However, the MITLL data
set is now several years old, and it has been criticized as unrepresentative of real traffic (McHugh,
2000). The validity of these criticisms is evident in our own experiences: our naı̈ve classifier, which
was able to recognize a handful of protocols in the MITLL data with reasonable accuracy, did not
perform well on real wide-area traffic (Faxon et al., 2004). Its evaluation on real data highlighted
many of the problems addressed herein.

Recently, Karagiannis et al. (2005) proposed an interesting approach for performing traffic clas-
sification “in the dark” which, like ours, does not use port numbers or the contents of packet pay-
loads. However, their technique does rely on information about the behavior of the hosts in the
network. In particular, the approach makes use of the social and functional roles of hosts, that
is, their interactions with other hosts and whether they act as a provider or consumer of a service,
respectively. In this way, Karagiannis et al. (2005) focuses more on learning host behavior and infer-
ring the applications in flows based on the hosts’ interactions. Unfortunately, while this technique
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may be capable of identifying the type of an application, it might not be able to identify distinct
applications (Karagiannis et al., 2005), and it does not classify individual flows or connections.

McGregor et al. (2004) present a technique for clustering network flows without using packet
payloads. Whereas we view flows as sequences of packet sizes and times, they represent each
flow as a finite-dimensional vector of flow attributes and use the standard k-means algorithm to
cluster them. Similar to the idea present here, Coull et al. (2003) recently used sequence alignment
techniques to detect masquerades in Unix shell histories. We believe our results in this paper validate
their application of sequence alignment methods for the purpose of masquerade detection. However,
unlike that of Coull et al. (2003), our profiling technique does not require pairwise alignments of
all sequences, and is therefore better suited for studying network protocols (where the training data
requirements may be fairly large).

More distantly related work is that on stepping stone detection. By correlating the timing of
on/off periods in inbound and outbound interactive connections, Zhang and Paxson (2000b) demon-
strate how to detect “stepping stone” connections whereby an adversary tries to conceal the true
source of an attack by hopping from one host to another. Wang et al. (2002) and Yoda and Etoh
(2000) subsequently used methods similar to sequence alignment to detect stepping stones by identi-
fying TCP connections with similar packet streams—the general idea being to find good alignments
of the streams by identifying locations where the two subsequences of inter-arrival times are most
similar.

Packet timing and/or size information have also been used in several application-specific infor-
mation leakage attacks on various kinds of encrypted traffic. For example, Sun et al. (2002) identify
web pages within SSL–encrypted connections by examining the sizes of the HTML objects returned
in the HTTP response. Similarly, Felten and Schneider (2000) demonstrate that web servers can use
the inter-arrival time of HTTP requests for objects on a web page to reveal the presence of items
in the browser’s cache. Song et al. (2001) show that the interarrival times of packets in SSH (ver-
sion 1) connections can be used to infer information about the user’s keystrokes and thereby reduce
the search space for cracking login passwords. A recent paper by Kohno et al. (2005) presents a
method for identifying individual physical devices over the network, using clock skew information
observable in the device’s TCP headers.

7. Conclusions and Future Work

In this paper, we demonstrate how application behavior remains detectable in encrypted network
traffic. First, we show how application protocols can be identified in aggregate traffic without de-
multiplexing and reassembling the individual TCP connections. We also show that, when it is pos-
sible to demultiplex the flows, more in-depth analysis of the packets in each flow can lead to even
more robust and accurate classification even when a mix of several protocols are included. Finally,
and perhaps most surprisingly, we show that encrypted tunnels which carry only a single application
protocol leak sufficient information about the flows in the tunnel to allow us to accurately track their
number.

In future work, we will explore ways to harden our current techniques against an active adver-
sary. Such work will necessarily include research into useful metrics for capturing the power of
an active adversary. Our current investigations explore the feasibility of using the divergence of
the adversary’s model from the data’s true distribution. Other metrics might include bounds on the
maximum number of bytes or packets the adversary can add to the original stream, or the maximum
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delay or jitter she can induce. We also intend to extend our techniques to more general types of
encrypted tunnels, with the ultimate goal of being able to track the number of connections of each
protocol inside a full IPsec VPN (Kent and Atkinson, 1998).
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Appendix A.

Table 4 depicts shows the full confusion matrix for the Viterbi classifier when analyzing TCP con-
nections as sequences of packet sizes. These results averaged for 9 days chosen at random during
the same month, and reflect average classification rates over all 72 pairs of testing and training days.

Classification Probability
Protocol AIM SMTP-out SMTP-in HTTP HTTPS FTP SSH Telnet none
AIM 80.8 2.9 1.4 1.6 3.1 0.9 5.4 3.2 0.7

SMTP-out 7.1 73.2 6.9 1.2 1.9 2.3 1.9 5.2 0.3
SMTP-in 2.5 10.6 77.2 0.1 0.2 4.6 0.8 3.9 0.1
HTTP 0.7 0.3 0.1 90.3 6.4 0.3 1.3 0.4 0.1
HTTPS 0.9 0.8 0.1 5.9 88.5 0.6 1.9 0.8 0.5
FTP 7.1 4.1 11.1 0.9 2.1 57.7 6.0 11.0 0.0
SSH 3.4 1.8 9.3 1.5 6.8 2.8 69.1 1.9 3.2

Telnet 2.2 1.0 1.8 3.5 2.2 2.6 3.2 82.9 0.4

Table 4: Confusion matrix for Viterbi classifier with profile topology
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