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Abstract. Universal Re-encryption allows El-Gamal ciphertexts to be
re-encrypted without knowledge of their corresponding public keys. This
has made it an enticing building block for anonymous communications
protocols. In this work we analyze four schemes related to mix networks
that make use of Universal Re-encryption and find serious weaknesses in
all of them. The Universal Re-encryption of signatures is open to exis-
tential forgery, and the two mix schemes can be fully compromised by
an passive adversary observing a single message close to the sender. The
fourth scheme, the rWonGoo anonymous channel, turns out to be less
secure than the original Crowds scheme, on which it is based. Our at-
tacks make extensive use of unintended ‘services’ provided by the network
nodes acting as decryption and re-routing oracles. Finally, our attacks
against rWonGoo demonstrate that anonymous channels are not auto-
matically composable: using two of them in a careless manner makes the
system more vulnerable to attack.

Keywords: Universal re-encryption, re-encryption mix networks, anonymous com-
munications, traffic analysis.

1 Introduction

An important technique to achieve anonymous communication is the mix, an
anonymizing relay, first proposed by David Chaum [1]. In his scheme messages
to be anonymized, on their journey from Alice to Bob, are first encrypted under
the public keys of all intermediate mixes. The messages are then relayed by all
mixes in succession that decrypt them, effectively pealing off a layer of encryption
at the time, and forwarding them to the next mix. As a result an observer of the
network should find it hard to link senders and receivers of messages.

Many mix based systems, inspired from this architecture, have been designed
and deployed [2–4]. They all use a hybrid encryption scheme, that combines the
necessary public key cipher with a symmetric key cipher for bulk encryption.
This technique keeps the computational cost of running a mix low, and allows
more messages to be mixed together. Yet this architecture suffers from replay



attacks: the same message, if routed twice in the mix network, will at each
stage decrypt to bitwise exactly the same plaintext. To prevent adversaries from
making use of this property to facilitate traffic analysis, most schemes keep track
of the messages processed and refuse to process them again. The storage cost is
proportional to the number of messages processed.

An alternative approach – also with the independent advantages of proofs of
robustness – relies on mixed messages being re-encrypted instead of decrypted.
In such schemes [5, 6] messages are encrypted using the El-Gamal public key ci-
pher [7], and each mix node re-encrypts them on their way. Finally all messages
are decrypted by a threshold decryption scheme at the end of the route. The
re-encryption is randomized, and replaying a message will lead to different inter-
mediate messages in the network. The re-encryption operation does not require
any secrets, but requires the knowledge of the public key used for encryption.

Golle et al. [8] proposed a scheme, named Universal Re-encryption, that does
away with the requirement to know the public key, under which a ciphertext was
encrypted, to be able to re-encrypt it. A plaintext m encrypted under public key
(g, gx) has four components (using fresh k, k′):

UREx(m) := (a, b, c, d) := (gk′

, (gx)k′

; gk, (gx)k ·m) (1)

Such a ciphertext can be re-encrypted by anyone, and become unlikable to the
original one using fresh z, z′:

(a′, b′, c′, d′) := (az′

, bz′

; az · c, bz · d) (2)

Note that the re-encrypted product of Universal Re-encryption is a valid cipher
text of message m, encrypted under the secret key x, i.e. UREx(m).

The Universal Re-encryption primitive itself, and its extensions [9], are be-
lieved to be secure. In this work we study the applications of this primitive,
in the context of anonymous communications, that turn out to have numerous
weaknesses.

First we demonstrate that the attempt of Klonowski et al. [10] to make re-
encryptable RSA signatures is insecure, and vulnerable to existential forgery.
Then we consider the mix scheme of Klonowski et al. [11] and Gomulkiewicz et

al. [12] that attempt to use Universal Re-encryption to build replay resistant mix
networks. Their schemes can be attacked by a passive adversary that observes
the message ciphertext at just one point, close to the sender Alice. Finally we
consider the rWonGoo scheme by Lu et al. [13]. The scheme takes into account
that the careless use of Universal Re-encryption is susceptible to tagging attacks,
and a variant of re-encryption is used. Yet rWonGoo fails to protect against all
attacks, and we demonstrate that it is in fact weaker then the simple Crowds [14]
anonymity scheme. We propose a fix to make rWonGoo as secure as Crowds, yet
the heavy cryptography used becomes superfluous.

2 Breaking the “Universal Re-Encryption of Signatures”

Klonowski et al. [10] extend the universal re-encryption scheme by Golle et

al. [8], that allows ElGamal [7] ciphertexts to be re-encrypted along with a valid



RSA [15] signature. The transform is key less, and can be performed by any
third party. The key feature of the Klonowski et al. scheme is that the signature
associated with the ciphertext remains valid, despite the ciphertexts being mod-
ified through re-encryption. Schemes with such properties have the potential to
be used in anonymous credential, e-cash and electronic election schemes, as well
as a plethora of other application in the field of privacy enhancing technologies.
Unfortunately their scheme is insecure since signed ciphertexts can be combined,
without the knowledge of any signing secrets, to produce valid signatures.

Assuming that N = pq with p and q being two random large primes and let g
be in Z

∗
N . All operations are performed modulo N , unless otherwise stated. For

a message m an authority creates an RSA signature md (d being its signature
key). To encrypt the message to a public key y = gx, the authority chooses
uniformly at random two values k1 and k2. A cipher text in the Klonowski et al.

scheme is composed of the following elements:

(α0, β0; α1, β1; α2, β2; α3, β3) :=

(m · yk0 , gk0 ; yk1 , gk1 ; (m · yk0)d, (gk0)d; (yk1)d, (gk1)d) (3)

It corresponds to an ElGamal encryption of the message, and an ElGamal en-
cryption of the element 1 (necessary to perform a key less re-encryption), along
with an RSA [15] signature (exponentiation using d) of all these elements. To
re-encrypt the ciphertext anyone can choose two values k′

0 and k′
1, an perform

the following operation:

(α0 · α
k′
0

1 , β0 · β
k′
0

1 ; α
k′
1

1 , β
k′
1

1 ; α2 · α
k′
0

3 , β2 · β
k′
0

3 ; α
k′
1

3 , β
k′
1

3 ) (4)

Klonowski et al. propose to accept the signature as valid if α0 = αe
2 holds, where

e is the public verification key, corresponding to the signature key d (the RSA
property is that e ·d mod (p−1)(q−1) ≡ 1⇒ ae·d mod N ≡ a mod N). This
unfortunately does not guarantee that the ciphertext has not been modified, and
does not therefore provide neither integrity nor non-repudiation as a signature
scheme should.

2.1 Attacking the Scheme

The attack relies on the algebraic properties of RSA, in that the product of
two signatures, results in the signature of the product, or more formally md

0 ·

md
1 = (m0 ·m1)

d. Therefore if an attacker knows a signed plaintext m′, (m′)d, it
can construct a valid Klonowski et al. ciphertext by multipying it into another
ciphertext in the following way:

(α0 ·m
′, β0; α1, β1; α2 · (m

′)d, β2; α3, β3) (5)

The verification equation holds since α0 ·m
′ = m ·m′ · yx = (m · yk · (m′)d)e =

(α2 ·(m
′)d)e. The known plaintext and signature can therefore be multiplied into

a valid ciphertext, at any stage, and produce another valid plaintext.



An adversary can also use two valid but unknown ciphertexts signed and
encrypted to the same keys, and combine them to produce another valid, and
apparently signed ciphertext.

(α0 · α
′
0, β0 · β

′
0; α1, β1; α2 · α

′
2, β2 · β

′
2; α3, β3) (6)

Which would be a valid ciphertext since m · yk
0 · m

′ · yk′
0 = ((m · yk

0 )d · (m′ ·

yk′
0)d)e. Therefore an adversary can use ciphertexts, with unknown plaintexts

and combine them into another valid ciphertext. This leads to existential forgery.

3 Breaking Onions Based on Universal Re-encryption

In Klonowski et al. [11] and Gomulkiewicz et al. [12] two very similar mix format
schemes based on Universal Re-encryption are described. The first paper [11] dis-
cusses how such construction can be used to route messages in the mix network,
including mechanisms for reply blocks and detours [4]. The second paper [12]
claims that the use of Universal Re-encryption makes the mix scheme invulner-
able to replay attacks. We will show that both schemes are vulnerable to tracing
attacks by an adversary that observes the sender injecting an onion into the
network, has the ability to use the network, and controls one corrupt mix.

The encoding schemes proposed are very simple. The sender (or a third party
as described in [11]) wants to send a message m though a sequence of mixes
J1, J2, . . . , Jλ+1, to the final receiver Jλ+1. The public keys corresponding to
each node Ji are globally known and are yi = gxi . Each address in sequence and
the message is universally re-encrypted using El-Gamal:

UREx1(J2), UREx1+x2(J3), . . . , UREx1+x2+...+xλ
(Jλ+1), UREx1+x2+...+xλ+1

(m)
(7)

UREx(m) denotes the ciphertext one gets by performing universal re-encryption
on the message m under private key x. Note that only the public component
y = gx of the private key x is required to perform this operation.

Routing and decryption are taking place in parallel. The onion is first relayed
to J1, that uses its secret key x1 to decode all blocks, retrieve J2 and forward the
message. There is no discussion in [11, 12] about removing the blocks that have
been decoded, or adding blocks to pad the message to a fixed size, but these can
easily be done to hide the position of different mixes on the path and the overall
path length.

3.1 Attacking the Scheme

Universal re-encryption, UREx(m), of a plaintext has some important properties
that make our attacks possible. The ciphertext UREx(m) has two components:
an ElGamal encryption of 1 under the public key gx and the encryption of the
message m under the same public key.

UREx(m) ≡ (gk1
1 , gk1x

1 , gk2
2 , gk2x

2 m) (8)



It is possible for anyone that knows UREx(m) to encrypt an arbitrary message m′

under the same public key. Simply chose random k3, k4 and encode the message
m′ by multiplying it by the blinded encryption of 1:

UREx(m′) ≡ ((gk1
1 )k3 , (gk1x

1 )k3 , (gk1
1 )k4 , (gk1x

1 )k4m′) (9)

Given UREx(m) it is easy to further encrypt it under an additional, arbitrary,
key xa and get UREx+xa

(m) without the knowledge of the secret x:

UREx+xa
(m) ≡ (gk1

1 , (gk1
1 )xa · gk1x

1 , gk2
2 , (gk2

2 )xa · gk2x
2 m) (10)

An interesting property is that UREx(m′) is indistinguishable from UREx(m)
by anyone who does not know the secret key x. Even if a party knows x it is
impossible to determine that UREx(m′) was derived from UREx(m).

We further note that each mix in fact acts as a decryption oracle:

1. The mix Ji receives an onion composed of universally re-encrypted blocks.

. . . , URExi
(Ji+1), URExi+xi+1(Ji+2), . . . , URExi+xi+1+...+xλ+1

(m) (11)

2. The Mix Ji decrypts all blocks using its secret xi. The result is:

. . . , Ji+1, URExi+1(Ji+2), . . . , URExi+1+...+xλ+1
(m) (12)

3. The mix reads the next address Ji+1. If it is not well formed it stops (or starts
the traitor tracing procedure described in Section 4.5 of [12]). Otherwise it
re-encrypts all blocks and sends the resulting message to Ji+1.

Using the properties of universal re-encryption and the protocol that each
mix implements an attacker that observes a message can trace it to its ultimate
destination. Each block UREx1+...+xi

(Ji+1) is replaced by a block that redirects
the onion to the corrupt node A followed by another block that contains the
next address encrypted under the public key of the corrupt node xa. A ‘label’
block that is the encryption of a fixed, per onion, label L has to also be included
in oder to be able to run multiple tracing attacks in parallel.

UREx1+...+xi
(Ji+1)

← UREx1+...+xi
(A), UREx1+...+xi+xa

(Ji+1), UREx1+...+xi+xa
(L) (13)

Each mix Ji on the route will decode the message without realizing that it
has been modified. Furthermore it will decode the block containing the address
of the next mix Ji+1 and the label L. The decoded message will contain:

. . . , A, URExa
(Ji+1), URExa

(L), . . . (14)

The address A is interpreted by the honest mix Ji as the first address and
the decoded message is redirected there. Once the adversary received it he can
decode URExa

(Ji+1) and URExa
(L) using his secret xa to retrieve the next node

Ji+1 and the label L respectively.



Fig. 1. After intercepting Alice’s mix packet, the attacker redirects the message to
themselves.

The attack results in the path of the traced onion becoming J1, A, J2, A,-
J3, A, . . . , A, Jλ+1, as illustrated in Figure 1. The attacker is able to receive the
onion every time it exists a mix, decode the next address and the label L, and
re-insert it in the correct node to continue the tracing.

Our attack only requires a brief observation of the network to capture the
onion to be traced. After that the onion is modified, and the mixes will not
only decode the next address, but also forward that information to the attacker
node. Therefore there is no need to perform any further passive or active attacks
against messages in the network. Note that such onions can be traced even after
they have been routed, since no duplicate detection mechanism is implemented.
A replay prevention mechanism is difficult to implement in the context of univer-
sal re-encryption since all ciphertext (even of the same plaintext) are unlinkable
without all the keys.

The fact that onions in a mix network are required to be of fixed size does
not foil the attack. Since the linkage of the different parts of the message is so
week, it is possible to remove the tail blocks to allow for enough space to modify
the message, as described above, to trace the connection. In case the message is
too short to do this, it is still possible to perform the tracing in multiple steps,
that only require replacing (over-writing) one section of the message to redirect
it to the adversary. Then the same message is injected in the network with the
next section / header overwritten to re-direct to the attacker again until the final
recipient is found.

3.2 Replay and Tagging attack

Besides the attack described above, the design in [12] fails to protect against
replay attacks. An attacker can embed a tag that can be recognized after each
mix Ji has processed the packet: he simply appends to or replaces the last block
of the message with UREP

xi+xa
(L). Once the message is processed the output

will contain URExa
(L), which the adversary can decode to retrieve the label L.

If the same message is inserted again it will output a message with the the same
label, which leads to the classic replay attack.



Lu et al. [13] also point out that the scheme is susceptible to tagging attacks
similar to those first proposed by Birgit Pfitzmann [16]. Their attack allows
a corrupt receiver to trace the message and uncover Alice as its sender. They
correctly point out that this attack is outside the threat model of Klonowski et

al. [11] and Gomulkiewicz et al. [12], since they assume that Alice and Bob trust
each other. Our attacks do not make this assumption, and allow an arbitrary
third party that acts as an active adversary and controls one node to fully trace
and decrypt the messages exchanged.

4 Weaknesses of the rWonGoo Scheme

Lu et al. [13], note that Universal Re-encryption is susceptible to tagging attacks,
but also propose rWonGoo, a novel anonymous communications scheme based
on re-encryption. rWonGoo was designed to protect against tagging attacks,
where an adversary modifies a message to trace it through the networks, and
replay attacks, where a message is replayed to help tracing. We next provide a
quick description of rWonGoo that will help us highlight its vulnerabilities (a
full description is provided in [13]).

rWonGoo is broadly inspired by the Crowds anonymization scheme [14], and
aims to be deployed in a decentralized network of thousands of peers. It assumes
that an adversary is prevented from snooping on the network by link encryption,
but may also control a fraction of nodes to assist the attack. The communication
in rWonGoo is divided into two phases. In the fist phase the channel is opened
through the network between Alice and Bob, and the keys necessary to perform
the re-encryption are distributed to all nodes through the channel. In the second
phase messages between Alice and Bob can be exchanged. They start off being
encrypted under the keys of all intermediary nodes, that each decrypt, re-encrypt
and forward messages.

An rWonGoo channel is composed of two types of relaying nodes: those that
perform re-encryption and those that are simply re-routing the message. The
nodes that perform re-encryption, shall be called Pi (for 1 ≤ i ≤ λ) with El-
Gamal keys (g, yi) respectively, while those that simply redirect shall be called
Qj (no keys are necessary since only redirection is taking place at nodes Qj).
Conceptually all communication between P nodes is done using a Crowds anony-
mous channel over Q nodes. In some sense rWonGoo routes already on top of
a crowds anonymous channel. The final node Pλ is assumed to be Bob, the
ultimate recipient of the anonymous messages from Alice (also P0).

The channel establishment protocol is of special interest to an attacker. Alice
first picks a node P1 and extends her tunnel to it. This extension is done using the
crowds protocol, until node P1 is reached. The node P1 sends back to Alice a set
of potential next nodes, with their IP addresses, TCP ports and El-Gamal public
keys. Alice chooses one of them and, through an encrypted channel described
below, extends her tunnel to P2. The communications between P1 and P2, are
using the crowds protocol. This is repeated λ−1 time until Alice instructs Pλ−1

to connect to Bob.



All communications between Alice and node Pi (including Bob i.e. Pλ) are en-
crypted in a layered manner. Alice always knows the public keys y1 . . . yi and uses
them to generate a key distribution message that distributes to all intermediates
P1 . . . Pi the keys necessary to re-encrypt messages. These are conceptually the
composite public keys under which the messages seen by each Pi are encrypted.
Alice sends the key distribution message:

A→ P1 : ((y1 · . . . · yi)
r, gr; yr′

0 , gr′

) ≡ (P forward
0 , P backward

0 ) (15)

P1 removes his key from the first part of the message, to retrieve the public
key P forward

1 := ((y1 · . . . · yi)
r/(gr)x1 , gr) ≡ (y1f , g1f ) necessary to re-encrypt

messages traveling forward in the channel. Similarly he adds his public key to the
second part of the message to calculate the key P backward

1 := (yr′

0 · (g
r′

)x1 , gr′

) ≡
(y1b, g1b) necessary to re-encrypt messages traveling back towards Alice. P1 then
sends the new key set (P forward

1 , P backward
1 ) to node P2. This procedure is repeated

by all P in the channel, until the final message arrives at Pi:

Pi−1 → Pi : (yr
i , gr; (y0 · . . . · yi−1)

r′

, gr′

) (16)

This key distribution procedure ensures that all intermediate Pi know the
public keys under which the messages they receive on the forward and backward
path are encrypted. As a result they can decrypt them and re-encrypt them on
their way. Upon receiving a message M := (a, b) node Pj performs the decryption
using its secret key (g, yj , xj) and re-encryption using the key (gj(b|f), yj(b|f)),
under which the message is encrypted, and passes the resulting M ′ to the next
node in the path (using Crowds as transport).

M ′ := ReEnc(gj(b|f) ,yj(b|f))(Dec(g,yj ,xj)(M)) (17)

Following this process a message sent from Alice to Bob encrypted under key
P forward

0 , arrives encrypted under Bob’s key (g, yλ), and a message send back
from Bob to Alice under key P backwards

λ arrives encrypted under her key (g, y0).

4.1 Attacking rWonGoo: Capturing the Route

The key vulnerability of rWonGoo is that it is susceptible to man-in-the-middle
attacks, that allow the rest of the channel to get captured after a malicious node
is encountered. This means that after Alice chooses a bad node to include on the
channel path, all subsequent nodes can be made to be bad too. The intuition
behind this attack is that Alice knows very little about the network, and relies
on intermediaries to discover other nodes and their public keys. She is therefore
unable to tell the difference between a genuine interaction with the network, and
a interaction that is simply simulated by an adversary.

The attacks proceeds quite simply: we assume that there is a first dishonest
re-encrypting node on the path, named Pm. Once the dishonest node Pm receives
the request to extend the channel, it starts simulating a network of nodes Pmk

,
and provides Alice with their fictitious IP addresses, TCP ports and public keys



(for which Pm knows the secret component). Alice chooses one of them to extend
her tunnel, but no matter which one she chooses Pm never forwards any message
but keeps simulating more nodes, all running the rWonGoo protocol with Alice.
Finally Alice connects to Bob, directly through Pm. Note that the fact that
Alice is provided a choice of nodes to chose from does not eliminate any attacks,
since they are all corrupt, or even non-existent. As Alice does not have any first
hand experience of any of the nodes she is asked to choose (she cannot even
query them to see if they exist, since this would reveal she is the originator of
the tunnel), the attacker can populate these choices with not only malicious but
also fictitious nodes.

During the key distribution phase of the protocol the malicious nodes substi-
tute the keys communicated to Bob, for use in the backward channel, with their
own keys. Therefore the key distribution message received by Bob is (yr

λ, gr; yr′

m, gr′

),
where ym is the public key of the adversary. As a result any message sent by

Bob back to Alice can be read by the malicious nodes. Those messages can then
be re-encrypted under the key f b

m and sent to Alice.
Our attacks so far allows an adversary to perform a predecessor attack [17],

and probabilistically find Alice after she engages in consecutive interactions with
Bob. We can estimate how long, in terms of the number of fresh channels Alice
has to open to Bob, the attack is likely to take. We assume that a fraction f of
the network is controlled by the adversary [18]. The intersection attack succeeds
immediately (for reasons explained below) if the first Crowds node after Alice, Q1

belongs to the adversary, which it is with probability f . Consider the random
variable L, which denoted the number of fresh rWonGoo channels that Alice
opens to Bob, until a channel in which the first node Q1 is corrupt. The random
variable L follows a geometric distribution with parameter f , and Alice is on
average expected to have

�
(L) = (1− f)/f secure anonymous tunnels until her

association with Bob is uncovered.

4.2 Decrypting any Message Using Re-routing Oracles

First we note that any node in the network, including Alice and Bob, can be
used as a decryption oracle for messages encrypted under their keys. During the
key setup operation a node is asked to effectively decrypt the first part of the
message it receives and relays it to the next node on the path. Consider the
victim node Pi with public key yi which is to be used to decrypt a ciphertext
m := (a, b) ≡ (gk, yk

i m′). The adversary sets up an rWonGoo channel Pm, Pi, P
′
m,

where the nodes Pm and P ′
m are controlled by the adversary. Then Pm sends to

Pi the following message, that is to Pi indistinguishable from a key distribution
message (k is a random factor chosen by the adversary):

Pm → Pi : (b · k, a; yr′

m, gr′

) (18)

The node Pi removes its key from the first component of the message and sends
the result to the next node P ′

m, which is also controlled by the adversary. The
new message will be:

Pi → P ′
m : (b · k/axi , a; . . .) (19)



As a result P ′
m gets b·k/axi = yk

i m′ ·k/yk
i = m′ ·k and can divide it by the known

factor k to retrieve the encrypted message m′. We will denote the decryption of
a ciphertext m by the adversary as m′ = Deci(m), which only takes subscript i
(and not the private key xi) since it can be performed even if just the name of
the node is known1.

We have shown in the previous section that a malicious Pm can always un-
cover the receiver Pλ (or Bob) of any message seen, and see in clear all messages
send by Bob to Alice. Since any malicious node can also force any other node in
the network to act as a decryption oracle, it follows that the attacker can also see
in clear all messages sent by Alice to Bob. Each ciphertext m destined to Bob,
has to travel through Pm, and is encrypted only under Bob’s public key. The
attacker can just use Bob as an oracle to retrieve the plaintext m′ = Decλ(m).

4.3 Using any Qm to Attack the Crowds Routing

In rWonGoo communication between any two P is done using the Crowds pro-
tocol, and we name the nodes that merely perform crowds redirection Qi. Those
simply forward the message and perform link encryption.

First, using the decryption attacks presented above, any corrupt Qm node
can capture the rest of the route until Alice asks to be connected to Bob. This is
possible because the corrupt Qm sees all the key distribution and actual messages
that are relayed, starting from the first message in which Alice asks to have
the rWonGoo channel connected to the next Pi on the route. At this point
the corrupt rerouting node Qm uses Pi as a decryption oracle to retrieve all
information sent by Alice. As a result Qm can simulate all interactions where
the secret keys of Pi are needed, without ever relaying the channel through it.
Our route capture attacks can now be performed by any corrupt Pm or just Qm

node on the path.
Secondly we note that a Qm can test whether its predecessor is Alice by

using it as a decryption oracle on a backwards message (which is only encrypted
under Alice’s key), and checking if the result is plaintext. In case the result is
plaintext, Qm can confirm that its predecessor is Alice. This turns the predeces-
sor attack into an exact attack, and makes rWonGoo weaker than the original
Crowds. Similarly the attacker can test any other node in the network to see if
it is the originator of the message. This breaks anonymity after at most O(N)
decryptions, where N is the size of the network, by a Qm between Alice and P1.

A confirmation attack can be mounted by any Qm, even if it is not on the
Crowds route of the first hop between P0, or Alice, and the first mix P1. Any
Qm observes in clear the key ((y0 . . . yi)

r′

, gr′

) ≡ ms, which is the combination

1 Note that if the message decrypted using Pi as an oracle is not encrypted under
the corresponding key yi, it will result in a plaintext that is indistinguishable from
random. This property can be used to detect valid decryptions, when the correct
plaintext is expected to have some structure. In case the correct plaintext is also
indistinguishable from random for the adversary, it is difficult to tell if the correct
or incorrect node was used as a decryption oracle.



of all the public keys of the Pi’s so far on the route. Qm wants to test whether
the path used is made of the guess set of nodes Pj0 . . . Pjk

. To do this Qm can
consecutively decrypt, using each of the nodes Pj0 . . . Pjk

as oracles message
ms, (i.e. m′

s = Decj0(. . . Decjk
(ms))). If it is the case that the plaintext equals

one (m′
s = 1), then the guess is correct, and Qm has established that the path

so far was made of the nodes in the guess set. This is an all-or-nothing test
that provides no partial information. As a result it does not scale well with the
number of honest network nodes N and the path length l, since Qm will have to
perform c =

(

N

l

)

· l decryption requests.

4.4 The Stronger Crowds the Weaker rWonGoo

The complexity of the attack presented above, in terms of the parameters of the
system, is counter intuitive. The attack becomes more difficult as the number
of honest P s that re-encrypt the messages increases before the message is ‘seen’
by either a dishonest Pm or a dishonest Qm (a node that only performs Crowds
between P nodes, yet can see the ciphertext and perform the guessing attack).
In case the message is seen by a corrupt Qm as it is traveling between Alice and
P1, only O(N) decryptions are required.

We assume that until a corrupt Pm or Qm is reached, say node number
v (at which point we can capture the route or perform the guessing attack) all
nodes are selected uniformly at random. This allows us to calculate the expected
position v of the first corrupt node, if we know that a certain fraction f of
the network is corrupt. The number v follows a geometric distribution with
parameter f and its expected value is

�
(v) = (1 − f)/f . As the fraction of

corrupt nodes increases we expect the message to be seen by the attacker earlier.
At the same time the Crowds protocol can be tuned with a parameter h,

which is the probability a message is forwarded to its final destination (versus
being forwarded to a random member of the crowd) by each node that receives it.
It is also trivial to see that the average length u of each journey into the crowds
subsystem (that is used to route between P s) follows a geometric distribution
with parameter h, with average path length

�
[u] = (1− h)/h.

As mentioned before our guessing attack is most effective when the number
of P s on the route is small, before the message is seen by the adversary. We
know that on average the message will be seen in

�
(v) = (1 − f)/f hops, but

the average length of its first Crowds trip between Alice (P0) and the first re-
encryptor P1 is expected to be

�
[u] = (1 − h)/h. We can conclude that if the

parameter h is smaller than f (the corrupt fraction of nodes in the network) it
is expected on average that the attacker will see the message on its first hop and
be able to perform the most trivial guessing attack. The adversary only has to
perform at most N decryption operations until Alice is revealed.

This result is counter-intuitive: the parameter h being smaller means that the
number of intermediaries in the Crowds protocol is larger. One should expect
this to increase the anonymity of the system. Contrary to this, increasing the
length of the crowds path allows the adversary to observe the raw message earlier
with higher probability, despite link encryption. Since the rWonGoo scheme is



very vulnerable when the attacker can observe messages early on, increasing the
‘anonymity’ provided by the Crowds transport, decreases the overall anonymity
of the system.

4.5 Partial fix for rWonGoo

As it stands rWonGoo is weaker than Crowds (that only uses link encryption,
and no other cryptographic protection.) It is possible to make its security as
good as Crowds with a minor modification: the sender Alice, chooses a fresh key
pair (g, y0) for each channel. This would defeat the confirmation attacks that
make rWonGoo weaker than crowds, since Alice cannot be forced to decrypt a
ciphertext correctly, confirming that she is the sender. This makes rWonGoo as
strong as Crowds, but much more complex and unnecessarily costly at the same
time.

5 Conclusion

The properties of RSA that make the ‘Universal Re-encryption of signatures’
scheme vulnerable to our attacks have been known, and used in the past by Bir-
git Pfitzman to break anonymous communications schemes [16]. To overcome
them special padding schemes such as PKCS#1 [19] are used to give ciphertexts
a special structure that is infeasible to reconstruct by multiplying different ci-
phertexts together. These padding schemes require a verifier to have access to the
message plaintext in order to verify its validity, making it therefore impossible to
check the validity of re-encrypted ciphertexts (since they still hide the message
m). To allow decrypted ciphertexts to be verified using a signature scheme none
of the fancy cryptography is necessary: it is sufficient to encrypt using Golle et al,
a signed message, and transmit the corresponding ciphertext. The receiver then
decrypts the ciphertext and can check the signature. Therefore we see little hope
in fixing this scheme while retaining its interesting re-encryption properties.

The attack against the onions based on universal re-encryption is possible
because of many factors: We can modify the onions, since their integrity is not
protected, and their different parts are not linked to each other in a robust
manner. The mixes allow themselves not only to be used as decryption oracles
for arbitrary ciphertexts, but also can be used to redirect traffic to the attacker
making tracing effortless. Our attack shows that the claim in section 4.3 of [12],
that the insertion of blocks in the onion structure is not possible, is unfounded
which directly leads to our attack.

Finally we show that rWonGoo is a very fragile scheme. The additional cryp-
tography in rWonGoo has made the overall system more susceptible to attack,
than the original Crowds proposal, that only used link encryption. In particular
it is possible for all messages between Alice and Bob to be read by the adversary
with high probability, following route capture. Since any participant acts as a
decryption oracle, it is possible to mount confirmation attacks to find Alice more
quickly than if simple Crowds was used.



Our attacks lead to two important and novel intuitions, that anonymous
communication system designers should carefully take into account in the fu-
ture. First, the weakness of the rWonGoo scheme demonstrates that anonymous
channels are not automatically composable: rWonGoo using the crowds protocols
as a transport between mixes makes the system more vulnerable, not stronger.
Furthermore choosing more secure parameters for the Crowds transport used in
rWonGoo, makes the overall scheme less secure, which is highly counter-intuitive.

Second, our attacks against the mix and signature schemes based on Universal
Re-encryption, demonstrate the inherent difficulty in using this primitive in a
secure fashion. Its power comes from its neat structure, which allows for re-
encryption given only a ciphertext, and the use of multiple keys along with
incremental decoding. It is these properties that made it a promising primitive
for anonymous communications.

On the other hand to preserve these properties, and allow ciphertext to be
universally re-encryptable, a designer is forced to let them be malleable, leak the
public keys used, and is unable to add any redundancy for integrity checking of
messages on their way. That is the weakness our attacks exploited, and it is a
weakness that should have been foreseen given the rich literature on attacking re-
encryption networks. The literature on (non-Universally) re-encryption networks
demonstrates that, to be secured, such schemes require, identification of senders,
expensive zero-knowledge proofs of knowledge of the plaintexts, and proofs of
correct shuffle and threshold decryption. Such proofs have not yet been adapted
to Universal Re-encryption, and would be difficult to adapt them to the dynamic
setting of free-route mix networks, and the multiple threats that such networks
face (dynamic membership, sybil attacks,. . . ). Unless there is a breakthrough in
this field, Universal Re-encryption will should always be used, in this context,
with uttermost care.
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