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Abstract

Encryption is often proposed as a tool for protecting
the privacy of World Wide Web browsing. However,
encryption{particularly as typically implemented in, or
in concert with popular Web browsers{does not hide all
information about the encrypted plaintext. Speci�cally,
HTTP object count and sizes are often revealed (or at
least incompletely concealed). We investigate the iden-
ti�ability of World Wide Web traÆc based on this un-
concealed information in a large sample of Web pages,
and show that it suÆces to identify a signi�cant frac-
tion of them quite reliably. We also suggest some pos-
sible countermeasures against the exposure of this kind
of information and experimentally evaluate their e�ec-
tiveness.

1 Introduction

The rise of the World Wide Web has triggered se-
rious concerns about the possible threats to privacy
associated with Web browsing. These include possible
inadvertent disclosure of location or other personal in-
formation through data traÆc that reveals the brows-
ing user's identity and/or associates him or her with
browsing a particular Web page. Even partial reve-
lation of such information can cause embarrassment,
�nancial loss, or even physical harm.

For example, a user may reveal, simply by access-
ing a private home Web server from abroad, that the
resident is out of town (and therefore that the home is
vulnerable to burglary). The observer need only notice
that the home Web server is being accessed, and that
the originating IP address of the HTTP request is not
in the same locale as the home/server{usually an easy
thing to determine [22]. The inference can thus be
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made that the resident (the most likely{perhaps the
only likely{browsing user of the private Web server)
will not soon return home.

In other cases, the user can actually be identi�ed, ei-
ther directly, through explicit identifying information
in the traÆc, or indirectly, through inference{say, by
noticing a common IP address of origin with other iden-
tifying traÆc. In those cases, a user found to be brows-
ing Web pages containing certain types of medical or �-
nancial information may inadvertently reveal, through
implied interest in that information, embarrassing or
�nancially con�dential information about him- or her-
self.

For these reasons, considerable research has been di-
rected at techniques for \anonymizing" Web browsing{
that is, hiding the connection between a particular user
and the Web pages he or she is accessing. Most atten-
tion has focused on two main tools: data encryption,
to hide information that might reveal either the user's
identity or the Web page's, and one or more interme-
diate proxies, to hide from any particular proxy (or
from an observer of network traÆc) the connection be-
tween the browsing user's network address and the Web
site's [1, 4, 14, 25].

Even when multiple proxies are used, however, the
�rst link|between the user and the �rst proxy|is the
most vulnerable to attack, since the attacker (whether
the �rst proxy itself, the user's ISP, or perhaps an
eavesdropper|say, on a wireless link) can immediately
determine the user's network address. To foil such at-
tacks, encryption is essential; moreover, it must gen-
uinely render the Web content being browsed uniden-
ti�able. The question thus arises: how e�ectively does
encryption of Web traÆc hide its source?

To answer this question, we conducted a large study
of roughly 100,000 Web pages, attempting to distin-
guish them based solely on information that might well
be available even if they were being accessed through
an encrypted channel|say, one protected by SSL [13]
or its successor, TLS [10]. This \traÆc signature" in-
formation includes, essentially, the number of objects
requested as part of a Web page download, and the



lengths of those objects (subject to various possible
padding schemes). We found that without extremely
aggressive length padding, a relatively straightforward
identi�cation algorithm could in fact accurately iden-
tify many Web pages within the study with very low
false positive rates based on number and sizes of ob-
jects alone. The algorithm was eÆcient and easily au-
tomated, and required no sophisticated manual analy-
sis. Naturally, the number of false positives might be
expected to increase if applied to the entire Internet,
but such an e�ective initial \pruning" of possibilities
makes the likelihood of e�ectiveness of more sophisti-
cated methods much higher.

We also explored some alternative countermeasures,
including unconventional types of padding and more
elaborate length-hiding mechanisms, including some
which are noticeably more e�ective than standard
padding techniques.

2 The Experiment

2.1 Setting

When a typical browser fetches a Web page, it is-
sues an HTTP \GET" request to the address indicated
by the page's URL, and receives in response an HTML
\object" which may in turn contain references to other
Web objects. These objects are then fetched in turn,
synchronously (although in parallel on multiple TCP
connections, so as to speed the process and prevent
a single failed \GET" from delaying the downloading
of the rest of the page). Thus a given Web page re-
sults ultimately in the downloading of a certain (�xed
or variable) number of objects in a (possibly variable)
order. Each of these in turn may have either �xed or
variable length.

We assume that both the outgoing HTTP requests
and returned objects are strongly encrypted, reveal-
ing no identifying information, and moreover that the
IP address of the recipient of/responder to the request
is merely a proxy server whose identity provides no
information about the real source of the Web page.
For example, the browser may have established an SSL
connection to the proxy server, and be forwarding (en-
crypted) HTTP requests to the proxy over that con-
nection. In this case, the requests are protected by the
encryption on the SSL channel, but the sizes of the
returned objects are clearly discernible from the syn-
chronous \GET" requests (to within the cipher's block
size, if a block cipher is used). (As we will discuss
in Section 4.3, avoiding the synchronous \GET" re-
quests by using HTTP pipelining [12] can hide the ob-
ject sizes. Unfortunately, current browsers do not use

HTTP pipelining.) Alternatively, the HTTP requests
generated by the browser, and the corresponding re-
sponses received by it, may be intercepted by a more
sophisticated intermediate layer on the local machine
which implements its own encryption protocol, possi-
bly including large amounts of data \padding" (partic-
ularly of eturned HTTP objects) to disguise their true
lengths.

Normally, a browser caches recently-fetched objects,
to speed the presentation of pages containing these ob-
jects. However, it has been shown in [11] that in this
case any server, by including a request for an object
from a particular site in its Web page (say, between
requests for two objects from the server itself), and
measuring the delay introduced by this fetch, can de-
termine with high �delity whether the included object
was cached, and thus whether the browsing user had
previously visited that site in a single-user system set-
ting (such as a home desktop machine). Hence we as-
sume that object caching has been disabled, to guard
against these timing attacks by servers.

We further assume that an adversary is monitoring
encrypted traÆc, searching for examples of access to
one of a set of Web pages. For example, the adversary
may be searching for pages from Websites of a sensi-
tive nature, or those that implicitly reveal information
about the browsing user. The adversary can presum-
ably maintain an up-to-date database of object-number
and object-length pro�les of the pages of interest. The
adversary may not need to identify an example of ac-
cess to a particular \interesting" page with 100% ac-
curacy; however, too much \noise" among detected ac-
cess instances would render the observations useless to
anyone trying to exploit them.

Figure 1 describes in more detail the hypothetical
adversary architecture on which we based our exper-
iment. The adversary compiles traÆc information on
particular pages of interest, collects traÆc from poten-
tial viewers of those pages, and evaluates the similar-
ity of the traÆc patterns to determine if a particular
viewer is viewing one of the \target pages". Although
contextual information (such as the viewer's past his-
tory of traÆc) may be used, our experiment only com-
pares the traÆc patterns themselves.

Depending on the adversary, di�erent rates of false
positives and false negatives may be acceptable. In
most scenarios, however, the value of monitoring data
will be most severely a�ected by the false positive rate,
for several reasons:

� Browsing users tend to revisit sites multiple times,
fetching multiple pages, and usually one identi�-
cation of a targeted access is enough; hence high
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false negative rates are not that much of an obsta-
cle.

� Since the overwhelming majority of browsing traf-
�c is likely to be uninteresting, even a fairly small
false positive rate can result in huge numbers of
false positives in absolute terms.

� Since false positives are unlikely to disappear en-
tirely, positive reports may require signi�cant ex-
tra analysis to verify (such as examining contex-
tual information to determine the plausibility of
the detected traÆc). Hence reducing this over-
head is a high priority.

Thus we assume the adversary to be attempting to
identify Web pages with as low a false positive rate as
possible, while still achieving a signi�cant rate of true
positive identi�cations.

2.2 Procedure

We collected traÆc signature information on a sam-
ple of just under 100,000 Web pages, from a wide
range of di�erent sites. The pages were obtained
from the DMOZ Open Directory Project link database
(http://dmoz.org), half of them chosen from various
categories of \sensitive" sites to which an adversary

might be interested in spotting visitors, and the other
half chosen randomly. The information we examined
simply consisted of the number and sizes of the (un-
ordered) set of objects fetched by a browser (Microsoft
Internet Explorer version 5.5) accessing that page. The
objects' number and sizes were determined solely by
observing the chunks of response data (blocks of pack-
ets) received by the browser between blocks of request
packets emanating from the browser in a trace of the
browser's TCP connections. Thus no information was
used that would have been obscured had the data
passed across the connections been encrypted.

A small subset of just over 2000 \target pages"
in the sample (from two particular subcategories of
the \medical information" category), were also vis-
ited in advance, to collect a \signature database", be-
fore visiting the entire sample (including non-target
pages). We then chose a simple scalar \closeness" met-
ric Sim(s1; s2) for measuring the similarity between
two signatures, to be used to determine how well each
given signature matched one of those in the sample.
Viewing the pages as multisets of object lengths, we

chose Jaccard's coeÆcient (Sim(X;Y ) = jX\Y j
jX[Y j) as

our metric [28], using the standard de�nitions of mul-
tiset intersection and union|minimum number of rep-
etitions for intersection, maximum for union [16].

To evaluate the success of our hypothetical adver-



sary, we de�ned the following categories for pages in
our sample and \target" subsample:

1. Identi�able page: given a set T of target pages
and a page t 2 T (identi�ed as t0 when fetched
a second time), t is an identi�able page with
respect to T if (1) 8 u 2 T and u 6= t; Sim(t0; t) >
Sim(t0; u) and (2) Sim(t0; t) � c, where c is the
similarity threshold for Sim.

That is, an identi�able page in the subsample is
one that our metric correctly matches with its in-
carnation in the subsample when revisited. This
de�nition excludes pages that either are too sim-
ilar to any others in the same subsample or vary
too much in traÆc signature between di�erent ac-
cesses. If S � T is the set of identi�able pages in
the subsample, then the identi�cation rate of

T is jSj
jT j � 100%.

2. Potential false positive: given a target page t
and a non-target page n, n is a potential false
positive of t if Sim(n; t) � c, where c is the
similarity threshold for Sim.

Put simply, a potential false positive is a non-
target page that our similarity measure and
threshold scheme might possibly identify as a tar-
get page. Note that the de�nition of a potential
false positive is independent of the rest of the sub-
sample. It allows us to compute an upper bound
on the number of actual false positives without
considering all possible sets of target pages. The
actual number of false positives is smaller, as the
following de�nition explains:

3. Actual false positive: given a subsample of tar-
get pages T and a non-target page n =2 T in
the larger sample, n is an actual false posi-
tive with respect to T if (1) 9 t 2 T for
which n is a potential false positive of t, and (2)
Sim(n; t) > Sim(n; u) for all u 2 T and u 6= t.

In other words, a potential false positive n will
not result in an actual false-positive decision if n
is a potential false positive for more than one tar-
get page and the similarity scores are tied (since a
detection algorithm tuned to minimize false posi-
tives will refuse to identify n as either one of the
two plausible candidate target pages). For the set
N of non-target pages, if F � N is the set of actual
false positives with respect to T , then the actual
false positive rate of N with respect to T is
jF j
jNj � 100%.

4. K-identi�able page: given a set of target pages
T and a set of non-target pages N , a page t 2 T is

a K-identi�able page with respect to T and
N if (1) t is an identi�able page with respect to
T , and (2) for P � N consisting of all n 2 N that
are potential false positives of t, jP j � K.

That is, a K-identi�able page is an identi�able
page from the subsample that generates at most
K potential false positives in the overall sam-
ple. Thus, a uniquely identi�able page is \0-
identi�able", generating no false positives in the
overall sample. Given T and N , if S � T is the
set of K-identi�able pages in the subsample, then
the K-identi�ability rate of T with respect

to N is jSj
jT j � 100%.

For the reasons explained earlier, our goal was to
determine if a threshold exists that allows a signi�cant
fraction of target pages to be identi�ed while maintain-
ing very low false positive rates. Naturally, the unique
identi�cation rate would depend on such factors as the
amount and method of padding used in the encryption,
and the variability of the pages; determining how much
each of these factors a�ected the unique identi�cation
rate was also a goal.

3 Results

For our sample of 100,000 pages, the median num-
ber of objects in a page was 11. After rounding object
sizes to the nearest 32 bytes (to take into account mi-
nor HTTP header changes in responses from the same
page), the entropy of the object size distribution in the
sample was about 8.4 bits. Thus a typical Web page's
traÆc pattern (ignoring object retrieval order) can be
viewed as an unordered set of 11 objects, yielding a
total of 8:4 � 11� log

2
(11!) > 67 bits of information|

certainly more than enough (in theory) to recognize in-
dividual Web pages from the entire range available on
the World Wide Web. (According to [2], the Google
search engine fully indexed roughly 1.5 billion pages as
of December, 2001, which would require only 31 bits to
distinguish them.)

Figure 2 shows the identi�cation rate of the 2191
target pages and the actual false positives rate of the
98496 nontarget pages as a function of the threshold
used in the similarity metric. It is clear that for a sub-
stantial intermediate range of threshold values, a high
identi�cation rate coincides with an very low false posi-
tive rate. In particular, a threshold of 0.7 gives an iden-
ti�cation rate of about 75%, and a false positive rate of
less than 1.5%; that is, fewer than 1.5% of pages out-
side the target set in our larger sample were incorrectly
identi�ed as a target page from our subsample.
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Low as this false positive rate is, it masks the dispro-
portionately large e�ect of a small subset of the target
pages. As Figure 3 shows, a signi�cant fraction of tar-
get pages that generate potential false positives in this
case generate a large number of them; these \generic-
looking" pages appear to generate the bulk of potential
false positives. (Many of these may not generate actual
false positives; that is, since they may match multiple
target pages equally, they could easily be discarded as
unlikely true positives. For example, various types of
error messages, which tend to fall into a few standard
classes, produced the sharp rise on the top right cor-
ner of Figure 3's CDF graph. These are not neces-
sarily easily distinguishable from normal pages; they
may, for instance, be generated and formatted by the
Web server and returned as normal pages.) Meanwhile,
over 77% of pages did not even generate a single false
positive from the overall sample. This latter statistic
is thus the more relevant measure of the feasibility of
identifying Web traÆc than the fraction of the overall
sample that would be a false positive for some member
of the target set, since an attacker, by omitting generic-
looking pages, could expect to identify the remaining
target pages with an extremely low false positive rate.

On the other hand, some pages|regardless of the
number of false positives they generate|are in practi-
cal terms non-identi�able by virtue of their highly dy-
namic nature. Figure 4 shows how pages vary between
accesses. Just under 40% do not match exactly even
when re-accessed immediately, and about 14% do not
even achieve a similarity score of 0.7. In a smaller sam-
ple of 20,000 pages not shown here, we found that the
di�erence between immediate and day-to-day changes
is fairly small, indicating that pages can be roughly cat-
egorized as stable or variable between accesses, without
regard to the exact time interval between the accesses.
(Since the target set is assumed to be relatively small,
the adversary can be assumed able to update its signa-
ture data at least daily.)

Henceforth, we will concentrate on rates of unique
identi�ability (de�ned as meeting the similarity thresh-
old, with no potential false positives) of our target
set against the entire 100,000-page sample as our chief
measure of the success of our identi�cation method.
We will examine how various countermeasures af-
fect this unique identi�ability rate, as well as the k-
identi�ability rate for very small values of k. These
�gures hopefully give some indication as to the \noise"
levels that an adversary would face when trying to de-
tect encrypted browsing of a chosen target set of Web
pages.

4 Countermeasures

We next describe several traÆc-shaping mechanisms
that can be used to make the attackers' job much
harder. All of them require varying degrees of addi-
tional e�ort by the Web server and/or client software
to protect the anonymity of clients. They can be clas-
si�ed into three categories: padding, mimicking, and
morphing.

4.1 Padding

Padding is often cited in the literature as a means
to disguise traÆc volume. Typically it is used to create
uniform-looking blocks of data out of blocks of varying
(and thus distinguishable) sizes. One implementation
of \onion routing", for instance [27], transmits 128-byte
blocks of data, padding blocks if necessary to prevent
blocks from being distinguishable based on length. In
the case of transmissions larger than the block size,
the only information revealed about the length is the
nearest larger multiple of the block size.

Although padding schemes can help, they are far
less e�ective than one might assume, particularly in
cases such as Web browsing traÆc, where a collection
of associated padded lengths can be analyzed. Figure 5
shows how a standard linear padding scheme reduces
the fraction of uniquely identi�able pages in our sub-
sample; in each case we varied the similarity threshold
to optimize the fraction of uniquely identi�able pages,
as well as the fraction of \nearly uniquely identi�able"
pages (1- and 2-identi�able pages). A 128-byte scheme
was very weak; over half the pages in our subsample
remained uniquely identi�able. Rounding object sizes
up to multiples of 4 Kbytes (e�ectively nearly doubling
transmission overhead, based on a median object size of
2.5Kbytes) still allowed unique identi�cation of nearly
18% of pages. In both cases, a further 8% of pages were
nearly uniquely identi�able. It took a minimum object
size of between 8 and 16 Kbytes to reduce the fraction
of uniquely identi�able pages below 5%.

Of course, a complete absence of false positives in
our sample does not imply that there are no false pos-
itives in the World Wide Web as a whole. On the
other hand, we do not consider a complete absence
of false positives to be necessary for e�ective identi-
�cation to occur; we assume that an adversary can
apply more careful (and expensive) scrutiny of traÆc
to further eliminate false positives, as long as an eÆ-
cient automated screening method exists to allow the
extra processing to be limited to a relatively tiny frac-
tion of observed traÆc. (Such processing might involve
correlation with various kinds of contextual informa-
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tion, such as the signatures of prior and subsequent
pages, the browser's IP address, time of day, and so
on.) It appears that a signi�cant number of pages are
indeed amenable to such screening, with very low (if
ultimately non-zero) false positive rates

An alternative method we call \exponential"
padding, in which objects are padded out to number of
bytes which is a power of 2 (rather than a multiple of a
�xed size), works somewhat better than the standard
(\linear") method. As Figure 6 shows, exponential
padding with a 128-byte minimum block size reduces
the unique identi�ability rate to 27%, with a further
9.5% nearly uniquely identi�able. A 5% unique iden-
ti�ability rate requires somewhere between a 4- and
8-Kilobyte minimum block size. Of course, exponen-
tial padding can be much more expensive than linear
padding, since even large objects can be as much as
doubled in length.

Another possible padding method is to add extra-
neous objects of arbitrary length to the page. This
technique has only modest success against our simi-
larity measure. As Figure 7 shows, the presence of
randomly-sized extraneous objects depresses similarity
scores for true positives, requiring our decision mod-
ule to accept (and thus to be able to distinguish from
others) pages with relatively low similarity scores. Fig-
ure 7 also shows that if the threshold is too small (e.g.
0.3 instead of 0.4), the identi�able rate decreases be-
cause of more potential false positives. However, even
when we reduced our similarity threshold to take this
e�ect into account, our measure still generated no false
positives for over 40% of target pages, and one or two
false positives for a further 8.5%, when extraneous ob-
jects of random size up to 10 Kbytes were added to
bring the total number of objects to a multiple of 10.
Increasing the padding factor didn't help that much,

as shown in Figure 8; when pages were padded to a
multiple of 20 objects, the unique identi�ability rate
was still over 30%. However, additional experiments
showed that combining extraneous objects (to a mul-
tiple of 15 objects) with aggressive object padding (to
a multiple of 2 Kbytes) was quite e�ective; even using
the optimal similarity threshold, only 3.8% of doubly-
padded pages were uniquely identi�able, with a fur-
ther 2% generating one or two false positives. Again,
though, such a combined padding scheme can be quite
ineÆcient; a \median page" of 11 objects each of length
2.5 Kbytes would be nearly tripled in total length.

4.2 Mimicking

Another approach is to �nd patterns of Web traÆc
that are common to many di�erent Web pages, and try
to tailor one's Web pages in order to hide among them.
For example, popularWeb hosting services (like Yahoo,
Angel�re, etc.) often provide standard templates for
Web pages whose pro�les can be mimicked. Alterna-
tively, a Web page's content could be tailored to mimic
particular widely accessed pages, in order to guaran-
tee numerous false positives. Home pages of particular
popular Web sites are obvious candidates.

4.3 Morphing

The third approach tries to make the traÆc pat-
terns generated by client accesses di�erent from those
expected by the attackers. There are at least six simple
methods to accomplish this:

1. HTTP 1.1 byte-range requests [12] can be used
by the client to randomly break one Web page
into multiple chunks with potentially overlapping
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ranges. Thus object sizes are e�ectively com-
pletely disguised, and only a (padded) total size
of all objects is revealed.

2. The HTTP content negotiation mechanism, which
allows clients and servers to negotiate the for-
mat/type of some objects when applicable, can be
used to alter traÆc patterns. The multiple formats
may correspond to encodings of di�erent quality
(for images), di�erent languages (for text), etc.
Content negotiation can be either server-driven
(with the server deciding which format to send,
with or without input from the client) or agent-
driven (with the server telling the client about the
formats available and the client picking one).

3. HTTP pipelining [12] can be implemented to allow
multiple objects to be requested and returned to-
gether, so that the boundaries between them (and
thus their sizes) are obscured if they are encrypted.
After �rst downloading and parsing the HTML
�le for a Web page, the client can then issue a
pipelined sequence of requests for the embedded
objects, if all the objects are from the same Web
server. The transfer would thus typically happen
in two chunks|one corresponding to the HTML
and the other corresponding to all of the embedded
objects as a group. However, \one-chunk transfer"
is possible if a (trusted) proxy �rst downloads all
of the �les and then sends them to the client in
one chunk.

4. Prefetching/pushing of objects belonging to a par-
ticular page that a user will most likely visit
e�ectively removes those objects from the traf-
�c pattern associated with that page. Prefetch-
ing/pushing can be either client-based, with a
client browser issuing requests for objects that are
not directly requested by the user, or server based,
with a Web server proactively pushing content to
clients.

5. A Web ad blocker [3] can be extended to ran-
domly block a (possibly varying) subset of the ob-
jects that are advertisements. The blocker uses
a customized name resolution �le to block name
resolution for certain sites, thus preventing the
browser from issuing HTTP GET requests for ob-
jects on those sites. The e�ect would likely be sim-
ilar to that of a limited amount of random-object
padding, as described above.

6. Finally, the user can run multiple browser in-
stances simultaneously, each visiting a di�erent
page, so that objects from multiple Web pages in-
terleave with one another.

Our experiments show that the pipelined \two-
chunk" delivery scheme implementable under
HTTP/1.1 is not overwhelmingly e�ective, allow-
ing a 36% unique identi�ability rate for our target
set and sample size. (Interestingly, for our sample
collection of 100,000 pages, two-chunk delivery yields
about 16:8 bits of information, or 110,000 possibilities.
Therefore the theoretical limit of the unique identi�-
able rate, using the solution of the \Coupon Collectors
Problem" [21], is roughly 1

e
� 37%. Since our result

of 36% is very close to the theoretical limit of 37%, it
appears the distribution of page lengths in our sample
collection is indeed random, and harvesting the full
entropy of the available length information is quite
easy in practice.) In this experiment, we assumed all
embedded objects are from the same Web server, thus
possible to perform \two-chunk" delivery. In reality,
usually more than two chunks of data are fetched
because a page may contain objects from multiple sites
which must be fetched in separate chunks; therefore in
practice, the unique identi�ability rate will be higher
than the 36% observed in our experiment.

On the other hand, techniques that reveal only total
page size suÆce to make page identi�cation extremely
diÆcult. As Figure 9 shows, collapsing Web pages in
our target set into a single object (with a single size)
reduces the unique identi�ability rate to 7%, with a
further 3% of sites nearly uniquely identi�able. The

atness of the curve as k increases also suggests that
90% of the target pages are inherently unidenti�able
by only using the total page size. Moreover, using a
256-byte padding scheme on the total page size results
in almost every page having at least one potential false
positive, with over 97% having at least ten of them.
\One-chunk" pipelining and byte-range requests can
thus both be expected to achieve this level of success.

4.4 Countermeasure Costs

The above countermeasures are all associated with
extra costs which may make them prohibitively expen-
sive or inconvenient to implement. Table 1 summa-
rizes the costs of the various countermeasures, indi-
cating whether special support is needed either in the
client (browser), the server, or the content generation
process. Some techniques, as indicated, require only
features that are part of the HTTP/1.1 standard, but
are often not fully implemented in popular client or
server software. (For example, byte-range requests re-
quire both client and server support, but the neces-
sary server support consists only of full implementa-
tion of the feature according to the HTTP/1.1 stan-
dard, whereas the client requires implementation of the
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Figure 9. K-identifiability rate as a function of K under “one-chunk” delivery.

Technique Client Server Content Other Cost/DiÆculty
support? support? support?

Padding (object Depends on No Yes Wasteful data transfer
size) object type
Padding (hidden
objects)

No No Yes Wasteful data transfer

Mimicking No No Yes May be hard to do (or maintain as
mimicked page changes)

Byte-range Yes Yes No Overlapping requests, if any, cause
requests (HTTP/1.1) wasteful data transfer
Client-based Yes No No Prediction may not be perfect,
Prefetching resulting in wasteful data transfer
Server-based Yes Yes No Prediction may not be perfect,
pushing resulting in wasteful data transfer
Content No Yes Yes Wasteful data transfer or loss in
negotiation (HTTP/1.1) quality; extra server storage
(server-driven)
Content Yes Yes Yes Wasteful data transfer or loss in
negotiation (HTTP/1.1) quality; extra server storage; extra
(agent-driven) network round-trip for the initial

server format advertisement [17]
Web ad blockers Yes No No Customized name resolution �le

and loss of some objects
Pipelining Yes Yes No Need trusted proxy to assemble the
(1-chunk) entire page on behalf of the client
Pipelining Yes Yes No None
(2-chunk) (HTTP/1.1) (HTTP/1.1)
Multiple browsers No No No Hard to coordinate; wasteful data transfer

Table 1. Comparison of Various Countermeasures.



request-generation mechanism. Byte range requests
also do not require special content manipulation, un-
like, say, mimicking, which requires content to be tai-
lored to match the signature of some other site.) Also
listed are other miscellaneous costs or diÆculties in em-
ploying each technique, the most common of which is
the redundant traÆc often generated as a result of the
countermeasure.

For example, padding of some object sizes may re-
quire only content adjustment (such as adding \�ller"
comments to HTML objects), while some object types
may require client cooperation to remove the padding.
Hidden objects, on the other hand, can always be
added by the server without any special client support.
In either case, though, extra bandwidth must be used
for its transmission.

The e�ectiveness and the overhead of each technique
in hiding web page identities depend heavily on the pa-
rameters used for the technique. For example, padding
objects to a multiple of 16 Kbytes can be as e�ective
as one-chunk pipelining without any padding. How-
ever, our experiences indicate techniques that reduce
the number of perceivable objects per page are more
e�ective, easier to deploy, and waste less bandwidth.

5 Related Work

General anonymization of network traÆc goes back
to Chaum's \mix" idea [6]; a practical descendant is
\onion routing" [14]. Other theoretical treatments in-
clude [7] and [23]; more practical work, geared specif-
ically towards Web traÆc, includes the LWPA [15],
CROWDS [25] and HORDES [26]. The mix-based and
theoretical approaches all use combinations of some
form of encryption and interposition of intermediaries,
and impose a rigid structure on the \shape" of traf-
�c (synchronized transfer of standard-length blocks of
data, and even dummy \covering traÆc") to prevent
leakage of information through timing or size of mes-
sages. More practical onion routing dispenses with
measures such as synchronization and covering traÆc,
and is thus vulnerable to the kind of traÆc analysis
described here.

The Web-oriented approaches tend to downplay or
eliminate the role of encryption, assuming an adver-
sary with limited traÆc observation powers, and rely-
ing instead on techniques such as trusted (or multiple
random) intermediaries, pseudonyms and multicast to
disguise the identities of browsing users. LPWA fo-
cuses on protecting browsers from revealing user iden-
tity to servers, as opposed to revealing Web traÆc to
eavesdroppers, and hence doesn't use encryption at all.
CROWDS uses encryption between browser and proxy,

to foil eavesdroppers, but does not attempt end-to-
end encryption. In [25] it is also recommended that
proxies fetch all objects in a page from the server be-
fore passing them on, to prevent other proxies from
distinguishing end-user browsers from proxies by tim-
ing object requests. (This would be equivalent to our
notion of \one-chunk delivery".) There are also sev-
eral actual commercial anonymity services, such as the
Anonymizer [1] and Zero Knowledge Systems' Freedom
service [4]; these use encryption combined with prox-
ies in ways that may be vulnerable to our statistical
attacks.

The use of traÆc attributes like data length to iden-
tify public content is not new, of course; in fact the
CDDB music recognition service [18] uses such infor-
mation to recognize music CDs. Observing the vol-
ume and timing of encrypted traÆc has also been dis-
cussed [24, 27] as a method for attacking mix-based
systems, in spite of the techniques mentioned above.
Timing attacks on cached Web data have also been
proposed [11] as a way to track Web browsing behav-
ior. And of course, standard browser features such as
cookies [20] can by themselves defeat anonymization.

The speci�c vulnerability of encrypted Web traÆc
to analysis was brie
y examined in [8] where each web
page is modeled as two numbers|the HTTP request
size and the total page size. Their primary goal is to
identify individual pages within a single Web site us-
ing the internal link structure. In contrast, our work
uses individual object sizes in a page to identify indi-
vidual pages from the entire Internet. The technique
used in [8] can easily be adapted to our adversary ar-
chitecture as the past history component in Figure 1.
A slightly di�erent problem of identifying individual
objects within a Web page was also studied in [9].

6 Summary and Future Work

We have shown that even encrypted, padded Web
traÆc can yield considerable information about the
source of its contents. Moreover, the revealed infor-
mation appears suÆcient to be useful to an attacker
monitoring such encrypted traÆc in an e�ort to under-
mine the privacy of Web browsing.

One obvious question is which of the countermea-
sures described above achieves the best tradeo� be-
tween eÆciency (in terms of bandwidth, latency and
server load) and e�ectiveness at disguising traÆc.

Beyond the direct problem of disguising data, there
are other obstacles to the widespread adoption of ef-
fective anonymization of Web traÆc, including:

� How do users obtain and pay for the resources [19]



(such as proxy server use) needed to anonymize
their traÆc?

� How do providers of anonymous services deal with
their abuse [5] (for denial-of-service attacks, crime,
or other undesired activity)? What is the right
tradeo� between anonymity and accountability?

� How can anonymous services be adapted to real-
life network complications such as �rewalls and
mobility?
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