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Highly distributed anonymous communications systems
have the promise of better distribution of trust and improved
scalability over more centralized approaches. Existing dis-
tributed approaches, however, face security and scalability
issues. Requiring nodes to have full knowledge of the other
nodes in the system, as in Tor and Tarzan, limits scalabil-
ity and leads to intersection attacks in peer-to-peer config-
urations. MorphMix avoids giving nodes complete system
knowledge, but new research shows that a collaborating frac-
tion of the peers can control the paths of many users.

To overcome these problems, we propose Salsa, a struc-
tured approach to organizing highly distributed anonymous
communications systems for scalability and security. Salsa
is designed to select nodes to be used in anonymous circuits
randomly from the full set of nodes, even though each node
has knowledge of only a small subset of the network. It uses
a distributed hash table based on hashes of the nodes’ IP
addresses to organize the nodes into groups. With a virtual
tree structure, limited knowledge of other nodes is enough to
route node lookups throughout the system. We use redun-
dancy and bounds checking when performing lookups to pre-
vent malicious nodes from returning false information with-
out detection. We show that our scheme prevents attackers
from biasing path selection, while incurring moderate over-
heads, as long as the fraction of malicious nodes is less than
20%. Additionally, the system prevents attackers from ob-
taining a snapshot of the entire system until the number of
attackers grows too large (e.g. 15% of 10000 peers, given
256 groups). The number of groups can be used as a tun-
able parameter in the system, depending on the number of
peers, that can be used to balance performance and security.
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1. INTRODUCTION

Anonymous communications systems on the Internet pro-
vide protection against eavesdroppers and others that seek
to link users with their communications. These systems have
many important applications in areas such as law enforce-
ment, intelligence gathering, business privacy, anonymous
publishing, and personal privacy. Current systems, such as
Tor [11], rely on a relatively small set of advertised servers
to forward messages for the user. These systems can suffer
from scalability problems, with potentially large bandwidth
and system overhead costs, and the servers themselves can
be targets of direct attacks.

Peer-to-peer anonymous communications systems, such as
Tarzan [13] and MorphMix [23], have been proposed as a
way to alleviate these problems with a large and dynamic
set of peers acting as servers. This makes direct attacks less
effective and increases scalability. Tarzan, however, requires
that each peer know the identity of all other peers, which
makes it highly vulnerable to intersection attacks [28] and
does not scale beyond 10,000 nodes [13]. MorphMix does
not have this requirement, but it requires that users allow
untrusted peers to choose the proxies that will forward the
user’s messages; attacker-controlled peers will always select
other colluding peers to be on the path. Although the au-
thors of MorphMix propose a collusion detection scheme,
recent work has shown that this scheme can be fooled while
attackers continue to control many paths in the system [26].
The fundamental problem facing these systems is one of se-
lecting peers independently at random from the set of peers
to ensure unbiased path selection, while not requiring full
knowledge of the set of available peers.

To solve this problem, we propose a new peer-to-peer
anonymous communications system using distributed hash
tables (DHTs). Similar to peer-to-peer file-sharing systems
that use DHTS, like the Chord system [24], our system maps
each IP address to a point on the ID space using consistent
hashing. We further divide the ID space into groups, con-
ceptually organized as a binary tree for purposes of node



lookup. Each node has knowledge of all the nodes in its
own group, as well as knowing a limited number of nodes in
other groups. This knowledge is enough to effectively route
lookups throughout the system. Nodes use redundancy and
probabilistic checking when performing lookups to prevent
malicious nodes from returning false information without
detection.

We show that our scheme prevents attackers from biasing
path selection, while incurring moderate overheads, as long
as the fraction of malicious nodes is less than 20%. Ad-
ditionally, the system prevents attackers from obtaining a
snapshot of the entire system until the number of attackers
grows too large (e.g. 15% for 10000 peers and 256 groups).
The number of groups can be used as a tunable parameter
in the system, depending on the number of peers, that can
be used to balance performance and security.

In Section 2, we describe existing work in peer-to-peer
anonymous communcations systems, relevant attacks on these
systems, and related work in structured peer-to-peer sys-
tems. Section 3 describes the design of Salsa, including our
novel network architecture. We give an analysis of Salsa’s
security properties in Section 4. We describe the simulation
methodology and our results in Section 5 and conclude with
future directions in Section 6.

2. BACKGROUND

In this section, we cover three areas that are critical to our
work. First, we make a case for highly distributed anony-
mous communications in light of a broad overview of work in
anonymity. Second, we describe relevant attacks and chal-
lenges facing current proposed systems for highly distributed
anonymous communications. Third, we look at other struc-
tured peer-to-peer overlays and security considerations that
have been studied to date.

Before this, we give some concepts that we use throughout
the paper. As we are considering systems in which a user’s
node may also be a proxy, we define the initiator as the node
of the user who initiates an anonymous connection. We call
the node that the initiator contacts, such as a Web site,
the responder. Most systems are based on Chaum’s idea of
mixes [6], in which there is a path of proxies, or circuit, be-
tween the initiator and the responder that adds indirection
to help hide their connection. A technique called layered
encryption limits an attacker’s ability to track packets pass-
ing through the circuit. However, most of these systems are
vulnerable to attacks in which the first and last proxies on
a circuit, or a well-placed eavesdropper, can collaborate and
use the timings of packets to correlate the initiator with the
responder [9, 17, 29].

2.1 Highly Distributed Anonymity has Strong
Potential

Experts in anonymous communcations do not have con-
sensus on the issue of what types of mix-based systems are
most secure. Some argue for mix cascades, such as Web
Mixes [3], in which all messages pass through the same set
of proxy servers [4]. Others argue for miz networks, such
as Tor [11], in which users choose proxy servers randomly
for each position on the path. More recently, starting with
Crowds [22], the idea of peer-to-peer systems for anonymous
communications has been developed. Rather than attempt
to present complete arguments for these approaches, we de-
scribe here only the benefits of both the peer-to-peer ap-

proach and versions of mix networks with many servers. Our
goal is only to demonstrate that this is a promising approach
worth the present investigation — we expect that debate over
which approach is best will remain open for some time.

Peer-to-peer anonymity systems provide a nice security
property: the first proxy in the path does not know whether
or not it follows the initiator or another peer serving as a
proxy. This is the main argument for security against ma-
licious peers in Crowds [22]. Although Crowds does not
protect against what we believe to be reasonable attacker
models, such as a substantial subset of the peers [27], this
property also applies to systems that use layered encryp-
tion. A significant security property of both highly dis-
tributed mix networks and peer-to-peer networks with many
servers comes from the large number of proxies. When
there are fewer proxies, the relatively small number of them
present a viable set of targets for direct and active attacks.
Such attacks include eavesdropping, node corruption, node
takeover, and legal subpeonas.

A particularly devastating attack for smaller, less dis-
tributed, systems was presented by Murdoch and Danezis
in 2005 [20]. In this attack, which was demonstrated on
the Tor network with 35 operating onion routers, a single
corrupt client fills the available bandwidth of a server and
watches for drops in the connection’s bandwidth. If those
drops in bandwidth correlate to the times when packets were
received by the responder, the server was involved in for-
warding the initiator’s traffic. The attack succeeds by test-
ing many servers and tracing back the initiator’s path. In
highly distributed systems, this and other direct attacks are
significantly harder due to the sheer number of tests that
must be conducted. Similarly, eavesdropping may require
a truly global adversary with substantial capability to ex-
tract relevant data from vast amounts of traffic — placing
eavesdropping equipment directly on the networks of even a
fraction of the nodes is not practical for many attackers.

Another benefit of highly distributed systems is in the
distribution of costs and the possibilities for beneficial in-
centive structures. Since some users are providing services
as a cost of being in the system, they do not need to pay for
service. This is important, because paying for anonymity
can be challenging to do in a fair and anonymous way and
may require special forms of digital cash [21]. Further,
users who are particularly concerned about privacy have an
incentive to provide service, which somewhat reduces the
freeriding problem [14]. In particular, freeriders have weaker
anonymity as they do not forward packets for other nodes,
so all packets must be initiated by the freerider himself [1].
Other incentives issues may exist for peer-to-peer systems,
but the current situation is promising.

2.2 AttacksonHighly Distributed Anonymous
Communications

A significant issue with peer-to-peer systems, and any sys-
tem that does not strongly verify the identity of the partic-
ipants, is the Sybil attack [12]. This attack is essentially
a recognition that an attacker can, at relatively low cost,
construct many online identities and use them to control or
attack the system.

The Sybil attack can be partially mitigated. For exam-
ple, we can force the attacker to own many IP addresses by
ensuring that each identity maps to a unique address; this
has been used in the Tarzan system [13]. Another technique



pioneered by Tarzan and adopted by MorphMix [23] is the
use of hierarchical address selection. In this scheme, a user
who wants to select a node at random first chooses a subnet
at random, based on subnets represented in the peer’s IP
addresses, and then select a node from the chosen subnet
at random. This ensures that an attacker who controls one
subnet cannot flood the system with nodes from that subnet
to gain control in the system. An attacker must then control
nodes in a large number of subnets to succeed.

In today’s Internet, the threat of botnets, in which the at-
tacker controls a large population of corrupted nodes widely
distributed in the network, continues to make the Sybil at-
tack a dangerous threat. Botnets of 100,000 nodes have been
reported, but botnets of 20,000 nodes or less are more com-
mon, partly because of the smaller chance of being caught [15].
Against a widely-distributed botnet, the only known defense
is to have a large number of semi-honest nodes that are not
collaborating with the attacker. Thus, scalability is critical
for open anonymous communications systems to succeed.

One of the most challenging attacks to defend against in
anonymous communications is the intersection attack. In
this attack, a passive observer takes logs of the set of users
participating in the system at regular intervals. By compar-
ing these logs with logs of the responders contacted via the
system at the same times, the attacker can profile different
users and undermine the users’ anonymity [8, 18, 28]. In
most systems, this attack is difficult to conduct, as it re-
quires complete knowledge of all the users in the system.
An attacker controlling a large subset of the proxies could
not be sure that they have the complete list. Note that
an incomplete list means that the attacker would be profil-
ing users based on unseen users’ activity. The attackers do
not, however, need to witness all outgoing activity. If the
attacker is only interested in a single responder (e.g., the
owner of the responder wants to know who is contacting it
anonymously), then it need only get information on when
the responder is contacted via the system.

In the Crowds and Tarzan systems this attack is particu-
larly dangerous. When joining the system, the user obtains
a list of all peers, which is used to select proxies. This is con-
sidered necessary for the security of the system, as a partial
list might be biased with a large fraction of attackers [13].
However, the list of peers provides a list of all users. Thus,
an attacker need only join a single peer to the system to ob-
tain a great deal of the information needed to perform the
intersection attack. This attack has been shown to be very
efficient in narrowing the possible initiators to a small set
(e.g., five or ten peers) [28].

Using complete lists of all peers is also a scalability issue.
Tarzan’s gossiping protocol for propagating peer informa-
tion throughout the network only scales well to about 10,000
nodes [13]. The operators of Tor have discussed, for scala-
bility reasons, reconfiguring the system so that each proxy
only knows and connects to a subset of other proxies (R.
Dingledine, personal communication).

The MorphMix peer-to-peer system similarly has each
peer maintain connection information about a subset of the
other peers [23]. While this helps to avoid the intersec-
tion attack and improves scalability, choosing a path se-
curely becomes challenging. For example, MorphMix ini-
tiators choose the first node on the path from their list of
known peers. For the second node, however, the first node
makes the choice from among its list of known peers. If the

first node is an attacker, it can select an attacker for the
second node, and this can continue throughout the path. In
this way, whenever an attacker is selected for the first node,
the entire path can be easily compromised. MorphMix em-
ploys a witness process to detect when this kind of collusion
is used, but recent work by Tabriz and Borisov has shown
that the witnesses can be deceived by intelligent selection of
nodes [26]. This allows the attackers to control many paths
in a system indefinitely and without detection.

In general, limited knowledge of the network can be a
significant issue for secure paths, as the initiator may be
deceived. This is a key motivation of our work.

2.3 Structured P2P Systems and Anonymity

A number of works have considered security and privacy
issues for structured peer-to-peer systems. Danezis et al.
propose an alternative routing strategy, called zig-zag rout-
ing for DHT-based systems that helps defend against Sybil
attacks [10]. Zig-zag routing aims to avoid Sybil groups by
ensuring diversity while getting close to the target. Both
Borisov and Ciaccio have proposed adding anonymity to
structured peer-to-peer systems [5, 7]. Borisov proposes the
use of random walks on de Bruijn networks to help provide
anonymity with reasonably short paths. Ciaccio proposes
the use of imprecise routing in which the construction of
neighbor tables is done from a range rather than with a
precise value (as in Chord). This makes it difficult for an
attacker to work backwards to determine the source of a
request.

These systems all have in common the idea of adding ran-
domness or diversity to the structured overlay, while keeping
the general approach of rapid reduction in the distance to
the target. Salsa also shares this feature, but it uses a unique
structure that is designed to satisfy the different system re-
quirements of providing a structured overlay for large-scale
anonymity.

3. DESIGN OF SALSA

In this section, we describe the Salsa system design. The
purpose of Salsa is to organize a large anonymous commu-
nications network to enable random and unbiased node se-
lection for users. The basic design combines a structured
overlay with redundant lookups to ensure that randomly se-
lected nodes are not biased towards selection of attackers.
With such a system, we argue, the initiator can select the
nodes in her circuit at random without significant bias and
without knowledge of the entire set of proxies.

The overall anonymous communications system may ei-
ther be a peer-to-peer anonymous communications system
or a server-based system similar to Tor. We assume that the
system creates a circuit of proxies for each user by select-
ing a set of nodes from the available peers or servers. This
is the basic approach used in most anonymous communi-
cations systems, including Tor (and Onion Routing), Mor-
phMix, Tarzan, and Freedom [11, 25, 23, 13, 2]. We have
intended Salsa to focus on node organization and selection,
independent of building and maintaining anonymous com-
munication circuits, forwarding traffic, and returning replies.

The fundamental challenge that motivates the Salsa de-
sign is the selection of nodes at random from the set of
available peers with only limited knowledge of the nodes. As
explained in Section 2.2, allowing every node to have only
limited knowledge of the system helps protect the system



from the intersection attack (in peer-to-peer systems) and
enhances the scalability of the system. It is also important
to select nodes at random from the entire set of nodes. Se-
lecting from subsets of the network would allow an attacker
to focus an attack on any given user. However, selecting a
node at random despite limited knowledge is not trivial.

3.1 A Naive Approach

We now describe a simple but naive approach to address
the challenge of random node selection, based on the Chord
system. Similar to Chord, we can give each node an iden-
tifier (ID) based on a cryptographic hash of the node’s IP
address '. The IDs are placed in sorted order around a cir-
cular ID-space, and each node N; is said to own the fraction
of the ID-space between itself and it’s preceeding node NV;_;.
A user makes a request for a specific ID, called the target
ID, and a request for a target ID between N;—; and N; will
be routed to N;, as it owns that ID-space. In this case, we
say that IV; is the target owner.

Also as with Chord, each node keeps a finger table, which
stores routing information. The finger table includes the ad-
dresses of a series of nodes, called fingers, that are at varying
distances away in the ID-space. Specifically, we can define
the minimal distance between two adjacent nodes as one
unit, and the fingers can then be said to at one unit, two
units, four units, and further powers of 2 units away from
the node, up to approximately one-half of the total ID-space
(a more precise description may be found in the Chord pa-
per [24]). This allows for fast routing of requests in the
system through recursive propogation. If a node knows the
address of the target owner, it will forward the request di-
rectly to that node. Otherwise it will forward the request
to the node in its finger table that most closely preceeds the
target ID. This scheme ensures that the number of nodes
that need to be contacted is bounded by O(logn) [24]. In-
tuitively, this is because the distance is cut in half at each
step until the owner is only one unit of ID-space away.

We now have what we need to select nodes at random
with only limited knowledge of the system. First pick a
random ID from the ID-space. Then send a request for the
owner of that ID. This is not entirely the same as uniform
random selection from the set of nodes, as each node may
own different amounts of the ID-space, but the amounts
are probabilistically bounded by O ((logn)/n) and cannot
be controlled by the owners [24]. In particular, an attacker
who controls ¢ nodes in the system will own, on expectation,
¢/n of the ID-space. For large values of ¢ and n, the actual
value will be close to expectation.

Due to the use of consistent hashing, the system has sev-
eral other important features. Consistent hashing provides a
weak form of authentication: every other proxy can quickly
compare the hash of the IP address of the node it connects to
with the node’s claimed ID. As described in Tarzan, a sim-
ple two-way handshake is enough to ensure that the node
controls the TP address (at least with respect to the con-
necter) [13]. Additionally, the attacker cannot attempt to
place a node in a certain part of the address space with-
out controlling an IP address that would map to the desired
ID range. If the node density is high enough, this becomes
difficult for most attackers. Another benefit of consistent

'Recent advances in the birthday attack on cryptographic
hashes such as MD5 do not affect our system, as the IPv4
address space is too small to yield many collisions.

hashing is that when a node joins the system, the ID-space
can be determined from its successor node. The successor
node cannot lie to the joining node to gain more space for it-
self — the space between them is defined by the IP addresses
that they use to communicate. When a node leaves the sys-
tem, it can inform its successor that the address space now
belongs to the successsor. With high probability, no node
owns more than O ((logn)/n) fraction of ID-space.

However, this approach has an obvious security problem:
since the user must rely on other nodes to forward the re-
quests, any node along the path of a request can modify
the results. In particular, attackers may stop propogating
the request and return the identity of another attacker. To
alleviate this problem, we propose the use of simultaneous
redundant requests. Rather than relying on a single request,
the requesting node asks each of its fingers to make the re-
quest on it’s behalf. Although redundancy increases over-
head in the system, the lookups can be done in parallel to
keep the delay bounded, and we demonstrate in Section 5
that, with a different network structure, the amount of re-
dundancy is also bounded at what we believe to be a rea-
sonable level.

A particularly nice property of consistent hashing in this
regard is that the target owner will be closer than any other
node. This means that only one of the redundant requests
needs to return the correct result for the requesting node
get the IP address of the true target owner — if multiple
results are returned, the closest node can be selected. Here,
the attacker also must take some risk of being discovered in
modifying lookup results unless it can be sure that it has
modified all of the redundant lookups. It may be possible to
use incorrect lookup results as part of a reputation system,
but we do not study this possibility here.

The issue with using this Chord-like structure for redun-
dant requests is that many requests may go through a few
of the same nodes, who are then in a position to modify
more than one request if they are malicious. To see this, we
first note that all requests flow in a single direction around
the circular ID-space. Second, as requests get closer to the
target, the distance between hops decreases. This ensures a
greater density of the requests close to the target. If some
of the nodes close to the target are malicious, the attacker
is much more likely to be able to modify all the returned
results. See Section 5 to see how using Crowds falls short.

3.2 The Salsa Network Architecture

To improve the value of redundant requests, we propose
the Salsa network architecture, a novel structured overlay
designed to aid the random selection of nodes for anonymous
communications. The Salsa architecture improves upon the
naive approach by ensuring that redundant requests proceed
on random pathways and do not converge on a few nodes.
We show in Section 5 that when the fraction of attacker
nodes in the system is less than 20%, between four to six
redundant lookups is sufficient to find the correct node a
very high percentage of the time.

There are some key similarities between the Salsa archi-
tecture and the Chord-based approach. Salsa is based on a
DHT and has an ID-space to which we map nodes by tak-
ing a hash of their IP-address. Each node has a list of a
subset of the nodes in the system, its contacts (akin to fin-
gers in Chord), that is used to route requests throughout
the ID-space. Also, each lookup is resolved by contacting
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Figure 1: The binary tree structure of Salsa.

other nodes in a recursive manner until the target owner is
reached. Each of the nodes contacted during a lookup is
called a lookup hop.

However, rather than having a single circular ID-space,
we divide the entire ID space into equal-sized groups that
are defined by a contiguous portion of the ID-space. Each
group’s portion of the ID-space is cyclic, i.e., the ends of
the ID-space within a group wrap around. Let us say that
a node belongs to a group if its ID is in the group’s ID-
space; each node belongs to exactly one group. Within the
group, each node owns the ID-space between it and the node
preceeding it; the ID-space segment of the first node in the
group loops around to the last node. A node knows the
connection information and ID-space segment for all nodes
in its own group, and these are the node’s local contacts.

Groups are conceptually organized in the form of a binary
tree, as illustrated in Fig 3.2. To facilitate lookups beyond
a node’s group, each node has a set of global contacts in dif-
ferent groups, according to the tree structure. In particular,
a node has one global contact for each level of the tree. At
each level, the global contact is selected at random from the
subtree corresponding to the other child of the node’s par-
ent that level. For example, in Figure 3.2, a node in group
4 (black), will have one contact in group 3 (dark grey), one
in either group 1 or group 2 (group 1 is chosen and shaded
in grey), and one in any of groups 5 through 8 (group 8 is
chosen and shaded light grey). To ensure that nodes can-
not select arbitrary global contacts, the contact for a given
segment of the address space is chosen by hashing the con-
catenation of the selecting node’s IP address and the height
of the tree. The selected node can easily verify that it should
be a global contact for the requesting node.

With both global and local contacts, a lookup for any ID
in the ID-space is possible. Lookups proceed recursively.
The requesting node asks a global contact in the same sub-
tree as the target owner to continue the lookup and return
the results. The contacted node becomes the requesting

node and repeats the request to a contact in a smaller sub-
tree that includes the target owner. This continues until the
target owner is in the requesting node’s group, in which case
the requesting node has the contact information and returns
it along the path of the request.

Since each node has multiple local contacts, we utilize
these for redundancy. The initiator asks a subset of the lo-
cal contacts, chosen at random, to each find the owner of a
given target ID. The result that is closest to the target ID is
assumed to be the target owner and is selected. A key prop-
erty of the Salsa architecture is that any two nodes, even
from the same group, will share very few global contacts
on average. Thus, redundant requests are likely to proceed
along different paths on the way to the target owner’s group.
This property helps to reduce the possibility of a single node
being on multiple paths, thereby reducing the chance that
the attacker can modify all the results returned to the re-
questing node.

An additional security measure is a simple bounds check.
Since the target owner should be close to the target ID, we
can reject results that are too far from the target ID. This
may lead to rejections of legitimate nodes, so we need to
consider false positives as well as the false negatives in set-
ting our boundary. We have found that when the number of
attackers is less than 20%, it is possible to set a boundary
with low error rates. Further, we can modify the boundary
for different systems to balance the delay in finding an ac-
ceptable node with the security of finding only correct target
owners. We show the effectiveness of this in Section 5.

3.3 Building a Circuit

An initiator must select a small set of nodes, e.g. three for
Tor, to use as proxies in the circuit. Normally, the initiator
would select these nodes privately. In Salsa, however, the
node lookup can be linked to the initiator if any of the local
contacts that is used for redundant look up is controlled
by the attacker. If this happens, and the last node is an
attacker, then it can link the initiator to her messages.

First, we calculate the chance of this attack succeeding
and then provide a solution to decrease this chance. If there
are n nodes in the system and c of them are controlled by
the attacker, then any given node will be an attacker with
probability ¢/n. Thus, the chance that at least one of k
chosen nodes will be an attacker is 1 — (1 —c/n)*. For k = 3,
and ¢ = 0.1 x n, i.e. 10% attackers, this is approximately
27%. For the same k = 3, but ¢ = 0.2x*n, i.e. 20% attackers,
this is approximately 49%. The chance that the last node is
an attacker is slightly more than the fraction of attackers in
the system, as we show in Section 5. Let us assume that it
is 11% and 22% for 10% and 20% attackers in the system,
respectively. For k = 3 and 10% attackers, there is a 3.0%
chance of attacker success; for 20% attackers, it is 11%.

A more secure approach is to incorporate circuit-building
into the redundant lookups. First, r nodes are looked up
in the normal way. Keys are estabilished with each of these
nodes. Second, each of the first set of nodes does a lookup for
r additional nodes. A Tor circuit is built from the initiator,
through one of the first nodes, to one of the second nodes.
The second set of nodes does a redundant lookup for a final
node. One of the paths created between the first and second
sets of nodes is selected, and the final final node is added to
the end of the circuit. In this approach, the first node does
not learn the identity of the final node and vice versa.



The attack against this last approach would require one
attacker in the first set and one attacker in the second set
as well as the final node. For » = 3 and 10% attackers, this
means an approximately 0.8% chance of success. For r = 3
and 20% attackers, this means a 5.2% chance of success.
Note that the chance of getting the first and last nodes as
attackers on the circuit is 1.0% and 4.0% for 10% and 20%
attackers in the system respectively. Since this scenario is
considered sufficient to break the user’s anonymity with a
timing analysis attack in low-latency anonymity systems [11,
17, 9], further defenses are not likely to be worth the cost.

When r = 3 and a circuit length of three proxies, the
added cost of this technique, over using redundant lookups
with k& = 3, is four additional key establishments and six
additional lookups. The key establishments can be done in
parallel with existing steps and likewise with the additional
lookup, so there is relatively little additional delay.

3.4 Initialization and Network Dynamics

We now consider how a Salsa system could be built up
securely and handle nodes entering and exiting the system.
One issue for any peer-to-peer system is that an attacker
who adds a large botnet’s worth of nodes (e.g., 20,000 nodes)
could dominate the system when it is relatively small and
control most of the system’s functions. We see little hope in
stopping this through the design of the system — Captcha-
inspired Turing tests designed to ensure that a human is
using each connection might be tried, but it is beyond the
scope of this work [16]. For Tor-like server-based systems,
with presumably fewer nodes, we note that a higher barrier
to entry is required to ensure that most nodes are at least
associated with a unique owner. Again, the best method of
doing this is beyond the scope of this work.

We propose that nodes should, if possible, join through
trusted friends that already have nodes in the network. This
is also the best way of building a small network into a larger
one. The new node N can have the friend perform lookups
to identify a subset of the nodes in N’s group, as determined
via a hash of N’s IP address. N can then contact these nodes
with a join message, to which the nodes respond with a full
list of the group members. Again we face a performance and
security tradeoff between the number of lookups performed
by the trusted friend and the correct identification of the
full group. However, mismatched lists would alert users to a
possible attacker presence in the group, so the attacker must
be confident that IV only contacts attackers and not other
nodes in the group. Otherwise, the attacker nodes must also
send the full list.

In the event that new node N has no friends using the
system, we propose that a subset of nodes could be adver-
tised on, e.g., a website or a bulletin board. For example, a
node may post its own IP and those of its global contacts.
Since the global contacts are random and verifiable by hash-
ing the IP with the level of the tree, N has some assurance
that they are not an attacker’s hand-picked selection. For
g = 256 groups, n = 10000 nodes, and ¢ = 1000 attacker
nodes, the chance that a specific set of global contacts is
all corrupt is approximately (c¢/n)'°829 = 0.1%. The chance
that any of the 1000 attackers has a full set of attacker global
contacts is:

1- (1 — (c/n)'= g)c = 0.00001

The user must be sure that nearly all of the contacts con-
nect correctly, lest an attacker node have multiple attacker
contacts and provide fake addresses for the rest. Once N
connects to the local contacts, she can redundantly request
multiple addresses within her new group. The security of
redundant requests applies as with normal lookups, and the
joining proceedure follows as in the trusted friend case.

Finally we consider what happens when a node leaves the
system. The node should, ideally, notify the other group
members and nodes that have recently connected to it as a
global contact. This should be sufficent to create a smooth
transition, as nodes can update their global contacts prior
to the next round of requests. The disconnect message must
include a brief handshake to prevent spoofed leave messages
from becoming a denial of service attack or a way to redirect
traffic to corrupt nodes. If a node abruptly disconnects, the
nodes that had used it as a global contact will find out in
the next round of requests and must issue a set of requests
to determine the identity of the new global contact.

4. SECURITY ANALYSIS

We now discuss how well Salsa protects against a variety of
attacks, including standard attacks against anonymity sys-
tems and attacks specific to the Salsa system. One type
of attacker that it is critical to defend against is one with
many compromised hosts to put into the system. Although
this is a major issue for peer-to-peer systems, it can also be
an issue in highly-distributed server-based systems in which
keeping track of the identity of server operators may not be
feasible. With compromised nodes in the system, possible
attacks include intersection attacks, control of the initiator’s
circuit, end-to-end timing analysis, predecessor attacks, and
denial of service attacks. We study each in turn.

Intersection Attacks. Intersection attacks are particu-
larly dangerous when the attacker can learn the membership
of the set of all users currently active in the system [28]. In
Salsa, obtaining this information is significantly harder than
in Tarzan or Crowds, but may be somewhat easier than in
MorphMix. In particular, the attacker can own one node in
each group, which ensures that he knows the membership of
each group and therefore the entire system.

‘We model this attack as a balls-and-bins probability prob-
lem, as the placement of an attacker node into a group is
random, based on a hash of the IP address [19]. Each bin
is a group, and each ball is an attacker node. If there are g
groups, the expected number of attacker nodes required to
get one in each group is g-Hy, where H is the z-th harmonic
number (roughly log(z)). To ensure that there is an attacker
in each group with high probability 1 — 1/g, O(2g1lng) at-
tacker nodes are required. When g = 256, the expected
number of attackers needed is approximately 1570, and 2800
attackers will ensure that the attacker belongs to each group
with high probability 0.996. When g = 4096, the expected
number of attackers needed is approximately 36,400, with
68,100 attacker nodes needed to ensure attacker success with
probability 0.9998. Clearly, the number of groups is critical
to the security of the system. Consequently, the number of
honest nodes is critical, as tens of thousands of nodes would
be needed to support 4096 groups.

Unfortunately, the attacker can also learn about other
nodes by using the lookup process. We note that the at-
tacker must establish keys with each contact except for the
final hop, increasing the cost of the attack. To slow the



connection process, each lookup response could introduce
a small delay before responding. This delay can keep the
attacker from discovering every node quickly enough to be
confident that older results still hold; new nodes may have
joined in the meantime. A small delay can protect against

high-volume attacks, while not greatly inconveniencing users.

Secondly, the attacker can never be sure that he has discov-
ered every node in the network without testing every point
in the ID-space. Sometimes two nodes will be very close,
meaning that the first node owns a very small segment of
ID-space and is difficult to detect via random search. Criti-
cally, intersection attacks require a complete or nearly com-
plete view of all users. Otherwise, the attacker could fail to
find the initiator; even if the initator is observed later in the
course of the attack, she will have been intersected out of
the possible initiator set.

Control of the Initiator’s Circuit. If the attacker can
control all of the nodes on the initiator’s circuit, he will be
able to easily link the initiator with her communications.
MorphMix is particularly vulnerable to this attack, as the
initator cannot select nodes from the entire system. We
claim that Salsa limits the initator’s exposure to this attack.

In Salsa, the attacker may attempt to succeed by bias-
ing the random selection of the proxies to get the initia-
tor to select attacker-controlled nodes. Salsa mitigates this
threat through redundancy and bounds checking. Despite
these mechanisms, the attacker can still bias the selection;
we show the extent of this in Section 5. If this bias is lim-
ited, the attack becomes similar to random selection. How-
ever, given that attackers selected early in the circuit have
a greater chance to bias later results, even a moderate bias
can lead to substantial increases in the attacker’s success
rate. We also study this effect in Section 5.

End-to-end timing analysis. The attacker can observe
the timings of packets that enter and exit the system and
find correlations between the two ends of the same stream [9,
29, 17]. If the attacker controls a subset of nodes, this can
occur when the first and last nodes are controlled by the at-
tacker. When each node is selected at random, with replace-
ment, the chance of the attacker being in place is (¢/n)?; for
a node to attacker ratio of 10.0, this is 0.01. Again, bias in
the node selection can increase this chance, and it is critical
to minimize this bias. When the attackers are in place, it
is not guaranteed that timing analysis will work, but error
rates for correlating streams without mixing or cover traffic
are low [17]. Thus, we use this as a baseline for other attacks;
if the attacker’s chance of success in another attack is less
than (c¢/n)? (and attacks can’t be combined), the initiator’s
vulnerability has not been significantly increased.

Predecessor attacks. Crowds [22] introduced the idea
of the predecessor attack, which was later extended in [27].
In this attack, the attacker takes observations of path order
over time to link the initiator and the responder. The prede-
cessor attack against mix-based systems relies on end-to-end
timing or complete circuit control attacks. Thus, defenses
against these attacks also inhibit the predecessor attack. In
peer-to-peer mix-based systems, the predecessor attack re-
quires (1/5)logn connections by the initiator to work with
high probability, where S is the chance of attacker success in
the placing nodes for the end-to-end timing attack [27, 17].
This further demonstrates the need to limit bias in the selec-
tion of nodes, as the length of the attack depends inversely
on the attacker success rate.
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Figure 2: Lookup success: 1,000 nodes, 128 groups,
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Denial of Service Attacks. The last type of attack
that we consider is a denial of service (DoS) attack. We do
not intend to protect fully against such an attack, as deter-
mined attackers with enough resources can always flood the
proxies. This is a strength of highly distributed anonymity
systems, as there are many proxies to attack. However, we
must be careful that our system design does not allow for
attackers to easily take down the system without using sub-
stantial resources. One possibility for such an attack is to
make excessive lookup requests in the network. Each re-
quest generates a series of up to 2log G + 2 messages, which
is good leverage for a DoS attack. Intermediate nodes can
introduce additional delay for each request before forward-
ing it. This provides dual benefits of slowing any DoS at-
tempts and keeping an attacker from quickly learning about
the entire network.

Another possibility for attack is to create many compu-
tationally expensive key establishment requests. This can
be mitigated by starting with a simple handshake process.
Each requester initiates key establishment by first sending
send a challenge, e.g. a nonce, that the proxy should return
along with a second nonce. The second nonce should be
returned in the key establishment request, providing weak
authentication that the requesting node can receive at its
advertised IP address. This is a simple extension of the
handshake protocol from Tarzan [13]. Here it provides some
assurance that both the requester and the proxy own their
respective addresses, and it can be a vehicle for exchanging
public keys. The proxy will only begin expensive key estab-
lishment with nodes that it has done this handshake with
and can limit each requester to one request per fixed time
unit. Thus, an attacker has more work to do per request,
and has limited requests per machine per time unit, making
the DoS attack more difficult.

5. SIMULATION RESULTS

We performed a number of experiments aimed at testing
the security properties of the Salsa system, as described in
Section 3. Specifically, we demonstrate the effectiveness of
redundant node selection and bounds checking in limiting
the attacker’s ability to bias node selection. Additionally,
we show the extent to which the levels of attacker bias in
the system lead to compromise of the initiator’s path.
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Figure 4: Probabilistic Checking: 1,000 nodes, 128
groups

For our tests, we used a 30-bit hash space and considered
systems of 1,000 and 10,000 nodes. We used G = 128 and
G = 256 groups for 1,000 nodes and G = 256, G = 512,
and G = 1024 for 10,000 nodes. For each test, we simulated
1,000 separate systems and made 1,000 lookups per system.
The system was simulated in Java; we do not simulate in
detail the underlying network, encryption, or other system
details. Rather, the experiments focus on the security of
the system under varying degrees of attack. We tested with
the percentage of malicious nodes ranging from 0% to 20%.
Beyond 20% malicious nodes, greater than 4% of all paths
are compromised due to end-to-end timing analysis attacks.

We claimed earlier that the id-space is organized such that
it provides resilience to attacker-induced bias. Here we as-
sume that once a node chooses a malicious node as a proxy
on the circuit, that route fails. There are two ways to select
a malicious node:

e When a node chooses an ID at random for one of the
proxies on the circuit, that ID could be owned by a
malicious node.

e While performing a lookup for an ID, the results of
the lookup are modified by attackers to be a malicious
node.
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Figure 5: Lookup Success With Probabilistic Check-
ing: 1,000 nodes, 128 groups

To perform a lookup we choose one node at random from
the set of all nodes (assuming that it is honest for simplic-
ity). Let us call this the source node. We then choose an
ID at random from the entire ID-space, and we call this
the target ID. The source node then performs a lookup for
the target ID. The chance that the target ID is owned by a
malicious node is approximately given by the fraction of ma-
licious nodes in the system. As nothing can be done about
the selection of these malicious nodes, we call these aban-
doned lookups. We aim to test the case where the target ID
is owned by an honest node, as this is the chance for the
attacker to bias the node selection to an attacker-controlled
node. If we choose an honest target ID and the lookup result
has been biased in this way, we say call it a failed lookup.
Correspondingly, we define successful lookups as those in
which the target ID was owned by an honest node and that
node was returned. We checked the percentage of the to-
tal lookups that were successful, and compared the results
with the number of lookups not abandoned. The difference—
the percentage of failed lookups—shows the resiliency of the
system to attackers randomly distributed over the ID-space.

We use redundancy to minimize the effect of running into
malicious node while lookup up an ID. The level of redun-
dancy, defined by the number of redundant lookup requests
per lookup, is a tunable parameter to balance security with
performance. The more redundant lookup requests the ini-
tiator uses, the greater the chance of getting a successful
lookup. However, more lookups mean greater overhead in
terms of numbers of messages. We show results for systems
using between three and six redundant lookups.

To study the use of bounds checking, we evaluate the sys-
tem using different bounds, with results for both false posi-
tives and false negatives. When a lookup result falls outside
the bound, the initator must perform a lookup for a new
ID. This increases the overhead of the system, but provides
greater security, and we study this tradeoff as well.

5.1 Results

We now present the results of our simulations.

For the first set of experiments we use a redundancy of
five, i.e., for groups of greater than five nodes, five of the
local contacts were asked to do the lookup. As shown in
Figure 2, about 20% of the target IDs were owned by ma-



R | Avg. min. | Avg max. | Avg. messages | Avg. max
group size | group size sent pathlength
4 1.68 15.85 39.63 8.92
5 1.74 15.94 48.53 8.94
6 1.68 15.98 56.42 8.94
Table 1: Group, Path, Message Statistics: Sys-

tem Details: 1000 nodes, 128 groups, 10% malicious
nodes.

Max. False False Negatives

offset | Positives 5 [ 10 ] 15 [ 20
0.5 2.0% 9.2% | 17.0% | 24.2% | 29.9%
0.1 45.8% 0.95% | 2.0% | 2.9% | 3.8%

Table 2: Probabilistic checking

licious nodes when there were 20% malicious nodes in the
system. The value is consistently close to the percentage
of malicious nodes in the system, as expected. We see that
even when there are 20% malicious nodes in the system,
the number of failed lookups amounts to less than 6%. The
naive system, using Crowds, fails badly. Figure 3 shows the
results for varying levels of redundancy. As we increased the
redundancy from four to five the percentage of failed lookups
decreases by 2.44% and a further 1.57% as we increased the
redundancy from five to six.

Next we did experiments to check general statistics of the
lookups and systems. Table 1 shows information like the av-
erage minimum and maximum group population, the num-
ber of messages exchanged to perform lookups as well as
the average maximum pathlength. The number of messages
indicates the overhead the redundancy places on the sys-
tem. The average maximum pathlength indicates the delay
induced in the system. Since the lookups are similar to a bi-
nary search on the groups, we expect the number of lookup
hops to be about log2(G). The results show that to be true.
Here each of the group members asked to do a redundant
lookup is considered the first lookup hop.

As is expected the number of messages exchanged dur-
ing lookups increases as the redundancy is increased. Of
course, the other values remain the same since the redun-
dancy doesn’t affect any of them.

We also show how well bounds checking works. Figure 4

shows how IDs and their corresponding owners are distributed.

The values are normalized by the group sizes. Table 2 shows
the results numerically. False positives mean that the hon-
est pick was out-of-bounds. False negatives mean that the
attacker pick was in-bounds. The false positive rate is high,
which results in the requesting node needing to check mul-
tiple random IDs until she gets a good one. If the false pos-
itive rate is given by fp, the user would need to test 1/fp
IDs on average and will succeed with probablity 1 — fp* af-
ter testing k IDs. For example, with a 50% false positive
rate, the user must test two IDs on average and no more
than ten with 99.9% probability. As shown in Figure 2, at
20% malicious nodes in the system, only about 6% lookups
turn false, so to pick the highest value of false negatives in
the table i.e., 29.9% means 29.9% of those 6% or 1.8% of
the total lookups returned malicious nodes and went un-
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Figure 6: Lookup Success With Probabilistic Check-
ing: 1,000 nodes, 128 groups

detected. This can be seen in Figure 5. With the offset
set at 0.5groupSize there is a non-negligible false negative
rate, but we still get a substantial decrease in the attacker’s
ability to bias the lookup results. If we set the offset more
strictly, e.g. to 0.1groupSize, we greatly reduce the false
negative rate at the cost of more lookups due to more false
positives.

Finally, we demonstrate that redundant checking contin-
ues to operate over the length of the path to prevent bias in
node selection. In Figure 6, we show the chance that both
the first and last nodes are compromised. As shown, the
attacker does not gain much over systems with full random
selection, such as Tarzan. For example, with 20% attack-
ers, Tarzan would have 4% compromised paths, while for
Salsa with redundancy of four, this chance is 6.9%. With
redundancy of five, the chance is the same 4%.

6. CONCLUSIONS

In this paper we proposed a structured overlay architec-
ture, based on a DHT, for securely and scalably organizing
and selecting nodes in a highly distributed anonymous com-
munications system. Nodes have limited knowledge of the
system, while still being able to choose proxies at random
from the entire system. This helps protect it from the in-
tersection attack and enhances scalability. Due to the use
of consistent hashing, attackers cannot influence where the
nodes fall on the ID space. We have shown that the system
organization helps its resilience to attack. The system uses
redundant lookups to mitigate the risk of finding attack-
ers on the path. This redundancy is a tunable parameter to
balance performance and security. The system also uses dis-
tance checking to find malicious nodes returned by lookups.
We show that we can reduce the false negatives to 3.8% in a
system containing 20% malicious nodes. We also show that
for an attacker to try to perform the intersection attack, he’d
have to control a large fraction of the nodes in the system.
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