Analysisof an Anonymity Networ k for Web Browsing

Marc Rennhard*, Sandro Rafaelif, Laurent Mathy, Bernhard Plattner* and David Hutchisont
*Swiss Federal Institute of Technology, Computer Engineering and Networks Laboratory; Zurich, Switzerland
t Lancaster University, Faculty of Applied Sciences; Lancaster, UK
{rennhard,plattner} @tik.ee.ethz.ch, {rafaeli,laurent,dh} @comp.lancs.ac.uk

Abstract

Various systems offering anonymity for near real-time
Internet traffic have been operational. However, they did
not deliver many quantitative results about performance,
bandwidth overhead, or other issues that arise when im-
plementing or operating such a system. Consequently, the
problem of designing and operating these systems in a way
that they provide a good balance between usability, pro-
tection from attacks, and overhead is not well understood.
In this paper, we present the analysis of an anonymity net-
work for web browsing that offers a high level of anonymity
against a sophisticated attacker and good end-to-end per-
formance at a reasonable bandwidth overhead. We describe
a novel way of operating the system that maximizes the pro-
tection from traffic analysis attacks while minimizing the
bandwidth overhead. We deliver quantitative results about
the performance of our system, which should help to give a
better understanding of anonymity networks.

Keywords: anonymity, anonymous web browsing, MIX
networks

1 Introduction

At last year’s WETICE workshop, we have presented an
architecture for a MIX-based [4] anonymity network [11].
We have explained the details about its functionality and its
protocol. The main motivation for the project was that al-
though various MIX-based systems have been operational,
none of them delivered many quantitative results about per-
formance, bandwidth overhead, or other issues that arise
when implementing or operating such a system. Particu-
larly, it was not clear how to operate an anonymity network
efficiently such that it provides a good balance between the
level of anonymity if offers and the costs in terms of end-to-
end performance and bandwidth overhead this implies. The
goal of this project was to overcome this problem, find ways
to efficiently operate a MIX-based system, and to analyze it
by examining the performance it offers.

In this paper, we present the second part of our work. We
present a novel way of operating the core components of an
anonymity network — the MIXes — that maximizes the pro-
tection from traffic analysis attacks while minimizing the
bandwidth overhead. We also deliver quantitative results
about the performance of our system, which show that it in-
deed provides a good balance between usability, protection
from attacks, and overhead.

This paper is organized as follows: we first recall the ba-
sic design of our system. In section 3, we discuss related
work. We describe the mixing component of our system in
section 4. In section 5, we present the results of our perfor-
mance analysis and conclude this work in section 6.

2 The Anonymity Network

We briefly recall the basic design of our system. For a
much more detailed description, check out our last year’s
WETICE paper [11] or the technical report [10]. The
anonymity network (AN) is a MIX network to enable
anonymous web browsing. It offers sender anonymity and
relationship anonymity [7]. This means that the receiver (or
server) should not find out who the sender (or client) is and
an eavesdropper should not be able to detect that there is a
communication relationship between the two parties. Fig-
ure 1 gives an overview of the AN.

Alice's
Computer

Figure 1. Anonymity Network overview.

The core of the AN consists of the Anonymity Proxies
(APs). The APs are distributed in the Internet and play the

role of the M1Xes [4] in our system. For trust reasons, the
APs should be operated by different institutions. A user
Alice accesses the AN via a Local Proxy (LP), which is a
program running on her computer. When Alice wants to
browse the Web anonymously, she selects a subset of the
APs she trusts, e.g. APy, APy, APg and AP3. The LP then
sets up an Anonymous Tunnel from LP to AP3 via APy, AP2
and APg. The anonymous tunnel is longstanding and re-
mains active until Alice decides to tear it down. Alice can
now use her web browser to access the anonymous tunnel in
exactly the same way as a normal web proxy. When Alice’s
browser B; want to fetch data from the web server WS;,
it sends the request to LP. LP sets up an Anonymous Con-
nection within the anonymous tunnel from LP to AP3 and
tells AP3 to connect to WS;. When this is done, the ac-
tual request can be handled and the reply is sent from WS,
back to B4, via the anonymous connection. Note that mul-
tiple anonymous connections can be transported within one
anonymous tunnel, so if Alice opens a second browser Bs
to access a web server WS,, another anonymous connec-
tion is set up. The same holds when the browser requests
the embedded objects in a web page in parallel: the LP sim-
ply establishes multiple anonymous connections. The LP
also sanitizes the requests it receives from the browser by
removing data that could possibly identify Alice.

The APs operate at the application layer and a TCP-
connection is used to connect a pair of APs or an LP and
an AP. Note that not every AP has to be connected to ev-
ery other AP, but if they are connected, then there is exactly
one TCP-connection between them. This means that the
anonymous tunnels of different users are transported within
a single TCP-connection between two APs. As a result, the
anonymous tunnels are not visible as unique connections
from the outside.

The goal of an APs is to hide the correlation of incoming
and outgoing messages such that an attacker that performs
traffic analysis to break the anonymity cannot follow a mes-
sage through the network. To do so, the following measures
are used: (1) all messages used in the system have exactly
the same length (we use 1000 bytes in our system), which
defeats traffic analysis based on correlating packets by their
length. (2) The encoding of a message changes between en-
tering and exiting an AP, which prevents traffic analysis by
looking at the content of packets. This is usually achieved
by encrypting or decrypting a message as it passes an AP.
(3) An AP delays and reorders incoming packets from dif-
ferent users before forwarding them such that the outgoing
sequence of packets is not related to the incoming sequence.
This makes traffic analysis based on timing very difficult be-
cause for an eavesdropper, each of the outgoing packets can
correspond to each of the incoming packets with the same
probability. (4) Dummy messages are exchanged between
APs whenever this is necessary to further complicate traffic

analysis.

Messages are not simply encrypted between a pair of
proxies, as this would disclose the message to each AP. As
a result, the first AP would know the web server the user
is communicating with. Furthermore, the other APs could
derive information about anonymous tunnels by comparing
the messages they receive. To prevent this, the user en-
crypts a message repeatedly for each AP, starting with the
last in the anonymous tunnel. When traveling through the
AN, each AP removes one layer of encryption until the last
AP sees the message in the clear and forwards it to the web
server. It works vice-versa when the reply from the web
server is sent back to LP.

Our prototype is implemented in Java 1.3 and provides
support for HTTP and HTTPS. It should be noted that al-
though we currently only support web traffic, the LP can be
extended such that other protocols can use the anonymous
tunnel as well. Using Sun’s Java HotSpot Server virtual ma-
chine, the system provides adequate performance for quan-
titative and qualitative evaluation.

3 Related Work

Anonymizing web traffic has been tried before. Simple
services (e.g. The Anonymizer [5]) with only a proxy be-
tween user and web server are efficient but very vulnerable
to traffic analysis attacks. In addition, the end-to-end rela-
tionship is not anonymous with regard to the single proxy
itself, which render such systems useless if a high level of
anonymity is needed. Another system offerning a relatively
low level of anonymity is Crowds [9], where users forward
each others web requests to conceal the real origin of a re-
quest.

More sophisticated MIX-based systems include Onion
Routing [8, 12], the commercial Freedom system [3] (which
has been shut down as of October 22nd, 2001), and Web
MIXes [2]. All of them employ uniform message length
and layered encryption to complicate traffic analysis, but so
far, none of them has come up with an efficient solution
to make use of dummy traffic to significantly increase the
protection from traffic analysis attacks. As a result, these
systems do not employ dummy traffic, which implies that
they are not very resistant against a powerful adversary.

4 Mixing and Dummy Traffic

The most critical components in a MIX network that sup-
ports near real-time traffic are the delaying and reordering
of messages and the use of dummy traffic. One has to find
the balance between making it hard for an attacker to cor-
relate incoming and outgoing messages at an AP without
delaying the data so long that the end-to-end performance

to AP to AP,

SISESS
= |

to AP,

to AP,

to AP, 0 AP, 0 AP,

e = =
o e

to AP, to AP, to AP,
<« —

<)

Figure 2. Mixing and dummy messages.

suffers noticeably and without introducing so many dummy
messages that the bandwidth consumption increases dras-
tically. In this section, we present a novel way of operat-
ing these MIXes that maximizes the protection from traffic
analysis attacks while minimizing the bandwidth overhead.

One approach could be to send messages on a link be-
tween two APs all the time. If real messages are available,
these real messages are sent, otherwise dummy messages
are used. Dummy messages consist of random bits and an
eavesdropper cannot distinguish them from encrypted real
messages. The advantage of this scenario is that it is virtu-
ally impossible for an observer to find out when real mes-
sages are actually exchanged between APs and when not.
The disadvantage is that this results in a vast amount of
dummy data consuming bandwidth. Our goal of operating
an AP is to minimize the overhead imposed by the use of
dummy messages while providing a high level of resistance
against traffic analysis attacks.

The idea is to have at each time an AP connected to some
other APs. Assume that AP is connected to APy, AP3,
AP,4, and AP5. When AP; gets a message that must be for-
warded to AP,, AP, also sends a dummy message to APs,
AP,4, and AP5. Since messages change their encoding while
traversing an AP, an external attacker cannot relate any of
the outgoing messages to the incoming one. The problem
of this approach is that we are sending many dummy mes-
sages to hide a real one — only one out four messages is
a real one in the example just described which means that
only 25% of all messages are real messages. However, by
modifying this approach a bit, it can be made much more
efficient, as Figure 2 illustrates. When a message arrives at
an AP, we do not forward it right away but buffer it in the
output queue of the link it is supposed to be forwarded to.

Since we buffer the messages, there are usually some
messages waiting in an AP to be forwarded to their respec-
tive next hop AP. In figure 2a, there are two messages wait-
ing in each output queue to AP5, AP4, and AP5, and none
in the output queue to AP3. Three more messages are just
arriving, they are processed by the AP and put at the end of
the appropriate output queues (figure 2b). Eventually, the
AP decides to forward messages and sends the first mes-
sage in each queue to the APs it is connected to (figure 2c).
Since no message is currently in the output queue to AP3, a
dummy message is sent there.

It is straightforward to see what we have achieved by
buffering the messages for a short time: instead of using
many dummy messages, an AP now uses the other real mes-
sages to hide a particular message. On the outgoing links
where no packet is waiting, we still have to send dummy
messages, but in general we can expect that much fewer
dummy messages have to be used compared to the basic
approach where a message is forwarded right away.

5 Performance Analysis

In this section we analyze how well the AN performs.
There are two questions we want to answer with the per-
formance measurements: (1) what end-to-end performance
a user can expect, i.e. how long does it takes on average
to download a document from the Web and (2) how many
dummy messages the APs produce to protect the real mes-
sages. The test AN consists of six fully interconnected APs,
which means there is a TCP-connection between each pair
of APs. We simulate different numbers of users (40-400)
and different numbers of APs (2-4) the users use in their
anonymous tunnels. We believe that 2, 3, or 4 APs are
realistic numbers of APs one would choose in a real-life
scenario. Each user sends an HTTP request through the
anonymous tunnel to a web server, receives the correspond-
ing HTTP reply, waits for an arbitrary time between 0 and
10 seconds, issues the next request and so on.

We simulate the behavior of HTTP 1.0 [1]: the browser
first fetches the page itself and then each embedded object.
Since HTTP 1.0 opens a dedicated TCP-connection for the
page and each embedded object, this means that the LP sets
up an anonymous connection within the anonymous tunnel
for each of these connections. We also use realistic numbers
for the page size, the number of embedded objects per page,
and the size of each embedded object. All these humbers
follow a Pareto distribution with an average file size of 12
KB and an average number of embedded objects of 4 [6].

Each AP is running on a dedicated PC with 256 MB
RAM and an Intel Pentium Il or AMD Athlon CPU run-
ning at speeds between 800 MHz and 1 GHz. The PCs run
Linux with a 2.4.7 kernel. The users are simulated on sev-
eral Sun workstations running different versions of Solaris.
The Apache web servers are running on the same systems
as the APs. All systems are located in three different 100-

5 T T T T T T T T 5 T T T

2 APs for each user —+—
3 APs for each user ---x---
4 APs for each user ---:-

Download time (seconds)
Download time (seconds)

0 L

2 APs for each user —+—
3 APs for each user ---x---

4 APs for each user -----
4| 2-4 APs, selected randomly per user & 1 4| 2-4APs, selected randomly per user & R 7 | 24 APs, selected randomly per user

T T T 8 T T T T T T T T
2 APs for each user —+—

3 APs for each user ---x---
4 APs for each user -

e
a

Download time (seconds)

Number of users

100 T T

T T 100 T

0 L L L L L L L L L L L L L 3 L L L L L L
40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400

Number of users

Number of users

T T T T
2 AP for each user —+—
9 | 3 APs for each user —x--- 4
4 APs for each user -
| 2-4 APs, selected randomly per user ~-&

Percentage of real data messages (%)
Percentage of real data messages (%)

10 L

10 L

T T T T

2 APs for each user —+—

90 3 APs for each user ------ d
Ps for each user ----- -

4 Al
| 2-4 APs, selected randomly per user @

T T 100 T T

T T T T
2 APs for each user —+—
% 3 APs for each user ——x-—- j

4 APs for each user ------ -
| 2-4 APs, selected randomly per user @

Percentage of real data messages (%)

Number of users

a) Basic configuration

L L
40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400
Number of users

b) Handling dummy messages

Number of users

¢) Fixed bit-rates

Figure 3. Performance analysis.

Mbit/s Ethernets that are connected by a router. Sun Mi-
crosystems’ Java 1.3.1 is used to run the LPs and APs.

In all performance measurements, we measure the com-
plete average download time and the percentage of real mes-
sages exchanged between the APs. The download time is
the time to completely download a page and all embedded
objects. Figure 3a illustrates the results when operating the
AN as described in sections 2 and 4.

Figure 3a shows that the download times get longer when
(1) there are more users in the system and (2) when the users
use more APs in their anonymous tunnels, both is not sur-
prising. We can also see that the download time is nearly
constant until a certain number of users is reached. The
reason for this is that when there are only a few users, mes-
sages are held back in the APs for a short time in the hope
that more messages arrive to keep the amount of dummy
messages low. When a certain number of users is reached,
the download time increases with the number of users. The
reason for this is that the APs are approaching their limit in
terms of messages they can handle.

Similarly, the number of dummy messages decreases if
there are more users and if more APs are used in an anony-
mous tunnel (figure 3a). This is reasonable, since both
means that an AP must handle more messages at the same
time, which increases the probability that real messages are
waiting in many of the outgoing queues of an AP. Although
70% of dummy messages when there are only few users
looks like a lot of overhead, it is perfectly justifiable, since
(1) the data generated by these few users are not enough to
confuse an attacker and to provide strong anonymity, which
means that a lot of cover traffic has to be generated and (2)
since the APs do not have to handle many real messages,

they have enough computing power to process the dummies.

The measurements show that our way of operating an AP
indeed seems to minimize the amount of dummy messages
that must be used to protect the anonymity while providing
very acceptable download times. For instance, when there
are 320 users and each user selects randomly 2, 3, or 4 APs
in her anonymous tunnel, then the average download time
is below 2 seconds and the amount of dummy messages is
below 30%. On the other hand, figure 3a also shows that
our test AN consisting of 6 APs eventually reaches its limits
when 400 users are using 4 APs in each anonymous tunnel
and browse the Web intensively (i.e. requesting a web page
every 5 seconds on average).

5.1 Blocked TCP-Connections

We employ TCP-connections between APs, which bears
a problem when one of these connections blocks for any
reason. In section 4, we have defined that an AP always
sends out one message on each link to other APs, which
implies that one blocked connection causes the AP to stop
sending messages on all other connections as well.

To cope with this problem, an AP has the option to sim-
ply ignore blocked TCP-connections. Whenever an AP de-
cides to send a message out on each link, then this is done
only on these links where the TCP send buffer is not full.
As a result, only the anonymous tunnels that use the par-
ticular TCP-connection are blocked and not all tunnels that
go through the AP. However, one must realize that this does
probably make the AN less resistant against traffic analy-
sis attacks, since the loads on the links going out from an
AP are not the same anymore. On the other hand, it is rea-

sonable to assume that one or more TCP-connections are
temporarily blocked in a practical scenario with an AN con-
sisting of many APs. To not degrade the performance of
the whole AN too much, it is probably required that mes-
sages are sent even if some links are blocked. A compro-
mise could be that messages are sent if a certain number of
the links are not blocked, e.g. if at least 75% of the links are
usable. Ifan AP is connected to 8 other APs, this means that
messages are sent if at most 2 TCP-connections are blocked.

We have implemented this functionality in the AN and
analyzed its effect. We do not include the performance mea-
surements in this paper, as the results in our test environ-
ment are virtually identical to those in figure 3a.

5.2 Handling of Dummy Messages

We have discussed when an AP sends dummy messages,
but not what an AP does when it receives them. Until now,
an AP simply ignored incoming dummy messages. The
problem with this approach is that if an AP temporarily gets
only dummy messages, it will not send messages any more.
This gives an attacker additional information during a traf-
fic analysis attack, since it tells him that only dummy mes-
sages are sent to this AP. To confuse an attacker, the AP has
to send messages even if it only receives dummy messages.

The APs handle this problem as follows: when deciding
to forward messages, an AP now also takes the incoming
dummies into account. The effect is not very visible when
there are many users and an AP receives mostly real mes-
sages. However, when the number of incoming real mes-
sages drops, the incoming dummies affect the APs decision
to forward messages more and more. If an AP receives only
dummy messages and there are no real messages to forward,
it simply *forwards’ dummies such that an attacker cannot
detect if an AP only receives dummy messages. Figure 3b
shows how this affects the measurements.

By comparing figure 3b with figure 3a, we can see that
especially when there are few users, the download times are
shorter and the relative amount of dummy messages is big-
ger. The reason is that by taking the incoming dummies into
account when deciding to forward messages, the condition
to actually send messages is fulfilled earlier [10]. Conse-
quently, messages are forwarded earlier and the download
times get shorter. On the other hand, this also means that
fewer real messages are in an AP at any time, which results
in an increase of dummy messages that must be used. As the
number of users grows, this effect diminishes as the relative
number of incoming dummy messages gets smaller.

5.3 Fixed Bit-Rates on the LP-AP Link

So far, we have silently assumed that the strategy of an
attacker is to observe an AP to correlate incoming and out-

going messages. However, if a powerful attacker can ob-
serve the whole network, then the AN basically collapses to
one big node. The attacker can then try to correlate events at
the endpoints of the AN. For example, if he sees data being
sent over the connection from an LP to an AP, he can check
at which AP data are sent to a web server a short time later.
Similarly, he can try to correlate the events when the web
server sends its response back to an LP.

To resist this attack, we must send cover traffic between
the LP and the first AP. One approach could be that the
LP sends dummy web requests from time to time and the
first AP sends traffic back to the LP that looks like a reply
from a web server. The problem here is that the attacker
can still correlate the events at the endpoints since the real
requests and replies are still visible between the LP and AP.
The only way to remove any correlation is to send traffic be-
tween the LP and the first AP in both directions all the time.
We have implemented this functionality in the AN and fig-
ure 3¢ shows the results when messages are exchanged at a
constant rate of 128 Kbit/s on every LP—AP link.

The limited bandwidth on the LP-AP links results in sig-
nificantly longer download times, as figure 3c shows. The
percentage of dummy messages is much higher than in fig-
ures 3a and b when there are relatively few users. The rea-
son is that the limited bandwidth on the LP—AP link slows
down each anonymous tunnel, which means that there are
fewer messages of each user in the system at any time [10].

Comparing figures 3b and c¢ shows the balance one has
to find when offering such an anonymity service: we have
increased the system’s resistance against an adversary that
can observe the whole network at the price of much longer
download times. For maximal resistance, every user should
exchange data with the first AP in her anonymous tunnel at
the same fixed bit-rate. We have used 128 Kbit/s which is
still more than most home-users with dial-up connections
get today. So for maximal resistance, we would have to use
64 Kbit/s or even less. This is certainly not acceptable for
those that have much better connectivity. A compromise
could be to offer different fixed bandwidths on the LP-AP
links, e.g. 32, 64, 128, 256, 512, and 1024 Kbit/s. How-
ever, one must bear in mind that this again compromises the
anonymity a little bit, since fast data exchange between the
last AP and the web server can be correlated with users that
use fast fixed bit-rates on the LP-AP link.

6 Conclusions and further work

We have designed, implemented, and analyzed an
anonymity network for web browsing. We have presented
a novel way of operating the M1Xes to minimize the band-
width overhead while providing a high level of anonymity.
We have then delivered quantitative results which show that
our system indeed produces relatively few dummy traffic

while achieving very acceptable download times.

We have seen that compromises must be made between
usability, overhead, and protection from attacks. If we had
to decide now which of the options described in this paper to
use, we would choose the system we evaluated in figure 3b,
as it provides acceptable download times, small dummy
message overhead, and good protection against a reasonable
attacker that is able to observe several APs but maybe not
the whole network. We also would employ the measures to
cope with blocked TCP-connections (section 5.1), although
we are aware that this means sacrificing some of the resis-
tance against attacks for better usability and performance. It
is questionable if the additional resistance gained by using
fixed bit-rates on the LP—AP links is worth the performance
penalty (section 5.3). If we assume a strong attacker that is
indeed able to observe the whole network, then we should
make use of the fixed bit-rates, but one and the same rate
for all users seems too strict. So we would offer the users a
set of different rates as proposed at the end of section 5.3,
although we recognize again that this is a trade-off between
performance and resistance against a global attacker.

We believe that the AN provides strong resistance
against passive traffic analysis attacks. Eavesdropping at
an AP does probably not enable an attacker to correlate
incoming and outgoing messages. Fixed bit-rates on the
LP-AP link makes attacks difficult even if the adversary is
able to observe the whole network. The AN also resists
some active attacks, as the protocol guarantees that insert-
ing or replaying messages does not help the attacker to learn
anything about anonymous tunnels [10]. If the adversary
can delete or modify messages between two proxies, then
the messages are retransmitted due to the underlying TCP-
connection. However, by blocking the message stream on a
link between two proxies, the attacker can check on which
connections between APs and web servers the traffic flow
also stops to derive information about anonymous tunnels.

More research has to be done to really understand the re-
sistance of MIX networks against various kinds of attacks,
especially when a subset of the MIXes is not honest. There
are other challenging problems to solve, e.g. how to orga-
nize a big AN. Would it be good to have relatively few
but powerful and fully interconnected APs or is a system
of many small APs where each AP is connected only to a
few other APs better? The second approach would limit a
user’s choice to freely select the APs she wants to use in
her anonymous tunnel, since not all APs would be directly
interconnected. One could also think of a pure peer-to-peer
network, where each user is also an AP at the same time.

With our system, we have tried to find a good compro-
mise between usability, overhead, and protection from at-
tacks. Our next steps are to further optimize the system in
terms of performance and stability and to start a public user
trial (end of April 2002) to get feedback and to see how well

it works in an Internet-wide scale.

Acknowledgement

The work presented here was done within ShopAware
— a research project funded by the European Union in
the Framework V IST Program (project 12361). Marc
Rennhard would like to thank also the Swiss Federal Office
for Education and Science for his sponsorship.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk.
Transfer Protocol — HTTP/1.0. RFC1945, 1996.
[2] O. Berthold, H. Federrath, and S. Kdpsell. Web MIXes: A

System for Anonymous and Unobservable Internet access. In
Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, pages 101-115, Berkeley, CA, USA,

July 25-26 2000.
[3] P.Boucher, A. Shostack, and 1. Goldberg. Freedom Systems

2.0 Architecture. White Paper, ht t p: / / ww. f r eedom

net /i nf o/ whi t epaper s, December 18 2000.
[4] D.L.Chaum. Untraceable Electronic Mail, Return Adresses,

and Digital Pseudonyms. Communications of the ACM,

24(2):84-88, February 1981.
[5] L. Cottrell. The Anonymizer.

anonymi zer.com
[6] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger.

Dynamics of IP Traffic: A Study of the Role of Variability
and the Impact of Control. In Proceeding of SGCOMM ' 99,

Massachusetts, USA, September 1999.
[7] A. Pfitzmann and M. Kéhntopp. Anonymity, Unobserv-

ability, and Pseudonymity - A Proposal for Terminology;
Draft v0.12. http://ww. koehnt opp. de/ marit/

pub/ anon/ Anon_Ter ni nol ogy. pdf,June 17 2001.
[8] M. Reed, P. Syverson, and D. Goldschlag. Anonymous Con-
nections and Onion Routing. |EEE Journal on Selected Areas
in Communications, 16(4):482-494, May 1998.
[9] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web
Transactions. ACM Transactions on Information and System

Security, 1(1):66-92, November 1998.
[10] M. Rennhard, S. Rafaeli, and L. Mathy. Design, Implementa-

tion, and Analysis of an Anonymity Network for Web Brows-
ing. TIK Technical Report Nr. 129, TIK, ETH Zurich, Zurich,

CH, February 2002.
[11] M. Rennhard, S. Rafaeli, L. Mathy, B. Plattner, and

D. Hutchison. An Architecture for an Anonymity Network.
In Proceedings of the |EEE 10th Intl. Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 2001), pages 165-170, Boston, USA, June 20-22
2001.

[12] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards

an Analysis of Onion Routing Security. In Proceedings of the
Workshop on Design Issues in Anonymity and Unobservabil-
ity, pages 83-100, Berkeley, CA, USA, July 25-26 2000.

Hypertext

http://ww.

