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Abstract. In this paper, we propose a novel and efficient protocol for
proving the correctness of a shuffle, without leaking how the shuffle
was performed. Using this protocol, we can prove the correctness of a
shuffle of n data with roughly 18n exponentiations, where as the proto-
col of Sako-Kilian[SK95] required 642n and that of Abe[Ab99] required
22n logn. The length of proof will be only 211n bits in our protocol, op-
posed to 218n bits and 214n logn bits required by Sako-Kilian and Abe,
respectively. The proposed protocol will be a building block of an effi-
cient, universally verifiable mix-net, whose application to voting system
is prominent.
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1 Introduction

A mix-net[Ch81] scheme is useful for applications which require anonymity, such
as voting. The core technique in a mix-net scheme is to execute multiple rounds
of shuffling and decryption by multiple, independent mixers, so that the output
decryption can not be linked to any of the input encryptions.
To ensure the correctness of the output, it is desirable to achieve the property

of universal verifiability. However, proving the correctness of a shuffle without
sacrificing unlinkability required a large amount of computation in the prior art.
For example, [SK95] adopted a cut-and-choose method to prove the correctness.
Abe[Ab99] took an approach to represent a shuffle using multiple pairwise per-
mutations 1. In practical terms, however, neither scheme is efficient enough to
handle a large number of ciphertexts, say on the order of 10,000.
This paper proposes a novel, efficient scheme for proving the correctness of a

shuffle. We take a completely different approach than that of [SK95] and [Ab99].
We represent a permutation by a matrix, and introduce two conditions which
suffice to achieve a permutation matrix. We then present zero-knowledge proofs
to prove the satisfiability of each condition. Moreover, these two proofs can be
merged into one proof, resulting in a very efficient proof of a correct shuffle.
We also present here an analysis of the efficiency of our proof. Our proof

requires roughly 18n exponentiations to prove the correctness of a n-data shuffle,

1 Another approach, based on a verifiable secret exponent multiplication is described
in [Ne01].



where as the protocol of Sako-Kilian[SK95] required 642n and that of Abe[Ab99]
required 22n log n. Using the computation tools in [HAC], the total computation
cost necessary in our proof can be reduced to an equivalent of 5n exponentiations.
The length of a proof will be only 211n bits in our protocol, opposed to 218n bits
and 214n log n bits required by Sako-Kilian and Abe, respectively.
Our paper is organized in the following way. In Section 2, we present the two

conditions on a permutation matrix. In Section 4 we give zero-knowledge proofs
for each of the two conditions, and discuss how these proofs are combined to
achieve to prove the whole shuffle. In Section 5 we describe our protocol and in
Section 6, we compare the efficiency of our protocol to prior work.

2 Basic Idea

2.1 Shuffling

Informally speaking, a shuffling is a procedure which on input of n ciphertexts
(E1, E2, . . . , En), outputs n ciphertexts (E

′
1, E

′
2, . . . , E

′
n) where:

– there exists a permutation φ s.t D(E ′i) = D(Eφ−1(i)) for all i. Here, D is a
decryption algorithm for ciphertexts.

– Without the knowledge of D or φ, (E1, E2, . . . , En), and (E
′
1, E

′
2, . . . , E

′
n)

reveal no information on the permutation φ.

We consider the use of ElGamal cryptosystems, with public keys (p, q, g, y)
and secret key X ∈ Zq s.t. y = gX mod p. 2

Given n ciphertexts {Ei} = {(gi,mi)}, where all {gi} and {mi} have the
order q, shuffled ciphertexts {E′i} = {(g

′
i,m

′
i)} can be obtained by

g′i = gri · gφ−1(i) mod p
m′i = yri ·mφ−1(i) mod p

(1)

using randomly generated {ri}.

2.2 Permutation Matrix

We define a matrix (Aij) to be a permutation matrix if it can be written as
follow using some permutation function φ.

Aij =

{

1 mod q if φ(i) = j
0 mod q otherwise.

Using this permutation matrix, the equation (1) is equivalent to

(g′i,m
′
i) = (g

ri

n
∏

j=1

g
Aji

j , yri
n
∏

j=1

m
Aji

j ) mod p. (2)

In order to prove the correctness of the shuffle, we need to show the following
two things.
2 We assume, as usual, p and q are two primes s.t. p = kq + 1, where k is an integer,
and g is an element that generates a subgroup Gq of order q in Z

∗
p.



1. For each pair {(g′i,m
′
i)}, the same ri and (Aij) has been used.

2. (Aij) used is a permutation matrix.

The first property can be efficiently shown using a standard technique[Br93]. The
contribution of this paper is to present a novel technique to prove the second
property.
At first, we concentrate on proving the existence of a permutation matrix

(Aij) and {ri} when given {gi} and {g
′
i}, s.t.

g′i = gri
n
∏

j=1

gj
Aji mod p. (3)

We thus need to prove the existence of such a permutation matrix. We be-
gin by looking at necessary conditions which suffices to achieve a permutation
matrix. The following is the key observation used to construct the proposed
protocol.

Theorem 1. A matrix (Aij)(i,j=1,...,n) is a permutation matrix if and only if,
for all i, j, and k, both

n
∑

h=1

AhiAhj =

{

1 mod q, if i = j
0 mod q, if i 6= j

(4)

n
∑

h=1

AhiAhjAhk =

{

1 mod q if i = j = k
0 mod q if otherwise

(5)

hold.

Notation 1 For convenience, we define δij and δijk(i, j, k = 1, . . . , n) to be,
respectively,

δij =

{

1 if i = j
0 if i 6= j

and δijk =

{

1 if i = j = k
0 if otherwise.

Proof. We first show that there is exactly one non-zero element in each row
vector of (Aij) and then, the same for each column vector.
Let Ci be a i-th column vector of the matrix (Aij)(i,j=1,...,n). Then, from

Equation (4), we see (Ci, Cj) = δij where (A,B) is inner product of vectors A and
B. This implies that rank(Aij) = n, that is, there is at least one non-zero element
in each row and each column. Next we consider a vector Ci¯Cj(i 6= j) where the
operator ¯ is defined as (a1 . . . an)¯ (b1 . . . bn) = (a1b1 . . . anbn). Define a vector
Ĉ =

∑n
l=0 κlCl for an arbitrary κl. From the fact (Ĉ, Ci¯Cj) =

∑

l=1 κlδlij = 0
and linear combinations of {Cl} generate the space Zq

n, we obtain Ci¯Cj = 0.
This means for any h, i and j s.t. i 6= j, either Ahi = 0 or Ahj = 0. Therefore,
the number of non-zero elements in each row vector of (Aij) is at most 1, and
thus exactly 1.
From the above observations, the matrix (Aij) contains exactly n non-zero

elements. Since Ci 6= 0 for all i, the number of non-zero element in each column



vector is also 1. Thus, there is exactly one non-zero element in each row vector
and each column vector of the matrix (Aij) if Equations (4) and (5) hold.
The unique non-zero element ei in i − th row must be e2i = 1 mod q from

Equation (4) and e3i = 1 mod q from Equation (5). This leads to ei = 1 and that
matrix (Aij)(i,j=1,...,n) is a permutation matrix over Zq.

2.3 Outline of main protocol

Using Theorem 1, the main protocol can be constructed by the following proofs

Proof-1 a proof that given {gi} and {g
′
i}, {g

′
i} can be expressed as eq.(3) using

integers {ri} and a matrix that satisfies the first condition.
Proof-2 a proof that given {gi} and {g

′
i}, {g

′
i} can be expressed as eq.(3) using

integers {ri} and a matrix that satisfies the second condition.
Proof-3 a proof that integers {ri} and the matrix used in the above two proofs

are identical.
Proof-4 For each pair (g′i,m

′
i), the same ri and {Aij} has been used.

In the Section 4, we provide protocols for Proof-1 and Proof-2.

3 Security of the protocol

We will prove that the main protocol is sound and zero-knowledge under com-
putational assumption. More specifically, for the property of soundness, we can
claim that if a verifier accepts the protocol, then either prover knows the per-
mutation or he knows integers {ai} and a satisfying g

a
∏n
i=1 gi

ai = 1 with over-
whelming probability. For the zero-knowledge property, we can construct a sim-
ulator and claim that if there is a distinguisher who can distinguish between a
real transcript from the protocol and an output from the simulator, then this dis-
tinguisher can be used to solve the decisional Diffie-Hellman problem. We note
that to make a shuffle secret, we already assume the hardness of the decisional
Diffie-Hellman problem.
In the course of reduction, we use the following arguments. First, we define

the following set.

Definition 1. Define Rm
n to be the set of tuples of n×m elements in Gq :

I = (x
(1)
1 , . . . , x

(m)
1 , x

(1)
2 , . . . , x

(m)
2 , . . . , x(1)

n , . . . , x(m)
n ).

We then define the subset Dm
n of R

m
n to be the set of tuples I satisfying

log
x
(1)
1

x
(i)
1 = log

x
(1)
j

x
(i)
j mod p

for all i(i = 2, 3, ..,m) and j(j = 2, ..., n).

Definition 2. We define the problem of distinguishing instances uniformly cho-
sen from Rm

n and those from Dm
n by DDH

m
n .



Note that the decisional Diffie-Hellman problem can be denoted as DDH2
2 .

We claim that for any n and m the difficulty of DDHm
n equals to the decisional

Diffie-Hellman problem, by proving the following.

Lemma 1. For any n(≥ 2) and m(≥ 2), if DDHm
n is easy, then DDH

2
n is easy.

Lemma 2. If for any n(≥ 2), DDH2
nis easy then the decisional Diffie-Hellman

is easy.

Proofs for Lemma 1 and 2 are sketched in Appendix A

4 Proof-1 and Proof-2

In this section, we give two proofs that will be the building blocks of the main
protocol.

4.1 Proving the first condition (Proof-1)

The following protocol proves that given {gi} and {g
′
i}, the prover knows {ri}

and {Aij} s.t.

g′i = gri
n
∏

j=1

g
Aji

j mod p

n
∑

h=1

AhiAhj = δij mod q.

The main idea is to issue s =
∑n

j=1 rjcj and si =
∑n

j=1Aijcj as a response
to a challenge {cj} and let the verifier check

n
∑

i=1

si
2 =

n
∑

j=1

cj
2 mod q

gs
n
∏

i=1

gi
si =

n
∏

j=1

g′j
cj mod p.

However, this apparently leaks information on Aij , so we need to add ran-
domizers and commitments. By making the response s =

∑n
j=1 rjcj + α and

si =
∑n

j=1Aijcj + αi using randomizers {αi} and α, a verifier needs to check
the following equation:

n
∑

i=1

si
2 =

n
∑

j=1

cj
2 +

n
∑

j=1

Bjcj +D mod q

where Bj and D are quadratic polynomials of {Aij} and αi. Therefore these
Bj and D, together with g

α
∏n
i=1 g

αi
i , will be also sent in advance to enable



verification. We further add another randomizer σ and modify the verification
equation to be

n
∑

i=1

si
2 + σs =

n
∑

j=1

cj
2 +

n
∑

j=1

(Bj + σrj)cj + (D + σα) mod q.

In order to hide the actual value of σ, {Bj+σrj} and D+σα, this verification is
computed over exponents. The below gives a complete description of the Proof-
1.

Proof-1

Input:p, q, g, {gi}, {g
′
i}.

1. Prover (P) generates random numbers σ, α, {αi}(i=1,...,n) ∈R Zq and com-
putes

w = gσ mod p

g′ = gα
n
∏

j=1

gj
αj mod p (6)

ẇi = g

∑

n

j=1
2αjAji+σri (= gBi+σri) mod p i = 1, . . . , n

ẇ = g

∑

n

j=1
αj

2+σα
(= gD+σα) mod p

and sends w, g′, {ẇi}, ẇ (i = 1, . . . , n) to V.
2. V sends back randomly chosen {ci}(i=1,...,n) ∈R Zq as a challenge.
3. P computes s =

∑n
j=1 rjcj + α mod q

and si =
∑n

j=1Aijcj + αi mod q(i = 1, . . . , n) and sends to V.
4. V verifies the following:

gs
n
∏

j=1

gj
sj = g′

n
∏

j=1

g′j
cj mod p (7)

wsg

∑

n

j=1
(s2j−c

2
j ) = ẇ

n
∏

j=1

ẇj
cj mod p (8)

.

Properties of Proof-1

Theorem 2. Proof-1 is complete. That is, if P knows {ri} and {Aij} satisfying
the first condition, V always accepts.

Theorem 3. If V accepts Proof-1 with a non-negligible probability, then P
either knows both {ri} and {Aij} satisfying the first condition, or can generate
integers {ai} and a satisfying g

a
∏n
i=1 gi

ai = 1 with overwhelming probability.



A sketch of Proof: Theorem 3 can be proved from the following lemmas, proofs
of which are sketched in Appendix B.

Lemma 3. If V accepts Proof-1 with non-negligible probability, then P knows
{Aij}, {ri}, {αi}, and α satisfying Equations (3) and (6).

Lemma 4. Assume P knows {Aij}, {ri}, {αi}, and α satisfying Equations (3)
and (6). If P knows {si} and s which satisfy Equation (7), and either s 6=
∑n

j=1 rjcj + α or si 6=
∑n

j=1Aijcj + αi for some i hold, then P can generate

non-trivial integers {ai} and a satisfying g
a
∏n
i=1 gi

ai = 1 with overwhelming
probability.

Lemma 5. Assume P knows {Aij}, {ri}, {αi}, and α satisfying Equations (3)
and (6). If Equations (7) and (8) hold with non-negligible probability, then either
Equation (4) hold or P can generate non-trivial integers {ai} and a satisfying
ga
∏n
i=1 gi

ai = 1 with overwhelming probability.

2

Theorem 4. We can construct a simulator of Proof-1 such that if there is a
distinguisher who can distinguish between a real transcript from the protocol and
an output from the simulator, then we can solve the decisional Diffie-Hellman
problem.

A sketch of Proof: Given in Appendix B. 2

4.2 Proving the second condition(Proof-2)

Analogous to Proof-1, the proof for the fact the prover knows {ri} and {Aij}
s.t.

g′i = gri
∏

j

g
Aji

j mod p

n
∑

h=1

AhiAhjAhk = δijk mod q

for {gi} and {g
′
i}, is given as Proof-2.

Proof-2

Input:p, q, g, {gi}, {g
′
i}.

1. Prover (P) generates random numbers ρ, τ, α, {αi}, λ, {λi} ∈R Zq

(i = 1, . . . , n) and computes

t = gτ , v = gρ, u = gλ, ui = gλi mod p i = 1, . . . , n

g′ = gα
n
∏

j=1

gj
αj mod p



ṫi = g

∑

n

j=1
3αjAji+τλi mod p i = 1, . . . , n

v̇i = g

∑

n

j=1
3αj

2Aji+ρri mod p i = 1, . . . , n

v̇ = g

∑

n

j=1
αj

3+τλ+ρα
mod p

and sends t, v, u, {ui}, g
′, {ṫi}, {v̇i}, v̇ (i = 1, . . . , n), to V.

2. V sends back randomly chosen {ci}(i=1,...,n) ∈R Zq as challenge.
3. P computes s =

∑n
j=1 rjcj + α mod q, si =

∑n
j=1Aijcj + αi mod q(i =

1, . . . , n), and λ′ =
∑n

j=1 λjc
2
j + λ mod q and sends to V.

4. V verifies the following:

gs
n
∏

j=1

gj
sj = g′

n
∏

j=1

g′j
cj mod p

gλ
′

= u

n
∏

j=1

uj
cj

2

mod p

tλ
′

vsg

∑

n

j=1
(s3j−c

3
j ) = v̇

n
∏

j=1

v̇j
cj ṫj

c2j mod p

Properties of Proof-2

We claim the following properties of Proof-2, which can be proved analo-
gously to that of Proof-1.

Theorem 5. Proof-2 is complete. That is, if P knows {ri} and {Aij} satisfying
the second condition, V always accepts.

Theorem 6. If V accepts Proof-2 with a non-negligible probability, then P
either knows both {ri} and {Aij} satisfying the second condition, or can generate
integers {ai} and a satisfying g

a
∏n
i=1 gi

ai = 1 with overwhelming probability.

Theorem 7. We can construct a simulator of Proof-2 such that if there is a
distinguisher who can distinguish between a real transcript from the protocol and
an output from the simulator, then we can solve the decisional Diffie-Hellman
problem.

4.3 Constructing the Main Protocol

In this subsection, we explain how our main protocol is constructed using these
proof-1 and Proof-2. It should be noted, that these proofs did not have the
ordinary soundness property. That is, a prover knowing integers satisfying
ga
∏n
i=1 g

ai
i = 1 can deceive verifiers as if he had shuffled correctly. Since {gi}

is originally chosen by those who encrypted the messages, there is no control
to assure that the prover does not know the relations among them. Therefore,
we fix a set of basis {g̃, g̃1, . . . g̃n} independent from the input ciphertexts, in
a way we can assure the relations among the basis unknown. In fact, under



Discrete Logarithm Assumption, we can make it computationally infeasible to
obtain such {ai} and a if we generate {g̃, g̃1, . . . g̃n} randomly[Br93]. This way
it also suffices the requirement that the verifier should not know logg g̃ for zero-
knowledge property.
We require the prover to perform the same permutation on the set of fixed

basis as he did on the input ciphertexts. The prover proves that the permutation
on the fixed basis {g̃, g̃1, . . . g̃n} is indeed a permutation, and that he indeed
applied the same permutation to the input ciphertext.
Using the above methodology, we need not provide Proof-3 described in

the Subsection 2.3. If a prover knows two different representations of an ele-
ment using {g̃, g̃1, . . . g̃n}, it means that he knows the relations among the base
{g̃, g̃1, . . . g̃n} which is against the assumption. Proof-4 is achieved using the
standard techniques described in [Br93]. Therefore we are now equipped with
building blocks to prove the correctness of a shuffle.

5 The Main Protocol

In the previous subsection we illustrated our protocol as a combination of proof-
1 and proof-2, mainly for comprehensiveness. The proofs can be executed in
parallel, resulting in a three-round protocol with reduced communication com-
plexity.

Main Protocol

Input:p, q, g, y, g̃, {g̃i}, {(gi,mi)}, {(g
′
i,m

′
i)}.

1. Prover (P) generates the following random numbers:
σ, ρ, τ, α, αi, λ, λi ∈R Zq (i = 1, . . . , n)

2. P computes the following:

t = gτ , v = gρ, w = gσ, u = gλ, ui = gλi mod p i = 1, . . . , n

g̃′i = g̃ri
n
∏

j=1

g̃j
Aji mod p i = 1, . . . , n (9)

g̃′ = g̃α
n
∏

j=1

g̃j
αj mod p (10)

g′ = gα
n
∏

j=1

gj
αj mod p

m′ = yα
n
∏

j=1

mj
αj mod p

ṫi = g

∑

n

j=1
3αjAji+τλi mod p i = 1, . . . , n

v̇i = g

∑

n

j=1
3αj

2Aji+ρri mod p i = 1, . . . , n



v̇ = g

∑

n

j=1
αj

3+τλ+ρα
mod p

ẇi = g

∑

n

j=1
2αjAji+σri mod p i = 1, . . . , n

ẇ = g

∑

n

j=1
αj

2+σα
mod p.

3. P sends the following to the verifier V:
t, v, w, u, {ui}, {g̃

′
i}, g̃

′, g′,m′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ (i = 1, . . . , n).
4. V sends back randomly chosen {ci}(i=1,...,n) ∈R Zq as a challenge.
5. P computes the following and sends them to V.

s =

n
∑

j=1

rjcj + α, si =

n
∑

j=1

Aijcj + αi mod q i = 1, . . . , n

λ′ =

n
∑

j=1

λjc
2
j + λ mod q

6. V verifies the following:

g̃s
n
∏

j=1

g̃j
sj = g̃′

n
∏

j=1

g̃′j
cj mod p (11)

gs
n
∏

j=1

gj
sj = g′

n
∏

j=1

g′j
cj mod p (12)

ys
n
∏

j=1

mj
sj = m′

n
∏

j=1

m′j
cj mod p (13)

gλ
′

= u
n
∏

j=1

uj
cj

2

mod p (14)

tλ
′

vsg

∑

n

j=1
(s3j−c

3
j ) = v̇

n
∏

j=1

v̇j
cj ṫj

c2j mod p (15)

wsg

∑

n

j=1
(s2j−c

2
j ) = ẇ

n
∏

j=1

ẇj
cj mod p (16)

Theorem 8. Main Protocol is complete. That is, if P knows {ri} and {Aij}
satisfying the both conditions of Theorem 1, V always accepts.

Theorem 9. If V accepts Main Protocol with a non-negligible probability, then
P knows {ri} and permutation matrix (Aij) satisfying Equations (2), or can
generate non-trivial integers {ai} and a satisfying g̃

a
∏n
i=1 g̃i

ai = 1 with over-
whelming probability.

Theorem 10. We can construct a simulator of Main Protocol such that if there
is a distinguisher who can distinguish between a real transcript from the proto-
col and an output from the simulator, then we can solve the decisional Diffie-
Hellman problem.



Proofs for Theorem 9 and 10 are sketched in Appendix C.

6 Discussions

In this section, we compare the efficiency of the proposed protocol described
in Section 5 to the SK95 protocol in [SK95] and MiP-2 protocol in [Ab99]. To
enable a fair comparison, we assume the security parameter of [SK95] to be 160
and lengths of p and q to be 1024 and 160 respectively.
We first compare them by the number of exponentiations used in each proto-

col, in the case of shuffling n ciphertexts. These are 22(n log n−n+1) for Abe’s
protocol, 642n for the SK95 protocol, and 18n + 18 for the proposed protocol.
If we adopt computation tools described in [HAC], such as the simultaneous
multiple exponentiation algorithm and the fixed-base comb method, the num-
ber of exponentiations can be heuristically reduced to 11.2(n log n− n+ 1),64n,
and 4.84n+ 4.5, respectively. The total number of bits needing to be transfered
during the protocols is 13, 248(n log n− n+ 1),353, 280n, and 5, 280n+ 13, 792.
The rounded-up numbers are shown in Table 1.

Abe (MiP-2) SK95 This Paper

No. exponentiations 22n logn 642n 18n

(heuristically adjusted) 11n logn 64n 5n

No. communication bits 214n logn 218n 211n

Table 1. Comparison of three protocols

7 Conclusion

In this paper, we presented a novel method to prove the correctness of a shuffle,
and demonstrated its efficiency. The proposed method requires only 18n expo-
nentiations for shuffling n ciphertexts, where as previous methods required 35
times more, or required a higher order, O(n log n).
The proposed protocol can be used to build an efficient, universally verifiable

voting system where the number of voters can scale up to the order of 10,000.
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A DDH
m

n
and DDH

Lemma 1. For any m(≥ 2) and n(≥ 2), if DDHm
n is easy, then DDH

2
n is easy.

Proof. We claim that if DDHm
n is easy, then either DDH

m−1
n is easy or DDH2

n

is easy. By induction we can prove the correctness of the lemma.

In order to prove the claim, we define the subset Mm
n of Rm

n to be the set of
tuples

I = (x
(1)
1 , . . . , x

(m)
1 , x

(1)
2 , . . . , x

(m)
2 , . . . , x(1)

n , . . . , x(m)
n )

satisfying

log
x
(1)
1

x
(i)
1 = log

x
(1)
j

x
(i)
j mod p

for all i(i = 2, 3, ..,m− 1) and j(j = 2, ..., n), but whether or not

log
x
(1)
1

x
(m)
1 = log

x
(1)
j

x
(m)
j mod q

holds for all j(j = 2, ..., n) is arbitrary. Therefore, the set Dm
n is a subset ofM

m
n .

It is clear that if DDHm
n is easy, then we can either distinguish between the

instances chosen uniformly from Rm
n and M

m
n or the instances chosen uniformly

from Mm
n and Dm

n . In the former case, it means DDH
m−1
n is easy. We claim in

the following that in the latter case DDH2
n is easy.

Assume Mm
n and Dm

n are distinguishable. For any I
2
n ∈ R

2
n s.t.

I2
n = (x

(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 , . . . , x(1)

n , x(2)
n )

we transform it to Imn ∈ Rm
n

Imn = (x
′(1)
1 , . . . , x′

(m)
1 , x′

(1)
2 , . . . , x′

(m)
2 , . . . , x′(1)n , . . . , x′(m)

n )



where

x′
(i)
j =











x
(1)
j j = 1, . . . , n (if i = 1)

(x
(1)
j )

zi mod p j = 1, . . . , n (if 2 ≤ i ≤ m− 1)

x
(2)
j j = 1, . . . , n (if i = m)

with randomly chosen {zi}(i=2,...,m−1) in Zq.
If I2

n is chosen uniformly from D2
n, then I

m
n is distributed uniformly in Dm

n ,
and if I2

n is chosen uniformly from R2
n, then I

m
n is distributed uniformly in M

m
n .

Therefore if Dm
n and M

m
n is distinguishable, then we can solve DDH2

n.

Lemma 2. If DDH2
n (n ≥ 2)is easy then the decisional Diffie-Hellman problem

(DDH2
2 ) is easy.

Proof. For any I2
2 = (x

(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 ) ∈ R

2
2, we transform it to I

2
n ∈ R

2
n

I2
n = (x

′(1)
1 , x′

(2)
1 , x′

(1)
2 , x′

(2)
2 , . . . , x′(1)n , x′(2)n )

where

x′
(1)
1 = x

(1)
1 , x′

(2)
1 = x

(2)
1 , x′

(1)
2 = x

(1)
2 , x′

(2)
2 = x

(2)
2

x′
(1)
j = (x

(1)
1 )

zj · (x
(1)
2 )

wj , x′
(2)
j = (x

(2)
1 )

zj · (x
(2)
2 )

wj mod p j = 3, . . . , n

with randomly chosen {zj} and {wj}(j = 3, . . . , n) in Zq.
If I2

2 is chosen uniformly from D2
2, then I

2
n is distributed uniformly in D

2
n,

and if I2
2 is chosen uniformly from R2

2, then I
2
n is distributed uniformly in R

2
n.

Therefore if DDH2
n is easy, then so is DDH

2
2 .

B Properties of Proof-1

In this section, we sketch the proofs of the following theorems.

Theorem 3 (soundness). If V accepts Proof-1 with a non-negligible proba-
bility, then P either knows both {ri} and {Aij} satisfying the first condition, or
can generate integers {ai} and a satisfying g

a
∏n
i=1 gi

ai = 1 with overwhelming
probability.

Theorem 4 (zero-knowledge). We can construct a simulator of Proof-1
such that if there is a distinguisher who can distinguish between a real tran-
script from the protocol and an output from the simulator, then we can solve the
decisional Diffie-Hellman problem.

B.1 Soundness

It is clear that Theorem 3 holds if Lemmas 3, 4 and 5 hold. We therefore prove
the lemmas.



Lemma 3. If V accepts Proof-1 with non-negligible probability, then P knows
{Aij}, {ri}, {αi}, and α satisfying Equations (3) and (6).

A sketch of Proof: Define Cp as the space which is spanned by the vector
(1, c1, c2, . . . , cn) made of the challenges to which P can compute responses
s, {si}(i=1,...,n) such that Equation (7) holds. If the dim(Cp) = n+1, P can choose
n + 1 challenges which are linearly independent and obtain {Aij}(i,j=1,...,n),
{ri}(i=1,...,n), {αi}(i=1,...,n), and α which satisfies the relation:

s =

n
∑

j=1

rjcj + α, si =

n
∑

j=1

Aijcj + αi mod q i = 1, . . . , n

Such {Aij}, {ri},{αi}, and α satisfies Equations (3) and (6) . If, dim(Cp) < n+1.
The probability that V generates a challenge in Cp is at most q

n−1/qn = 1/q,
which is negligible. 2

Lemma 4. Assume P knows {Aij},{ri}, {αi}, and α satisfying Equations (3)
and (6). If P knows {si} and s which satisfy Equation (7), and either s 6=
∑n

j=1 rjcj + α or si 6=
∑n

j=1Aijcj + αi for some i hold, then P can generate

non-trivial integers {ai} and a satisfying g
a
∏n
i=1 gi

ai = 1 with overwhelming
probability.

Proof. The following gives a non-trivial representation of 1 using g, {gi}.

g

∑

n

j=1
sjcj+α−s

n
∏

i=1

gi

∑

n

j=1
Aijcj+αi−si = 1 mod p.

Lemma 5. Assume P knows {Aij}, {ri}, {αi}, and α satisfying Equations (3)
and (6). If Equations (7) and (8) hold with non-negligible probability, then either
Equation (4) hold or P can generate non-trivial integers {ai} and a satisfying
ga
∏n
i=1 gi

ai = 1 with overwhelming probability.

A sketch of Proof: From Lemma 4, If Equation (7) holds, then either






















s =

n
∑

j=1

rjcj + α mod q

si =

n
∑

j=1

Aijcj + αi mod q i = 1, . . . , n

holds or P can generate non-trivial integers {ai} and a satisfying g
a
∏n
i=1 gi

ai = 1
with overwhelming probability. We concentrate on the former case. If Equation
(8) holds, then

n
∑

i=1

n
∑

j=1

(

n
∑

h=1

AhiAhj − δij)cicj +

n
∑

i=1







(

n
∑

j=1

2αjAji + σri)− ψi







ci

+







(

n
∑

j=1

α2
j + σα)− ψ







= 0 mod q



where ψi =
∑n

j=1 2αjAji + σri, ψ =
∑n

j=1 αj
2 + σα mod q. If Equation (4)

does not hold for some i and j, then the probability that Equation (8) holds is
negligible. 2

B.2 Zero-knowledge

A sketch of Proof: We first give a construction of the simulator. We then prove
that if there exists such a distinguisher then we can solveDDH2

n+1. From Lemma
2, it means it is equivalent to solving the decisional Diffie-Hellman problem.

The construction of the Simulator
We will construct the simulator S of the Proof-1 with the input p, q, g, {gi},

{g′i} as follows.
The simulator S first generates s, {si}, {ci} ∈R Zq, w, {ẇi} ∈R Gq randomly.

Then it computes g′, ẇ as the following.

g′ = gs
n
∏

j=1

gj
sjg′j

−cj mod p

ẇ = wsg

∑

n

j=1
(s2j−c

2
j )

n
∏

j=1

ẇ
−cj
j mod p

The output of S is (w, g′, {ẇi}, ẇ, {ci}, s, {si})

A distinguisher of D2
n+1 and R

2
n+1

We will then construct a distinguisher D′ who can distinguish between the
uniform instances of D2

n+1 and R
2
n+1 if S can not simulate the Proof-1.

Let’s say the instance I = (x
(1)
1 , x

(2)
1 , . . . , x

(1)
n+1, x

(2)
n+1) was chosen uniformly

from either D2
n+1 or R

2
n+1. Then this distinguisher will first generate g1, g2, ..gn

as the constants used in Proof-1 and let g = x
(1)
1 .

It will then generate a random permutation matrix (Aji) and compute

g′i = x
(1)
i+1

n
∏

j=1

g
Aji

j mod p. (i = 1, . . . , n)

We note that {g′i} gives a random permutation of {gi}.
Based on g, {gi}, {g

′
i}, the distinguisher D

′ is going to act as a simulator S ′

which simulates the simulator S. More specifically, the simulator S ′ randomly
generates s, {si}, {ci} ∈R Zq and computes

w = x
(2)
1

g′ = gs
n
∏

j=1

gj
sjg′j

−cj mod p

αj = sj −
n
∑

k=1

Ajkck mod q j = 1, . . . , n



ẇi = x
(2)
i+1

n
∏

j=1

g2αjAji mod p i = 1, . . . , n

ẇ = wsg

∑

n

j=1
(s2j−c

2
j )

n
∏

j=1

ẇ
−cj
j mod p.

The simulator S ′ outputs

w, g′, {ẇi}, ẇ, {ci}, s, {si}.(i = 1, . . . , n)

Lemma 6. Simulator S ′ perfectly simulates Proof-1 when I ∈R D2
n+1.

Sketch: We let

log
x
(1)
1

x
(1)
i+1 = ri, log

x
(1)
1

x
(2)
1 = σ.

Then it is clear that by randomly choosing {si} and s, it gives the same
distribution of the output as when {αi} and α were first chosen randomly, and
verifier honestly chooses random challenge {ci}.

Lemma 7. Simulator S ′ perfectly simulates S when I ∈R R2
n+1.

Since {x
(2)
i }(i=1,...,n+1) are randomly chosen, it gives the same distribution

when ẇi and w are randomly chosen.
2

Therefore, if there exists a distinguisher D that distinguishes the output of
the simulator S and a real transcript of Proof-1, then this distinguisher can be
used to solve DDH2

n+1.

C Properties of the Main Protocol

In this section, we discuss the properties of the main protocol. The completeness
property is clear. We provide proofs for the soundness and the zero-knowledge
property.

C.1 Soundness

Theorem 9. If V accepts Main Protocol with a non-negligible probability, then
P knows {ri} and permutation matrix (Aij) satisfying Equations (2), or can
generate non-trivial integers {ai} and a satisfying g̃

a
∏n
i=1 g̃i

ai = 1 with over-
whelming probability.

A sketch of Proof:
We can show P’s knowledge of {Aij}, {ri}, {αi}, and α satisfying Equations

(9) and (10) from the satisfiability of Equation (11), similar to Lemma 3. From
the satisfiability of Equations (11) and (16), and additionally that of Equations



(14) and (15), we can prove that the {Aij} satisfies the both conditions of The-
orem 1, in a similar manner as proving Lemma 5. Thus Theorem 1 ensures that
(Aij) is a permutation matrix. The following lemma ensures that the same per-
mutation matrix was applied to both {gi} and {mi} to achieve {g

′
i} and {m

′
i},

yielding the correctness of the shuffle. 2

Lemma 8. Assume P knows {Aij}, {ri}, {αi}, and α satisfying Equations (9)
and (10), and {si} and s satisfying Equation (11). If Equations (12) and (13)
hold with non-negligible probability, then either the relationships































































g′ = gα
n
∏

j=1

gj
αj mod p

g′i = gri
n
∏

j=1

gj
Aji mod p i = 1, . . . , n

m′ = yα
n
∏

j=1

mj
αj mod p

m′i = yri
n
∏

j=1

mj
Aji mod p i = 1, . . . , n

(17)

hold or P can generate nontrivial integers {ai} and a satisfying g̃
a
∏n
i=1 g̃i

ai = 1
with overwhelming probability.

A sketch of Proof: Similarly to Lemma 4, we can ensure that






















s =

n
∑

j=1

rjcj + α mod q

si =
n
∑

j=1

Aijcj + αi mod q i = 1, . . . , n

hold from the satisfiability of Equation (11) unless P can generate non-trivial
integers {ai} and a satisfying g̃

a
∏n
i=1 g̃i

ai = 1.
If Equation (12) holds, then

1 =
gα
∏n
i=1 gi

αi

g′

n
∏

j=1

(

grj
∏n
i=1 gi

Aij

g′j

)cj

mod p.

If first two equations on Equations (17) does not hold, then the probability that
Equation (12) hold is negligible. The same thing can be said form′, {m′i}(i=1,...,n)

from the satisfiability of (13). 2

C.2 Zero-knowledge

Theorem 10. We can construct a simulator of Main Protocol such that if there
is a distinguisher who can distinguish between a real transcript from the proto-
col and an output from the simulator, then we can solve the decisional Diffie-
Hellman problem.



A sketch of Proof: We first give a construction of the simulator. We then prove
that if there exists such a distinguisher then we can solveDDH5

n+1. From Lemma
1 and 2, it means it is equivalent to solving the decisional Diffie-Hellman problem.

The construction of the Simulator
We will construct the simulator S of the main protocol with the input

p, q, g, y, g̃, {g̃i}, {(gi,mi)}, {(g
′
i,m

′
i)} as follows.

The simulator S first generates s, {si}, {ci}, λ
′ ∈R Zq, t, v, w, {ui}, {ṫi},

{v̇i}, {ẇi}, {g̃
′
i} ∈R Gq randomly. Then it computes g̃

′, g′,m′, u, v̇, ẇ as the
following.

u = gλ
′
n
∏

j=1

uj
−c2j mod p

g̃′ = g̃s
n
∏

j=1

g̃j
sj g̃′j

−cj mod p

g′ = gs
n
∏

j=1

gj
sjg′j

−cj mod p

m′ = ys
n
∏

j=1

mj
sjm′j

−cj mod p

v̇ = tλ
′

vsg

∑

n

j=1
(s3j−c

3
j )

n
∏

j=1

ṫ
−c2j
j v̇j

−cj mod p

ẇ = wsg

∑

n

j=1
(s2j−c

2
j )

n
∏

j=1

ẇ
−cj
j mod p.

The output of S is
(

t, v, w, u, {ui}, {g̃
′
i}, g̃

′, g′,m′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, {ci}, s, {si}, λ
′
)

.

A distinguisher of D5
n+1 and R

5
n+1

We will then construct a distinguisher D′ who can distinguish between the
uniform instances of D5

n+1 and R
5
n+1 if S can not simulate the main protocol.

Let’s say the instance I

I = (x
(1)
1 , x

(2)
1 , . . . , x

(5)
1 , . . . , x

(1)
n+1, x

(2)
n+1, . . . , x

(5)
n+1)

was chosen uniformly from eitherD5
n+1 or R

5
n+1. Then this distinguisher will first

generate g1,m1, g2,m2, ..., gn,mn, g̃1, g̃2, . . . , g̃n as the constants used in Main

Protocol and let X ∈R Zq, g = x
(1)
1 , g̃ = x

(2)
1 , y = gX mod p. It will then generate

a random permutation Aji and a secret key X ∈R Zq and compute

(g′i,m
′
i) = (x

(1)
i+1

n
∏

j=1

g
Aji

j , (x
(1)
i+1)

X

n
∏

j=1

m
Aji

j ) mod p. (i = 1, . . . , n)

We note that {(g′i,m
′
i)} gives a random shuffle of {(gi,mi)}.



Based on g, y, g̃, {g̃i}, {(gi,mi)} and {(g
′
i,m

′
i)} the distinguisher D

′ is going
to act as a simulator S ′ which simulates the simulator S. More specifically, the
simulator S ′ randomly generates

s, {si}, {ci}, λ
′, {βi} ∈R Zq i = 1, . . . , n

and computes

t = x
(3)
1 , v = x

(4)
1 , w = x

(5)
1

ui = (x
(1)
i+1)

βi mod p i = 1, . . . , n

u = gλ
′
n
∏

j=1

u
−c2j
j mod p

g̃′i = x
(2)
i+1

n
∏

j=1

g̃
Aji

j mod p i = 1, . . . , n

g̃′ = g̃s
n
∏

j=1

g̃j
sj g̃′j

−cj mod p

g′ = gs
n
∏

j=1

gj
sjg′j

−cj mod p

m′ = ys
n
∏

j=1

mj
sjm′j

−cj mod p

αj = sj −

n
∑

k=1

Ajkck mod q j = 1, . . . , n

ṫi = (x
(3)
i+1)

βi

n
∏

j=1

g3αjAji mod p i = 1, . . . , n

v̇i = x
(4)
i+1

n
∏

j=1

g3αj
2Aji mod p i = 1, . . . , n

ẇi = x
(5)
i+1

n
∏

j=1

g2αjAji mod p i = 1, . . . , n

v̇ = tλ
′

vsg

∑

n

j=1
(r3j−c

3
j )

n
∏

j=1

(ṫ
−c2j
j v̇

−cj
j ) mod p

ẇ = wsg

∑

n

j=1
(s2j−c

2
j )

n
∏

j=1

ẇ
−cj
j mod p.

The simulator S ′ outputs
(

t, v, w, u, {ui}, {g̃
′
i}, g̃

′, g′,m′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, {ci}, s, {si}, λ
′
)

.

Lemma 9. Simulator S ′ perfectly simulates Main Protocol when I ∈R D
5
n+1.



Sketch: We let

log
x
(1)
1

x
(1)
i+1 = ri, logx(1)

1

(x
(1)
i+1)

βi = λi

log
x
(1)
1

x
(3)
1 = τ, log

x
(1)
1

x
(4)
1 = ρ, log

x
(1)
1

x
(5)
1 = σ.

This gives for i = 1, .., n,

x
(1)
i+1 = gri , (x

(1)
i+1)

βi = gλi , x
(2)
i+1 = g̃ri ,

(x
(3)
i+1)

βi = gτλi , x
(4)
i+1 = gρri , x

(5)
i+1 = gσri .

Therefore, it is clear that by randomly choosing s, {si}, λ
′ and {βi}, it gives

the same distribution of the output as when α, {αi}, {λi} and λ were first chosen
randomly, and verifier honestly chooses random challenge {ci}.

Lemma 10. Simulator S ′ perfectly simulates S when I ∈R R5
n+1

Sketch: Since x
(2)
i , x

(3)
i , x

(4)
i , x

(5)
i (i = 1, 2, ..., n+1) and βi(i = 1, 2, ..., n) are ran-

domly chosen, it gives the same distribution when g̃, t, v, w, {g̃′i}, {ṫi}, {v̇i}, {ẇi}
and {ui} are randomly chosen for i = 1, 2, ..., n.

2

Therefore, if there exists a distinguisher D that distinguishes the output of
the simulator S and a real transcript of Main Protocol, then this distinguisher
can be used to solve DDH5

n+1.

D Alternative Notation

We present here an alternative notation of the variables. Since we have discussed
the basis {g, g1, . . . , gn} throughout the paper, we can think of representing g
by g0. Similarly y by m0 and g̃ by g̃0. We can include the value of randomizers
{ri}, αi and α, in the matrix by defining A0i = ri, Ai0 = αi, and A00 = α.
Treating a public key in a similar manner with input variables may be awk-

ward, but it gives a compact representation to some of the variables, e.g,

g′µ =

n
∏

ν=0

gν
Aνµ ,m′µ =

n
∏

ν=0

mν
Aνµ , g̃′µ =

n
∏

ν=0

g̃ν
Aνµ µ = 0, . . . , n.

Further suggestions for the alternative notation follows:

g′0 = g′,m′0 = m′, g̃′0 = g̃′, s0 = s, c0 = 1, λ0 = λ, u0 = u

sµ =

n
∑

ν=0

Aµνcν , λ
′ =

n
∑

ν=0

λνc
2
ν ,

n
∏

ν=0

gsνν =

n
∏

ν=0

g′
cν
ν , g

λ′ =

n
∏

ν=0

u
c2ν
ν µ = 0, . . . , n.


