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Abstract. Anonymous communications provides an important privacy
service by keeping passive eavesdroppers from linking communicating
parties. However, using long-term statistical analysis of traffic sent to
and from such a system, it is possible to link senders with their re-
ceivers. Cover traffic is an effective, but somewhat limited, counter strat-
egy against this attack. Earlier work in this area proposes that privacy-
sensitive users generate and send cover traffic to the system. However,
users are not online all the time and cannot be expected to send con-
sistent levels of cover traffic, drastically reducing the impact of cover
traffic. We propose that the mix generate cover traffic that mimics the
sending patterns of users in the system. This receiver-bound cover helps
to make up for users that aren’t there, confusing the attacker. We show
through simulation how this makes it difficult for an attacker to discern
cover from real traffic and perform attacks based on statistical analysis.
Our results show that receiver-bound cover substantially increases the
time required for these attacks to succeed. When our approach is used
in combination with user-generated cover traffic, the attack takes a very
long time to succeed.
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1 Introduction

Anonymity systems are fundamentally challenging to build on top of the exist-
ing Internet architecture. The simplest and most secure approaches require all
participants to send messages at the same rates, e.g. one message per given time
interval. Users without a message to send must send fake messages, known as
cover traffic or dummies, to ensure anonymity for themselves as well as for oth-
ers. This provides no allowance for the realities of node failure, network partition,
and simple user unwillingness to provide so many messages. Additionally, the
costs of these messages can cause the system to not scale well with the number
of users. In anonymity, this is a substantial matter for security, as the greater
the number of users, the larger the crowd into which one can blend [1].

Existing implementations based on the mixes paradigm introduced by Chaum [2]
remove this unrealistic requirement for constant participation, but at a cost to
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their security. The changing group of users can be observed, along with outgoing
messages, leading to powerful intersection attacks. In these attacks, differences
in the membership of the set of users are matched with the differences in the
message-sending behavior, leading to links between users and their receivers.
Effectively, the attacker can observe information leaks over time.

The statistical disclosure attack is a particularly effective form of intersection,
in which the attacker isolates his attack against a single user, which we will call
Alice. The statistics used in this attack are the frequencies with which each
recipient gets a message from the system. By taking differences between the
frequencies observed when Alice is active and those observed when she is not
active, the attacker can estimate Alice’s contribution to the recipient set. This
attack has been studied previously and is well-understood [3–5].

In this work, we explore defenses against intersection attacks such as sta-
tistical disclosure. In particular, we study the relative effectiveness of different
defenses, and we present the first in-depth study of the idea of sending cover
traffic to recipients that are outside of the system. To date, the possible de-
fenses against intersection attacks have been limited to two basic techniques:
the user sending more cover traffic into the network and increasing random de-
lays for messages in the system. We explore the idea of how the presence and
cover traffic of other users surprisingly fails to provide any help to the user. We
also demonstrate that, with some additional cost, the system can significantly
improve its defense against intersection attacks by sending dummies to recipi-
ents outside of the system. As this may not be appreciated by all recipients, we
discuss ways in which this technique could be made practical.

In the next section, we describe our model and the statistical disclosure
attack in more detail. We then motivate the two types of cover traffic that
we are studying and analyze their effects in Section 3. Section 4 presents our
simulation model and results. Discussion and analysis of the feasibility and costs
of the cover traffic methods is presented in Section 6. We discuss related work
in Section 7 and then conclude.

2 Statistical Disclosure

The Statistical Disclosure Attack (SDA) described by Danezis [4] is a long-term
intersection attack against mix-based systems. SDA is an extension of the dis-
closure attack introduced by Kesdogan [3]. In this section, we first explain the
network model used, then describe statistical disclosure attacks. We discuss why
cover traffic delays statistical disclosure and how it can be used to counter this
attack.

2.1 Model

Let us assume that there are N senders that wish to communicate with a set of
R recipients using a mix network. We will generally set R = N for simplicity,
but the relationship between senders and receivers is many-to-many. The mix
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network may consist of a single mix or a network of connected mixes. The at-
tacker is a global adversary who can observe all links from senders to the mix
and all links from the mix to recipients. The target of the adversary is the sender
Alice and the adversary’s aim is to expose the set of recipients with whom Alice
communicates.

In each round, b senders, sometimes including Alice, send messages to a set
of recipients via the mix. The attacker observes a number of rounds, including
rounds with and without Alice’s participation, and tries to identify Alice’s recip-
ients. The attacker can observe only the incoming and outgoing links from the
mix and cannot observe activity inside the mix network. This assumption is for
the simplicity of the model, as there are many configurations for a mix network,
but also because the statistical disclosure attack is effective without observations
of activity in the network. We abstract away the mix-system details and refer to
a single mix or a cascade of mixes as a mix.

2.2 Statistical Disclosure

Danezis’ SDA is a probability-based approach to the disclosure attack and is a
practical way to expose Alice’s set of recipients [4]. The attacker makes observa-
tions in a number of rounds in which Alice participates and in each round records
the recipient set in an observation vector −→o . Each element of −→o contains the
probability that the corresponding recipient has received a message from Alice
in that round. The attacker models the behavior of senders other than Alice,
known as the background, by recording their activity when Alice does not par-
ticipate. Vector −→u captures the background model, in which a given element of
−→u is the probability with which background senders send to the corresponding
recipient. The attacker records −→o values over a large number of observations
and takes the mean of −→o as O. The mean of the background traffic observations
is obtained and stored in U . Alice’s likely set of recipients can be determined by
solving the below equation for vector −→v :

O =
m.−→v + (n − m)−→u

n

Here m is the average number of messages sent by Alice in each round and n
is the average total number of messages sent by all senders, including Alice, in
each round. The vector −→v denotes the sending behavior of Alice. Each element
of −→v is the probability that Alice sends a message to the corresponding recipient
in some round. An element of −→v will have a value of 0 for a recipient who is not
in Alice’s recipient set and will have a value greater than 0 and less than 1 for
a recipient who belongs to Alice’s recipient set. −→v is obtained from the above
equation by substituting U , the mean of background traffic, and O, the mean of
attacker observations in each round. The indices with the highest values in −→v
correspond to the most likely recipients of Alice.

Mathewson and Dingledine extend SDA to pool mixes [5]. Their work relaxes
some of the assumptions made in the original work [4]. A pool mix, as described
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in [6], operates by dispersing incoming messages from a given round across a
number of later rounds. In each round, the mix chooses a set of messages with
uniform probability and sends them to their respective recipients. When Alice
sends dummy messages along with real messages, it becomes more difficult for
the attacker to successfully perform statistical analysis. Dummy messages in-
crease the average number of messages from the sender per round, as seen by
the attacker, which substantially affects the results of statistical analysis. The
attacker needs more observations to compensate for the presence of dummies and
hence it takes a significantly longer time for the attacker to correctly identify
Alice’s set of recipients.

We model the relationships between senders and receivers as a scale-free
network, in which the distribution of node degrees follows a power law rela-
tionship [7]. This means that most senders communicate with a few well-known
recipients in addition to other less-known recipients. The well-known recipients
hence communicate with many senders and thus receive more messages during
their communication lifetime. Background senders tend to send more messages
to their more well-known recipients rather than to the lesser-known ones. Alice,
however, sends messages equally to all of her recipients.

In reality, most senders are not online all of the time. It is difficult for many
users to consistently send cover traffic, as it requires them to be online all the
time, without fail. This problem is potentially alleviated when the mix carries
the onus of sending cover traffic. In the rest of this paper, we use the model of
Mathewson and Dingledine to study the effectiveness of padding generated by
the users and by the mix.

3 Cover Traffic

Cover traffic consists of dummy messages that are inserted into the network
along with real user messages. Dummy messages have long been recognized as a
useful tool to increase anonymity provided by mix-based systems. In the context
of our model, cover traffic can be classified into three types based on where it is
generated. user cover is cover traffic generated by Alice herself and background
cover is cover traffic generated by other senders connecting to the mix. On
the other hand, receiver-bound cover (RB) is generated by the mix and sent to
message recipients.

Mathewson et.al. have shown that user cover helps delay statistical anal-
ysis [5]. When Alice generates cover traffic with a geometric distribution, she
can significantly delay SDA. A more effective approach is for Alice to send a
threshold number of messages in every round. If the number of real messages
is less than the threshold, then Alice inserts dummy messages to compensate
for the shortage. Both of these approaches become more effective as the mix ex-
hibits higher delay variability, since the number of possibilities that the attacker
must consider increases. Even if the sender is online 100% of the time, how-
ever, sender-originated dummy packets alone are not enough to protect against
statistical analysis.
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3.1 Background Cover Traffic

Background cover is created when many mix users generate dummies along with
their real messages. Cover traffic from users other than Alice could be seen as
providing cover for Alice’s messages. Note that the users have a strong incentive
to provide these dummies, as it helps to protect their own privacy. As we show
in Section 5, this can be very effective in confusing a naive attacker. However,
a slightly more sophisticated attacker can account for background cover and
reduce its effectiveness.

We now describe how the naive attacker proceeds in the presence of back-
ground cover traffic. The attacker uses the Equation 2.2 to find −→v which contains
an estimate of Alice’s recipients. In each round, the attacker observes a number
of messages entering and exiting the mix. He estimates the number of (i) Alice
messages exiting the mix, nAlice and (ii) the number of background messages
exiting the mix per round, nBackground. These estimates are calculated from the
mix’s delay policy and on the number of messages seen entering the mix from
Alice and from the other users. The attacker records the set of recipients who
receive messages in each round in −→r , which contains an element for every re-
cipient in the system. −→r [i] contains the number of messages received by the ith

recipient in a particular round. O is updated each round as follows:

O[i] =
−→r [i] ∗ nAlice

nAlice + nBackground

When background dummies are sent, the attacker sees more messages en-
tering the mix. The dummies get dropped inside the mix and do not exit the
mix along with real messages. The attacker, however, expects the messages to
exit the mix and wrongly estimates the value of nBackground. As a result the
calculation of O is upset, thereby affecting the number of rounds to correctly
identify Alice’s recipients.

To counter background cover, the attacker can discount away a percentage of
incoming messages that he knows are dummies. We assume that the background
user’s policies for sending dummies are known to the attacker. This can be
reasonable in many systems, as only the aggregate behavior is needed. Such
policies may be observed by subtracting the number of real output messages
from the number of input messages over a period of time in which Alice is not
active. We show in Section 5 that background dummies do not help against this
informed attacker, and that Alice cannot rely on help from her fellow users.

3.2 Receiver-bound Cover Traffic

Receiver-bound (RB) cover consists of dummy messages generated by the mix.
The dummies are inserted into outgoing user traffic in every round. The mix
chooses the recipients of cover traffic uniformly and randomly from the list of
recipients. O[i] contains the probability that a message received by the ith recip-
ient has originated at Alice. The attacker updates elements in O in every round
according to Equation 3.1. When RB dummies are present, elements in O are
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wrongly updated for messages that were in fact never sent by any sender. This
upsets the attackers’ statistical calculations. In order for the attack to be suc-
cessful, the number of rounds the attacker must observe increases significantly.
We discuss the practical issues with this approach in Section 6.

4 Simulation

Using the basic sender-mix-receiver model described in Section 2, we simulated
the process of sending messages and the corresponding SDA. We first discuss the
three main elements of the simulation design, which are the attacker algorithm,
the generation of real traffic, and our metrics for attacker success. We then
describe how we generate cover traffic.

4.1 Simulator Design

We built our simulations around the core simulator used by Mathewson and
Dingledine, and we refer the reader to that paper for further detail [5].

Attacker Algorithm The attacker algorithm is based on the statistical analysis
approach Attacking pool mixes and mix networks described in [5]. Beyond this,
we assume that the attacker makes reasonable adjustments to the algorithm in
response to changes in the system, such as adjustments to background dummies
described in Section 3.

Real Message Generation Major elements in the simulated generation of real
messages include:

– Background Traffic: To ensure comparability with previous empirical work,
the number of messages sent by the background follows a normal distribution
with mean 125 and standard deviation of 12.5. Additionally, we consider a
more active set of users, with means of 1700 and 9000 messages per round.
The senders follow a scale-free model in sending to recipients. We first created
a scale-free network and then created a weighted recipient distribution for
background senders. The weighted distribution allows background senders to
send more messages to popular recipients. A uniform recipient distribution is
created for Alice, which allows Alice to send uniformly to all of her recipients.

– Alice’s Traffic: Alice has a recipient set of 32 recipients. In each round she
sends messages to recipients chosen with uniform probability from this set.
Alice generates real messages according to a geometric distribution with a
distribution parameter of 0.6, which means that she sends about 1.5 real
messages per round.

– Mix Behavior: In each round, the pool mix receives messages from a number
of senders. Alice may or may not participate in a given round. At the end
of each round, the mix chooses outgoing messages from the pool with equal
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probability. Pdelay is the probability that a message in the mix pool remains
in the pool until it is sent out in a later round. The mix applies Pdelay to
each message in the pool and decides if the message will exit the mix in the
current round or not [6]. For our simulations we varied Pdelay from 0.1 to
0.9. For simulations where Pdelay does not vary, we set Pdelay = 0.1.

Measuring Attacker Success For most of our experiments, we measure the
number of rounds that the attacker takes to correctly identify ten of Alice’s
recipients. This is a deviation from prior work, which chose to determine when
the attacker correctly identified all 32 of her recipients. The latter is, in our
opinion, an unnecessarily high bar for the attacker to meet. In particular, we
discovered that finding the final recipient was a particularly challenging task that
took many additional rounds of communication in most experiments. Worse, the
variance for obtaining this final recipient is quite high, as it may depend on just
a few messages that are sent with low probability.

We propose the lower threshold of ten recipients, although arbitrary, as a
point at which the attacker has identified a substantial fraction of Alice’s re-
cipients. At this point, the attacker can correctly identify not only the popular
members of Alice’s recipient set, but also several of the less popular members as
well. The attacker may not have the full profile that he seeks, but some of Alice’s
privacy has been lost, as the attacker has some picture of Alice’s communication
patterns. Since the attack could take many rounds, a partial picture may be all
that the attacker could attain in a reasonable time frame.

It should be noted that we stop all runs after one million rounds. This could
equate to almost one hundred and fifteen years, at one hour per round, or nearly
two years at one minute per round. If the attacker cannot identify 10 of Alice’s
recipients in this time, the attack is taking very long. Even if the attacker is
that patient, and Alice is that consistent, we focus our attention on stopping the
attacker from defeating the system in a faster time frame. When we have strong
methods for doing that, longer term attacks can be considered.

4.2 Cover Traffic Scenarios

The simulations in [5] focus mainly on the effects of user cover traffic. In this
study, we describe the effects of RB cover and background cover. We use three
scenarios to evaluate the effect of cover traffic on statistical analysis.

Alice and Background Cover Traffic We first study how dummy messages
sent by users other than Alice affects statistical analysis. We set N = 216 be
the number of senders. Each of the N − 1 other senders apart from Alice, called
background senders, generate 0 or more dummy messages in every round. Senders
choose the number of dummies according to a geometric distribution with a
parameter varying from 0.1 to 0.9. This means each sender sends between 0.11
to 9 dummy messages per round on average.
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Alice also generates a number of dummy messages in each round that she
participates. Like other senders, Alice follows a geometric distribution to select
the number of dummies to send per round. Alice’s dummy parameter, Pdummy,
is varied from 0.1 to 0.9. In simulations where Alice’s dummy traffic does not
vary, we set Pdummy to 0.6, which is about 1.5 messages/round. The geometric
distribution parameters for Alice dummies and background dummies are inde-
pendent of each other. Cover traffic generated by senders is sent to the mix like
real traffic. The mix can recognize real messages from dummies and drops all
dummies that it receives. Hence, dummies sent from the users are dropped inside
the mix network and are not propagated to any receivers.

Receiver-bound Cover Traffic We also evaluate how RB cover traffic orig-
inating at the mix impacts statistical analysis. At the end of each round, the
mix selects a subset of messages in its pool and sends them to their respective
recipients. In addition to the real messages, the mix adds a number of dummy
messages to the outbound stream. The recipients for the dummy messages are
chosen uniformly at random from the set of recipients. For our simulations we
used the following dummy generation policy at the mix:

Receiver-bound Cover Policy. We ran simulations with the number of dummy
messages per round at 100%, 200%, and 300% additional traffic. In all cases, the
mix observes the number of real messages in each round and sends between one
to three dummy messages for each real message, according to the amount of RB
cover traffic desired. Fractional amounts are possible by sending according to a
uniform distribution. We use these fixed values for simplicity; in reality, the mix
must choose a random number of RB dummies per round based on a function
of the number of real messages exiting the mix in that round.

The recipient of each dummy message is chosen uniformly at random from
the set of recipients. This is somewhat unrealistic, as the mixes may not know
the full set, but a reasonable approximation can be constructed by using previ-
ously observed recipients and a selection of recipient addresses from the general
population. Dummy messages travel from the mix to the recipient and are ob-
served as part of the outgoing traffic by the passive attacker. However, since the
attacker cannot distinguish dummy messages from real messages, dummies are
included in the attackers analysis. Dummy messages reach the destination nodes
and are dropped by the recipient.

Alice and Receiver-bound Cover In this scenario, Alice sends cover traffic
to the mix along with her real messages. These messages are dropped inside the
mix. The mix in turn generates dummy messages independent of Alice’s dummy
messages. The mix dummies are sent out with real outbound user messages.

5 Results

In this section we present the results of our simulations. Please note the use of
logarithmic scales in our graphs.
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5.1 Degree of Disclosure

It is easier for an attacker to obtain a subset of Alice’s recipients than to find all
of Alice’s recipients. We ran simulations to evaluate how different cover traffic
approaches affect the attackers ability to expose a number of Alice’s recipients.
The graph in Figure 1 shows that as the attacker tries to expose more number of
recipients, the amount of observation rounds significantly increases. In compari-
son, Figure 2 shows that with more active background senders, the effectiveness
of cover traffic is more pronounced. When RB cover is used, the number of rounds
sharply increase when more than 70% of her recipients are exposed. When only
Alice sends dummies, the rise in number of rounds is more modest when com-
pared to when RB cover is also used. In our remaining experiments, we fix the
number of recipients to be exposed at 30% which we simplify to 10 recipients.
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volume = 1700 messages/round. Mix delay
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5.2 Effect of Background Senders

The graph in Figure 3 illustrates the effect of background dummy messages
on the number of rounds needed to correctly identify 10 of Alice’s recipients.
Alice generates dummies according to a geometric distribution. Alice’s dummy
distribution parameter varies from 0.1 to 0.9 as seen along the x-axis. The effect
of background traffic volume (BG) is clearly visible in this graph. When BG =
125, the effect of background and Alice dummy messages is very low. In the
case when BG = 1700, cover traffic has a greater impact. As Alice’s dummy
volume increases, the number of rounds needed to identify Alice’s recipients
increases. Further, we see that when the background senders also send cover
traffic, it becomes increasingly difficult for the attacker to successfully identify
Alice’s recipients. When the background senders generate cover traffic at 10%
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of real traffic and Alice increases her dummy distribution parameter to 0.9, it
takes more than one million rounds to correctly identify ten of Alice’s recipients.

Attacker Adjustment The attacker can counter the effect of background cover
by estimating the number of dummies that the background sends per round. The
attacker can observe the number of senders sending per round and has knowledge
of their dummy policy. Once the estimate is obtained, the attacker simply has
to subtract the number of estimated dummies from the number of observed
background messages and continue as if there were no dummies. Figure 3 shows
how attacker adjustment can completely negate the effect of background cover,
even if background senders use 50% or 100% dummies.

The estimation of total background dummies per round is simple if all senders
use the same dummy volume parameter. If senders use arbitrary dummy vol-
ume parameters, selected independently or even randomly varied over time, it
becomes more difficult for the attacker to estimate the background dummy vol-
ume. The attacker could attempt to subtract the average system output from the
average system input, as this provides an average of the sum of the background
dummies plus Alice’s dummies. This suggests another benefit of RB cover traffic,
as the attacker would have greater difficulty in measuring the background cover
traffic if the number of real messages is hidden in the system output as well.
To gain this benefit, a dynamic amount of background cover traffic is required,
rather than the fixed percentage of real traffic that we have studied in this paper.

Larger Number of Participants Figure 4 shows that as the number of partici-
pants in the mix increases, the anonymity of individual participants correspond-
ingly increases. In this simulation we increased to the volume of background
traffic from a normal distribution with mean 1700 to a normal distribution with
mean 9000 messages per round. As observed in the graph, the time for the
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attacker to expose the same number of recipients more than doubles when par-
ticipants send messages more frequently.

5.3 Effect of Receiver-bound Cover
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Figures 5 and 6 show the effect of RB cover traffic. The mix generates RB
dummies equal to the number of real messages per round. The number of dum-
mies is shown along the x-axis. We also studied whether the presence or absence
of cover traffic from Alice would affect the number of rounds needed to identify
Alice’s recipients. As Figure 6 shows, cover traffic from Alice alone does not
have a significant impact on number of rounds. When Alice sends dummies in
the presence of RB cover the effects are more pronounced. Compared with Fig-
ure 5, we see the extent to which increasing the number of background messages
helps improve the effectiveness of RB cover. When BG = 125, RB cover up to
300% does not significantly degrade the attack.

Figures 7 and 8 shows how the increase in delay distribution at the mix
makes the attack harder. As before, there is greater benefit in increasing Pdelay

is when the background senders are more active. When the mix exhibits a delay
probability higher than 0.5, the number of rounds increases more rapidly. When
RB cover is increased to 200% and Pdelay is more than 0.3, the attack takes more
than one million rounds.

6 Discussion

In Section 5, we show how RB cover traffic can be used to successfully delay
statistical analysis. We now touch upon the implementation aspects that RB
cover should exhibit in real-world networks. There are three main considerations:
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– Cover traffic must resemble real traffic in order for it to effectively anonymize
user traffic.

– Receivers must tolerate the presense of dummy messages.
– The costs of the cover traffic should not be too high for the mixes or the

receivers.

We study these both in the context of high-latency and low-latency mixes, as
intersection attacks apply to both types of system. The two forms of cover traffic
that we can use are encrypted and unencrypted, each with different advantages
and applications.

6.1 Encrypted Dummies

Making cover traffic that looks like real traffic is challenging. Content, timing,
and receiver selection must all appear to be the same as users’ messages. Re-
alistic content is relatively easy to generate if it is encrypted. For high-latency
message delivery, such as anonymous email, we can craft packets that appear
to be encrypted using PGP [8] or S-Mime [9] but with random payload bytes
(in Radix-64). The receiver could attempt to decrypt the random payload and
discard the email when it doesn’t decrypt properly. There is some cost to the
receiver in this case, although email clients could automate this process and
remove most of the cost that the receiver actually notices.

One problem with only sending dummies designed to appear encrypted is
that, if some of the real messages are not encrypted, the attacker can discount the
presence of those encrypted messages. The attacker takes an estimate d′ of the
number of RB dummies (say, d), based on knowledge of the mixes’ distribution
of sending those dummies. If the total number of messages is n, and the number
of unencrypted real messages is u, which are both measurable, then the chance
that any packet with a random payload is a real message is estimated as p′real =
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(n − u − d′)/(n − u). p′real becomes a discounting factor on the additions to
vector −→o in each round. The impact of this depends on the ratio of encrypted
real messages to total real messages. If the ratio is high, we may be able to
increase the number of dummies to compensate. If the ratio is low, i.e. there are
few real encrypted messages, the attacker can discount much of the cover traffic.

6.2 Unencrypted Dummies

As real traffic may also be unencrypted, we propose the use of unencrypted dum-
mies for some applications. There are many applications where users often do not
use encryption, including email. In such a case, the mix has to generate cover
traffic that carefully replicates real traffic. Messages with randomly-generated
payloads would be useless since they can be easily differentiated from real traf-
fic.

For email, messages must be constructed that look like real messages. Mes-
sages could be replayed, but the attacker could detect this. The techniques of
email spammers could be employed fruitfully here, as copying real text passages,
randomization, and receiver customization could all be used to avoid detection
by automated systems. Further, the word choice can be designed to match non-
spam emails perfectly, as the emails do not need to sell anything. This negates
many of the standard Bayesian filtering methods for detecting spam [10–12].
While attackers could use humans to determine which messages are real, and
which are dummies, this would be expensive and might require knowledge about
the receiver.

A useful tool to help generate realistic dummies is the behavior of real users.
In email, this could mean keeping a record of messages sent to each receiver,
and then using this record to help generate new messages with appropriate key
words.

6.3 Making Receiver-bound Dummies Acceptable

Another critical issue in the use of RB cover traffic is their acceptance by the
set of receivers. We have implicitly added some costs to receivers for the privacy
of the senders, which may be classified as spam and cause the system to get
unwanted negative attention. There are a number of issues and possible solutions
which we touch on briefly here.

One way to cast to the problem is to note that RB cover traffic increases
the anonymity of the senders connecting to the receivers. It is in the interest
of anonymity for these users, so a receiver should allow anonymity networks to
send cover traffic to it. Receivers who don’t wish to help provide anonymous
communications can block messages from the system. Some recipients block
connections coming from anonymity systems like Tor [13] exit nodes. We could
publish a ’White List’ of servers that allow connections from the anonymity
systems, so users can connect to those services via systems like Mixminion [14].

Another way to see the issue is in the light of spam. Today we see that a
large percentage of network traffic consists of spam messages [15]. Receivers have
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developed a number of effective ways to drop or ignore spam messages. RB cover
traffic would be a tiny addition to the millions of unwanted messages that flood
the network. Further, these unwanted messages help enhance sender and receiver
anonymity. Reciever-bound cover would be a small price to pay for the greater
benefit of anonymity that it provides to network users. In some cases, especially
in Web-browsing, the extra traffic could generally go unnoticed.

Anonymity systems have become popular over the past few years and the
number of users participating these systems is continuing to grow. Currently,
however, these users remain a small part of the global Internet community.
The volume of traffic exiting anonymity systems is low as compared to non-
anonymous traffic in the network. RB cover traffic generated to anonymize this
fraction of Internet traffic would hardly burden the massive network resources
that are in place.

7 Related Work

We are not the first to propose sending cover traffic to receivers. Berthold et.
al have users send pre-generated dummy messages to the recipient when the
sender is offline [16]. Mathewson and Dingledine suggest, and then dismiss, this
approach in a footnote of their work on statistical disclosure [5]. They cite prob-
lems with the user sending to all receivers, which we avoid by having the mix
generate the cover traffic. Shmatikov and Wang propose cover traffic sent to re-
ceivers to prevent active and passive timing analysis attacks in low-latency mix
networks [17]. In their approach, senders generate the dummies in advance and
send them to the mix, which later sends them when cover traffic is needed. The
authors point out that dummy packets sent on the link between the mix and
recipient can be easily recognized and dropped by the recipient. Mix-generated
cover traffic is also useful in protecting reverse paths from malicious clients that
use the Overlier-Syverson attack. The results from Section 5 of our work indicate
that this approach can also help prevent intersection attacks.

System for anonymous peer-to-peer services, such as GNUnet [18], Freenet [19],
and APFS [20], include receivers in the system by their nature. Sending cover
traffic to receivers would be very reasonable in such systems. P5 is an anonymity
system that provides sender, receiver, and sender-receiver anonymity[21]. P5 cre-
ates a hierarchy of broadcast channels with each level providing a different level
of tradeoff between anonymity and communication performance. In P5, noise
(dummy) messages are added to prevent statistical correlation of sources and
sinks of a communication stream. Real messages and noise messages move from
the source to the sink hop by hop across different nodes. Intermediate nodes can-
not distinguish real packets from dummy packets and treat all transiting packets
similarly. Furthermore, intermediate nodes are also sources and insert dummy
packets into outgoing streams. Dummies are dropped at the final destination.
By using these channels, each sender effectively creates a form of receiver-bound
cover traffic, as each message is sent to a group of receivers. While this multi-
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cast approach would be one way to do receiver-bound cover traffic in mix-based
anonymity systems, it would only work in non-encrypted communications.

8 Conclusions and Future Work

Anonymous communications remain challenging in the face of determined and
powerful attackers. No matter how secure the process of mixing becomes, incon-
sistent usage patterns can give the attacker enough information to link users with
their communication partners over time. Prior work had developed the notion of
statistical disclosure as a powerful form of this attack. In this work, we explored
defenses against this attack in greater depth. We found that the cover traffic
of other users is surprisingly ineffective in protecting Alice, our user of interest;
techniques to hide the amount of real traffic could help. Alice’s own cover traffic
has a limited effect on its own, or in combination with greater delays in the mix
system. We proposed receiver-bound cover traffic and showed that it can have a
substantial benefit to the user. We then discussed in detail the implications of
using such an approach; we believe that it is feasible, and that the improvement
in privacy could well be worth the costs.

Much work remains before receiver-bound cover traffic could be put into
place. First, we need to have a deeper study of the use of unencrypted receiver-
bound dummies. It is unclear whether it is a pure arms race between defense and
attack, or whether one side has a clear advantage. We suggest that the attacker
would find that deep content analysis does not scale well, while creating realistic
automated messages is a well-understood problem from spam email generation.
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