Hordes: A Multicast Based Protocol for Anonymity*

Brian Neil Levine
Dept. of Computer Science
University of Massachusetts

Ambherst, MA 01060
brian@cs.umass.edu

Clay Shields
Dept. of Computer Science
Georgetown University
Washington, DC, 20057
clay@cs.georgetown.edu

Abstract

With widespread acceptance of the Internet as a public medium for communication and
information retrieval, there has been rising concern that the personal privacy of users can be
eroded by cooperating network entities. A technical solution to maintaining privacy is to provide
anonymity. We present a protocol for initiator anonymity called Hordes, which uses forwarding
mechanisms similar to those used in previous protocols for sending data, but is the first pro-
tocol to make use of multicast routing to anonymously receive data. We show this results in
shorter transmission latencies and requires less work of the protocol participants, in terms of
the messages processed. We also present a comparison of the security and anonymity of Hordes
with previous protocols, using the first quantitative definition of anonymity and unlinkability.
Our analysis shows that Hordes provides anonymity in a degree similar to that of Crowds and
Onion Routing, but also that Hordes has numerous performance advantages.

*This study was supported in part by grants ANI-0087482, ANI-0296194, and EIA-0080119. from the National
Science Foundation, and 2000-DT-CX-K001 from the U.S. Department of Justice, Office of Justice Programs. Its con-
tents are solely the responsibility of the authors and do not necessarily represent the official views of the Department
of Justice.

1 Introduction

The rapid public acceptance of the Internet as a means of communication and information dissemi-
nation is creating previously inconceivable opportunities for gathering information about individu-
als. This is due to the fundamental nature of the Internet Protocol (IP) that is used to communicate
across the network. Each IP packet carries the IP address of the machine that sent the packet,
as well as the IP address of the intended recipient of the packet. Under normal communication,
any egvesdropper, a machine that sits on the network along the path a packet travels, can easily
determine what entities are communicating, and any recipient of a packet is able to determine the
source directly from received packets. While IP addresses do not necessarily uniquely identify an
individual, it may be possible to link even dynamically assigned IP numbers to an individual if they
access different services with the same assigned address, or if records are available about whom
was assigned which address during a particular period. Such monitoring and information gathering
activities by eavesdroppers or recipients of packets can adversely affect persons communicating over
the Internet.

To some, it may seem at first that anonymity has only malign use. However, the benefits of
anonymity outweigh any harmful consequences of its widespread availability. Anonymous commu-
nication can encourage a number of beneficial activities such as anonymous tips for investigative
journalists and law enforcement officials, whistle blowing without fear of reprisals, self-help discus-
sion groups without fear of embarrassment, and personal privacy protection in general during web
browsing [19]. Several harmful abuses of anonymous communication have also been identified—
including spamming, deception, and fraud—but in studying the issue, the American Association
for the Advancement of Science (AAAS) has concluded that “anonymous communication online
is morally neutral”; and that “anonymous communication should be regarded as a strong human
right; in the United States it is also a constitutional right” [33].

The realization that some solution is needed for providing privacy and anonymity on a network
is not new [12, 13, 34, 28, 27, 11], and previous work has successfully provided solutions for Internet
anonymity. In this paper, we present a new protocol for providing anonymous communication on the
Internet called Hordes, which provides a level of comparable anonymity to recent protocols [27, 28]
while reducing the amount of work required of participants, as well as significantly reducing the
latency of data delivery and the link utilization. Hordes achieves these reductions by making use
of multicast communication, and is the first protocol designed to provide anonymity that does so.
We introduce an explicitly quantitative definition of anonymity and show that Hordes maintains
comparable anonymity to similar protocols at all times. Additionally, we compare the performance
of Hordes and previously proposed protocols to overt communication on the Internet with network
simulations.

In Section 2, we overview related work and provide a brief review of multicast routing, which
Hordes uses to reduce the overhead required of participants. In Section 3, we introduce a quan-
titative method of comparing the anonymity provided by anonymous protocols. In Section 4, we
provide a detailed description of Hordes. In Section 5, we discuss the relative performance of our
technique to two past approaches. Section 6 provides an overview of the operation of existing
multicast routing protocols to demonstrate their compatibility with Hordes. We offer concluding
remarks in Section 7.

2 Background

In this section, we describe past work that influenced the development of Hordes and review multi-
cast routing, a one-to-many network service that Hordes uses to provide receiver anonymity while
reducing data delivery latency.

2.1 Previous Work

A common and simple solution for providing anonymity to the initiator of an Internet connection is
to use a proxy, which is a single server that accepts connections from the initiator of an anonymous
connection and forwards them on to the responder, i.e., the host that the initiator wishes to contact
anonymously. With this single-proxy method, all the responders ever learn is the proxy’s address;
thus, the initiator is anonymous to the responder. For example, the Anonymizer [1] and the
Lucent Personalized Web Assistant (LPWA) [3] provide anonymity using such methods. They
also provide additional services, the Anonymizer removing identifying information from the data
stream, and the LPWA maintaining a number of anonymous identities for each user. When using
a proxy, the initiator is anonymous from the responder and any eavesdropper on the path from
proxy to responder. While this may provide adequate anonymity in many cases, the proxy itself
can determine the initiator’s identity. (In this paper, the IP address of an entity is equivalent to
its identity.) In situations where anonymity with respect to all entities on the path is required,
some other solution is necessary. There are cryptographic solutions that provide a high degree of
anonymity [13, 34], though at a high cost in terms of network traffic and processing. In this paper
we concern ourselves protocols that trade security for network performance.

2.1.1 Onion Routing

Our work is compared directly against two protocols in particular. We present an overview of the
operation of these protocols here, and refer the reader to the original papers for details [27, 28].

The Onion Routing protocol [27], which is based upon the idea of mixes [11], is more robust
than single-proxy methods for anonymous communication. In Onion Routing, a series of proxies
communicating over encrypted channels cooperate to forward data to a responder. Data is wrapped
in a series of encrypted layers that to form an onion. The layers of the onion are peeled off at
a series of proxies (onion routers) along a path towards the responder. Additionally, mix-type
multiplexing, in which packets are reordered before being forwarded, can be employed to thwart
traffic analysis.

It is assumed that each onion router knows the identities and public keys of each other onion
router. The initiator, I, begins by choosing a route through the other onion routers to the responder
R. For each onion router on the path, o, the initiator constructs a layer of a connection setup packet
consisting of the IP address of the next onion router, the encryption key seed information shared
with the next onion router k£, and the successor’s layer. The innermost layer of the onion contains
the identity of the responder and the data to be sent. Each layer is encrypted with the public key of
the corresponding router, K. Each onion router pair uses a locally unique anonymous connection

identifier (aci) so that subsequent communication does not require sending another onion.
I —o:acik,{o K, {o" K" {R, data}r . .., tKo. (2)

As the packet is forwarded through the path of onion routers, the layers are peeled off. When the
packet reaches the last onion router in the path, the data is forwarded directly to the responder.
All requests from the initiator are sent along the same path of onion routers. Replies are sent to
the last onion router on the path, which in turn forwards the data along the reverse path of onion
routers towards the initiator. In implementation [5], Onion Routing is not typically deployed at
every host. Instead, a number of dedicated onion routers are available for use, and an initiator
must connect to one of these to contact the receiver. The first onion router thus knows all initiators
it is servicing. Should an onion router be corrupted, all initiators that use that router could be
exposed.

2.1.2 Crowds

The Crowds protocol [28] is similar in operation to Onion Routing; however, the path through
cooperating proxies called jondos is chosen randomly, on a hop-by-hop basis, as the initial request
is forwarded through the crowd. Once a path out of the crowd is chosen, it is used for all anonymous
communication from the initiator to any responder within a 24-hour period.

Crowds begins with an initialization protocol. When complete, the initiator knows a private,
symmetric key between itself and every jondo in the crowd. To send data, the initiator constructs
and forwards a packet containing a random path id, p; the IP address of the responder, R; and the
data. All are encrypted with the key Kj;, shared with the randomly chosen next jondo, j.

I — j{R,p,data} g, (1)

Each crowd member receiving a packet with a new path id then randomly decides based on a
probability of forwarding, denoted Py and satisfying 0.5 < Py < 1, whether to forward it on to the
responder or to another randomly chosen jondo. Eventually, a jondo will decide to forward the
packet to the responder based on Ps.

j' — R:p", data (3)

Once the responder receives the packet, it returns a reply packet along the reverse path of the
request. Subsequent packets between the initiator and responder always follow the same path.
This use of static paths is necessary because if a number of jondos collaborate to discover the
identity of an initiator, then each new path that is formed gives them the opportunity to narrow
down the identity of an initiator. The initiator must be on each path, and therefore shows up
more often than any other jondo. To limit the number of paths available to collaborators, Crowds
only changes paths at a set period, typically every 24 hours; this change of paths is termed a
commit. The use of static paths can lead to a slightly different problem. If new members that join
immediately create a path, they can be easily identified as new members by the first jondo they
reach if most or all other crowd members have already established paths. A new member should

wait until the next commit to form a path out of the crowd. At that time, each initiator must flush
and recreate all existing connections through the crowd.

While the identities of the crowd members are public knowledge, responders, eavesdroppers, and
other crowd members never learn which particular crowd member is the initiator, as it is not easy
to determine if the a successor on a path is sending its own message or forwarding one of another
member. Each member of the crowd gains anonymity at the cost of bandwidth in forwarding others
communications.

2.2 Multicast Routing

A rapidly growing number of routers and hosts on the Internet are beginning to support multicast
communication—point-to-multipoint delivery between hosts on a network. (Readers unfamiliar
with the details of multicast are encouraged to see Section 6 for a more detailed overview of
multicast routing and prominent multicast routing protocols.) Multicast, class-D addresses, unlike
other IP addresses, do not refer to any particular device attached to the network; instead, they
are essentially a label that refers to the receivers in the group as a whole, without knowledge of
any particular receiver or of group membership. The number of hosts joined to a multicast routing
tree as receivers, as well as their status, is dynamic and unknown to routers and hosts. It is these
properties that make multicast useful for anonymity.

Hordes makes use of multicast communication for the reverse path of anonymous connections.
This has several advantages. First, if the membership of a particular multicast group that is
receiving data is determined, the actual initiator is still indistinguishable within that set as the
intended recipient, as long as it is not the only member of the multicast group. Second, as a
practical matter, it is difficult to determine the multicast group membership in current multicast
protocols. The membership is not known to any single entity; it takes the coordination of all routers
in the tree to determine the receiver set. Getting such cooperation across multiple administrative
domains has proven to be difficult in the past.

Hordes is designed to place many participants in the same group for reception. Using multicast
for anonymous reception thus provides anonymity in several ways. First, the destination IP address
placed in reply packets is the multicast group address and not any host’s IP address, and it is
often difficult to determine the membership of the multicast group. This means that the host can
receive data without being immediately identifiable. Second, and more importantly, if the group
membership is discovered, there exists anonymity within the receiver set. While the degree of
anonymity provided in the case of group membership discovery is is likely to be a lower than other
existing anonymous protocols, the tradeoff is that latency and processing overhead are reduced for
horde members.

In this paper, we assume that the multicast routing protocol being used creates shortest path
multicast routing trees from the responder to the initiator, which is the case for the most popular
multicast routing protocols in use today, e.g., PIM Single-Source-Multicast, PIM Sparse-Mode, PIM
Dense-Mode, and DVMRP. Multicast is still an evolving Internet specification, and other multicast
routing protocols are being developed and deployed. In Section 6, we discuss the properties of
specific multicast routing protocols with regard to Hordes. The use of some of these protocols may
reduce the anonymity available in Hordes, though none allows attacks that completely compromise

its operation.

3 Defining Anonymity

Measures of anonymity proposed in previous work have been informal and do not include defi-
nitions suitable for quantitative analysis. Pfitzmann and Waidner have proposed the concept of
unlinkability between the initiator and responder, where these two entities cannot be identified as
communicating with each other, though it may be clear they are participating in some communi-
cation [34]. Syverson and Stubblebine have given epistemic characterizations of some properties of
anonymity [30]. Reiter and Rubin informally defined degrees of anonymity that can exist between
an initiator and responder [28], but the differences between these degrees can be vague. Here, we
define anonymity precisely. It is important to note that when defining anonymity of an entity in the
network, we do so with respect to some other single entity. We will see that anonymous protocols
do not always provide uniform degrees of anonymity with respect to all entities in the network;
therefore the particular entity, e, must be specified.

Let Pre(z) be the probability that entity z is the initiator of a connection, as determined by
observations by entity e. Let x be a member of non-empty set S, where Zye gPre(y) = 1. Let
dge(A) be the degree of anonymity provided for some entity z with respect to another entity e
while using a specified anonymous protocol A, formally defined as follows:

dpe(A) =1-Pro(z) = Y Pre(y) (1)

yesS\{z}

In the protocols discussed here, participation in the protocol is equivalent to membership in S,
and is public information which e could easily obtain. Each protocol attempts to make this public
set of cooperative hosts appear to have equal probability of being the originator of a communication.
If all members of S have an equiprobable chance of being the initiator, then d; .(4) =1 —1/|S|.
However, it can be possible for e to disrupt equiprobability, for example by analyzing predeces-
sor information over time, as discussed in Section 4.3. In examining the security of protocols in
Section 5, we will assume a possibilistic approach and assume equiprobability. This is consistent
with other approaches to examining anonymity [30]. We have produced other work that examines
attacks against equiprobability [36].

We define the baseline degree of anonymity provided by a protocol for a set of collaborating
entities S,

d(A) = min{d, .(A)},Ve € E,Vz € § 2)

where S is the set of entities whose anonymity is maintained by the protocol A, and where F is the
set of all entities in the network. When it is clear from context, we drop the reference to protocol
A and simply write dg .

Reiter and Rubin loosely defined several intervals of degrees of anonymity. Here we re-state
their definitions and add formal probabilistic equivalences.

e Provably Ezposed: the attacker can be certain that x is the initiator. d, . = 0.

e FEzposed: there exists a possibility that z is not the initiator. 0 < d; . < %

e Probable Innocence: x appears no more likely to be the initiator than not to be the initiator,
but z appears more likely than all other entities. 3 < dy, < dy., for ally € S\ {z}. It
follows that dg . < (1 — |—§‘)

e Beyond Suspicion: x appears no more likely to be the initiator than any potential entity in
the system. |S| > 1, (1 — ﬁ) <dge,and dy, < dg. forally € S\ {z} .

o Absolute Privacy: The attacker cannot perceive the presence of communication, and therefore
cannot determine the membership of S. Let |S| = oo and dy = 1.

When entity z is probably innocent at least, we say minimal anonymity has been achieved.
The protocols that we consider in this paper protect the anonymity of the initiator. We define
the following formal requirements for initiator anonymity.

1. The initiator achieves minimal anonymity as the originator of a message destined for a known
responder.

2. The initiator achieves minimal anonymity as the intended recipient of a message originated
by a known responder.

These two conditions are necessary and sufficient for the provision of initiator anonymity. In the
case that the initiator is exposed but the responder is not, the protocol is no longer anonymous
with respect to the initiator, but it is unlinkable as the identity of the responder is unknown. This
concept is important because even when a protocol does not provide anonymity for the initiator,
it may provide unlinkability. In some situations, discovering that an entity is communicating
anonymously may not be sufficient for the attacker, in which case unlinkability is a desirable
property of a protocol.

The protocols explored in this paper attempt to make a set of cooperative hosts all appear to
have equal degrees of anonymity. We can see that increasing the cardinality of S has diminishing
returns on the degree of anonymity. For equal degrees of anonymity among a set .S, |\S| = 20 is much
more anonymous than a set |S| = 2 entities; however, a set S with 220 entities is not significantly
more anonymous than one with 202. For equiprobability, as S increases, increasingly large jumps
in the size of S are required to quantitatively say a protocol has significantly increased its provided
anonymity.

The best protocols for anonymity have a number of qualities. First, they do not require increased
amounts of work or resources on the part of initiators and cooperative entities as the degree of
anonymity increases. Second, the amount of work or resources required by an attacker to break an
anonymous protocol should increase (or at least not decrease) as the degree of anonymity increases.
Third, the amount of work required of attackers should be significant. Finally, third-party entities
should not be trusted with the identities of initiators.

4 Hordes

Hordes employs multiple proxies similar to those used in the Crowds protocol to anonymously route
a packet towards the responder, but then uses multicast services to anonymously route the reply
to the initiator. Performance results presented in Section 5 demonstrate that Hordes has a little
more than half the round trip latency of Crowds, does not require large routing tables at hosts,
is not subject to a passive traceback attack, often uses fewer network resources, and requires less
work from cooperating jondos.

Initialization. Initialization occurs in five steps. The purpose of initialization is to provide new
horde members with an authenticated, “fresh” list of other horde members. First, the initiator,
I, sends the server,S, a request to join the horde; included with the request is the TP address of
the initiator IP7, a nonce, Ny, and the initiator’s public key K. Notice that the limiting factor
in joining the horde is the IP address; the public key may be generated just for the purposes of
participating in the protocol and does not have to be part of any public key infrastructure. We do
assume that each member of the horde possesses the server’s public key. Such participating hosts
are called jondos in the Crowds protocol, and for clarity we conform to this convention, though in
the specification we will refer to horde members as h. The initialization message is as follows.

I—)S:IP[,N[,K]+ (1)

The server responds with a signed join acknowledgment that consists of a new nonce and a repetition
of the initiator’s nonce. The purpose of the exchange of nonces is to ensure that the protocol run
is fresh, thereby limiting the ability of an attacker to replay messages to the server. It also ensures
that the server can verify that a new member is joining the horde, and prevents an attacker from
adding bogus members to the horde by replaying old messages.

S—1T: [NI,NS]KS_ (2)

The initiator checks the freshness of the nonce, and if it is valid, replies with a signed copy of the
nonces. This check prevents an attacker from later replaying an old list of the members of the
horde.

I— S :[N1,Nslg,_ (3)

If the nonces are correct, the server sends a multicast base address M used by all horde mem-
bers (explained below) and a list of all other horde members and their public keys. The server
demonstrates that the list is fresh by including the nonces, and authenticates the list by signing it.

S —1: [M,IPh,Kh+,N[,N5]KS_,Vh e H (4.)

The server then informs the entire horde that I has joined by sending a single multicast message.
The announcement includes a timestamp, T'S, to ensure the update is not a replay.

S — H: [IP[,K[+,TS]K57 (5)

Data Transmission through the Horde. Note that since a horde initiator is sending to the responder
via unicast and receiving replies via multicast, it cannot use standard TCP connections. Instead,
a TCP connection between the responder and the initiator must occur encapsulated within UDP
packets transferred between each jondo on the forward path, and within the UDP packets multicast
to the initiator from the responder. If the responder were not aware of the Hordes protocol, the
member of the horde that determined that it would send the request to the responder (the last
hordes member on the forward path) could instead form a TCP connection to the responder and
could then multicast the data back to the initiator.

Step 1. The initiator (and each other jondo) randomly picks a small subset of jondos FF C H
used to forward messages. It then sends each forwarder f in the subset F' a symmetric key, K,
encrypted in the forwarder’s public key, Ky, and signed with the initiators own private key, Ky .
The reason for and advantages of selecting a subset of forwarders is discussed below, in section 4.3.

I > VfeF {[Kflk;, ;. (1)

Step 2. The initiator randomly picks a multicast group, m, to use to receive replies. This address
is chosen by computing a range that is at minimum the base multicast address M, which is known
to all horde members, and at maximum M plus a number that depends on the number of members
in the group as described in Section 4.1 below. Each initiator chooses and subscribes to only one
group in that range. Group address selection is discussed in detail below, but the point of picking
different groups is to distribute receivers so that receivers do not listen to all traffic. At this point,
the initiator should join the multicast group that it selected as a receiver, if it is not already a
member.

To forward data, the initiator sends a message to a random jondo in its forwarding subset,
h € F. The message includes the address of the responder, R; a random number used later to
identify a particular reply on the multicast tree, id; the multicast group on which the responder
will send replies, m; and the data. The random number needs to be large enough to minimize
the chance that a collision will occur if some other jondo choose to receive on the same multicast
group—128 bits should be sufficient. This portion of the message is encrypted with a symmetric
key Ky, and prefaced with a key identifier, 7, both of which are shared with the next forwarding
hop. Key identifier and key distribution between proxies is discussed in section 4.3 below.

I — h:,{R,id,m,data} g, (2)

Step 3. When a jondo receives a message, it chooses with probability 1 — p; to send it to the
responder (Step 4), or with probability p; to forward it to another jondo from its forwarding
subset. We denote this successor jondo as h'. The jondo sends the same form of message as in Step
1, however, a different key identifier, 7', and shared key Ky are used.

j— b9 {R, id,m,data}Kf, 3)

Step 4. With a high probability, and after some number of hops through the horde, some jondo (A’
in the notation below) will, eventually forward the message to the responder.

h' — R :m,data,id (4)

Step 5. The reply is sent to the multicast group m. It is prefaced with the random number, id, to
identify it to the receiver for easy reception from the multicast group. The receiver should remain
subscribed to the group until the next commit to limit the effects of timing attacks.

R — m :id,reply (5)

4.1 Multicast Groups

In Hordes, the amount of work a jondo performs is dependent on the number of messages it must
process. This is proportional to the number of forwarding paths the jondo appears on, and the
number of other jondos that choose the same multicast group on which to hear replies. Notice that
receiving a message via multicast is actually cheaper computationally than forwarding a messages
(as in Onion Routing and Crowds), as the jondo needs only to check the random ID to decide
whether to accept or drop the packet.

In Section 5, we see that the number of jondos that choose the same multicast group for replies
affects the anonymity provided by the protocol; therefore, it is possible to tradeoff between workload
and anonymity. Our desire in the design of Hordes, however, is that no horde member should ever
do more work than a Crowds or Onion Routing member while always maintaining anonymity.
Accordingly, in this section we solve for m, the number of multicast groups among which horde
members should be evenly split for reception of traffic. By distributing the horde members among
different groups, we maintain anonymity while limiting the number of messages each member must
process. The multicast addresses are chosen from a range starting at the base multicast address
M, shown in Step 4 of the initialization of Hordes. As the number of members in the horde grows,
the number of groups being used grows from this base.

The requirement to provide minimal anonymity bounds m from above; there should be at least
two jondos in each multicast group in case of a traceback attack. If there are n hosts in a horde,
then

n/2>m (1)

The requirement that horde members should do no more work than crowd members bounds m from
below. The amount of work crowd members are subject to is dependent on the number of other
paths they appear on in the crowd. The value for the amount of work has been derived by Reiter
and Rubin [28], and therefore the number of jondos in each multicast group should be less than or
equal to this value:

%S (1 —2pf)2 (1+n11) (2)
> —pp)’n
>)

It can be shown that m is bounded correctly by the values from lines 2 and 3. However, some
jondos may be collaborators, and we do not want to fill multicast groups with all collaborators but

10

one host. To protect the reverse path, the upper bound must not include any collaborators, which
gives a new bound

cn-c
m
-2

(4)

Reiter and Rubin [28] have determined that the forward path in Crowds (and thus Hordes and
Onion Routing) is not secure if this inequality does not hold:

p
n>—L _(c+1) (5)
Pr—3

Equivalently, the limit of collaborators is

n(ps — 3)
by

c< -1 (6)
where c is the number of collaborators in the session and p; is the probability of forwarding packets
inside the Crowd or Horde. Any more collaborators than allowed by the above formula, and the
forward path of Hordes does not maintain anonymity. Combining Eq. 4 and 3 and then substituting
Eq. 6 gives

n(ps—3)
1 —pp)? n— "2 4
UZp)™ < = (7)
214 =) 2

It is easy to show these inequalities hold for all values of n and py. Shown in Figure 1 is a graph
of the upper and lower bounds for a quantitative representation of how much these bounds differ
with increased group size. Accordingly, Hordes has adjustable amounts of work that changes with
m; however, the value of m also determines the degree of anonymity of Hordes when subject to a
traceback attack, as discussed below. It is easy to see from the graph that there is a large range
in which Hordes provides anonymity while requiring less work, in terms of message processing,
than Crowds. It is important to note that m is independent of the network delays experienced
by Hordes. Even when m is set at the upper bound so that the work is comparable to Crowds,
the round trip latency exhibited with Hordes remains the same, and is still significantly less than
Crowds (see Section 5).

It is important to notice that the random distribution of horde members into different multicast
groups can, with some small probability, result in a single hordes member listening to a multicast
group. This does not result in a violation of the anonymity of the protocol, as it would require
that an attacker be able to trace the multicast tree along to determine that the receiver was alone;
however, this is the weaker form of anonymity that the protocol provides.

4.2 Data Transfer Considerations

The asymmetry of the forward and reverse paths in Hordes poses a challenge for providing TCP
service. The forward path from initiator to responder has a higher latency and an increased chance

11

for packet loss as compared to the reverse path. The reverse path is the shortest multicast path
from the responder to the initiator, has less chance for packet loss, and may not traverse some
congested areas of the network that the forward path does. This leads to a highly asymmetric
path in terms of latency and packet loss. As with other asymmetric routing scenarios, if TCP is
used for congestion control and error correction, it will not respond as well to congestion nor evoke
slow start quickly enough. Preliminary simulations show this to be the case if TCP were to be
used with Hordes, limiting the benefits of Horde’s shorter overall path. Designing protocols for
congestion control and reliability for this type of asymmetry is beyond the scope of this paper,
although many promising results [8] may be applied in future work. Alternatively, techniques such
as erasure codes [23] may be used to ensure reliability between the initiator and responder.

Because Crowds and Onion Routing paths run over several sequential TCP connections, we
can expect the performance to be worse than a direct TCP connection. The independently-run
TCP connections between jondos do not have difficulties managing congestion or slow start, but
jondos do end up buffering data along the path towards the responder when TCP congestion control
mechanisms throttle the rate between jondos. The additional memory requirements at jondos may
not scale with the number of connections through the Crowd or Onion Routers, but may be an
acceptable performance tradeoff.

Hordes does have an advantage over Crowds and Onion Routing for the transfer of streaming
content from the responder to the initiator. Steaming data sent on the forward or reverse paths in
Crowds and Onion Routing will suffer harmful effects from the jondo-to-jondo TCP connections [31].
Packets may be retransmitted unnecessarily, without regard to deadline. Similarly, the rate may
be throttled unacceptably. In summary, streaming content applications rely on UDP transmission,
which cannot be provided in Crowds and Onion Routing. In Hordes, because data is always sent
UDP, streaming content will enjoy better performance. Moreover, data sent from responder to the
initiator will be shortest path, just as a direct connection would send it, with less chances for loss
than if the packet was sent through several jondos.

4.3 Forwarding Subset Selection

It may seem that each jondo could always choose the next hop towards the responder randomly
from the entire set of jondos. Unfortunately, this leads to an attack against the anonymity of the
protocol first identified in Crowds [28]. Since each initiator must be a predecessor to some proxy at
least once on each path it creates, it will appear more often as a predecessor over multiple commits
than do the randomly chosen proxies between it and the responder. Collaborators in the group can
compare information about their predecessors over multiple commits, and any entity who appears
more often than others is very likely the initiator of a path. Notice that with enough path changes,
even one corrupted jondo can gather the information necessary to identify an initiator. As Hordes
uses the same forwarding mechanism as Crowds, it is subject to the same path analysis attack.
Instead of choosing a random forwarder at each step, a small subset of all possible jondos are
chosen to forward all traffic to during each period. The size of the subset is chosen so that the
number of forwarders in the set is on the order of the expected number of paths a jondo would be
on in Crowds. The expected number of paths is computed from p; and the number of jondos as in
Crowds [28]. This information is available to each jondo. Periodically, at each daily commit, this

12

chosen subset changes. Hordes is therefore approximately equivalent to Crowds in its resistance
to this attack, as the number of jondos that see the initiator as a predecessor is the same in each
protocol, and the subset changes at the same rate as paths do in Crowds.

A symmetric key is generated and sent to each of the members of the forwarding subset prior to
data transmission. Data can then be encrypted in this shared key, reducing the processing costs and
reducing the forwarding latency. Hordes has the same encryption processing overhead as Crowds
in forwarding messages.

4.4 Onion Routing based Hordes

In this paper we have introduced a technique for improving performance of anonymous protocols
by using multicast. We have concentrated on applying multicast to the Crowds protocol, and
in doing so developed Hordes, which uses the same mechanisms as Crowds for constructing the
forward path, but uses multicast for the return path. As we have considered the relative merits of
Crowds, Hordes and Onion Routing, it has become clear that Onion Routing has the most secure
path-construction mechanism. We believe that the forwarding mechanism from mixes or Onion
Routing could easily be adapted for use on the Hordes forward path. While this might require
more work in terms of encryption, it would increase the security and anonymity of the protocol,
particularly against collaborators, as well as obviating the need for a Hordes-aware proxy to run
on each server. The next section discusses some of the reasons why using Onion Routing on the
forward path might be more desirable.

5 Anonymity, Security and Performance Analyses

In the first part of this section we analyze the comparative anonymity and security of Onion
Routing, Crowds, and Hordes. We consider different attacks possible against each protocol and
give a quantitative analysis of the anonymity provided in the face of each attack, based on the
results of Section 3. In the second part of this section, we consider the network performance of
Crowds, Hordes, and overt communication over the Internet.

5.1 Anonymity and Security

We consider a number of attacks against each of the three anonymous protocols. Table 1 summarizes
the degree of initiator anonymity provided by each protocol in the presence of such attacks. The
degree is summarized by the value of | S| (from Section 3) and assuming equiprobabilities; i.e., the
degree of anonymity is d; . =1 — %

In cases where the initiator is Aiscovered but the responder’s anonymity is maintained, and
therefore unlinkability is maintained, the section is marked “U” for unlinkable. The size of S
relevant to the responder’s degree of anonymity relative to the local eavesdropper is also given. In
this chart, n represents the number of cooperating entities participating, i.e., the number of onion
routers or jondos; g represents the number of initiators listening to a particular multicast group (in
Hordes we expect this value to be n/m); r represents the number of possible responders (which may

13

Attack Required Resources | Onion Routing | Crowds Hordes

1. Observing Responder n n n

2. Single Protocol Member n n n

3. Active Path Traceback network access n 1 Forward: 1
to entire path Reverse: g

4. Passive Path Traceback | access to member 1 1 Forward: n
routing information Reverse: g

5. Local Eavesdropper communication U:r U:r U:r/m
bottleneck

6. Local eavesdropper bottleneck, U:r 1 1

and on-path collaborator collaborator

7. Local eavesdropper and | bottleneck, 1 1 1

full path of collaborators many collaborators

Table 1: Size of S in Onion Routing, Crowds, and Hordes during various attacks described in
Section 5.

equal n if the assumption is made that each initiator is communicating with exactly one distinct
responder); and m represents the number of multicast groups being used for reception in Hordes.

With respect to the responder and other members of the participating group, each protocol
provides an identical degree of anonymity that is proportional to the number of members in the

group.

5.1.1 Path traceback

In a traceback attack, an attacker starts from a known responder and traces the path back to the
initiator along the forward path or the reverse path. There are two types of traceback attacks. In
an active traceback attack, the attacker has control over the network infrastructure and is able to
follow an active and continuing stream of packets back through the network to their point of origin.
If there is only one stream, this is easy. If several streams are passing through a particular host this
may be more difficult, especially if the packets change form in the host, perhaps by being encrypted
or re-encrypted with a different key. Crowds is subject to this attack. Since Onion Routing is based
on mixes, which re-encrypt and re-order a number of packets before forwarding them, it will not
be possible to identify which packets belong to which stream.

In a passive traceback attack, the attacker is somehow able to examine the routing state of
members participating in the protocol and trace back the connection via the stored routing. In
Crowds and Onion Routing, this requires an attacker with enough resources available to corrupt
every host machine on the reverse path from the responder to the initiator. As each machine is
corrupted, the protocol routing tables are examined to find the previous jondo on the specific path
from the responder. Depending on the implementation, this information may be available for the
full duration of time between commit periods because routers must keep static paths, and therefore
unchanging routing tables as well. It is possible to open and close TCP connections as necessary,
however, limiting the time available for traceback to that of the connection and any waiting period
required by TCP to receive late arriving packets. Therefore, tracebacks of this nature are possible
even when data is not flowing from the initiator to the responder.

14

In Hordes, the forward and reverse paths are not the same. An active traceback along the
unicast forward path can be launched by attackers against a Hordes session, but only while the
session is active. This is made more difficult by the fact that packets do not follow the same path
through the network. A passive traceback would not succeed because Hordes does not maintain per-
path routing tables. It is also possible to perform an active or passive traceback along the multicast
reverse path in Hordes. In this case passive traceback (among a group of network routers) may
be easier than among a group of widely distributed hosts, if much or all of the network is under
the same administrative control. In either case, however, the identity of the initiator may not be
immediately discernible. The multicast group being traced may have a number of receivers, hiding
the identity of the initiator.

While it could be expected that such an attack would be very difficult to perform against a
widely-distributed set of hosts, traceback is still a threat when considering powerful opponents.
Research into network traceback is ongoing, and even though the area is in its infancy, some
methods and tools have been developed to facilitate traceback of particular types of data traffic.
This work has been generally motivated by the need to track network intruders, which is very similar
to tracing back an anonymous connection, since intruders often try to disguise their location by
logging in through a series of compromised hosts, analogous to anonymous proxies. One method [29]
attempts an active traceback of the stream by comparing its contents at different points in the
network. Another method implements the local eavesdropper to determine if a particular stream
originates within a domain, or if it is being forwarded through the domain [39]. There are also
automated methods of active and passive traceback that examine state within network routers to
follow a stream back through the network [24, 10]. These types of methods could be modified to
trace an anonymous connection as easily as one originating from a network intruder.

5.1.2 Collaborators

Any of the three protocols may not be safe against a group of collaborators, which are malicious
participants in the protocol who communicate with each other to discover the identity of some
initiator. In the extreme case, all but one host is a malicious collaborator, in which case any packets
sent by the honest participant via Onion Routing, Crowds, or Hordes are clearly identifiable. Reiter
and Rubin have provided seminal analysis of this issue [28]. They have found that in Crowds, for
a crowd of size n with ¢ malicious collaborating crowd members, if n > (pﬂﬁ(c + 1), where py
is the probability of forwarding a packet to the destination, then the initiator has at least minimal
anonymity (in our terminology) with respect to the collaborators. This same analysis applies to
the Hordes forward path, but not the reverse path.

It should be noted that all three protocols rely on the assumption that IP addresses are a rela-
tively expensive resource, and that an attacker might have difficulty in obtaining enough different
IP addresses to assemble a sufficiently large group of collaborators. In fact, this does not necessar-
ily hold true. A reasonably powerful attacker might have little difficulty in obtaining an adequate
number of IP addresses, or might even attack the unicast routing in order to hijack an entire range
of addresses. Onion Routing has an advantage in that the initiator is able to choose its path, so
that if some onion routers are known or suspected to be collaborators, the path chosen can exclude
that group.

15

In Hordes, because the reply can be heard by any multicast receiver on the Internet, and because
the reply comes without being processed by some other proxy, a timing attack is possible. As each
jondo on the forward path is able to see what the reply multicast address is, a malicious jondo
who is a successor to the initiator on the path can listen to that multicast address and attempt to
correlate the reception of multicast data and the issuance of forward traffic on the forward path.
If that time period is very small, then there is a good chance the predecessor is the initiator. This
attack is made more difficult by the fact that any initiator will only send a fraction of traffic to any
particular successor. A possible defense for this is to use Onion Routing for the forward path, as
only the last jondo on the path would learn the multicast address being used, with a correspondingly
smaller chance that a collaborator would learn it.

5.1.3 Malicious Jondos

Jondos in anonymous routing can easily launch man-in-the-middle attacks if data is not encrypted
on the path from the initiator and responder. For Omnion Routing, which relies on layers of en-
cryption, this is not a problem. In Crowds, however, data is typically not encrypted in a manner
that prevents intermediate jondos from examining the contents. This leads to an interesting “at-
tack” in which an intermediate jondo inserts additional information, such as advertisements, into
replies destined for the initiator. Furthermore, any key exchange protocol used between initiator
and responder must itself be robust against a man-in-the-middle attack. Catching malicious jondos
performing such attacks is exceptionally difficult as the purpose of the protocol is to protect the
anonymity of all entities involved. Note that Hordes jondos cannot launch such an attack because
the forward and reverse paths are not the same, though horde members could modify the contents
of the messages on the forward path.

5.1.4 Local Eavesdropper

A local eavesdropper is an attacker that is able to monitor all network communications sent to or
received by one particular protocol participant, but does not have access to the memory contents
of the participant. Local eavesdroppers are difficult to defeat precisely because they can record and
compare all incoming and outgoing messages. If the member sends a message that was not received,
then it is clear that the member is the initiator of that message. Similarly, incoming messages that
result in no outgoing messages are clearly replies for which the receiving node was the initiator.

However, in all three protocols the outgoing packet is encrypted, so it would not be clear to
the local eavesdropper who the responder is (short of breaking the encryption). Therefore these
protocols retain unlinkability in the presence of a local eavesdropper as long as the responder cannot
be determined.

In Crowds, the local eavesdropper is only able to learn the identity of the responder from a
collaborator who is a successor on the path, assuming that the packet was re-encrypted at each
hop. If the packet is not re-encrypted, then any collaborator on the path could recognize the
message and expose the responder. In the Crowds description, it is stated that all transmissions
between jondos are encrypted using a pair-wise shared key; however the implementation section
of the same paper describes a single key being distributed over the course of the path, and the

16

message encryption remaining the same over each hop. In Onion Routing, the packet would have
to be tracked through the set of onion routers (requiring the cooperation of every onion router on
the path), because only the last onion router learns the identity of the responder. This is a strength
of onion routing.

In Hordes, replies follow what is likely a different path and come directly from the responder via
a multicast tree. This gives the eavesdropper the opportunity to learn the identity of the responder
and remove the unlinkability, since if the only replies received were from some single source, the
responder would be immediately apparent as that source. To protect against this scenario, horde
members use shared multicast groups so that each receives and discard traffic meant for other
members. This provides protection against a traceback attack, described above, as well as obscuring
with which responder the monitored jondo is communicating. This method does, however, allow a
collaborator to compile a list of responders (one of which is the actual responder) by monitoring the
multicast group. The degree of anonymity provided by Hordes for the responder in this situation is
equivalent to the number of active responders sending on that group. Assuming that each initiator
communicates with a different responder and all responders are active and divided equally among
all groups, then this size of S for any particular responder would be -, rather than n. Notice that
these assumptions may be weak in some cases. If the local eavesdropper is monitoring an initiator
who is receiving on a multicast group that is carrying no other initiators’ traffic, the eavesdropper
can determine the initiator. This is a trade-off; lower network latency is gained at the expense of
degraded resistance to local eavesdroppers.

5.2 Link Utilization

While a possible concern about Hordes is that the use of multicast will result in excessive network
traffic, we show through simulation that this does not happen. In fact, in most cases, using Hordes
results in an overall lower link utilization than Crowds. We consider the overall link utilization to
be the sum of all the links that a message and its reply have to travel on the path from initiator to
responder and back.

As Hordes uses the same forwarding mechanism as Crowds, the forward path will grow in the
same manner—an increase of one network diameter for each forwarding proxy. The reverse path is
different however, as replies go by multicast. Though Hordes places more than one receiver in each
multicast group, the link utilization does not rise in direct proportion to the number of multicast
receivers because multicast messages only need be sent once over any link, and are copied at points
where the path to different receivers diverges. The more receivers in the group, the greater chance
of path commonality, and the less burden, in terms of link utilization, each additional receiver
requires.

To consider under what conditions Hordes has a lower link utilization than Crowds, we ran a
series of simulations on topologies generated by GT-ITM, a network topology generator commonly
used in internetwork simulations [4, 37, 38]. The simulation provided a count of the links for direct
connections, for Crowds, and for Hordes with varying policies of multicast receiver distribution.

We generated 50 transit-stub topologies of 5100 nodes each. The transit-stub model of the
network was chosen as it resembles the Internet. FEach model network generated consisted of a
graph of nodes with weighted edges that were proportional to the distance between nodes; these

17

weights were used to represent the latency between nodes. We then used Dijkstra’s algorithm to
determine the distance and best hop information for each node in the network. At the same time
we determined which nodes were leaf nodes. For each probability of forwarding, which ranged
from 0.50 to 0.90 in steps of 0.05, we made 50 trials in each generated graph for each anonymous
group size, ranging from 100 to 1000 in steps of 100. For each trial we first chose the set of group
members from the set of leaf nodes, then chose a random initiator and responder from the set of
group members.

As shown in Section 4.1, it is possible to vary the number of receivers in a group while main-
taining anonymity versus collaborators and still requiring less message processing of participants
than Crowds. We therefore examined three policies: the minimal receiver policy, in which each
group had only as many receivers as necessary to defeat collaborators, resulting in minimal ano-
nymity and workload but requiring the most multicast groups; the mazimal receiver policy, where
the expected workload is the same as the maximal workload of Crowds, resulting in the minimum
number of multicast groups but a larger amount of message processing and maximal anonymity;
and a midpoint receiver policy, which used the average of the number of multicast groups of the
minimal receiver and maximal receiver cases.

Our simulation shows that Hordes has lower link utilization than Crowds in most circumstances.
Figures 2, 3, and 4 show the link utilization of the direct connection and of Crowds and Hordes
for each of the three policies. In each of the minimal receiver and midpoint receiver cases, Hordes
always has a smaller link utilization than Crowds. These figures show the link utilization increases
above that of Crowds at a p; of about 0.75 for the maximal receiver case of Hordes. What is
interesting about this is that above this point horde members are actually doing more work than
Crowds members. While the Hordes protocol is designed to do less work, the determination of
what would constitute less work was made using an upper bound on what the expected amount of
work a Crowds member would do. These cases fall into the area where Hordes does more work
than Crowds, in terms of message processing required by members, but still does less work than
the predicted upper limit. It is easy to avoid these cases by choosing a different policy that results
in the use of more multicast groups, without significant loss of anonymity.

5.3 Network Latency

While both Crowds and Onion Routing [28, 27] provide initiator anonymity, they do so by increasing
the delivery latency as data is forwarded through a number of proxies to the responder and then
back to the initiator. Hordes, by using multicast for a direct return path, decreases the round
trip time from initiator to responder significantly as compared to Crowds. Simulation results that
confirm this expectation are available as an extended technical report [22]—Figure 5 shows the
round trip times in a larger group of 1000 members using the simulation environment from the
previous section and the results reported in the technical report. The latency problem in Crowds
and Onion Routing stems from the fact that the path from initiator to responder can cross the
network a number of times equal to the number of hops on the path, and that each hop has the
potential of increasing the total latency by the maximum latency of any path in the network.

18

6 Multicast Routing

Multicast delivery of datagrams to a large receiver set is efficient because a single spanning tree is
constructed across the network between a source and all receivers. A single datagram transmitted
by the source traverses the tree, with copies of the datagram being made as necessary where the tree
branches, so that all receivers receive a copy of the datagram. There are no special requirements
for sending to a multicast group. Instead, the source simply addresses its datagram to the multicast
address being used. In the IP architecture there are 228, or about 268 million, multicast addresses
in the class D address space, ranging from 224.0.0.0 to 239.255.255.255.

Hosts wishing to receive messages multicast to a particular address subscribe to the group using
the Internet Group Management Protocol (IGMP) [18] to contact their directly attached routers,
which then join the spanning tree. The spanning tree of routers that connects a source to subscribed
receivers is constructed by a multicast routing protocol; the most common protocols in use are the
Distance Vector Multicast Routing Protocol (DVMRP) and Protocol Independent Multicast Sparse
Mode (PIM-SM). In-depth descriptions of these protocols can be found elsewhere [32, 7, 26]. Unlike
unicast routing, multicast routing requires that per-connection memory resources be maintained in
each router that is part of the spanning tree in the form of a multicast routing table. It is important
to note that the multicast routing table stored at each router on the path of the multicast spanning
tree does not contain the list of hosts that are joined to any specific group. Rather, at each router
on the tree, each interface is marked with a bit if it leads to another router in the same multicast
tree. Thus, there is no “list” of what hosts are subscribed to each multicast group anywhere in
the network; instead each router has only information about its directly connected neighbors on
the tree. Currently, there are no mechanisms in place to determine the members of the multicast
tree from a single location. Such a determination requires either the voluntary action of receivers
joined to the group, or examination of the routing state of all routers that form the spanning tree'.
Indeed, this has been identified as a problem for management of multicast routing [6] as well as
protocols providing multicast transport services [21].

IP-multicast is based on an open service model. No mechanism restricts the hosts or users
from creating a multicast group, receiving data from a group, or sending data to a group. Once a
host joins a group, it receives all data sent to the group address regardless of the sender’s source
address. When hosts join a multicast group, no announcement is made to the other receivers
or the source. (Hosts on the same subnet as the joining host would know because IGMP join
messages are broadcast on the local subnet with a IP time-to-live value of 1.) Hosts can send to
a multicast group without becoming a receiver; such hosts are often referred to as non-member
senders. Multiple senders may share the same multicast address; if those sources shared a single
multicast routing tree, or if they have separate trees leading to the receivers is dependent on
the multicast routing protocol. Senders cannot reserve addresses or prevent another sender from
choosing the same address. The number of hosts joined to a group as receivers is dynamic and
unknown. The status of entities (i.e., sender, receiver, or both) is unknown. IP-multicast groups

'Notice that ICMP pings may not reveal the entire group membership as most hosts will not answer pings on a
multicast address. Even if some hosts do answer pings, it is not sufficient to determine group membership. Also,
ICMP TTL-expired messages are not sent for multicast packets because the TTL is interpreted slightly differently.
Therefore, programs such as traceroute do not trace multicast trees.

19

are not managed.

There are many published multicast routing protocols, but only a few that are in the process of
standardization by the IETF. In this section, we review such multicast routing protocols in order
to determine if their operation violates any of assumptions necessary for the correct operation of
Hordes. Only the Multicast Source Discovery Protocol (MSDP) [17] and Multicast Open Shortest
Path First (MOSPF) [25] cause a problem for Hordes. These two protocols provide opportunities
for attacks to reduce the degree of anonymity provided by Hordes from 1 —1/n to 1 — m/n. Such
attacks require the cooperation of routers.

For all protocols, the Internet Group Management Protocol (IGMP) [18] is used to manage
the connection between hosts (whether sources or receivers) and edge routers. IGMP is a simple
protocol that sources and receivers use to subscribe to a multicast group, or even send data with-
out subscribing to the multicast group (i.e., non-member senders). IGMP does not violate any
assumptions in Hordes.

The spanning tree that connects edge routers is handled by any one the following multicast
routing protocols. Multicast protocols generally construct either source-rooted trees (one per source
in the session) or shared trees (one tree for all sources in the session). Signaling used to construct
these trees are generally either ezplicit-join from each receiver towards the core or source; or each
source floods data to construct the tree and receivers prune the tree when they are not interested.

e Core Based Trees (CBT) [9] uses ezplicit-join signaling to construct bi-directional shared
multicast trees. CBT forms branches of the tree by joining toward a well-known core router
in the Internet. Join requests travel only as far as the first router already joined to the tree,
and in the worst case, reach the core. A join-acknowledgment traverses router-by-router back
to the edge-router to confirm the join. As the core, nor any other host or router involved) ever
learns the identities of sources or receivers (or even edge-routers) joined to the tree (other
than their directly connected neighbors), no assumptions are violated.

e Distance Vector Multicast Routing Protocol (DVMRP) [35] is a flood-and-prune protocol that
builds per-source trees. Sources flood the entire network with data. Routers without down-
stream hosts interested in the multicast group prune the tree pack to the source. (DVMRP
is restricted to the MBone currently and is not intended for long term use over the en-
tire Internet). Although the source’s identity is overt, the receivers of the multicast group
(which in hordes are the initiators) are never exposed. DVMRP builds tunnels of multicast
connectivity between multicast-capable domains in the Internet, and therefore uses its own
distance-vector-based unicast routing protocol to form branches of the multicast tree. The
internal routing protocol does not violate any assumptions regarding Hordes.

e Multicast Open Shortest Path First (MOSPF) [25] is a multicast protocol based upon the
link-state unicast routing present in domains running OSPF. MOSPF is intended for single
autonomous domains only, and not inter-domain routing. Because with link-state routing
each router learns the entire topology of the local network, MOSPF announces the multicast
group membership to the domain and allows each router to compute per-source shortest path
trees independently. Note that group membership information is flood to local routers and
not data. Accordingly, MOSPF allows routers to launch an attack on Hordes initiators. By

20

joining any multicast group that a horde group member appears on, they will receive all
multicast packets that the responder transmits. However, the local router has no way of
knowing if the horde member is the initiator for that responder or some other horde member
that exists outside the domain. For this reason, Hordes maintains a degree of anonymity of
1 — m/n in this scenario because it is unknown which of the set of initiators joined to the
multicast group is the intended recipient.

Protocol Independent Multicast - Dense Mode (PIM-DM) [14] works the same as DVMRP,
except it does not rely on it’s own underlying unicast routing protocol. It assumes all unicast
links are multicast capable. PIM-DM does not violate any assumptions regarding Hordes.

Protocol Independent Multicast - Sparse Mode (PIM-SM) [16] is similar to PIM-DM only in
name. PIM-SM is based on a core that receivers and sources explicitly join, much as in CBT.
Sources send data directly to the core, which then disseminates the data on a unidirectional
shared multicast tree, which is a tree that all sources share, but data flows only from the
core. When any source transmits data above a threshold value, receivers send explicit-joins
directly to the source, forming per-source trees. Receivers do not reveal their identity with
this action. At no point in PIM-SM are the assumptions of Hordes violated.

Multicast Source Discovery Protocol (MSDP) [17] is a temporary solution used to allow inter-
domain multicast routing between PIM-SM domains. If receivers using PIM-SM wish to join
multicast groups with sources located in remote domains, PIM-SM requires that the group-
to-core mapping must be advertised to all edge-routers in PIM-SM domains. When crossing
provider domains, an inter-domain multicast routing solution is required. In MSDP, neighbor-
ing domains (i.e., peers) announce sources to each other using source active messages. MSDP
floods source information to all other PIM-cores on the Internet using TCP links between
cores. Cores servicing receivers that are interested in a particular source then join the group
using UDP messages sent direct to the source’s edge router. Unlike every other multicast
protocol, these join messages are not processed by each router, hop-by-hop, but rather only
by the source’s edge router. For this reason MSDP allows a source’s edge router to know the
PIM-core—and thus the domain—of the receiver that has joined the multicast group. This
protocol does reduce the anonymity provided by Hordes: responders will see joins from do-
mains for all horde members that have selected that group, resulting in a degree of anonymity
of 1 —m/n. However, MSDP is a temporary solution with many unattractive features [15]. In
addition to its unscalable flood-and-prune nature, MSDP does not allow receivers in separate
domains to form shared routing trees to common sources. MSDP essentially forms dynamic
tunnels through the Internet, rather than taking advantage of true multicast deployment.
MSDP is to be replaced by BGMP.

The Border Gateway Multicast Protocol (BGMP) [2, 20] is an inter-domain protocol used to
manage inter-operability between multicast routing protocols in different domains. It uses bi-
directional shared trees between domains and relies on core-domains of multicast groups.(In
BGMP, entire domains act as cores.) At times, BGMP will form per-source trees between
sources and receivers. BGMP does not violate any assumptions in the operation of Hordes.

21

7 Conclusions

The contributions of this paper are threefold. First, we have introduced Hordes, a new protocol
for anonymous communication on the Internet, and shown how it is superior in performance and
in terms of anonymity (with respect to various attackers) to previous protocols. Our method of
explicitly quantifying the anonymity of a particular protocol is the second contribution, as previous
methods did not provide a strict measure of the anonymity of a protocol. Third, for the first time,
we have performed a detailed comparison of existing protocols.

Hordes is the first anonymous protocol to take advantage of the performance benefits and ano-
nymity inherent to many IP multicast routing protocols. IP multicast can provide a receiver with
anonymity while providing a shorter path through the network, thus reducing the latency incurred
by the communication. We considered the performance of Crowds, Hordes, and overt communi-
cation using a simulation based on an Internet-type topology. This simulation gave results about
the latency and link utilization of each protocol. Although still longer than overt communication,
Hordes has a little more than half the round trip latency as Crowds. Hordes distributes multicast
receivers among a range of multicast addresses. This limits the number of messages that any mem-
ber has to process to ensure a lower workload than a Crowds member. By varying the size of the
range of addresses used, Hordes can ensure that the overall link utilization in the network is less
than that of the equivalent Crowd at all times.

In order to evaluate Hordes in comparison with existing protocols, we have introduced explicitly
quantitative definitions of anonymity and unlinkability. Our anonymity and security evaluation
concluded that Hordes maintains minimal anonymity at all times, other than for attacks for which
either or both of Crowds or Onion Routing also fail. We also note that no per-session or per-initiator
routing information is stored in Hordes jondos, which removes the threat of passive traceback
attacks. For some attacks, although Hordes maintains greater than minimal anonymity, Crowds
and Onion Routing provide higher degrees of anonymity. This is a trade-off in the use of multicast
routing to reduce the network latency of communication.

References
[1] Anonymizer web site. http://www.anonymizer.com.
[2] BGMP working group. http://www.ietf.org/html.charters/bgmp-charter.html.
[3] Lucent Personalized Web Assistant. http://www.bell-labs.com/projects/lpwa.

[4] GT-ITM: Georgia Tech Internetwork Topology Models. http://www.cc.gatech.edu/fac/
Ellen.Zegura/graphs.html, 1996.

[6] Zero Knowledge Freedom Network. http://www.freedom.net, November 1999.

[6] K. Almeroth. Managing IP Multicast Traffic: A First Look at the Issues, Tools, and Challenges.
In Proc. of IP Multicast Initiative Summit, San Jose, California, USA, February 1999.

22

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Almeroth. The Evolution of Multicast: From the MBone to Inter-Domain Multicast to
Internet2 Deployment. IEEE Networks, January 2000.

H. Balakrishnan, V. Padmanabhan, and R. Katz. The Effects of Asymmetry on TCP Perfor-
mance. Proceedings of ACM Mobile Networks and Applications (MONET), 1999.

A. Ballardie. Core Based Trees (CBT version 2) Multicast Routing — Protocol Specification.
Technical Report RFC 2189, IETF, September 1997.

H. Chang and D. Drew. DoSTracker. This was a publically available PERL script that
attempted to trace a denial-of-service attack through a series of Cisco routers. It was released

into the public domain, but later withdrawn. Copies are still available on some websites, June
1997.

D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Com-
munications of the ACM, 24(2):84-88, February 1981.

D. Chaum. Blind Signatures for Untraceable Payments. In D. Chaum, R. Rivest, and A. T.
Sherman, editors, Advances in Cryptology. Proc. Crypto’82, pages 199-203. Plenum Press,
1983.

D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and Receipient Un-
traceability. Journal of Cryptography, (1):65-75, 1988.

S. Deering et al. Protocol Independent Multicast version 2 Dense Mode Specification. Technical
Report draft-ietf-idmr-pim-dm-*.txt, IETF Internet Draft, August 1997.

C. Diot et al. Deployment Issues for the IP Multicast Service and Architecture. IEEE Networks,
January/February 2000.

D. Estrin et al. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specifica-
tion. Technical Report RFC 2362, IETF, June 1998.

D. Farinacci, Y. Rekhter, P. Lothberg, H. Kilmer, and J. Hall. Multicast source discovery
protocol (MSDP). Technical Report draft-farinacci-msdp-*.txt, IETF Internet draft, June
1998.

W. Fenner. Internet group management protocol, version 2. Internet-Draft, February 1996.

R. Kling, Y.-C. Lee, A. Teich, and M. Frankel. Assessing Anonymous Communication on the
Internet: Policy Deliberations. The Information Society, 15(2), 1999.

K. Kumar et al. The MASC/BGMP Architecture for Inter-Domain Multicast Routing. In
Proc. ACM SIGCOMM 98, September 1998.

B. Levine, S. Paul, and J. Garcia-Luna-Aceves. Organizing Multicast Receivers Deterministi-
cally According to Packet-Loss Correlation. In Proc. ACM Multimedia 98, September 1998.

23

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

B. Levine and C. Shields. A Protocol for Anonymous Communication Over the Internet. Tech-
nical Report 00-26, University of Massachusetts, Amherst, Department of Computer Science,
May 2000.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and V. Stemann. Practical Loss-Resilient
Codes. In Proc. 29th Annual ACM Symposium on Theory of Computing (STOC 97), 1997.

G. Mansfield, K. Ohta, Y. Takei, N. Kato, and Y. Nemoto. Towards Trapping Wily Intruders
in the Large. In Proceedings of the Second Annual Workshop in Recent Advances in Intrusion
Detection (RAID), West Lafayette, IN, September 1999.

J. Moy. Multicast Extensions to OSPF. Technical Report RFC 1584, IETF, March 1994.
S. Paul. Multicasting on the Internet and Its Applications. Kluwer Academic Publishers, 1998.

M. Reed, P. Syverson, and D. Goldschlag. Proxies for anonymous routing. In 12th Annual
Computer Security Applications Conference, pages 95-104. IEEE, December 1995.

M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Transactions. A CM Transactions
on Information and System Security, 1(1):66-92, November 1998.

S. Staniford-Chen and L. Heberlein. Holding Intruders Accountable on the Internet. In Proc.
of the 1995 IEEE Symposium on Security and Privacy, pages 39-49, Oakland, CA, May 1995.

P. Syverson and S. Stubblebine. Group Principals and the Formalization of Anonymity. In
J. Wing, J. Woodcock, and J. Davies, editors, FM’99—Formal Methods, Volume I, volume
1708 of Lecture Notes in Computer Science, pages 814-833. Springer, 1999.

W. Tan and A. Zakhor. Real-time Internet Video Using Error Resilient Scalable Compression
and TCP-Friendly Transport Protocol. IEEE Trans. Multimedia, 1(2):172-186, June 1999.

A. Tanenbaum. Computer Networks. Prentice Hall, third edition, 1996.

A. Teich, M. Frankel, R. Kling, and Y.-C. Lee. Anonymous Communication Policies for the
Internet: Results and Recommendations of the AAAS Conference. The Information Society,
15(2), 1999.

M. Waidner and B. Pfitzmann. The Dining Cryptographers in the Disco: Unconditional Sender
and Recipient Untraceability with Computationally Secure Serviceability. In Eurocrypt ’89,
1989.

D. Waitzman, C. Partridge, and S. Deering. Distance Vector Multicast Routing Protocol.
Request for Comments 1075, November 1988.

M. Wright, M. Adler, B. N. Levine, and C. Shields. An Analysis of the Degradation of
Anonymous Protocols. In Network and Distributed Security Symposium, San Diego, February
2002. To appear.

24

[37] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork. In Proceedings
of IEEE Infocom ’96, San Francisco, CA, 1996.

[38] E. Zegura, K. Calvert, and M. Donahoo. A Quantitative Comparison of Graph-Based Models
for Internet Topology. IEEE/ACM Transactions on Networking, 5(6):770-783, Dec. 1997.

[39] Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proceedings of the 9th USENIX
Security Symposium, Denver, CO, August 2000.

25

1400 -

12004

[EnY
o
o
o
/

Size of Multicast group range

group size prob of forwarding

Figure 1: Lower plane: smallest size multicast group range required for minimal anonymity. Upper
plane: groups used for equivalent amount of message processing by a jondo in the Crowds protocol.
Between: greater-than-minimal anonymity with less work than Crowds.

26

Link Utilization Comparison, 1000 jondos, MINIMUM group size policy
1200 . . . T

Links

"Dlre Pé\th"
rowds" —a_
1000 |
800 |
600 + |
A
400 - |
,,;"/ o
200 |]
_7.____7___.//"‘ -
''''''''''' - SO ""..'jfj_‘_'f,'f_'f_'gfj__j_—f,','_':',_%,,,_,_,_,_,_,_%__4..--»» #
,,,,,,,,,,,,,, p—
i X % ¥ * . ;

.55 0.6 0.65 0.7 0. 75 O 8 0.85 0.9 0.95
Probability of Forwarding

Figure 2: Link utilization comparison for the minimum policy.

27

Link Utilization Comparison, 1000 jondos, MIDPOINT group size policy

1200 . T T T

"Dlre Pé\th"

row 2 .l
1000 _
800 _

)

< 600 [|
3]
400 + _
B

,vz"'./v “,,— ’
20} ./’g _

_____ .»v»-»-----~-~l’""" g
S Errerts. Rensvsvsl - SSSBISREE . Bt 5
8.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Probability of Forwarding

Figure 3: Link utilization comparison for the midpoint policy.

28

Link Utilization Comparison, 1000 jondos, MAXIMUM group size policy

1200
' ' ' ' "Dlre P&\th"
A ¥
1000 } B
800 |- -
9]
< 600 - :
- ;]
i
400 | Fi .
200 |- i]
e
%‘I ietiieits. SECTCUREEEEE . ELLEER R
* X % X X X ¥ X ¥
.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Probability of Forwarding

Figure 4: Link utilization comparison for the maximal policy.

29

Roundtrip Latency Comparison, 1000 jondos

35000 T T T T T uDiIL t P(?th::
,%0 85" e
30000 | OWES
25000 | .
£0000 |- Fa
c
g)
95000 | R
10000 | e
L e e
5000 L et]

855 0% 065 07 075 08 08 09 095
Probability of Forwarding

Figure 5: Roundtrip latency for varying forwarding probabilities with 1000 members.

30

