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Abstract

Consider an open MIX-based anonymity system with N participants and a
batch size of b. Assume a global passive adversary who targets a given participant
Alice with a set RA of m communicating partners. Let H(RA | Bt) denote the
entropy of RA as calculated by the adversary given t message sets (MIX batches)
where Alice is a sender in each message set. Our main result is to express the
rate at which the anonymity of Alice (as measured by RA) degrades over time as a
function of the main parameters N , b and m. Assuming m, b <

√
N , we prove that

there is a threshold t∗ = O(m ln N) such that when t = t∗ + 5cm, for any integer
c > 0, then

Pr(H(RA | Bt) = 0) > 1− e−c (1)

where the probabilities are computed over the random communication model. Thus
once the attacker has collected a threshold t∗ of messages sets, each additional
5m message sets collected decreases H(RA | Bt) towards zero geometrically. We
provide formulas for computing the implied constant in t∗ = O(m ln N) and also
to improve the constant 5 in t = t∗ + 5cm.

When N > O(b m lnm), or in general for large N , the threshold can be improved
to t∗ = O(m(ln b + lnm)), which is independent of N . Further, if b = O(m) then
the threshold simplifies to t∗ = O(m ln m) and this bound is asymptotically optimal
since the coupon collector problem indicates that t∗ = Ω(m ln m).

∗The author can be contacted via email at lukejamesoconnor@gmail.com.
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1 Introduction

Traffic analysis is a collection of techniques for inferring communication relationships
without having access to the content that is being communicated. Traffic confirmation
is a special subcase that attempts to infer communication relationships amongst users
whose communications are mediated through an anonymity system. We assume that that
the underlying anonymity system is a threshold MIX, with batch size b, supporting N
participants, each of whom may act as both a sender or receiver. We consider the class of
traffic confirmation attacks where an attacker targets a specific user Alice and attempts
to infer her communication partners from observing her communication patterns through
the MIX. The attacker is assumed to be a global passive adversary, and is therefore able
to determine the set of senders and receivers for each message set (batch) submitted to
the MIX. Let RA be the set of Alice’s communicating partners where |RA| = m, and let
H(RA | Bt) be the entropy of RA after observing t rounds of the MIX. Intuition suggests
that H(RA | Bt) will tend to zero as t increases since the attacker can ignore message
sets where Alice is not a sender.

Our main results are to express the rate at which the anonymity of Alice (as measured
by RA) degrades over time as a function of the main parameters N , b and m. Assuming
m, b <

√
N , we prove that there is a threshold t∗ = O(m ln N) such that when t =

t∗ + 5cm, for any integer c > 0, then

Pr(H(RA | Bt) = 0) > 1− e−c, (2)

where the probabilities are computed over the random communication model (RCM) [1].
This result has the following interpretation. Once the attacker has collected a threshold
t∗ of messages sets, each additional 5m message sets collected decreases H(RA | Bt)
towards zero at a geometric rate governed by 1/e. The constant 5 is an upper bound and
can be improved in practice. Using the benchmarking parameters N = 20, 000, b = 50
and m = 20, our results yield that when t = 292 + 22c the bound of (2) applies. When
t = 292 + 22 · 10 = 512, for example, then Pr(H(RA | B512) = 0) > 0.9999.

With a threshold of t∗ = O(m ln N), the number of messages required to identify the
communicating partners of Alice increases as the number of participants increases, albeit
only logarithmically. This is somewhat counterintuitive since larger values of N should
actually decrease the likelihood of having hitting sets different from RA. We show that if
N > O(bm ln m) then the threshold can be improved to t∗ = O(m(ln b+ ln m)), which is
independent of N . Further, if b = O(m) then the threshold simplifies to t∗ = O(m ln m)
and this bound is asymptotically optimal since the coupon collector problem indicates
that t∗ = Ω(m ln m).

The motivation for our work was to investigate if there are relatively simple rela-
tionships between the main parameters and the level of anonymity they provided as the
number of observations by the attacker increases. Previous work on traffic confirmation

2



[5, 1, 2, 3, 6, 7] has not convincingly undercovered these fundamental relationships in
a manner that is instructive for both system users and designers. This is somewhat
surprising given the simplicity and symmetry of the RCM. Some of the previous work
might be best described as “proof by plotting”, often because the bounds on degrading
anonymity are derived from system simulation or the evaluation of complex formula that
have no known closed form.

2 Preliminaries

Let the total set of communicating users be U , where |U| = N and N is large, say
at least several tens of thousands. The set of potential senders will be denoted as S
and similarly define R for the recipients. We assume that |S| = |R| = N , meaning
that each user may send sender or receive messages. For each sender S, let RS ⊂ R
denote the communicating partners of S. Communication between the users is mediated
by a MIX that operates over a series of rounds, indexed by a parameter t ≥ 1 which
can be thought of as symbolizing time. At each round the MIX collects a message set
(batch) Bt consisting of b messages sent by a collection of senders St. After processing
the MIX delivers the messages of Bt to a collection of recipients Rt. It is assumed that
the MIX perfectly hides the communication patterns between the members of St and Rt.
The value of b = |Bt| is referred to as the threshold of the MIX. When an example is
helpful to clarify a point we will use N = 20, 000, b = 50 and m = 20, which will be
referred to as the standard parameters. These parameters have been used for previously
for benchmarking search algorithms [5, 1, 6].

The attacker is assumed to be a global passive adversary, and can therefore determine
St and Rt for each message set Bt collected by the MIX. A collection of t message sets
observed by the attacker will be denoted as Bt = {B1, B2, . . . , Bt}, where each Bi corre-
sponds to a batch. To analyze traffic confirmation attacks we also require a model of the
traffic patterns amongst the users of the MIX. We will adopt the random communication
model (RCM) as proposed in [1], which has been used to study the disclosure attack for
example. The defining properties of the model are:

• Each message batch is Bt formed by b distinct senders, which determines a receiver
set Rt for the batch.

• When a sender, other than Alice, sends a message then the recipient is chosen
uniformly amongst all N users.

• The user targetted by the attacker, Alice, has m regular communicating peers,
denoted by RA = {A1, A2, . . . , Am } ⊂ R. The recipient of each message sent by
Alice is chosen uniformly from RA.
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• The attacker is able to observe the set of senders for each message batch Bt, and
the corresponding set of recipients for Rt.

The last property of the RCM enables an attacker to discard all message batches where
Alice is not a sender, and to focus on recipient sets that are guaranteed to contain at
least one communicating peer of Alice. That is, the attacker can restrict their attention
to message batches Bt for which Rt ∩ RA 6= ∅. Our analysis will rely extensively on
probabilistic arguments, and the relevant probability space will always be defined over
the random choices for recipients as defined by the RCM. If Z is some property of a
collection of message sets Bt, then we will use the notation Pr(Z | Bt) to denote the
probability that Bt has property Z according to the recipient choices of the RCM.

3 Entropy and Hitting Sets

We are interested in deriving a bound on the number message sets that must be observed
by an attacker in the RCM to determine RA with high probability. Let H(RA | Bt)
be the conditional entropy of RA given a collection of t ≥ 1 message sets Bt generated
according to the RCM. A fundamental question is to determine how H(RA | Bt) evolves
as a function of increasing t. By definition an attacker has sufficient information from Bt

to compromise RA if H(RA | Bt) = 0. However, for any value of t there exist message
sets such that H(RA | Bt) > 0.

Lemma 3.1 For all t, Pr(|Hm(Bt)| = 1) > 1.

Proof. If |RA(Bt)| = k < m then a proper subset of RA is a hitting set for Bt, and this
set can be extended to

(
N−k
m−k

)
> 1 hitting sets of size m for Bt. The probability that Alice

fails to send to all of her recipients in t messages is greater than (1− 1/m)t > 0. ¤

Thus an attacker can never be certain that collecting a particular number of messages
sets Bt will in fact compromise RA. On the other hand, if the attacker can determine a
value of t such that Pr(H(RA | Bt) = 0) is sufficiently small, an attack can be undertaken
on the (grounded) assumption that most collections of t message sets will compromise
RA. The probabilities are defined over the (random) choices of the senders for their
recipients according to the RCM.

Let M1,M2, . . . , Mn be the n =
(

N
m

)
distinct m-sets of N recipients. Then H(RA | Bt)

is defined as

H(RA | Bt) = −
∑
Mi

Pr(Mi = RA | Bt) · log(Pr(Mi = RA | Bt)). (3)

Evaluating the probabilities Pr(Mi = RA | Bt) exactly may be difficult, and will be
unnecessary for our purposes. In fact it will be sufficient to use the hitting set test, as
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first suggested in [6], to distinguish between the zero and non-zero terms of (3). The
m-set Mi is a hitting set for Bt if Mi ∩ Bj 6= ∅ for each Bj ∈ Bt, and let Hm(Bt) denote
all hitting sets of size m for Bt. If Mi ∈ Hm(Bt) then Pr(Mi = RA | Bt) > 0, as there is
no evidence to exclude Mi as a candidate for RA. On the other hand, if Mi 6∈ Hm(Bt)
then clearly Pr(Mi = RA | Bt) = 0. We can therefore bound H(RA | Bt) as a function
of |Hm(Bt)|.
Lemma 3.2 H(RA | Bt) ≤ log(|Hm(Bt)|).
Proof. If |Hm(Bt)| = s then there are s non-zero points in the probability space of (3).
The maximal entropy on any discrete space with s non-zero probabilities is less than
log(s). ¤

Since Alice is a sender in all observed message sets, then RA is always a hitting set
for Bt, and it follows that |Hm(Bt)| ≥ 1 for all t ≥ 1. If |Hm(Bt)| = 1 then we will say
that there is a unique hitting set for Bt, which by Lemma 3.2 implies H(RA | Bt) = 0.
We now show that the probability of a unique hitting manifesting for Bt tends to one as
t increases.

Lemma 3.3 Pr(|Hm(Bt)| = 1) → 1 as t →∞.

Proof. Each message set consists of one message from Alice and b− 1 messages from her
peer senders. The probability that a given peer sender selects a recipient not included
in Mi is (1 −m/N) < 1. Since Mi 6= RA then Alice selects a recipient not in Mi with
probability at least 1/m. Then set p to be

p = 1− 1

m

(
1− m

N

)b−1

. (4)

Clearly p < 1 and observe that Pr(Mi ∈ H(Bt)) ≤ pt for all Mi 6= RA. Then as t →∞,

Pr(|Hm(Bt)| > 1) ≤
∑

Mi 6=RA

Pr(Mi ∈ Hm(Bt)) < pt ·
(

N

m

)
→ 0. (5)

The proof now follows since Pr(|Hm(Bt)| = 1) = 1− Pr(|Hm(Bt)| > 1). ¤

To prove the lemma it would have been sufficient to merely observe that p must be
less than one. However since we have given the exact value of p in (4), we can provide a
coarse upper bound on the number of observations required to compromise the recipients
of Alice with an arbitrarily high probability.

Lemma 3.4 Let d = (1 −m/N)b−1 and let t∗ = m2 ln N/d. If t = t∗ + cm/d, for some
constant c > 0, then

Pr(H(RA | Bt) = 0) > 1− e−c. (6)
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Proof. Recalling that (1− x) ≤ e−x, p may be bound p ≤ e−d/m. Then

Pr(|Hm(Bt)| > 1) < pt ·Nm ≤ exp

(
m ln N − dt

m

)
. (7)

Define t∗ = m2 ln N/d and observe that pt ·Nm < 1 when t = t∗. Letting t = t∗ + cm/d,
for some constant c > 0, it than follows that

Pr(|Hm(Bt)| > 1) < e−c. (8)

The lemma follows since Pr(H(RA | Bt) = 0) = 1− Pr(|Hm(Bt)| > 1). ¤

We can state the result of the lemma informally as follows. After O(m2 ln N) mes-
sages have been sent by Alice, the anonymity of her recipient set decreases exponentially
towards zero for each additional O(m) messages that she sends. For the standard pa-
rameters N = 20, 000, b = 50 and m = 20, the lemma yields that dt∗e = 4161 and
dm/de = 22. Thus when t = 4161 + 22c, c > 0, the probability that H(RA) is zero is
greater than 1− e−c.

4 A General Bound

In this section we improve show how to improve the previous threshold by a factor of
m from t∗ = O(m2 ln N) to t∗ = O(m ln N). This is achieved by replacing the single
probability p with m probabilities tailored to the size of the intersection each m-set has
with RA.

Theorem 4.1 Let Hm = |Hm(Bt)−RA| be the number of hitting sets of size m for Bt

that are distinct from RA. Then for t ≥ 1,

E[Hm] =
m−1∑

k=0

(
m

k

)(
N −m

m− k

) (
1−

(
1− k

m

)(
N −m

N

)b−1
)t

. (9)

Proof. Let M1,M2, . . . , Mn be the n =
(

N
m

)
m-sets of the N recipients. These m-sets can

be partitioned according to the number of recipients k, 0 ≤ k ≤ m, that each Mi has
in common with RA. Consider a specific m-set Mi such that |Mi ∩ RA| = k < m. If
Mi ∩ Bj = ∅ then both Alice and the peer senders selected recipients distinct from Mi,
and these independent events jointly occur with probability

qk =

(
1− k

m

)(
N −m

N

)b−1

. (10)
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Thus Pr(Mi ∩ Bj 6= ∅) = 1 − qk and Pr(Mi ∈ H(Bt)) = (1 − qk)
t since message sets are

generated identically and independently. Since there are
(

m
k

)(
N−m
m−k

)
m-sets Mi such that

|Mi ∩RA| = k, then

E[Hm] =
∑

Mi 6=RA

Pr(Mi ∈ H(Bt)) =
m−1∑

k=0

(
m

k

)(
N −m

m− k

)
(1− qk)

t. (11)

Substituting (10) into (11) completes the proof. ¤

By definition Hm = 0 implies H(RA | Bt) = 0, and if E[Hm] → 0 as a function of
t, then Pr(Hm = 0) → 1 since

Pr(Hm = 0) = 1− Pr(Hm ≥ 1) ≥ 1− E[Hm]. (12)

However it is clear that E[Hm] → 0 for increasing t since the binomial terms of (9) are
independent of t, and each term (1− qk) is less than 1. Evaluating E[Hm] directly for the
standard parameters N = 20, 000, b = 50 and m = 20, yields that the smallest value of t
for which E[Hm] < 1 is t∗ = 268 (a significant reduction from the corresponding bound
t∗ = 4161 given in previous section from Lemma 7).

We now use E[Hm] to bound the convergence of H(RA | Bt) to zero.

Theorem 4.2 Let d = (1−m/N)b−1 and let t∗ = m(ln N +ln m+1)/d. If t = t∗+cm/d,
for some constant c > 0, then

Pr(H(RA | Bt) = 0) > 1− e−c. (13)

Proof. We begin by bounding the binomial and (1 − qk)
t terms in (9). Combining the

bounds
(

n
k

) ≤ (ne/k)k and
(

n
k

) ≤ nk, and recalling that
(

n
k

)
=

(
n

n−k

)
, it follows that

(
m

k

)(
N −m

m− k

)
≤ (Nm)m−k ·min

{
1,

(
e

m− k

)2(m−k)
}

. (14)

Also since (1− qk)
t can be bound as

(1− qk)
t =

(
1− d(m− k)

m

)t

< exp

(
−td(m− k)

m

)
(15)

it follows that (1− qk)
t < (Nm)k−m when t = m(ln N + ln m)/d. Combining this result

with (14) yields that

E[Hm] =
m−1∑

k=0

(
m

k

)(
N −m

m− k

)
(1− qk)

m(ln N+ln m)/d
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<

m−1∑

k=m−2

1 +
m−3∑

k=0

(
e

m− k

)2(m−k)

< 2 +
(e

3

)6

+
m−4∑

k=0

(e

4

)2(m−k)

= 2.5534 +
m−4∑

k=0

(
e2

16

)m−k

< 2.5534 +
∑

k≥0

(
e2

16

)k

−
3∑

k=0

(
e2

16

)k

= 2.6379

< e.

Thus when t > m(ln N + ln m)/d, it follows that E[Hm] can be bounded as

E[Hm] < e ·
[
max

k
(1− qk)

]t−m(ln N+ln m)/d

. (16)

But from (15) we see that

max
k

(1− qk) = (1− qm−1) < e−d/m. (17)

Finally, let t∗ = m(ln N + ln m)/d + m/d and set t = t∗ + cm/d for some constant c > 0.
Then substituting (17) into (16) yields that

E[Hm] < e · (1− qm−1)
m/d+cm/d < (e−d/m)cm/d = e−c. (18)

The proof is completed by recalling that Pr(|Hm(Bt)| = 1) = Pr(Hm = 0) and then
applying (12). ¤

What Theorem 4.2 actually shows that the rate at which E[Hm] → 0 is essentially
governed by the rate at which m(N −m)(1 − qm−1)

t → 0. This is to be expected since
the m-sets corresponding to (1− qm−1)

t are those m-sets that differ from RA by only a
single recipient, and intuitively these m-sets require the largest number of observations
to eliminate as false positives. We can simplify the results of Theorem 4.2 by replacing
d with a constant.

Corollary 4.1 When m, b <
√

N then 1/d < 5 and t∗ = O(m ln N).

Proof. Observe that if d ≥ z then 1/d ≤ 1/z. Recalling that (1 − x) ≥ e−x−x2/2 for all
0 ≤ x ≤ 1/2 then (1 − m/N) ≥ exp(−m/N −m2/(2N2)) since m <

√
N . Then since
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mb < N it follows that

1/d ≤ exp

(
bm

N
+

bm2

2N2

)
≤ exp (1 + 1/2) < 5. (19)

Then t∗ = O(m ln N) since t∗ < 5m(ln N + ln m + 1). ¤

For the standard parameters the relevant values are 1/d = 1.05024, t∗ = 292 and
dm/de = 22. Thus when t = 292 + 22c, c > 0, the probability that H(RA) is zero is
greater than 1−e−c. Table 1 shows the smallest values of c for which (1−e−c) ≥ 1−10k,
1 ≤ k ≤ 6. For example, consider the row c = 10 corresponding to t = 292+22 ·10 = 512
observations. In this case e−c = 0.45399×10−4 which shows that there is a 99.99% chance
H(RA) is zero since 1 − e−c > 1 − 10−4. Theorem 4.2 bounds E[Hm] by e−c when the
number of observation exceeds t∗, and Table 1 also includes a comparison between these
two values.

c t∗ + cm e−c E[Hm] e−c/E[Hm] Pr(H(RA | Bt) = 0)
3 358 0.49787× 10−1 0.10425× 10−1 4.7752 > 0.9
5 402 0.67379× 10−2 0.12179× 10−2 5.5323 > 0.99
7 446 0.91188× 10−3 0.14238× 10−3 6.4042 > 0.999
10 512 0.45399× 10−4 0.56925× 10−5 7.9752 > 0.9999
12 556 0.61442× 10−5 0.66558× 10−6 9.2312 > 0.99999
14 600 0.83152× 10−6 0.77821× 10−7 10.685 > 0.999999

Table 1: Lower bounds on Pr(H(RA | Bt) = 0) using the standard parameters.

5 A Bound independent of N

With a threshold of t∗ = O(m ln N), the number of messages required to identify the
communicating partners of Alice increases as the number of participants increases, albeit
only logarithmically. This is somewhat counterintuitive since larger values of N should
actually decrease the likelihood of finding hitting sets different from RA. Consider an
attacker who has observed t message sets Bt that determines a set of receivers Rt. Our
main observation is that if t is sufficiently large so that RA ⊆ Rt with high probability,
then it may be more efficient to apply the hitting set test to m-sets from Rt rather than
to m-sets from all possible N receivers. In this section we show that if N > O(bm ln m)
then considering the receivers of Rt is a better strategy, and N can be eliminated from
the threshold to yield t∗ = O(m(ln b + ln m)).
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According to the RCM, Alice selects her communicating partners uniformly and at
random for each message. Therefore the number of messages that she needs to send before
each of the recipients receives at least one message is an example of the coupon collector
problem [4]. The coupon collector problem considers the number Xn of uniform samples
(with replacement) required to observe each of n items at least once. It is well-known [8]
that E[Xn] = n ln n + O(n) and that for any real constant c > 0,

lim
n→∞

Pr(|Xn − n ln n| ≤ cn) = e−ec − e−e−c

(20)

When required, the exact distribution of Xn can be computed via

Pr(Xn ≤ t) =
n∑

k=0

(
n

k

)(
1− k

n

)t

(−1)k = 1−
n∑

k=1

(
n

k

)(
1− k

n

)t

(−1)k. (21)

For the standard parameters N = 20, 000, b = 50 and m = 20, we can then determine
that if Alice sends 150 messages then each of her 20 recipients receives at least one
message with probability greater than 0.99. Thus the attacker need only consider m-sets
from amongst at most 50 · 150 = 7500 recipients, rather than the full 20,000 potentials
recipients, to succeed with high probability. We will also use the following simple non-
asymptotic bound

Pr(Xn > t) < m (1− 1/m)t < exp

(
ln m− t

m

)
. (22)

Defining tα as t = αm ln m, it then follows that Pr(RA 6⊆ Rt) ≥ 1 −m−(α−1). We can
now recast the threshold of Theorem 4.2 to be independent of N .

Theorem 5.1 Let α be a constant α > 1 and let d = (1 − m/N)b−1. Let t∗ = tα +
m(ln(b · tα) + ln m + 1)/d. Assuming that m, b <

√
N , then when t = t∗ + tα−1/d

Pr(H(RA | Bt = 0) > 1− 2

mα−1
. (23)

Proof. After observing the first tα message sets, the attacker then collects additional
message sets and constructs candidate m-sets only from Rtα . Let E[Hm] be the expected
number of such hittings sets generated by this process. Then

E[Hm] =
m−1∑

k=0

(
m

k

)(
b · tα −m

m− k

)(
1−

(
1− k

m

) (
1− m

N

)b−1
)t−tα

. (24)
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Now if RA ∈ Rtα , then the rate at which E[Hm] → 0 follows the same asymptotics as in
Theorem 4.2 except that N is replaced by b · tα in a binomial term of24) . To complete
the proof we need only bound Pr(H(RA | Bt = 0), which can be done as follows

Pr(H(RA | Bt = 0) = Pr(RA ⊆ Rtα) · Pr(H(RA | Bt−tα = 0) (25)

>

(
1− 1

mα−1

)(
1− 1

mα−1

)

> 1− 2

mα−1
.

The bound on Pr(H(RA | Bt−tα = 0) follows by substituting c = (α−1) ln m into (13). ¤

Corollary 5.1 Let α be a constant α > 1 and let mb < N . If b = O(m) then t∗ =
O(m ln m) and this bound is aymptotically optimal.

Proof. Corollary 4.1 applies when mb < N and therefore 1/d is a bound by a constant.
Since tα = O(m ln m) and ln(b · tα) = O(ln b+ln m) then t∗ = O(m(ln b+ln m)). Finally,
if b = O(m) the threshold simplifies to t∗ = O(m ln m) and this bound is asymptotically
optimal since the coupon collector problem indicates that t∗ = Ω(m ln m). ¤

For the last time, consider the standard parameters N = 20, 000, b = 50 and m = 20,

dm ln me α tα Pr(RA ⊆ Rtα) t∗ tα−1/d t Pr(H(RA | Bt = 0)
60 2 120 0.958 185 127 432 0.900
60 3 180 0.998 194 190 564 0.995
60 4 240 0.9999 200 253 693 0.999

Table 2: Parameters from Theorem (5.1) using the standard parameters.

and the relevant parameters from Theorem (5.1) are shown in Table 2 for a few values
value of α. If we compare these results to Table 1, we actually see that less messages are
required using the previous t∗ = O(m ln N) bound than the bound from Theorem (5.1).
The reason for this is that the bound Theorem (5.1) only uses the first tα message sets
to determine a recipient set, and does not apply the hitting set test to filter candidate
m-sets. We are working on a model that can use all observed message sets for hitting set
filtering.

6 Conclusion

Traffic confirmation attacks remain a common approach to assess how the level of anonymity
in a given anonymity system changes over time. Since most practical systems leak in-
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formation over time, anonymity degrades with the number of observations made on the
system. The inherent structure of the rate at which leakage occurs follows a thresh-
old and tail structure from the coupon collector problem - a certain minimum number
of messages are required to observe most of RA and then some additional observations
(the tail) are required to gather the remaining recipients. The basic coupon collector
threshold is t∗ = O(m ln m). The coupon collector problem corresponds to a traffic
confirmation problem where b = 1. For larger (and more practical values) of b the
threshold increases as the number of participants N increases but then reaches a limit
since participants not contained in RA are less likely to be observed as recipients. We
have shown that t∗ = O(m ln N) is a general threshold applicable when mb < N and
t∗ = O(m(ln b + ln m)) is appropriate threshold for N larger than O(bm ln m). In both
cases the rate at which H(RA | Bt) converges to zero beyond the respective thresholds is
the same, and is governed by

p = 1− 1

m

(
1− m

N

)b−1

= 1− d

m

where d tends to a constant with increasing N .
Our results rely on the presence of an global passive adversary, the symmetry and

simplicity of the RCM as well as the structure provided by threshold mixes with respect
to hitting set attacks. All, or any, of these assumptions can be criticized as being imprac-
tical or unrealistic, and we willingly accept such criticism. Our results are designed to
show relatively simple relationships between the main system parameters N, b,m and the
anonymity provided by threshold mixes against targetted traffic conformation attacks.
Previously work on this topic has not convincingly undercovered these fundamental re-
lationships in a manner that is instructive for both system users and designers. With a
rigorous analysis of a simple system completed we can now consider more complicated
systems that use more complex traffic models, weaker adversaries or more sophisticated
anonymity mechanisms such as pool mixes.

Our approach has focussed on the degradation of H(RA | Bt) as a function of in-
creasing t. Since we have used an information-theoretic approach then our bounds do
not give an indication of the amount of work that must be undertaken to recover RA

when its entropy is practically zero. We are currently working on a new analysis of the
statistical disclosure attack, based on Chernoff bounds, which we hope will show that
t∗ = O(m ln N) is also a threshold for distinguishing RA from all recipients based on
simple counting arguments.
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