Copyright ©) 1996 TEEE. See full copyright notice at Table of Contents.

Mixing Email with BABEL

Ceki Gulcu

Gene Tsudik

IBM Research Division, Ziirich Research Laboratory
Saumerstrasse 4, CH-8803 Riischlikon
Switzerland
email: gts@zurich.ibm.com

tel +41.1.724-8308

Abstract

Increasingly large numbers of people communicate today via
electronic means such as email or news forums. One of the basic
properties of the current electronic communication means is the
identification of the end-points. However, at times it is desirable
or even critical to hide the identity and/or whereabouts of the
end-points (e.g., human users) involved.

This paper discusses the goals and desired properties of
anonymous email in general and introduces the design and
salient features of Babel anonymous remailer. Babel allows
email users to converse electronically while remaining anony-
mous with respect to each other and to other — even hostile —
parties. A range of attacks and corresponding countermeasures
is considered. An attempt is made to formalize and quantify
certain dimensions of anonymity and untraceable communica-
tion.

Keywords: security, email, mix, anonymity, untraceability,
traffic analysis, remailer

1 Introduction

Explosive growth and proliferation of the global
Internet in the past decade allowed millions of peo-
ple to communicate via electronic mail. In many re-
spects, email is rapidly replacing traditional paper
mail. Email 1s not only fast and convenient but also —
at least for the time being — free of charge for a large
segment of users.

There are, however, some aspects of email that can
be improved upon. First, most of today’s Internet
email is not very secure. Sender authentication, non-
repudiation, data integrity and privacy are some of the
basic ingredients of secure email. While basic email se-
curity 1s addressed to some extent by recent offerings
such as PGP [35] and PEM [16], their acceptance is far
from universal. Another important feature missing in
current email 18 support for anonymity and untrace-
ability of users. In the Internet milieu, it is quite un-
realistic to expect any security features of the under-
lying network; eavesdroppers can easily record email
messages and gather addressing information. Tradi-
tional paper mail, in contrast, allows one to send an
envelope with a printed destination address and no
return address. This, coupled with other common-
sense precautions, can make the sender untraceable
and anonymous; police and sleuth fiction to the con-
trary notwithstanding.

fax +41.1.710-3608

In this paper we discuss the goals and desired prop-
erties of anonymous email and then describe the design
and features of the BABEL— an anonymous remailer
developed at IBM Zurich Research Laboratory. In
brief, our approach is based on a special entity called
a "mix”. The concept of a mix was first introduced
by Chaum [2] in the early eighties. A mix can be
viewed as a logical component (e.g., application layer
software) that forwards email messages and — in the
process — obfuscates the relationship between incom-
ing and outgoing message traffic.

The paper is organized as follows. In the next sec-
tion we begin by motivating the need for anonymity,
briefly reviewing previous work and describing the
goals of anonymous/untraceable email. Then, in Sec-
tion 3 we introduce the concept of a mix and consider
the threats it faces. Sections 4, 5 and 6 are devoted
to the technical discussion of BABEL anonymous re-
mailer. Section 7 presents an attempt to quantify
some measures of anonymity. Finally, Section 8 de-
scribes the salient implementation issues.

2 Motivation

It is no surprise that untraceable communication
is a highly-charged and, at times, even controversial,
topic [1, 18, 22, 23]. Anonymous email is an anath-
ema to some people. This reputation is due largely to
the possible abuses of anonymity for the purposes of
spreading libelous accusations, hate-filled propaganda,
pornography and other unpleasant content.

At the same time, anonymous mail has its legiti-
mate and benign uses. We divide these into four main
categories:!

1. Discussion of sensitive and personal issues

2. Information searches

3. Freedom of speech in intolerant environments
4. Polling/Surveying

Many people in need of counseling or therapy, such
as victims of sexual, alcohol or drug abuse, can receive
support and counseling electronically while remaining
anonymous. For example, a victim of abuse would

I The list is not meant to be exhaustive.

probably be reluctant to participate in on-line ther-
apy sessions if there was a chance that someone they
knew was ”listening”. Thus it 1s often critical for the
identity of the user to remain secret. This need is also
widely recognized by the medical profession.

We often seek information anonymously in the
course of our everyday life. For example, an employee
of one company may inquire about a job opening at
another (perhaps competing) company; the need for

anonymity is obvious.? Furthermore, people often
seek information from sources that, should the identity
of the seeker become known, would act in a manner
not agreeable to the seeker. For example, a consumer
might like to browse a number of electronic shops and
compare prices before making a purchase. If the con-
sumer’s identity were revealed, the visited shops could
place his name/address on their mailing lists and start
bombarding his mailbox with unwanted “junk” email.
There are other everyday cases where anonymity is an
integral part of a transaction.

On a more somber note, there are still, alas, a num-
ber of totalitarian regimes in the world; places where
nonviolent (e.g., verbal) opposition or dissent can have
serious consequences including imprisonment, torture
and death. Furthermore, even in the free world, there
are intolerant and fanatical groups that violently and
virulently harass critics for mere opinions. Examples
abound. ..

In the same vein, there are also many well-known
situations in which an individual may feel compelled
to report corruption, criminal behavior or other mis-
deeds. In such cases, being anonymous means being
safe from varying degrees of retribution.

Another useful, albeit rather non-controversial, ap-
plication of anonymous email is in the area of polling
and surveying. There are a number of organizations
specializing in opinion surveys on a wide variety of
topics. Participants’ anonymity is one of the basic
features of this activity.

Admittedly, the fundamental motivation for hiding
one’s identification is the fear of retribution (either
rightful or wrongful.) Tt is not the goal of this paper
to partake in the currently on-going debate on privacy
and anonymity on the Internet. We only note that
anonymity is an optional (and mostly legal) part of
regular, paper mail. Obviously, it can be misused,
yet there are no great debates on banning anonymous
usage of paper mail. Drawing a boundary between use
and abuse of technology is a complicated philosophical
matter; it is not treated in this paper.

2.1 Previous work

The first and the most authoritative paper to-date
dealing with anonymous communication was pub-
lished by D. Chaum in 1981 [2]. The BABEL re-
mailer described in this report owes much to his ideas.
Chaum also invented the DC-network [4] which pro-
vides unconditional untraceability commensurate with
high bandwidth overhead. Pfitzmann and Waidner

2This example is of proactive job search; it is different
from the usual reactive search whereby the job descriptions are
broadcasted to the "masses”, e.g., by posting in appropriate
newsgroups.

have also done a considerable amount of work on
anonymity and untraceable communication in LAN
and ISDN environments. [24, 26, 25, 27].

The oldest and (currently) most widely-used anony-
mous remailer 1s located in Finland. It is called Penet
and is operated by J. Helsingius. Penet performs the
following functions:

It strips off all header information of the incom-
g mail before forwarding it to its final destination.
Then, if not already assigned, an alias for the sender
1s created. In the outgoing message, the address of the
sender is replaced by an alias. The alias allows the
recipient(s) of the message to reply to the real sender
without knowing his identity.

The demand on the Penet remailer is quite high:
over 7,000 messages are sent daily. The alias database
contains 200,000 entries [11]. Recently, Penet has be-
come the subject of some controversy?.

The second brand of remailers are promoted by a
group called cypherpunks [12]. There are about 20
publicly available cypherpunk remailers. These remail-
ers offer some of the basic functionality described in
this paper. Although they share the same code base,
each differs in minor ways; some allow posting to news-
groups while others do not, some do not accept PGP
encrypted messages; some even use different formats.
Their lack of a unified modus operandi complicates
their use and hinders their acceptance. The Mizmas-
ter [7] remailer written by L. Cottrell is a significant
step forward as 1t constitutes the first true mix.

2.2 Overview of desired properties

We begin the technical discussion by enumerating
the desired properties of anonymous mail.

1. Anyone able to send email should be able to do
so anonymously.

2. Tt should be impossible (or, at least, computation-
ally hard) to determine the originator of anony-
mous mail.

3. The receiver(s) of anonymous mail can reply to
the sender, who remains anonymous. Moreover,
receiver(s) may reply with multiple messages. (It
is important to note that someone replying to an
anonymous message, by definition, sacrifices some
anonymity because the original sender ”knows”
the intended receiver(s) and can correlate a reply

with an earlier message.*)

4. Individual remailers intervening in anonymizing
messages should be trusted as little as possible.

30n February 8, 1995, based on a burglary report filed with
the Los Angeles police, transmitted by Interpol, Finnish police
presented Helsingius a warrant for search and seizure. Bound
to do so by law, he complied, thereby revealing the electronic
address of a single user.

4However, some degree of anonymity can be preserved. For
example, a reply to an anonymous newsgroup post only reveals
the newgroup to the original poster; the identity of the replying
party remains secret.

The anonymity of the end-points should be pre-
served even if a number of intervening entities
collude or are subverted.

5. The remailer infrastructure should be resistant to
both passive and active attacks. (This property
is elaborated on below.)

6. The sender of anonymous email can (anony-
mously) obtain confirmation that it has been
properly processed by the remailer system.

7. Anonymous email should not overload the global
email infrastructure. (For example, if anonymity
requires generation of email noise its volume

should be kept low.)

2.3 Notation

The following notation is used throughout the re-
mainder of the paper:

M message; sequence of ASCII bits
Ez(M) encryption of M with X’s public key
Dy(M) decryption of M with X’s private key
K{M?} conventional encryption of M with key K
(M1, M2) concatenation of My and M,
¢ X’s email address.
[M]Q padding string M to length €2
(by appending random bits)
LMJQ trimming string M to length €
(by removing trailing bits)

3 MIX - fundamental building block

As already mentioned, an anonymous remailer, or a
mix, is an entity that, in addition to forwarding incom-
ing messages, strives to hide the relationship between
incoming and outgoing message traffic. (See Figure
1.)

In our model we assume the existence of a powerful
adversary — Eve — capable of recording, removing or
altering packets entering or leaving a mix. Eve is also
able to generate spurious messages.

Alice ¢ Mix Bob

Eve

Figure 1: Basic Model

A mix functions according to the following princi-
ple [2]. Suppose Alice wishes to send message M to
Bob anonymously. She submits a specially composed
message [to the mix. [includes M and Bob’s net-
work address. It is intelligible only to the mix. A
transformed version of I, called O, is forwarded by
the mix to Bob. Ideally the relation between the in-
coming message, I, and the outgoing message, O, is
obfuscated. Thus, Eve is unable to connect Alice to
Bob. This kind of anonymity is called “unlinkability
of sender and recipient”[27].

There are two ways for Eve to correlate incoming
and outgoing messages: i) by contents, i.e., message
data or message size, or, i1) by causality, i.e., by asso-
ciating time of message arrival with that of its depar-
ture.

In general, content correlation can be addressed by
using standard cryptographic techniques along with
padding. Causal correlation can be easily countered if
the incoming traffic volume is sufficiently high. In the
next section we focus on making content and causal
correlation difficult.

3.1 Passive attacks

This section addresses so-called passive attacks, 1.e.
those that can be carried out by merely observing mes-
sage traffic.

3.1.1 Content correlation

Two elements can help in content correlation: ac-
tual content and length. For prevention it suffices that
all messages to/from a mix be encrypted and be of
uniform length. We denote this length by Q.

The user encrypts his message M and the destina-
tion address Apgp with the mix’s public key. Thus,

I = Enix(Apob, M) where Ay, is Bob’s network
address.

Upon receipt and successful decryption of I, the
string (Apob, M) is be revealed. The output mes-
sage O, consisting of M (in cleartext) and other data
added by the underlying communications network, is
forwarded to Bob at Apy,. Eve may attempt to cor-
relate O and I by comparing Fnix(Apon, M) and [.
To outwit Eve, random one-time ”salt” must factored
into the encryption to ensure that successive encryp-
tions of the same message yield different results.

In hybrid systems based on both public and con-
ventional key encryption the random string might be
unnecessary. Such systems typically use a random ses-
sion key to encrypt user data with a symmetric key
algorithm and a public key encryption algorithm to
encrypt the random session key. Each encryption with
a public key uses a different session key, which is re-
vealed only to the owner of the private key (the mix
in this particular case). Thus, Eve is unable to corre-
late I and O even though she is able to re-encrypt

(Apoh, M). The re-encryption results in I', which
bears no resemblance to I; refer to [26] for crypto-
graphic attacks on straight-RSA implementation of
mixes.

In order to avoid size correlation, message sizes
must be constant throughout the entire mix network.
Message size uniformity can be achieved by padding
to a constant length () with random data. Although

seemingly innocuous, padding is an important issue
and greatly influences the implementation of a mix.
A detailed discussion of this issue is postponed until
Section 6.

Note that the security of the system is based on the
integrity of a mix. In a single-mix architecture, if the
mix 1s somehow forced to reveal its private key, identi-
ties of users can be compromised. Multiple mixes can
be used to increase the security of the whole system.
This is discussed in the following sections.

3.1.2 Time correlation

Obviously, there is a strong causal relationship be-
tween the incoming and outgoing messages. This rela-
tionship can be exploited by Eve. One simple solution
is to output messages in batches, as outlined in [2].
In this scheme, at least N input messages are accu-
mulated before being forwarded in random order. N
is called the minimum batch size. We refer to this
scheme as normal or regular batching.

Under low load conditions, incoming messages may
be so scarce that a batch of size N cannot be formed
within a reasonable time. Sending out random-looking
decoy messages to random destinations solves (or at
least alleviates) the problem. Decoys are indistin-
guishable from normal messages except that they are
immediately discarded by their recipients after decryp-
tion.

In an enhanced scheme, called interval batching, we
divide time into equal periods of length 7. Let n be
the number of incoming messages in a given period.
The following procedure is performed at the end of
each period:

normal batching ifn> N
N — n decoys followed by batching if 0 <n <N

This approach guarantees that a message will be de-
layed at most T units of time by a mix. Note
that batching messages introduces a risk because
anonymity then depends on the behavior of other
users. This external dependence can pave the way
for other attacks (see Section 3.2.1.)

Another popular approach to solving the time cor-
relation problem involves introducing a random delay
for each message. This randomness makes the system
nondeterministic but not necessarily safer. We avoid
this venue.

3.2 Active attacks

In this section we discuss active attacks, i.e. those
involving direct modifications to message flow, by al-
tering, inserting, delaying and even deleting, mes-
sages.

3.2.1 Isolate & Identify

If regular batching is used, Eve may submit a num-
ber of messages to a mix, forming an almost complete
batch, with only one message missing. Upon arrival
of a genuine message, the entire batch is forwarded
and Eve can simply pick out the message she did not
generate [27]. Note that, although the genuine mes-
sage may be encrypted, Eve is able to correlate the
genuine message with its outgoing counterpart. The
mix 18 thus considered defeated.

In the interval-based batching approach, flooding
a mix 18 useless if genuine traffic is heavy. However,
when few legitimate messages arrive in a given inter-
val, flooding causes the mix to believe that decoys are
unnecessary. Eve might even remove or rearrange mes-
sages so that one real message trickles into the mix per
period. Then, by injecting false messages Eve is able
to link the single authentic message with its outgoing
counterpart.

This attack is difficult to thwart completely. One
simple but only partial countermeasure i1s to require
a certain number of decoys even when a batch is full.
A more effective approach is the introduction of inter-
mix detours; it is discussed in Section 5.6.1.

3.2.2 Message Replay

Eve can try to defeat a mix by recording a gen-
uine message and reinserting it later into the message
stream. As an incoming message [results in the same
output O when replayed, associating the two 1s triv-
1al. Because of its simplicity, message replay is an
extremely serious threat. It i1s possible to prevent re-
play by keeping track of incoming messages and dis-
carding replays [2]. Replay detection is a well-studied
topic [8, 9]. Basic techniques consist of using sequence
numbers, random numbers (nonces) or data and time
stamps.

Techniques involving sequence numbers or nonces
imply at least some synchronization. However, there is
an inherent contradiction between the terms synchro-
nization and anonymity. Moreover, traditional meth-
ods are concerned with authentication, which is not
required in our case. Under these circumstances, we
have decided to use a variant of a time-stamp scheme.

In brief, each message is uniquely identified and
time-stamped. Clearly, the identifier should reveal no
information about the message. Assuming the use of
hybrid message encryption cryptosystem (e.g., as in
PEM or PGP) we use the public key encrypted form
of the session key as the message identifier. Since a
message does not decrypt correctly even if a single bit
of the encrypted session key is altered, it is an invari-
ant of replays. The session key is unique with a high
degree of probability because, it is usually generated
at random from a very large key space®. This method
is also very cost-effective since a mix does not have to
perform any expensive operations to calculate unique
identifiers for the incoming messages; it simply copies
the encrypted session key.

It is certainly undesirable to keep track of messages
indefinitely as it would result in excessive space usage.
A simple solution is to time-stamp messages and flush
message entries after some fixed system-wide time in-
terval. This point 1s further discussed in Section 8.

Replying to messages is somewhat different because
“replays” along a reply path are perfectly legitimate
(see Section 5.6).

5paP uses 128 bit IDEA-keys. Moreover, before RSA-
encrypting this IDEA-key, it randomly pads it to the modulus
of the public key.

3.3 Cascading or chaining mixes

We now assume that there 1s a pool of mixes at the
users’ disposal. As mentioned earlier, if only a single
mix is used, that mix 1s trusted to withhold critical
information. Instead of trusting a single mix, Alice
may decide to use a series of mixes to forward her
message to Bob [2], see Figure 2. The system thus
becomes more secure.

e B

Figure 2: Chaining mixes

Eve’s task becomes significantly more difficult. In
fact, in order to link the message sent by Alice to the
message received by Bob, Eve has to subvert/defeat
the mixes on the path.

If Eve is a global observer of the mix network she
can simply concentrate on messages entering and leav-
ing the system without paying attention to inter-mix
traffic. If the traffic load is low, the security degen-
erates to the worst-case scenario outlined in Section
3.1.2. However, in practice, a large number (> 100)
of independent mixes distributed around the world
would make it very difficult for Eve to be a global
observer.

4 Forward Path

In this section we describe the process of generating
anonymous messages and their subsequent handling
at intervening mixes. Most of the material (with few
exceptions) presented in this section is due to Chaum
For the sake of clarity, we assume (for the
time being) that cryptographic operations (encryp-
tion/decryption) have no impact on message size. We
will return to this issue in Section 6.

4.1 Composition by sender

Suppose Alice wishes to send an anonymous mes-
sage to Bob through f mixes; Fy, Fo,..., F¢. This
set of mixes is referred to as the forward path®. She
composes her message according to the following pro-
cedure:

(1) The cleartext message is padded to exactly €
bytes. The maximum allowed cleartext message
size 18, a, where a < €. This restriction en-
sures that each message 1s padded with at least
§ = Q—a random bytes. The reason for reserving
 bytes for padding will become clear in Section

6 We use the letter F' to denote mixes on the forward path.

6. The parameters 2 and « are system-wide con-
stants.

(2) The padded message [M]Q Is then encrypted
once for every mix on the forward path, starting
with the last, F}, is encrypted in the following
manner:

1 = Ep, (Apon, [M1%)
i =Ep,_ o (AF;_ o, xic1), for 1<i < f

where Ep, represents public key encryption with
mix F;’s key. The final outcome 1s:
l’f =

Ep (Ap,, Ep, (... Ep,_ (Ap,, Ep, (Agob, [M17)) ..))

The result is analogous to an onion where each
encryption is likened to a layer of skin. To access
inner layers, outer layers must be stripped off first
(see Figure 3.) The effect of encryption on mes-
sage size 1s shown in the figure. In particular, the
dimensions of the boxes show how message size
increases with each encryption and concatenation

step.
} Address F2 — encryption with F1's key
—~ 0 otherencryptions
Address Ff <——H+—— encryption with F(f-1)'s key
) bytes
Addr.Bob <——H—— encryption with Ff 's key
Data

1 || [Peddng

Figure 3: Forward message prepared by Alice

(3) Once the onion is assembled it is sent to the first
mix on the forward path, F;.7

Note that the encryption steps are all performed
at the sender, the only trusted entity. No encryption
takes place at the successive mixes. This ensures that
the information revealed to each mix is kept to a min-
imum.

4.2 Processing by mixes

The first remailer, upon reception of Alice’s mes-
sage, decrypts it with its secret key to discover the
address of the next hop, Ap,. This is analogous to
removing the first of skin of the onion.

Similarly, each mix on the forward path removes
a layer of encryption until the last hop is reached.
The last remailer strips off the remaining layer and

7"The binary data produced by encryption might be unsuit-
able for transmission as email. In that case, an appropriate
format conversion must take place.

discovers Apgp. The message is then delivered with
all padding removed.

The actual message received by Bob shows that it
has been delivered by mix ;. Bob does not know the
identities of the other mixes nor that of the originator,
Alice®.

To accommodate the largest possible number of
users, the system of remailers assumes that the re-
cipient of anonymous messages has only basic email
capability with no specific software to handle anony-
mous messages. Only regular mail is delivered to the
final destination. In other words the last mix sees the
message in cleartext.

If the destination has encryption capability (e.g.,
PGP) Alice can encrypt the message using the recip-
ient’s public key. Thus, the contents of the message
are hidden from the last hop, and a higher degree of
security is achieved. Obviously, if the destination is a
public newsgroup, using secret keys make little sense.

4.3 What does a mix know?

One important security measure of the entire mix
network is the amount of knowledge gained by a mix
in the course of processing a message. By examining
email-specific fields (e.g., SMTP headers) an interme-
diate mix on the forward path can discover the identity
of the previous mix hop. Without some questionable
hacking of email software it appears impossible to pre-
vent a mix from gaining this knowledge.

Another piece of information visible to a mix is the
identity of the next hop. It is possible — albeit in
theory — to prevent an intermediate mix from knowing
the next hop.”? We briefly sketch one simple method:

Alice composes the anonymous message much as
before but omits mix addresses — Ap, — from the layers.
Fach intervening miz, instead of sending the message
to the next hop, posts it to a newsgroup periodically
scanned by all mizes. (An alternative is to broadcast
the message to all mizes.) All mizes try to decrypt the
message but only one succeeds. The same procedure
1s repeated until the last miz is reached; the last mix
forwards the message directly to Bob.

Although it halves the knowledge gained by inter-
mediate mixes this solution is fraught with difficulties:
the performance overhead alone would be staggering.
A more practical, but commensurately scaled down,
variation is to give the sender an option to include
multiple mix addresses in each layer. This way, an
intermediate mix forwards an outbound message to
several next-hop mixes and remains uncertain with re-
spect to the identity of the actual next hop.

5 Return Path

Thus far we discussed how to send messages
anonymously without enabling replies. Although
uni-directional communication is most amenable to
anonymity, it is sometimes desirable for an anonymous
mail recipient to reply to the (still anonymous) sender.
This can be achieved by giving the sender an option

8Unless of course the message bears Alice’s name or
signature.
?Note that little can be done in case of the last hop mix.

of including a Return Path Information (RPI) in the
anonymous message.

5.1 Creating the RPI
The RPI is composed by Alice according to the fol-
lowing procedure.

(1) Alice chooses mixes Ry, Ra, ..., R, for the return
path and mixes [, Fs,..., F; for the forward

path. (See Figure 4.)

— @ -8

Alice Bob

NI

Figure 4: Return Path

The mixes on the forward path and return path
are completely independent. The two sets may
be 1dentical, overlapping or completely disjoint.

(2) Alice randomly chooses a key seed — KS -
and, using it, computes r keys, Ky, Ko,..., K,.
There are many ways to do so, eg.: K; =

E(KS,i)forl < ¢ < r These keys will be used

by the return mixes to encrypt Bob’s reply.

(3) The key seed (along with the number of hops r)
is first encrypted with Alice’s public key to form
Yo = EAlice([(Sa 7“).

(4) Then, once for every mix on the return path,
starting with the last, R,, the following encryp-
tion is performed:

Yi = (AR, _ o0 Er_ i (Kr g1, 4i-1))
(for 1<i<r)

The final outcome 1is:

ARl s ER1 ([\71) ARza ER2(IX2’
ER ([XT,AAhce,EAhce([XS 7“))))

We refer to the resultant block, shown in Figure
5, as a little onion, similar in construction, but
smaller than, the forward-path onton.

(5) Alice inserts the resulting RPI block into the be-
ginning of the cleartext message she wishes to
send. Then the procedure outlined in the pre-
vious section is followed until the last remailer on
the forward path, F), is reached. F} detects the

K1, Address of R2 < encryption with mix RL's key

. <——=—— other encryptions
Kr, Address of Alice <——¢—— encryption with mix Rr's key
o [bytes] <——+—— encryption with Alice’s key
KS, 1
Padding

Figure 5: Return Path Information

RPI in the outbound message and modifies the
mail header such that a later reply by Bob would
be sent directly to Ry and not to F;.1° (We as-
sume that the RPIis ”visible” to the {ast hop mix.
It would be more secure to encrypt RPI for the
destination — Bob — but we try to avoid requiring
any cryptographic capability from Bob.)

5.2 Replying by recipient

As mentioned above, the message sent by Alice and
received by Bob is prefixed with an RPI block. The
RPI is meant to be treated opaquely by Bob.

Bob composes his reply as usual and simply
prepends the RPI he received from Alice. He then
sends his reply to the first mix on the return path,
namely Rj.

The message received by R; is shown in Figure 6.

Email (SMTP) Header

RPI

Message Body

Figure 6: Bob’s reply as received by R;

5.3 Reply processmg by remailers

Upon receiving Bob’s reply, R; detects the included
RPI and extracts it. Let us denote this original RPI
by RPI;. As the first mix on the return path, Ry,
performs the following steps:

10Th RFC-822-compatible systems, this is achieved by includ-
ing a “Reply-To” field [6] in the header of the message sent to
Bob.

(1) Combine the header and body of the reply (with-
out the RPI) into a string M’. This is the string
that will ultimately reach Alice.

2) Pad M’ to size Q — w.

(3) Decrypt RPIy, to reveal the random key K; and
Ag,, the address of Rs. Let RPI; denote the
new!! RPI, which has one fewer layer of encryp-
tion.

(4) Encrypt [M’]Q_w with K; to form Y; =
Ki{[Header + Body]ﬂ_w}.

(5) Send (RPIy, Y1) to Ry. Note that the size of this

message 1s 2.

The next r — 1 remailers on the return path will
perform a similar operation. At mix R;:

(1) After reception of (RPI;_y,Y;_1) decrypt RPI;_;
to reveal A;11 and K;. The resultant value is

denoted RPI;.

(2) Encrypt Y;_1 by K; to form
Vi = Ki{Yi
(3) Send (RPL;, Y;) to the next hop Ag,,, .

For the last mix on the return path, the operation
is identical except that the next hop’s address will be
Aulice instead of Ap, .,

It is important to note that a reply message is in-
distinguishable from a message on the forward path
because both have size €2. The structure of both mes-
sages look identical to an outside observer, i.e. en-
crypted gibberish.

A mix 1s able to determine whether a message be-
longs to the forward or reply flows by performing at
most two decryption attempts.

If decryption of first w bytes is successful then the
message 1s on the reply path.

Otherwise, the message is on the forward path and
the decryption of the entire message, {2 bytes, should
be successful*?

5.4 Handling replies at the originator

Eventually, Alice receives the string (RPI.,Y;) as
Bob’s reply. However, by this time, all layers of en-
cryption have been removed except the last. Therefore
Alice sees:

RPI, = Falice(KS,7) and
Y, K AK,—1{.. . Ki{[M'}.. }}

Decrypting RPI,. reveals K.S and r and allows Al-
ice to regenerate Ki...K,. Successive decryptions
of Y, with these keys yield M’. We note that in
Chaum’s model [2], Alice has to remember the keys
Ky,Ks,..., K., in order to process the reply. In our

1T Assume for the time being that the size of this new RPI is
still w.
I21f both encryption attempts fail the message is discarded.

scheme, keys are embedded in the reply, considerably
simplifying the processing and allowing Alice to re-
main stateless with respect to outstanding messages.

Note that M’ 1s composed of Bob’s reply, and its
header as seen by the first mix. This header can be
used to identify Bob. Thus, a reply to an anonymous
message 1s not equally anonymous.

5.5 Two-way Anonymous Conversation

Despite the above, it is possible, under some condi-
tions, for Alice and Bob to communicate anonymously
in both directions. Suppose that Alice begins by send-
ing an anonymous message to a newgroup or a bulletin
board. This message, among other things, includes an
RPI. Since Bob does not know Alice, he does not trust
her RPI but it represents the only way to communi-
cate with Alice. He sends his reply M’ to Ry (1st hop
in RPI) anonymously through mixes X1, X»,..., X,
(see Figure 7). In other words, Bob creates his own
forward path and connects it to Alice’s RPI.

oy
-

Alice

S

Figure 7: Bob’s anonymous reply to Alice.

Bob can also include an RPI in his message so that
Alice can reply to Bob’s anonymous reply through yet
another series of mixes, see Figure 8. Thus, it s pos-
sible for two parties to communicate electmmcally m
both directions without either party knowing the iden-
tity of the other.

5.6 Security of replies

Unfortunately, it is difficult (if not impossible) to
apply similar replay detection measures to replies as
to forward-bound messages. This is because it is per-
fectly legitimate for multiple recipients to generate
several responses to a single anonymous message. (this
holds only if Alice explicitly allows replies by including
an RPT block.)

Thus, Eve can mount a replay attack. Note, how-
ever, that in cases where replies are not wanted,

—& -

Alice

)
-8 -

Figure 8: Alice replying to Bob’s anonymous reply.

BABEL allows messages to be sent without an embed-
ded RPI. Also, an RPI is not "tied” to a given sender;
it 1s trivial to create an RPI with a fake return ad-
dress. In other words, since RPI-s are not digitally
signed, they can be repudiated.

5.6.1 Inter-Mix Detours

A simple yet powerful way of strengthening the se-
curity (i.e., untraceability) of replies by introducing
inter-mix detours.

Let R1, Ro, ..., R, denote the mixes on the return
path. Normally a mix R; (0 < ¢ < r) forwarded
the reply to the next hop R;41. In the detour mode,
R; chooses a random forward path (called a detour)

1, D%, ..., D, which consists of normal mixes drawn
from the global mix network. The message is then
anonymously forwarded to R;y; through these mixes
as shown in Figure 9.

There is nothing special about detour-ed messages;
they are a regular anonymous messages only con-
structed by a mix and not a user.

A detour ensures that a message leaving R; ap-
pears different for each reply, in particular, during
a replay attack. Compare this to the previous case
where replies to the same anonymous message can be
correlated by merely examining the exposed RPI.

Messages on the forward path could also be de-
toured. However, if the mixes on the deviated path
further detoured messages, endless detour loops would
occur. To avoid this problem, detoured messages
would have to be tagged accordingly. An important
benefit that can be derived from detouring forward-
bound messages is that, unlike Chaum’s mixes [2], we
can guarantee that even the originator of an anony-
mous message can not recognize its own message as it
leaves a mizx.

One slight drawback of introducing inter-mix de-

3

[
l. I“ W
|
\

/

e B

—_

Figure 9: Inter-mix detours on replies.

tours is that a mix now has to know about other mixes;
thus far, it has not been a requirement.

5.6.2 Indirect replies

An entirely different approach to replies can also be
envisaged: instead of delivering a reply directly to Al-
ice, Bob can deliver it to a local newsgroup with a spe-
cial number tag. Alice scans this newsgroup for replies
matching that number tag. This method is roughly
analogous to the broadcast solution as described in

[10].
6 Keeping Message Sizes Constant

In principle, a cryptosystem where encrypted mes-
sages are of the same length as the corresponding
cleartext can be devised, e.g. CFB mode of DES
with a pre-distributed initialization vector. In prac-
tice, however, ciphertext is usually somewhat longer
than cleartext. In hybrid-key cryptosystems the size
increase is particularly noticeable due to the need to
include an encrypted random session key in addition
to the ciphertext. Conversely, decryption results in a
shorter message.

Thus, the length of an email message would de-
crease after each decryption as it travels through the
mixes. The differences in size can be exploited by Eve.

The problem can be solved if each mix pads the
outgoing message to Q. Although all messages would
have the same size for an eavesdropper, the decrease
would still visible to remailers. This allows them to

Qbytes S

make educated guesses as to the number of preceding
or following hops, and is contrary to one of our goals
set in Section 2.2.

Each mix should know only the identity of the pre-
vious and next hop and nothing else about the path of
a message. The first and last hops are a little different
because they can learn the identity of the sender and
the recipient, respectively.

Furthermore, the number of preceding and follow-
ing hops should be kept secret. Although the message
sent by Alice 1s indistinguishable from other inter-mix
traffic, the first hop can infer that 1t i1s the first hop
by comparing Alice’s address with the list of known
mixes. In a similar fashion, the last hop can deduce
that 1t is the last. However, all others, i.e. interme-
diate hops, should not know the number of preceding
hops nor the number of following ones.

Chaum [2] presents a general solution where data
i1s divided into a fixed number of fixed-size blocks.
This is the solution implemented in the Mixmaster
package[7].

Here we present another approach that is simpler
and more storage-efficient. The basic idea is to ensure
that some padding (encrypted or not) always follows
information-carrying data. An example should make
the point clear.

Let string C' of length € be composed of M bytes
of data followed by P = Q2— M bytes of padding. Also
suppose the encrypted version of €' is denoted by C’
having length Q+94. If § < P then trimmingJ trailing
bytes of C’ has no impact on the encrypted version
of the data but only on the encrypted version of the
padding, see Figure 10. In other words, trimming ¢
bytes results merely in the loss of the original padding
but not in data loss.

Data
Data Data

Encryption Trimming
—

Padding

Pading Padting

excess bytes

f

Figure 10: Padding—Encrypting—Trimming

For the previous statement to hold, the encryption
algorithm should be such that correct decryption of
a given block depends on some or all of the previous
blocks but not on following blocks. This is true for
most encryption algorithms. We also note that if the
encryption package used embeds CRC or length infor-
mation about the cleartext, alterations made to the
ciphertext will be detected, leading to possible rejec-

tion of the message. This issue is further discussed in
Section 8.2.2.

7 Heeding anonymity

In the preceding sections we defined the notion
of a mix, the potential threats facing it and re-
quirements for constructing mixes that provide bi-
directional anonymity. This section attempts to for-
malize and analyze the degree of anonymity a par-
ticular remailer system provides. In particular, the
notions of confusion and staunchness are introduced

and defined.
7.1 Fixed-Path Systems

Until now we made an assumption that a mix path
is chosen at random from a large pool of available
mixes. This should not necessarily be so. An inter-
esting way to increase the overall traffic load is to use
the same fixed mix path for all messages [24]. We
denote this path by My, M5, ..., M,,. In this config-
uration, messages always enter the system at M7, are
forwarded to Ms, then to the next mix, and so on until
they leave the system at M,,.

By forcing all messages to visit all mixes pertaining
to the fixed path, the traffic going through each is
maximal. There are other advantages of using a fixed
path. The mix network becomes more reliable, less
chaotic and much easier to manage.

Maximizing traffic load might seem contrary to
good engineering practices. Clearly, if a mix is over-
whelmed by sheer traffic volume, data loss can occur.
This 1s not a serious drawback because, as the traffic
increases beyond the processing capacity of the mixes,
other fixed paths can be introduced to offload the pre-
vious fixed path(s).

Owing to practical considerations, the number of
mixes on the fixed path, m, is clearly limited. Thus,
the advantage of using a large number of mixes is lost.
Now it is much easier for Eve to monitor the entire sys-
tem. She can even learn a great deal by watching only
the first and last mixes, M, and M,,. Consider the fol-
lowing attack where Eve allows only a single message
to trickle into a interval batching mix network.

single message per period

Eve

Controlled by Eve

Figure 11: The Trickle Attack

This attack is referred to as the trickle attack be-
cause Eve allows only a single genuine message to enter
the system. By observing the output of the last mix,
M, , she can correctly correlate the genuine message
with its corresponding output.

10

Decoys might be used to outfox the trickle attack.
However, as many users would be alarmed or even
upset by receiving decoy messages, we do not allow
them to leave the mix network. Unfortunately, inter-
mix decoys do not confuse Eve.

7.2 System staunchness, miss & guess fac-
tors

We define the miss factor, denoted M, for a mix
network as the probability of making an incorrect cor-
relation between a message entering the mix network
and a message leaving it. It represents the measure
of confusion introduced by the mixes. Similarly, the
quess factor, denoted G, is defined as the probability of
making a correct correlation. (Obviously, G+ M = 1.)

Consider the fixed-path case where the intervening
mixes use regular batching with the batch size set to
N. Then, G for the fixed path is equal to 1/N. Tt
is interesting to note that the result is identical to
the guess factor of a single mix. What is then the
advantage of chaining through several mixes?

A chain of mixes is more secure than a single mix
because Eve has to subvert all mixes in order to break
the anonymity chain. In other words, a chain of mixes
is more secure than a single mix but not necessarily
more confusing. We define the staunchness, S, of a
mix network as the number of secret keys needed to
defeat message anonymity. In all schemes described
this far, staunchness is equal to the number of mixes
a message travels through.

7.3 The Quest for Confusion

Consider the fixed path case where intervening
mixes use interval-based batching instead of regular
batching. Assuming the clocks of remailers are per-
fectly synchronized and message transmission time is
small but non-zero!3, the itinerary of a group of mes-
sages arriving during interval ¢ is depicted in Figure
12.

A message entering the system at interval ¢ will
leave it at time (m - T'), along with the rest of the
messages entered during the same interval. The guess
factor for period 7 is given by

where n; 1s the number of messages entering the sys-
tem in interval .

Thus, if few messages enter the system, the prob-
ability for correct correlation is close to one. This is
what one would expect by intuition.

For obvious reasons, the higher the value of the
miss factor, the better. One could simply increase the
duration of the interval, 7', to augment the average
number of incoming messages per period. However,
this has a negative impact on the average delay ex-
perienced by messages. They will be delayed on the
average by T'/2 in the first mix and for a full period at
the following mixes. Thus, the total average delay for

1286 that messages arrive at the following mix during a new
interval.

leave the Mmix system

messages entering a1
messages entering M

messages

MeSSages enteng

SE messages entering-mMm

e — Messages leaving M
-EE messages Ieavingé/l
"T——F rmessages leavingn o

p—]
_—
=
—_
—
—
fgp—
==
—~>
)
—

Figure 12: Interval batching with synchronized clocks

the fixed path, neglecting transmission and processing
time, s given by

E[Delay] = T(% +m—1) [sec]

where m is the number of remailers on the fixed path.

7.3.1 Probabilistic deferment

Continuing our pursuit of confusion, we now intro-
duce a new scheme based on the time interval method
but with an added twist. The ”twist” is that at the end
of each time interval, some of the incoming messages
are deferred for an additional time period while all
other messages are sent with no further delay'*. We
refer to this scheme as probabilistic deferment with
interval batching.

The decision to defer a given incoming message is
taken by flipping a biased coin. Let ¢ be the probabil-
ity of forwarding the message at the end of the current
interval and d = 1 — ¢ the probability of deferring it
for an additional period.

Let the random variable K denote the number of
times a given message leaving the mix system has been
deferred. The probability mass function of K is given

by

P{K =k} = (?)qm_kdk where k =0,...,m,

14Incoming and deferred messages are distinguished by keep-
ing appropriate state information.

11

which is the binomial distribution. The expected value
of K is simply
E[K] = md

Thus, with the new scheme, a message on the av-
erage will be delayed by:

1
Eldelay] = T(z4+m—1)+ Tsxmxd [sec]

2
avg addtl delay

Note that in the worst case a message may be de-
layed as long as 27'm seconds; delayed for a full inter-
val and also deferred on all m mixes.

With the new scheduling policy the opponent has
to guess both the interval to which a message belongs
(i.e k) and also its position in that interval. Presuming
that the number of messages arriving at each period
is roughly the same'®, Eve’s best guess is to assume
the most likely deferment event.

Thus the guess factor for the new policy for the

interval ¢, designated G;, is given by the guess factor
for simple interval batching, times the probability of
the most likely deferment event, i.e.

G; = G; P{most likely k}

For a binomial variable B, with parameters (m, d),
where 0 < d < 1, as b goes from 0 to m, P{B = b}
first increases monotonically and then decreases mono-
tonically, reaching its largest value for'® [E[B]], the
smallest integer greater than or equal to m - d. For
a rigorous proof, refer to [34]. TFor a less rigorous
but amusing proof, the reader can approximate the
binomial by the Poisson distribution, generalize the
factorial to the gamma function'” and then take the
derivative with respect to a now continuous b.

Figure 13 shows the probability of the most likely
event, P{B = [E[b]]}, as a function of the deferment
probability d for even and odd values of m.

Clearly, for odd values of m, the probability of the
most likely event is minimal for d = 1/2. This is a little
different for even values of m, for which the minimum
is reached for values of d not too far away from 1/2.

For a numeric example, suppose m = 5 and d = ¢ =
1/2. The most likely value for k is 3, with probability

%. Thus, the probabilistic deferment method intro-
duces an additional uncertainty of %. If we had sim-

ply doubled the time interval to 77 = 2- 7', as to have
the same delay in the worst case, then the decrease in
the guess factor would be only 1/2. The probabilistic
deferment method compares well with simple interval
batching for all values of m > 1, even in the worst
case.

15Otherwise, messages are likely to belong to the most popu-
lated interval.

167E” does not mean encryption here.

17Like the exponential function the gamma function is also
equal to itself when derived. However, it is only defined for ®t.

0Odd number of mixes Even number of mixes
1 ‘ 1 ;

o
=4
o
[X=)

> ~ o
= ~ o

o
E=N
o
I~

Probability of the most likely b
o
o

o
w

Probability of the most likely b
o
(32l

o
[2s)

o
N
o
)

o
—
o
—

m=1001 m=1000

0 ‘ 0
0 05 1 0
Deferment probability, d

05 1
Deferment probability, d

Figure 13: Probability of the most likely b as a func-
tion of d

7.3.2 A Hybrid Approach

A hybrid configuration, referred to as fized-set ran-
dom order path, imposes a fixed set of mixes but allows
traversing them in any order chosen at random, with
each mix visited only once. As with the fixed path
method, the traffic load is optimal. However, there
are no critical lines. Eve must observe and control all
communications lines to defeat the mix network. The
probabilistic deferment approach can also be put to
use to increase the confusion factor further.

It is very difficult to calculate the confusion factor
for the fixed-set random order system. However, it
combines some of the best features of the methods
mentioned so far.

8 Implementation

An anonymous remailer conforming to the ideas
and requirements described in this paper has been im-
plemented the IBM Zurich Research Laboratory dur-
ing first half of 1995. This section discusses some of
the salient aspects of the implementation.

8.1 Computing environment

The popular script language Perl [32, 33] was used
to implement BABEL. Perl is readily available on

12

most Unix platforms and is well-suited for processing
loosely structured data such as email messaged. We
opted for the latest incarnation of Perl, version 5.

We recognize that there is an inherent performance
cost involved in using an interpreted language such as
Perl. However, the impact of interpreting the code
at run time is negligible compared to that of cryp-
tographic operations, which are notoriously costly in
terms of processing power.

8.2 Pretty Good Privacy or PGP

It being the most popular email encryption soft-
ware, we chose PGP to provide the cryptographic base.
PGP combines the convenience and security of public-
key algorithms with the high speed of conventional
cryptography. It offers full-blown message privacy and
authentication, based on RSA [30] and IDEA [14, 15].

Since it was designed with the mass appeal in mind,
pGPp is well-suited for interactive use. Unfortunately,
this is not the case for automated (batch) processing;
error conditions require unexpected user interaction,
and the return codes are at times confusing.

8.2.1 PGP file format

With PGP, an email message can be compressed,
encrypted and signed, but the user can view its con-
tents and verify its signature with a single command.
At the byte level this is achieved by embedding a com-
pressed packet inside a hybrid RSA-IDEA encrypted
packet. This packet itself is then embedded in a signa-
ture packet (Figure 14) which can in turn be embedded
in a radix-64 ASCII armor.

radix—64 Armor

SREWE]

compressed
data

Figure 14: Multiple Packet Embedding

PGP recursively processes each packet type until an
unknown type, i.e. user data, is encountered. Al-
though this might be the correct behavior at the user
level, 1t 1s inadequate when multiple encryption is
used. In that case, PaP'® attempts to continue de-
crypting after a first successful decryption. The sec-
ond decryption operation will usually fail because the
secret key needed to perform the operation will be
missing (a mix does not know the secret key of other
mixes).

18Behavior observed with the “+force” option required for in
batch processing.

Furthermore, PGP is meant to be used for email
privacy and authentication but not sender anonymity.
PEM is even worse in this respect, as the unencrypted
PEM message headers contain identification of both
sender and recipient [31]. The cleartext part of PGP
message headers also contains sensitive information
that can be used by an attacker to correlate mes-
sages. This potential threat was carefully studied, and
a version-independent PGP format parser was devel-
oped at the earlier stages of the project.

Cipher byte type

i 8 bits
CcTB

packet length 8/16 bits

algorithm type

8 bit
byte (=1 for RSA) i s

recipient key ID 64 bits

RSA—encrypted

IDEA key variable

) variable
IDEA ciphertext

(message body)

Figure 15: Data format for encrypted file

8.2.2 Side effects of encryption

By default, PGP attempts to compress cleartext be-
fore encrypting it'?. However, since uniform message
size 1s a concern, compression is always turned off.
This prevents messages from shrinking.

There is another reason for turning off compression.
In compression mode, PGP adds a CRC of the clear-
text into the ciphertext. This causes PGP to reject
files altered in any way, particularly trimmed files. As
mentioned in Section 6, trimming is used to enforce
uniform message size. Fortunately, when compression
is turned off, PGP records only the length of the clear-
text message. Thus, alterations to data length are
detected but not those to contents.

To be precise, PGP rejects messages that are shorter
than the prerecorded value, but accepts longer ones.
This behavior can be explained by considering that,
in an email message that includes PGP ciphertext, the
cleartext (e.g., mail headers) usually precedes the PGP
part of the message. Moreover, additional cleartext
(e.g. a cleartext signature) usually follows the PGP ci-
phertext. We capitalize on this behavior to implement

198ome think that compression enhances security; we do not.

13

the forward and reply messages indistinguishably, as
presented in Section 5.3.

8.2.3 Radix-64 format

As pGP-encrypted files are in binary format, some
sort of conversion must take place to send encrypted
data over 7-bit channels such as email. A remarkably
simple and efficient conversion method is radix-64 ar-
moring. Tt is defined in [16].

8.3 Remailer deployment

A BABEL mix is designed to act as a filter installed
in the .forwardfile. Refer to [5] for further information
on email filters. Any user can transform his computer
account into an anonymous remailer in a matter of
minutes, without having any administrator privileges.
Personal email is treated as usual, but anonymous
mail is filtered and processed without ever cluttering
the user’s mailbox?®. This is compatible with the In-
ternet’s populist philosophy. However, note that this
paves the way for a security breach. Since BABEL is
designed with a minimum of human intervention in
mind, the password needed to access the secret key of
a remailer is stored in cleartext, in a read-protected
configuration file. Although this file is not accessible
to a casual user, the system administrator can usually
override the safeguards. Furthermore, a popular re-
mailer site can attract swarms of messages. This can
result in serious performance degradation on the local
host.

The actual deployment of BABEL has been delayed
due to U.S. export restrictions on cryptographic para-
phernalia. Restrictions apply not only to cryptog-
raphy per se but also to equipment that makes use
of cryptography. In particular, although BABEL does
not contain a single line of cryptographic code and re-
lies completely on PGP 1t is still subject to the afore-
mentioned export restrictions.

8.4 Proxies

In order to appeal to the greatest number of users,
BABEL offers a so-called prory mode of operation. In
this mode, a user with no BABEL software can ask any
mix to compose and forward an anonymous message
on the user’s behalf. The proxy mix is also able to sub-
stitute itself for the user in order to process multiply
encrypted replies. Consequently, it is possible for any
bare-bones email user to send anonymous messages
and receive replies.?!

The proxy mode of operations is somewhat less se-
cure because traffic to the proxy mix flows in cleartext.
However, users equipped PGP but no BABEL software
can send their orders encrypted with the proxy mix’s
public key.

8.5 Message length—Concrete values
The Internet email "bible”, RFC 1123 [13], speci-
fies that any mailer software should be able to send
and receive messages at least 64 Kbytes in length (in-
cluding header). Taking into account a 33% increase
of radix-64 armoring, the maximum uniform message

20Unless an error occurs while processing the message.
21 This is particularly applicable to non-Unix users.

size, 1, we could safely adopt is 48 Kbytes??. Being

concerned by network bandwidth, we opted for half
that number, i.e. 24 Kbytes.

For a 512-bit public key, PGP increases message size
by about 115 bytes at each encryption. Experiments
show that the thickness of a layer of the anonymous
onion is on average approximately 220 bytes. There-
fore, when 2 Kbytes of padding are used, a message
can safely include nine layers of encryption. The rec-
ommended RPI size w is 1.5 Kbytes. This allows ap-
proximately seven mixes on the return path.

We intentionally chose not to provide support for
larger files. This is the accepted practice on exist-
ing remailers. It is meant to frustrate the anonymous
transmission of graphic files, which tend to be very
large?3. It is still possible to split larger files into
smaller pieces and send them anonymously.

8.6 Time Synchronization & Replay De-
tection

As mentioned in Section 3.2.2, each layer of the
onion created by Alice includes a time stamp. The
value of the time stamp, referred to as O, 1s the num-
ber of seconds elapsed in seconds since January 1, 1970
GMT, to the moment of message composition by the
sender.

A BABEL mix uses a two-step replay detection.
First, it records a unique identifier of the message as
described in Section 3.2.2. As long as the record is
in the database, replays are detected. However, in or-
der to keep the database size reasonable, the record
is deleted at time (© + A). Thereafter, any message
bearing the timestamp © or older will be discarded as
being too old; not necessarily for being a replay.

Time stamps are introduced merely to keep the re-
play database small. Thus, only loose clock synchro-
nization is needed. Assuming the total delay experi-
enced by messages at remailers to be about one hour,
we chose A to be 24 hours, one order of magnitude
larger than message the delay. Thus, the time 1t takes
to visit all mixes on the forward path is considered
negligible with respect to A.

With such a coarse value of A; it is sufficient that
hosts keep clocks accurate within a day for the system
to function properly.

9 Conclusions

This paper presented an anonymous remailer sys-
tem called BABEL . BABEL is flexible enough to allow
both sending and receiving anonymous electronic mes-
sages. Anonymity criteria have been defined in order
to compare degrees of anonymity provided by various
configurations.

The basic components of BABEL, mixes, are not
aware of each other and learn very little about mes-
sages they process. In contrast to some currently-
operating remailers, BABEL mixes do not depend on
(potentially treacherous) alias tables.

The software implementation of BABEL is based on
freely available ingredients: Perl and PGP. At the

22not taking the header size into account.
23and of questionable nature.

14

same time, the system remains accessible to users with
only a basic email capability through the use of its
proxy mode.

A BABEL mix can be very easily set up by any
user having only a simple Unix account. However,
it is envisaged that setting up an Internet-wide mix
network (mesh) will take some time.

As with any new technology, some abuse is unavoid-
able. Caveat Emptor!

Acknowledgments

The authors wish to thank Ph. Janson, M. Waid-
ner, M. Steiner, R. Hauser and the anonymized refer-
ees for many helpful comments and suggestions.

References

[1] D. Akst, “Postcard from cyberspace,” Los Angeles Times,
February 22 1995.

[2] D. Chaum, “Untraceable Electronic Mail, Return Ad-

dresses, and Digital Pseudonyms,” Communications of the

ACM, v. 24, n. 2, Feb 1981, pp. 84-88.

D. Chaum, “Security without Identification: Transaction
Systems to make Big Brother Obsolete,” Communications
of the ACM, 28/10, 1985, pp. 1030-1044.

D. Chaum, “The Dining Cryptographers Problem: Uncon-
ditional Sender and Recipient Untraceability,” Journal of
Cryptology, 1/1, 1988, pp. 65-75.

B. Costales, E. Allman and N. Rickert,
O’Reilly & Associates, 1993.

“Sendmail”,

D. H. Crocker, “Standard for the format of Arpa Internet
messages”, RFC 822, August 1982.

[7] L. Cottrell,
http://obscura.com/~loki/remailer-essay.html.

“Mixmaster and Remailer Attacks,”

D. W. Davies and W. L. Price, “Security for Computer
Networks,” John Wiley & Sons, 1984, pp. 137-143 .

D. E. R. Denning, “Cryptography and Data Security,”
Addison-Wesley, 1982

[10] D. J. Farber and K. C. Larson, “Network Security via Dy-
namic Process Renaming,” Fourth Data Communications
Symposium, Oct 1975, Quebec City, pp. 8-18.

[11]

J. Helsingius : Press release, February 20th 1995.

E. Hughes, “Cypherpunks Manifesto,” distributed on
Usenet and various mailing lists, March 1993.

(12]

[13] Internet Engineering Task Force, “Requirements for Inter-
net Hosts — Application and Support,” RFC 1123, October
1989.

[14] X. Lai, “On the Design and Security of of Block Ciphers,”
ETH Series in Information Processing , v. 1, Konstanz:
Hartung-Gorre Verlag, 1992.

[15] X. Lai and J. Massey, “A proposal for a New
Block Encryption Standard,” Advances in Cryptology—
EUROCRYPT ’90 Proceedings, Berlin: Springer-Verlag,

1991, pp. 389-404.

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

J. Linn, “Privacy Enhancement for Internet Electronic
Mail — Part I: Message Encryption and Authentication
Procedures,” RFC 1421, Feb 1993.

S. Maguire, “Writing Solid Code.”, Microsoft Press, 1993,
pp. 179-180.

T. May, “Crypto Anarchy and Virtual communities,” In-
ternet Security Journal, April 1995.

D. L. Mills, “Algorithms for synchronizing network
clocks.” RFC 956, September 1985.

D. L. Mills, “Experiments in network clock synchroniza-
tion,” RFC 957, September 1985.

D. L. Mills, “Network Time Protocol (Version 3) Specifi-
cation, Implementation and Analysis,” RFC 1305, March
1992.

W. Mossberg, “Personal technology,” Wall Street Journal,
Jan. 26 1995.

J. Quittner, “Unmasked on the Net,” Time magazine,
March 6 1995.

A. Pfitzmann , “How to implement ISDNs without user
observability—Some remarks,” Institut fur Informatik,
University of Karlsruhe, Interner Bericht 14/85, 1985.

A. Pfitzmann, B. Pfitzmann and M. Waidner, “ISDN-
Mixes: Untraceable Communication with Very Small
Bandwidth Overhead,” GI/ITG Conference: Commu-
nication in Distributed Systems, Mannheim Feb. 20—
22 1991, Informatik-Fachberichte 267, Springer-Verlag,
Heildelberg 1991, pp. 451-463.

A. Pfitzmann and B. Pfitzmann, “How to break
the direct RSA-implementation of MIXes,” Advances
in Cryptology—EUROCRYPT ’89 Proceedings, Berlin:
Springer-Verlag, 1990, pp. 373-381.

A. Pfitzmann and M. Waidner, “Networks Without User
Observability—design options,” Eurocrypt 85, Springer-
Verlag, Berlin 1986, pp. 245—-253. Revision in: Computers
& Security, 6/2 1987, pp. 158-166.

J. B. Postel, “Simple Mail Transfer Protocol”, RFC 821,
August 1982.

R. Rivest and A. Shamir, “How to Expose an Eavesdrop-
per,” Communications of the ACM, v.21, n. 2, Feb 1978,
pp. 120-126.

R. Rivest, A. Shamir, and L. M. Adleman, “Cryp-
tographic Communications System and Method,” U.S
Patent 4,405,829, 20 Sep 1983.

B. Schneier, “Applied Cryptography,” John Wiley & Sons,
1994.

R. Schwartz, “Learning Perl,” O'Reilly & Associates, 1993

L. Wall and R. Schwartz, “Programming Perl,” O’Reilly
& Associates, 1993.

R. Sheldon, “A first Course in Probability,” Macmillan,
fourth edition, 1994, pp. 147-167.

15

[35] P. Zimmerman, “PGP User’s Guide”, included in PGP
distribution 2.6i, October 1994.

[36] P. Zimmerman, “PGP 2.6 file formats”, included in PGP
distribution 2.6, May 1994.

