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Abstract— In this paper we define a new metric for quantifying formally define our proposed anonymity metric. We then show
the degree of anonymity collectively afforded to users of an how our model can be generalized to include probabilistic
anonymous communication system. We show how our metric, jtqrmation in Section Ill. We demonstrate how to apply our

based on the permanent of a matrix, can be useful in evaluatm tric t ¢ f mi in Secti Vol
the amount of information needed by an observer to reveal the metric 16 some common types ol mixes in section V. in

communication pattern as a whole. We also show how our model Section V, we compare our metric to some existing metrics to
can be extended to include probabilistic information learred illustrate the more important differences. Section VI diss
by an attacker about possible sender-recipient relationsips. how we can obtain a lower-bound on the anonymity level
Our work is intended to serve as a complementary t0ol 10 o 5 gystem while avoiding some computational complexity
existing information-theoretic metrics, which typically consider . . . . .

inherent in computing the permanent of a matrix. Finally, we

the anonymity of the system from the perspective of a singleser ) .
or message. conclude in Section VII.

A. Related Work

I. INTRODUCTION Chaum introduced the notion of amonymity setn his

Starting with Chaum’s work on mix-based anonymity Sysv_vork on DC-Networks [4]. An anonymity set is the set of

tems [1], many research papers have been devoted to %éuapants who are likely to be the sender or recipient of a

; > . articular message. As the size of an anonymity set incsease

subject of designing and evaluating systems for anonymadus .
o ) ; . . SO does the anonymity of the members of that set. Kesdogan,
communication. Some designs exist only in the literaturg, N . : .
dogner, and Buschkes also use this metric for evaluatinig the

while a few have been implemented and publicly deploye Lsign of Stop-and-Go MiXes (SG-MIXes) [5].

(e.g,. [21, [3D) . . L Serjantov and Danezis [6] showed that simply measuring the
With each new system design or implementation, it becomes ; o N
. ize of an anonymity set is inadequate for expressing instan

more important to be able to evaluate and compare t

rivacy afforded by a svstem to its users. Most previous woll ‘€€ not all members of that set are equally likely to have
b Y yasy : P sent a particular message. They go on to defineféective

has focused on evaluating the anonymity of a system from . i-dased he inf tion th ti t
the perspective of a single user or message in that Systeanpnymny set sizwased on the information theoretic concep
o . Qf entropy, as
however, it is not clear how to generalize such measurements
to express the level of anonymity of the system as a whole n
(we elaborate on this point in Section II). S=- Zpu logy (pu),
In this paper we define a new system-wide metric, based u=1
on the permanent of a matrix, which measures the amounivhere n is the number of users in the anonymity set,
of information needed by an observer to reveal the overalhd p, is the probability that a user had a roler ¢
communication pattern between senders and recipients in{@ander, recipient} for a particular message. The authors
anonymity system. Our metric can be used alongside existiimgerpret the effective anonymity set sifas the amount of
metrics, which typically measure the anonymity of a systeadditional information the attacker needs in order to idgnt
from the perspective of a single user or message, in ordke user who was either the sender or recipient of a particula
to provide a more complete representation of the privagyessage.
provided by that system. Diaz et al. [7] independently proposed a similar entropy-
The rest of this paper is structured as follows. First, wé wibased metric they refer to as tdegree of anonymifya term
review some of the previous work done to establish measuf@st introduced by Reiter and Rubin in the Crowds design [8].

of anonymity. In Section II, we introduce our model andhey define the degree of anonymifyas
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where S is as above and,,,.. is the maximum entropy of not consider the interdependence between anonymity sets of
the system and is equal leg, (n). The difference between thedifferent users.
degree of anonymity and the previous entropy-based matric i We propose a new system-wide metric, based on the per-
that, by dividing.S by the maximum entropy of the systemmanent of a matrix, which measures the amount of additional
d is normalized to the rang@®, 1] and becomes a measure ofnformation needed teeveal the whole communication pattern
anonymity independent of the number of users involved. between senders and recipients in the system. We stress that
In Toth and Horn&k’s analysis of non-adaptive real-timeur approach is not intended to replace the existing entropy
systems [9] they introduce the notions sdurce-hidingand based metrics. Rather, it can be used as a complementary
destination-hiding A system is source-hiding with parametetool, which we believe represents a reasonable and irguitiv
O if the observer cannot assign a sender to any deliveredmbination of the individual anonymity levels of the usefs
message with a probability greater th@nSimilarly, a system a system, to obtain a more complete, system-wide perspectiv
is destination-hiding with parameté€r if the observer cannot
assign a recipient to any sent message with a probabil&y Preliminaries
greater tharf). ; -
Toth and Homak [10] later analyze the two entropy-baseﬁqiwe consider an anonymity system, such as a network of

. S . xes, which aims to provide its users (senders and recipi-
metrics and highlight some of the shortcomings of both bé(nts) with anonymous communication. As is common in the

;? metg thatba S%Stemt can appeta;]r nez;]lr-optlr{wtal Eccordmg“{ rature, we assume the existence of an observer whoés abl
b N etl:l roFy— ase me nes gven f ough an attacker m{ahy $'see some or all of the messages entering and exiting the
€ able 1o guess he sender of some messages wi hé% nymity system. We also assume that every message the

prob_ablhty. They use this to argue for using, asa meashee, bbserver is able to see entering the system will be among the
maximum probability that an attacker can assign to a sender

o X . n?essages he is able to see exiting the systemymedversa
recipient with respect to a particular message. Such a mea at is, there exists a one-to-one relation between inuts t
focuses better on the local aspect of anonymity, which may. 4 ou:[puts from the anonymity system
be of more interest to individual users of the system. )

Instead of measuring how much protection a system afforﬁhsm our model, an input may be a message or flow entering

: . L L e anonymity system on one end, and an output may be
a single entity, whether that entity is a sender, recipient, ymity sy P Y

: . message or flow leaving the system at another end. In
message in a system, Newman, Moskowitz, and Syverson [ h ' .

. neral, if the system provides perfect anonymity, then any
propose an entropy-based approach to evaluating how muc

protection a Traffic Analysis Prevention (TAP) system cam prInpUt N equally.hkely to correspond to any output; however
) . : - . due to the design of a system, or after a successful attack
vide to its users collectively. Specifically, the authorasider

. . by an active adversary, some input-output pairings can be
systems that perform actions such as padding and rerout] . : . i
) . . ) ._rendered infeasible, decreasing the level of anonymityhef t
in order to increase the number of potential traffic matrices . . .

: - . System. For example, Danezis & Serjantov consider route-
(TMs), thereby decreasing the probability of an observardgpe . . . C .

: . length restrctions in mix network to eliminate some possibl

able to determine the actual TM based on her observations

The authors introduce an entropy-based approach to meassl?r(%der-re_mplent pairings [6] - .
) ne might also consider a system providing anonymity to

the amount of uncertainty the adversary has in determinlﬂg users with some qualitv-of- . ; . .
the actual TM from the set of possible TMs. quality-ol-service guarantees, Inmgfyin
upper bound on the latency for each message going through the
Il. A PERMANENT-BASED ANONYMITY METRIC system. In addition, there is a lower bound on latency due to
The previous work on measuring anonymity mostly focusé@e time rquired for processing pa?CketS in the SyStem' asch
on the level of anonymity from the perspective of a singl%rw)t()gr"lehIC operat|0n§ and rout_mg over several mixes. W
user or message, with the most notable exception being H%e that Fhe_se as;umptlons are similar to those made Iy Tot
work done by Newman et al [11]. The anonymity set size [4?}nd Homak in their PROB-channel model [9].
the entropy-based effective anonymity set size [6], and tlée
normalized entropy-based metric [7] all follow this model. ~
Using such metrics, one can measseader anonymitfor Let the inputs of an anonymity system be denoted by the
a given recipient (or a message received). Or, one can measi@t.S = {s;} and the outputs by" = {¢;}. Given a set of
recipient anonymitjor a given sender (or a message sent). flossible associations between inputs and outputs, weroohst
is not clear how to generalize such a metric to clearly expres bipartite graphG = (11, V2, E) to represent the system,
a system-wide anonymity level. One can use the minimuwherel; = S, V, =T, andE is the set of edges representing
degree of anonymity among all users as the anonymity degadepossible(s;,t;) mappings.
of the whole system, but this only reveals the “weakest link” While initially defining our metric, we consider a real-time
in the chain; it may not capture the overall system behavi@nonymity system that provides a minimum and maximum
Another possibility is to add up the individual anonymitjatency of messages through the system. More precisely, the
degrees for all users to obtain the anonymity level of ttgelay A; for some message:; going through the anonymity
whole system. The problem with this approach is that it dosgstem is bounded by

A Permanent-based Approach



— Anonymity Network —

A bipartite graphG = (4, V5, E) can be represented by
5171 — y =4 its adjacency matrix4; a (0,1)-matrix of sizen x n, where
1 .:h_‘\ /,’ f n = V1| = |V2|. For eachu € V; andv € V4, if the edge
572 — 3y 1,=5 T (u,v) exists inG, the entryA(u,v) is set to 1, otherwise it
2 @ /..--;. f2 is set to 0. It is known that counting the number of perfect
s3=4 —> —> 77 .; . matchings inG is equivalent to thggermanenbf A, which is
RN given by
5475 — P > 1,8 5 ‘_,.—-'/.H;-x'x‘h f
s ———8@ 1, n
(@) (b) per(A) =" 1_[1 A(i, (1)), 1)
™ 1=
Fig. 1. (a) An example mix network, with the entry and exitésnobserved . . .
for four messages. (b) The corresponding bipartite grapenghatA n,in = where the summation is over all permutations of
1 andAmasz = 4. {1,2,...,n}. For a (0,1)-matrix, the summation terms in (1)

are either 0 or 1. A term in the summation is 1 if and only if
all entriesA(1,7(1)), A(2,7(2)), ..., A(n,w(n)) are 1, which
means thati has a perfect matching
A, <A <A {(laﬂ-(l))v(2571-(2))7"'7(”’71-(”))_}' .
n = T = e We can assume that there exists at least one perfect matching
for some givenA,,i, and A,.... Even if we treat the Petweeninputsand outputs, indicating the true commubicat

internals of the system as a black-box, with the times G@ftern. At most, every input potentially corresponds tg an
messages entering and exiting being the only observaBigPut. Thus, the number of perfect matchings inran n
information, we can still obtain a restricted set of possib(0.1)-matrixA is bounded byl < per(A) < nl.

mappings between i_nputs and outputs. We can then constrgctpefinition

a bipartite graplz, with the entry and exit times of messages

constituting the verticesl{ and Vs, respectively) of. That We now precisely define our metric based on the matrix

is, eachs; andt; represent not messages, but rather numeﬁgrmanent. In doing so, we obtain a normalized value in the

timestampsassociated with messages entering or exiting tligngT[O, l]f r(e)presentlng the anon_): mity Ieve! dOf dthehsystem.
anonymity system, respectively. value of 0 means no anonymity is provided, whereas a

For anys; andt;, if Amin < t; —5: < Amas, then there is yalue qf 1 means .that the anon_ymny prowded by the system
' . . . is maximal. This is the same interpretation as used in the
an edge inG connecting the vertices correspondingstoand : .
. normalized entropy-based metric [7].
-

Fig. 1(a) presents an example with 4 messages, each er](_3|ven ann x n (0,1)-matrix A representing possible input-

. ) . . . output correlations in an anonymity system, we define the
tering the network at time; for somei and leaving at time svstern’s anonvmity level as
t; for somej, wherei,j € {1,2,3,4}. Assuming that, for y ymity

this systemA,,;, =1 and A, = 4 (the time unit used is 0 n—=1
not relevant), we conclude that a message entering at 1 d(A) =S 1og(per(A)) n>1 2
will leave the system sometime in the intery2J5], resulting log(n!)

in two edges inG; (s1,t1) and (s1,t2). Continuing in this  wheren! is the permanent of the all-1 matriX of size
manner, we can obtain the bipartite graph in Fig. 1(b). ~ n x n. Note that wheni(A) = 1, the degree of anonymity
Note that the correct relationship between inputs and dsitpef the system is maximal and the corresponding grapls
corresponds to a perfect matching on the constructed lgart complete bipartite grapi,, ,,. On the other hand, when
graph. When the anonymity provided by the system is maxifA) = 0, G has only a single perfect matching and the
mal, we obtain a complete bipartite gragh,= K, ,, where system provides no anonymity for any participant. For the

n is the number of inputs (or, equivalently, outputs). system in Fig. 1, the level of anonymity can be computed
Considering all possible permutations{df, 2, ..., n}, there aslog(4)/log(24) ~ 0.44.
are n! ways of mapping a set ofi inputs to a set ofn While the entropy-based metrics of Serjantov & Danezis [6]

outputs, hencés,, ,, hasn! different perfect matchings. Thus,and Diaz et al. [7] have intuitive interpretations with and
intuitively, a passive adversary observing the system Hash without normalization, we argue that the normalization we
probability of identifying the correct matching. If, on tieéher presented is necessary with our permanent-based approach.
hand,G contains a single perfect matching, then no anonymity Consider, again, the example system in Fig. 1(a). If the
is provided at all. system had an additional input and outpyt= 9 andts = 10,
Following this intuition, given a bipartite grapgh represent- respectively, then the corresponding bipartite graph doul
ing the system, we note that the number of perfect matchiniggve a single additional edge linking to t5. Arguably, this
in G, combined with the normalization we present later imodified system has weaker anonymity properties than the firs
this section, can provide an indication as to #teengthof since there is an edge linking to 5 with absolute certainty;
the anonymity system. however, simply counting the number of perfect matchings



in the bipartite graph does not reflect the overall decrease sy pls)=1/4
in anonymity, since the number of perfect matchings is the - - - - - - - Pls)=1/4_ p(s)=1/4

same for both systems. If we apply our normalized measure, : p(sa)7L2 | plsy=1/4
then the anonymity level of the modified system decreases
from log(4)/log(24) ~ 0.44 to log(4)/log(120) ~ 0.29, LN PG

p(s;)=1/4
L) plsy)=1/4
) \ ’ . BY) p(sy)=1/2

correctly indicating that the latter system is less desérétan ' \ 0\ pls)=1/6

the former. o s e
K > 3 p(s,)=1/6
3 (s3)=1 =174 IM:’: 4 p(Si):1/6
[1l. GENERALIZED PERMANENT-BASED ANONYMITY | P p(:v )=1/4 T | plsy)=1/6

2 5

MetRic........... 7T TTTTTTT P12 L p(s5)=1/3

We used the permanent of a (0,1)-matrix as a basis to define
our permanent-based anonymity metric. Such a metric c@Ptugig. 2. A sample mix network observed globally. Five messageter and
a scenario where one can model the feasibility between snpetit the system, and each message entering a mix is equely lio follow
and outputs as a (0,1) relation. In general, an observer may izyaoggg::nuﬂlrnlli(h;he probabilities represent the likebld of messages being
possess probabilistic information about correlationsvieen '
inputs and output, possibly obtained by observing the mput

and outputs of each individual mix in the system (instead of b1tz f3 ta fs

treating the system as a black box), or by some probabilistic s1 /4 1/4 1/4 1/4 0

attack. In such a case, one can construct a doubly stochastic p— 2 %é %é }?g %g 1(/]3

matrix, where the sum of each row and column is 1, rather than sa 1/6 1/6 1/6 1/6 1/3

a simple (0,1)-matrix. An entryu, v) in this matrix represents s5 /6 1/6 1/6 1/6 1/3

the probability that input: is associated with output Fig. 3. The doubly stochastic matriR corresponding to the system in Fig.

log(0.0417) — 0.9747

In this section, we generalize our metric to capture scesarp- In this exampleper(P) = 0.0417 andd(P) = = /"5

involving probabilistic information. This generalizatichas

a resemblance to the effective anonymity set size defini-

tion [6], except instead of counting the possible senders of o ] )

a received message, the authors use the probabilitiesiadsig !N our initial model using a (0,1)-matri¥, a greater value
to each possible sender to compute an entropy-based effechl per(A) indicated a higher level of anonymity. In contrast,

anonymity set size. the level of anonymity of a system represented by a doubly
stochastic matrix is highest when its permanent is minimum
A. Including Probabilistic Information (that is, when the probabilities iR are uniformly distributed).

When the matrix is no longer a (0,1)-matrix, the permaneHtis worth noting that in both the basic model using a (0,1)-
does not have the same intuitive meaning as the number@dtrix A and the probabilistic model using a doubly stochastic
perfect matchings in a bipartite graph. Still, we can shoat thmatrix P, the anonymity level of both systems system is
the permanent of a doubly stochastic matrix can yield irtsigfinimum whenper(A) = per(P) = 1, indicating a single
into the anonymity level of a system when the values of tiRerfect matching.
matrix are probabilities rather than simply Os and 1s.

Consider apermutation matrixP of size n x n, which is
a special doubly stochastic matrix, obtained by permutieg t Given a doubly stochastic matrik representing the proba-
rows of the identity matrixl,, according to some permutationbilities of input-output relationships in an anonymity s,
of the numbersl to n. Each row and column of” has a we define the degree of anonymity, as
single nonzero entry, which must be 1. The permanent of
P is 1 since there exists a single permutation that yields a 0 n=1
non-zero summation term in the permanent. This is, in fact, d(P) = { % n>1 3)
the maximum value of the permanent of a doubly stochastic e
matrix. where we recall that!/n™ is the minimum value of the

As the total value becomes more evenly distributed to thermanent of am x n doubly stochastic matrix, by the Van
other entries in a row or column, rather than on a singtier Waerden conjecture.
value, the value of the permanent decreases. Indeed, wheRig. 2 gives a simple example of how to obtain probabilities
the values are uniformly distributed (that is, when all Exstr for mapping inputs to outputs in an anonymity network com-
of P arel/n) the permanent is minimum and is equalﬁb. posed of several mixes. Fig. 3 presents the doubly stochasti
This lower bound on the permanent of a doubly stochasticatrix corresponding to the example system. Again, we use
matrix is known as theVan der Waerden conjecturand the same notatios; for inputs and; for outputs, but note that
was proven by Egorychev [12] and also, independently, ltige inputs and outputs do not represent the time instantgsn t
Falikman [13]. Thus, the permanent of a doubly stochasticenario. Rather, they are simply used to label the incoming
matrix P is bounded by the inequality!/n™ < per(P) <1. and outgoing messages to and from the anonymity system.

B. Definition
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The anonymity system in Fig. 2 follows the scheme pre- 5‘%“ I btz st

sented by Serjantov & Danezis [6], in that each mix in the = tp Round 1 51 1 1.1 0 0 O

system is equally likely to have sent an incoming messag s, 3 52 1 1.1.0 00

on any one of its outgoing links. A global observer can then | ' g |11 1000

form probability distributions on the links that represdne ’ ] s« |00 0 1 1 1

likelihood of finding a particular message on a specific link. 5“‘%% o 55 g 8 8 } 1 i
[ S6

The probability distribution on an outgoing link of a mix is %
obtained by adding all distributions on the incoming links o @) (b)
that mix, and dividing by the number of outgoing links. For. _ - N

. . . . . - Fig. 4. (a) GraphG of possible sender-recipient relationships over two

example, mix)My in Fig. 2 has two input links, with proba- rounds of a threshold mix with a threshal = 3. (b) Adjacency matrixA
bility distributions{(s1,1/2), (s2,1/2)} and{(ss,1)}, so the corresponding to two rounds of the threshold mix. In thisnegke, per(A) =
probability distribution on each of its outgoing links beces 36 andd(A) = 0.5447.
{(s1,1/4), (s2,1/4), (s3,1/2)}. Following in this manner, we
can obtain the probabilities of relating a particular inputa 'K
particular output and construct the doubly stochastic imdtr \
corresponding to this system, which is given in Fig. 3. Given 0.8
the matrix P, the degree of anonymiy( P) can be computed
as in (3) and is approximatelyg(0.042)/log(0.038) ~ 0.97.

0.6

IV. APPLICATION TO SOME COMMON MIX TYPES

When defining our permanent-based anonymity metric in
Section Il, we used the example of a real-time anonymity net-
work. We now extend our analysis and apply our permanent-
based metric to some common types of high-latency mixes
from the literature. 0

. Numb: f d.
A. Threshold Mixes umoer of founds (1

A_‘ FhreShom mIXIS a mix that collects _mcomlng message?-ig. 5. Degree of anonymity for threshold mixes with = 3,5, and 10
until it has received some threshald applies a cryptographic over ten rounds.
transformation to each message received, and then fonafirds
N messages on to their next destination in a random order. S )
We refer to each time the mix purges its store of messages aghe graph in Fig. 5 shows how the degree of anonymity
a mix round changes over rounds for various threshold values.

For an individual round, each input message is equallyyikeg  Timed Mixes
to correspond to any of théV output messages; however,
messages within a particular round do not “blend” Withn
messages from any previous or subsequent round. Fig. Zf%’;l . .

9 om any p . quen : g received, and then forwards all messages on to their next

shows the bipartite graph of possible relationships betwe ostination in a random order. Since there is no longer a
inputs to and outputs from two rounds of a threshold miXonstant number, or threshold 61‘ messages that enter zi!%d ex
with N = 3. After one round, the graph is a complete bipartit% ' ' 9

0.4

Degree of anonymity (d)

0.2 | -

A timed mixis a mix that collects messages forsec-
s, applies a cryptographic transformation to each rgessa

graphG = K3 3. The permanent of the graph’s correspondin € mix during each round, th_e degree of ar_‘lonymity of a timed
adjacency matrix i! — 6 and yields an optimal degree of ix depends on both théuration of each mix round and the

anonymity ofd — log(3!)/ log(3!) = 1.0. arrival rate of messages into the mix.

After the second round, each message is blending with aLet the arrival rate of messages into the mixdbmessages

smaller fraction (one-half, to be precise) of the total ragss per second. The average number of messages arriving to and

observed exiting the mix. The corresponding bipartite gr@p exiting from the mix during a single round of lengtfis then

is composed of two smaller complete bipartite graphs wheie:;é's F\(I)J(Ieovc\/;nng g‘( t?:sgag]nee c?;a?g:ro?saxvsnd::iforf;?rzst?;lg d
G = K33 U K3 3. The permanent oi’s adjacency matrix ! P 9 ymity

representation shown in Fig. 4(b), is thais< 3!. The overall mix with parameters and¢ overr rounds as
degree of anonymity decreases fra= 1.0 to d = log(3! x 24 — log(per(A))  log(((6t)1)")
31)/ log(6!) = 0.5447. (4) = log(n!)  log((otr)!)
Extending this example to any threshold mix with a thresh- h . S h hreshold
old N, overr rounds we can compute the overall degree of .Fromt e previous equation, it is easy to see that a thresho

anonymity of the mix as follows: mix with a threshold ofN is equivalent to a timed mix with
' a round length of seconds whev = § x t. We can use this
d(A) = log(per(A))  log((N!)") analysis to select parameters of threshold or timed mixes to

log(n!)  log((N x 7)) provide a desired degree of anonymity.



Consider a timed mix that has an average message arrival oottt Ph

rate of § = 1/6 messages per second. If we have a threshold o1 %j %j %2 %S %2 %S
. . . S2

mix with a threshold ofN = 10 messages, we would require p_ s 0 0 1/4 1/4 1/4 1/4

the timed mix to have a round length of at least 60 seconds T s 194 1(/)4 %é };g %é };g
i o . »

to provide the same minimum degree of anonymity as the p; 14 1/4 18 1/s 1/ 1/8

threshold mix. Similar arguments can be made for other galue ) ) ] )
of N. 5. andt Fig. 6. Doubly stochastic matrix corresponding to two raaigdpool mix

with N = 2 andn = 2. Eachp; is a message in the pool at the start of the
C. Pool Mixes

mix round and each’; is a message in the pool after the mix fires.
A pool mixis a mix that, at end of each round, randomly
selects a subset of the messages inside the mix to crypto- s t, sy t
graphically transform and forward to their next destinatio

The remaining messages will be retained internally for the s b S, A
next round. Pool mixes may determine the length of a single
round according to a threshold or timed algorithm, as above, S5 ty S5 ty

or some combination of the two.

We let N be the number of inputs into the mix in a s, t A ty
single round. The mix will then haveV outputs selected
randomly from a pool ofN + n messages inside the mix, () (b)
wheren is the number of messages retained in the mix at ) )
every round. Initally,the pool mixis primed with “dummy 10,7 (@ A system il rovides no snorymy fo ay essaron o
messages” created by the mix itself that are indistingditha anonymity for all but one message sent.
from authentic messages.

Pool mixes are able to blend messages across multiple
rounds of the mix, unlike simple threshold or timed mixeg th&rom P, we can calculate the degree of anonymity of the
only blend together messages within the same round. Indeg¥ample pool mix as
a message exiting a pool mix may correspondng previous
message that has ever entered the mix. There is a non-zero
possibility that a message will remain in the mix indefinjtel d(P) = log(-2L) log(0.0154)
however, the probability of a message remaining in the mix e
for r rounds decreases asincreases. Serjantov & Danezis Wherém =r x N +n is the number of rows and columns
showed in [6] that a message exiting the pool mix at roundn the m x m matrix P. A similar analysis can be made for
corresponds to a message that previously entered the miP%er values of, N, andn.

round0 < x < r with a probability of V. COMPARISON TOEXISTING MEASURES OF

o ANONYMITY
N n
N+n <N+n) ’

In this section we highlight a few of the more important
differences between our proposed metric and some of the
where, again/N is the number of messages that enter th&rrent metrics. Given that the more common existing metric
mix every round and: is the number of messages retained ifeasure anonymity specific to a particular message or user,
the mix each round. Each individual OUtpUt from the mix Eﬂ/hereas our metric is a System-wide metricy direct quahma
roundr then has a probability of(r, z)/N of corresponding comparisons between metrics are not especially meaningful
to each input at some previous round Instead, we will show how our permanent-based metric can

For the sake of example, we will consider a threshold popk used to identify properties of a system that other metrics
mix with a threshold of N = 2 and pool size ofn = 2. mjght not.

Initially, the pool mix creates two dummy messages and glace _ _ )
them in its pool. After receiving two more input messages, tf\: Information-theoretic Metrics
mix will randomly select two messages to forward to theirtnex While individual users of an anonymity system are most
destinations and retain the other two messages in the mix.likely interested in only their own level of anonymity, suah
Let us consider message. At the end of the first round, narrow focus can overlook important properties of a system a
s1 has al/2 chance of being forwarded to its next destinatioa whole. Consider if an adversary is able to determine throug
and al/2 chance of being retained in the mix/¢ for each passive observation the possible links in the two systems
output or position in the pool). After the second rourgdhas represented as bipartite graphs in Fig. 7. Using the simple
ap(2,1)/N = 1/8 chance of corresponding to each of thentropy-based metric, we can compute an effective anogrymit
round’s two outputsts andty. set size for each input and output. In Fig. 7@@)and¢; have
Continuing in this manner through two mix rounds, we caan effective anonymity set size &f = —(1 x log(1)) = 0,
populate a doubly stochastic matriX as shown in Fig. 6. while the rest have an effective anonymity set sizeSo&

_ log(per(P))  log(0.0176)

~ 0.9688,

p(’l’, I) =



—(2 x (1/2log(1/2))) = 1. The normalized entropy-basedresearch effort to develop efficient approximations andolsu
metric also yields a non-zero degree of anonymity for all bain the permanent of 0-1 and real matrices [16], [17].
two nodes in the first system. Jerrum et al. have given a fully polynomial randomized
A clever adversary would be able to further his analysepproximation algorithm, which provides an arbitrarilpsé
in Fig. 7(a) and eliminate many additional links by workin@pproximation, in time polynomially dependent arand the
backwards from vertices with a degree of one. In our firglesired error [18]. Their algorithm is based on an almost
example system, an adversary could eliminatefrom ¢3’'s  uniform sampling of perfect matchings using a Markov chain
sender anonymity set, sincg is positively linked tos;. Monte Carlo method. Bezakova et al. [19] improve this run-
Indeed, when we apply our system-wide metric, we see thahg time toO(n” log* n) by using a new “cooling schedule”
the bipartite graph has only a single perfect matching, théesr the simulated annealing algorithm running on top of the
identifying the true communication pattern of the system. Markov chain. Still, these algorithms are impractical farge
While the entropy-based metrics indicate that, from th&/stems, since the degrees of the polynomial running times
perspective of a single message sent or received, many ne®-too large.
sages have a non-zero degree of anonymity, the system in Figwe now describe an approach to obtaining bounds on the
7(a) in fact providesno anonymity forany message sent or degree of anonymity of a given system by using known,
received. Our system-wide metric, though, correctly idiest easy-to-compute inequalities relating to the permanena of
this weakness in the system. matrix, which avoid the described computational compieaft
L L i computing the exact or approximated value of the permanent.
B. Source- and Destination-hiding Metrics

The notions ofsource-hidingand destination-hidingare A. A Simple Bound

measures of the highest probability an adversary is able toyhen defining our permanent-based metric in Section I, we
assign to a link between a particular message and its senggfued that the greater the number of possible sets of match-
or recipient. In that sense, they are a “worst-case” measiureings petween inputs to and outputs from the anonymity system
a system. the harder it is for an observer to correctly identify thereot

In both example systems given in Fig. 7, the sourc@g|ationship between senders and recipients. Subsegueetl
and destination-hiding metrics would identify that theeiv can obtain a lower bound on the anonymity level of a system
systems provide no anonymity for some communicants. Tf’@); determining the minimum number of possible perfect
is, the two systems are both source-hiding with parame{@atchings in the system's corresponding bipartite graph.
© = 1.0 and destination-hiding with parametér = 1.0,  The best known general lower bound for the permanent of a
meaning there are one or more senders positively linked (t?,l)-matrix was given by Ostrand [20] and is an improvement

their recipients andvice versa The two example systems,on an earlier lower bound due to Jurkat and Ryser [21].
however, clearly provide different overall levels of anomity.  ogirand proved

Some of the messages in Fig. 7(b) even have a nearly optimal

level of anonymity. n ,
With our permanent-based metric, we are interested in per(A) = Hmax{lﬂ“z‘ —i+1}, 4)
the maximum probabilities an adversary is able to assign to =1

an entire setof matchings between senders and recipientswhere 4 is a (0,1)-matrix with a nonzero permanent and
(@ maximum weight perfect matching), instead of individual, , r,, ..., r,, are row sums ofd arranged such that < ry <
links, indicating the most likely true communication patte . <, .

in the system. The authors of [9] refer to thisgiebal back- In our model, we can assume that the permanent of a (0,1)-
tracing, which they dismiss as inefficient as it is exponentighatrix representing possible sender-recipient relatigssis
in the number of sent messages. greater than 0, since there must exist at least one perfect

With our permanent-based metric, global back-tracin@atching (the actual communication pattern). It is also-pos
would be equivalent to finding a maximum weight perfedible to permute the rows of such that the row sumér;}
matching in a bipartite graph with probabilities assigned fatisfy »; < r, < ... < r,, without distorting the sender-
each edge in the graph. Using an algorithm such as thipient relationships represented by the matrix. Fuytine
Hungarian method [14], we can more easily find a sing|germanent of a matrix is invariant under a permutation of its
maximum weight perfect matching in the weighted bipartiteows [22]. Thus, we can apply Ostrand’s lower bound to our
graph inO(n?). Enumerating all perfect matchings is still, ofmodel without loss of generality.
course, exponential. Let pnin(A) be the minimum possible number of per-
fect matchings in a (0,1)-matrid given by (4). Substitut-
ing pmin(A) into our original definition of the degree of

The anonymity metriC we deﬁned in SectiOI’IS I and Il i%nonymiw of a System in (2)’ we obtain the inequa"ty
based on computing the permanent of a matrix. While it is
IOg(pmin(A))

NP-hard to compute the permanent of a matrix [15], even if
the entries are 0-1, there has been an on-going and promising log(n!)

VI. BOUNDING THE ANONYMITY
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