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Abstract. In this paper we look at the information an attacker can
extract using a statistical disclosure attack. We provide analytical re-
sults about the anonymity of users when they repeatedly send messages
through a threshold mix following the model of Kesdogan, Agrawal and
Penz [7] and through a pool mix. We then present a statistical disclosure
attack that can be used to attack models of anonymous communication
networks based on pool mixes. Careful approximations make the attack
computationally efficient. Such models are potentially better suited to
derive results that could apply to the security of real anonymous com-
munication networks.

1 Introduction

Intersection attacks take advantage of persistent communications between two
parties to compromise the anonymity offered to them by anonymous communica-
tion systems. While it is possible to manage their impact within the anonymous
communication infrastructure, they can be devastating when the totality of the
anonymous communication system is abstracted as a single mix and attacked.
In this case the adversary observes a victim sending messages and notes all their
potential receivers. By aggregating and processing such information, Berthold,
Pfitzmann and Standtke [2] observe, that an attacker is able to deduce some
information about who is communicating with whom.

We are extending the previous work done on a simple model of an anonymity
system — a threshold mix. Such a model was used by Kesdogan, Agrawal and
Penz [7,1] to mount an exact, but expensive, attack. Similarly Danezis [5] pro-
poses an approximate but less computationally demanding attack, that still pro-
vides very good results. We will revisit the original model proposed and present
new analytical results about the information that can be inferred by observing
the mix.

Anonymous communication systems cannot in many cases be modelled as
abstract threshold mixes, since a set of messages is likely to remain in the net-
work across any chosen division in rounds. We therefore propose a statistical
attack that applies to an anonymous communication channel modelled as a pool
mix [11]. Such a mix retains a number of messages every round that are mixed
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with the messages injected in the network in the following round. This model can
be used more effectively to study the limit of how much anonymity anonymous
communication networks can provide. The attack presented is very efficient, and
allows the adversary to judge the confidence of the results. The set of careful
approximations that make this attack very efficient are explained as part of this
work.

2 Previous Work

Anonymous communications over information networks were introduced in his
seminal paper by David Chaum [3]. The basic building block that such sys-
tems use to provide the required anonymity properties is the miz, a node that
takes a batch of input messages and outputs them all in such a way that their
correspondence is hidden. Cryptographic techniques are used to hide the corre-
lation between the input and output message bit patterns, and reordering of the
messages is used to disrupt the timing patterns within each batch of messages.
This mixing strategy is called a threshold miz. Other mix strategies have also
been suggested that may make the mix node more resilient to active attacks [8,
11], and a body of work has concentrated on measuring the anonymity they
provide [10,6,12].

Although the mix was originally conceived as a real network node, Kesdogan,
Agrawal and Penz model [7] observe that any anonymity system that provides
unlinkability (rather than unobservability) to its participants could be modelled
as an abstract threshold mix. They then examine the anonymity offered by such
a network to a sender that uses the mix across many rounds to communicate
with a set of recipients. He describes the disclosure attack that can be used to
deduce the set of recipients of a target sender. An analysis of the performance
of the attack is further investigated by Agrawal, Kesdogan and Penz [1].

Such attacks were previously described as intersection attacks [2] or parti-
tioning attacks, both when applied to single mixes and when performed against
the whole anonymous network. When applied to single mixes, the attack can
be eliminated by requiring each message travelling through the network to fol-
low a different path, as originally proposed by Chaum [3], or by restricting the
routes that messages can take out of each node [4]. On the other hand, given
that senders will be communicating with a persistent set of parties, such attacks
will always yield information when applied to the whole network. The Onion
Routing project was the first to draw attention to such attacks performed at the
edges of the network, and named them ¢raffic confirmation attacks [9].

The main disadvantage of the disclosure attack is that its exact nature makes
it computationally very expensive. Danezis [5] proposed a statistical attack based
on a set of carefully selected approximations that allows an attacker observing
the same model of a network to estimate a victim’s set of receivers. As we will
see, one of the main advantages of the statistical disclosure attack is that it can
be generalised and applied against other anonymous communication network
models. In particular [7] assumes that an anonymous network can be abstracted
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as a large threshold mix where batches of messages are anonymized together
and sent out to their respective recipients. We will illustrate how the statistical
disclosure attack can be generalised to anonymous communication mechanisms
that can be modelled as pool mixes, or in other words where some messages are
fed forward to the next mixing rounds of the model.

3 Formal Account of the Attack on the Threshold Mix

We follow the model considered by Danezis in [5]. The anonymity system is
considered as a threshold mix with threshold B + 1. Thus, at each round B + 1
messages are processed. The victim of the attack, Alice, is known to the adversary
to send one message at every round to a receiver chosen uniformly at random
from a set M. Naturally, if Alice does not send a message during a round,
we simply ignore it altogether. The other B senders whom we collectively call
Steves send one message each to a receiver chosen independently and uniformly
at random from a set N, M C N. The attacker knows |M| (and |N|), and wishes
to determine M.

We now define some notation. Let p,. be the probability that one of the other
senders, a Steve, sends a message to a particular receiver r. Naturally, if they
pick their recipients uniformly, p, = ﬁ Let ¢ = 1 — p,-, the probability Bob
does not send a message to r.

Let us now start with some very simple cases and build up a technique for
analysing how much information the attacker gains from observing Alice send
messages via the anonymity system modelled as a threshold mix.

3.1 One Round, Alice Sends to One Receiver

Suppose M = {r}. Now consider the attacker observing one round of communi-
cation. The probability that we see r receiving exactly one message is ¢ — Alice
definitely sends her message to r, the other senders must send their messages to
other receivers. The probability of any other receiver v/ (r' € N \ {r}) receiving
exactly one message is Bp,q¢Z 1.

Now define event X as “A particular user k receives one message” and an
event Y as “M = {k}”, i.e. k is the user Alice sends messages to. The event
Y'|X is then “k is Alice’s receiver given that k receives one message”. Now note
that what we calculated above is the probability of k receiving a message if he
was Alice’s receiver and the probability of &k receiving a message if he was not.
Thus, Pr[X|Y] = ¢Z. Let us now look at the probability of Y being true. For
this we need to consider what the adversary knows about the set M. We stated
above that the attacker knows how many elements there are in M. If he knows
nothing else, it is reasonable that he regards all possible sets of | M| elements as
equally likely. Thus, in our example here Pr[Y] = ﬁ

Now,

1 N| -1
Pr[X] = Pr[X|Y]Pr[Y] + Pr[X|-Y]Pr[-Y] = qu + Bp,qP~! | |£\7|
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We can now use Bayes’ theorem to work out Pr[Y|X].

B _1
Pr[X|Y]Pr[Y] & TNy
PHY|X) = e = e =
r qr W +Bp7‘QT ‘Nl
1
q+ Bp(|N| —1) 1—ﬁ+B—Bﬁ 1+ B

This is, of course, exactly what one would expect — after all, the attacker
knew that M contains one receiver out of N with equal probability, and then
observed that during one round of the mix (in which he knows Alice has partici-
pated) some particular receiver r has received one message. Without taking any
further information into account (notably without knowing where all the other
messages went), he can say that the probability that r is Alice’s receiver is BLH.

A similar derivation shows that if all the messages during a round went to
different receivers, the probability of any of them being Alice’s receiver is still,
as expected, B+H‘

Now let us consider how much information the attacker gets if he observes
someone receiving ¢ messages.

The probability that r receives exactly ¢ messages is

B c—1_B—c+1
(c— 1) Pr 4y

Note that ¢ can be as high as B + 1 requiring all the messages to go to the
receiver 7.
The probability of any other receiver r/(r' € N \ {r}) receiving exactly ¢

messages is:
B B
( c > p;qr )

Note that this becomes zero in the case of ¢ = B + 1 — the receiver who is
not r cannot possibly receive all the messages from the mix as Alice sends her
message to 7. We calculate the probability that & who receives ¢ messages is
Alice’s receiver r. From above:

B c— —c
Py = (7 ) o ta e

_ B B—c—i-li B c B—c|N| -1
R O e R W e

B
Py |X] = Pr[X|V]Pr[y] _ (c - 1)

N EAR
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For example, if we have a system with ten potential receivers and B=10,
i.e. the mix processes 11 messages during a round, then if the attacker sees two
messages being sent to Bob during a round can deduce that Alice sent a message
to Bob with probability %

3.2 Several Rounds, Alice Sends to One Receiver

We now generalise this to any number of rounds /.

From before, we know that Pr[X|Y] = ¢Z. Now, for many independent
rounds (let X; be “k receives exactly one message during each of the [ rounds”),
Pr[X;|Y] = ¢?" and Pr[X;|-Y] = Blpfnq,(,B_l)l. A derivation very similar to above

yields:

! -1
PrlY|Xi] = 7 ({r - M 11)1 ]
¢+ BP(IN|-1)  (IN[-1)"'+B

This, of course, subsumes (and is consistent with) the above case for [ = 1.

An example is in order. If everyone chooses uniformly from 10 different re-
ceivers (and Alice always sends to the same person), then just from the fact that
Alice participated in two rounds of a threshold mix with threshold of five and
Bob receives exactly one message during each of the two rounds, the attacker
can deduce that Alice is talking to Bob with probability 0.36.

Of course, we have merely given the probability of Y given a very specific
event X, but it is clear that the probability of Y given any event Z; can be com-
puted by merely multiplying the probabilities of Y given the event corresponding
to each round. This is justified as the rounds are independent.

3.3 Several Rounds, Alice sends to Many Receivers

If Alice may send messages to more than one receiver, the situation changes
slightly. We define the event X to be “there is a set K such that exactly one
member of K receives one message during every round” and the event Y to be
“Alice’s set of receivers is the same as K or M = K”. If the attacker knows the
. . . N
size of the set M then the number of possible sets K is <||M|

Now a simple derivation shows:

Pafy ] — @ _ (V| — |

N N
a+mw (M) -1)  avi=pay sy ((131) - 1)
1
[N
| M|
The set of Alice’s receivers is equally likely to be any of the sets of that size. Of

Note that because M contains more than one element, Pr[Y] is
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course, if the attacker knew nothing about the size of M, the situation would
have been rather different. The reader is invited to consider it'.

We have shown how to calculate the probability of any set K of being Alice’s
receiver set, or, in other words, a probability distribution over all possible K.
This can be used to compute the anonymity of M as a whole — following [10],
one just computes the entropy of this probability distribution.

Modifying the example from the previous section shows us what effect in-
creasing the size of M has. If Alice sends to one of two people at each round,
then the probability of Alice’s receiver set being {r,r'} where r got a message
during the first round and r' got a message during the second round is merely
0.009!

3.4 Some Generalisations and Remarks

The reader may have observed that confining Alice to choosing her receivers from
a uniform distribution over M and the other senders — a uniform distribution
over N is rather restrictive. Indeed, as long as all the other senders (Steves)
choose their receivers using the same probability distributions, we may substitute
different values for p, and ¢, in the equations above.

If the Steves send messages to receivers picked from different probability
distributions (which are known to the attacker) the situation becomes more
complicated. We consider it for the case of the pool mix in Section 4.

The attacker may well know more or fewer things about Alice’s receiver
set M. As we mentioned above, he may not know ||, but assume that every
possible M is equally likely. Alternatively, he may know a set N’ such that M C
N’ C N. This knowledge too can be incorporated into the above calculations
(but is a tedious exercise).

We have now given an account of the statistical disclosure attack on a
anonymity system modelled by the threshold mix formally, giving a rigorous
analysis underlying the attacks presented by Danezis [5] and Kesdogan et al [7,
1]. We go on to show how similar techniques can be used to derive similar results
for a pool mix.

4 Formal Account of the Attack on the Threshold Pool
Mix

We now turn our attention to the pool mix. During each round b of messages are
input into the mix from the previous round. We call these messages the pool. A
number B of messages are input from the senders. Out of the B + b messages
in the mix a random subset of size B is sent to their respective receivers. The
remaining b messages stay in the pool for the next round.

! Naturally, the probability of any particular set K being Alice’s set of receivers de-
creases and one might like to consider the probability that a receiver r is a member
of Alice’s set of receivers. We leave this for future work.
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Unlike in the case of a threshold mix, the rounds of a pool mix are not
independent. Therefore we must consider a complete run of the pool mix as one
observation and try to extract information from it. A complete run starts when
the mix comes online and its pool is empty and finishes when the mix is about to
be shut down and has sent out all the messages in its pool out to the receivers.

We follow our running example of Alice choosing her receivers uniformly at
random from M (call this probability distribution? v) and all the other senders
choosing uniformly from N, call this u, M C N.

We make several assumptions:

— The messages which are in the pool at the beginning of the operation of
the mix are distributed according to w. We may think of the mix operator
inserting these messages.

— The attacker is able to observe an entire run of the pool mix, from the very
first round, 0, to the very last, & (when no messages remain in the pool).
This may seem unrealistic; indeed any real attack of this form will rely
on a smaller run and will necessarily yield an approximation to the results
presented below. We take the “pure” case merely as an illustration.

First of all, let us define an observation of a pool mix over [ rounds. Call O;
(for outputs) the multisets of receivers of round i and S; the set of senders of
round 3. One of the senders is Alice. Define Sy to include all the initial messages
in the pool and Oy to include all the messages which ended up in the pool in the
last round and got set out to receivers. Observe that |[So| = |O;] = B + b and
i#0=|S;| =B and j # = |0;j] = B. Now construct O = {r;|r € O;} and
S = {si|]s € S;}. Given an observation Obs = (S, 0), there are many possible
scenarios of what happened inside the anonymity system which would have been
observed as Obs by the attacker. Indeed, a possible scenario X is a relation on
S x O such that each member of the S and O occurs in the relation exactly once
and (s;,7;) € A = i < j. The relation X represents a possible way senders could
have sent messages to receivers which is consistent with Obs.

We illustrate this with a simple example. Suppose we have a pool mix with
a threshold of two messages and a pool of one message which functioned for two
rounds. The message which was in the pool initially came from the sender m,
the mix itself, the other two messages came from A (Alice) and ¢. Thus, Sy =
{m, A, q}. Og = {r,r'}. At the next round which happens to be the last, messages
from Alice and s arrived and messages for r, ' and r""" were sent, leaving the
mix empty. Hence, S; = {A,s}, Oy = {r,r',r""}, S = {mo, Ao, g0, A1, s1} and

O = {ro,r{,r1,7),r{"}. A possible scenario A consistent with the observation

(S,0)is: A = {(m()arllu)a (Ao, 0), (QO,TS), (A1,71), (8177”'1')}-
We can now compute the set of all possible scenarios which are compatible
with the observation Obs. Call this set A. Take a A € A and a set K such that

2 Bold will consistently be used to indicate that the quantity is a vector describing a
probability distribution.

% Until now we have not distinguished individual senders as all but Alice sent messages
to receivers chosen according to the same probability distribution.



8 George Danezis and Andrei Serjantov

|| = |M]|. Define event Y as “M = K”. If the possible scenario A happened,
then the attacker observes Obs — A was observed by the attacker as Obs by
definition — hence Pr[Obs|A, K| = 1. What is the probability of the possible
scenario A occurring if K was Alice’s set of receivers? The possible scenario
occurs if two things hold: if all the senders involved in this scenario picked their
receivers in the same way as specified in A and the mixing happened is such a
way that the messages are sent to the receivers in accordance to A\. Hence

PrAlY] = <seHsp><B;b>

where pg is the probability of sender s sending a message to the receiver r

such that (s,r) € . Naturally, in the case we are considering above, p;, = ﬁ
if s # Alice or p, = W if s = AliceAr € M A(s,r) € Xor p, = 0 if
s = Alice Ar & M A (s,7) € X. However, this approach is also applicable if the

senders have different probability distributions ps over N which are known to
the attacker.

Having obtained Pr[A|M], we can calculate Pr[Obs|M] and then, using Bayes’
theorem as above, Pr[M|Obs]. First,

Pr{Obs|[Y] = > Pr[Obs|\, M] x Pr[A|M] = Pr[A|M]

reA vy
PriObs] = Y Pr[Obs|A, Y] Pr]Y]
Ks.t.|K|=|M| AeA
Now,
|V
Pr[Obs|Y] Pr[Y] > xea Pr[A[M] <|M|
PrY|Obs] = Pr[Obs] -

ZKs.t.|K|:\M| 2orea PriAY] < ||AA;||>

This enables us to compute the probability of a set K being Alice’s receiver
set. Unfortunately, this calculation requires generating all the possible scenarios,
A. The number of these is clearly at least exponential in Bk. Hence a calculation
which is based on all possible scenarios which could have happened inside the
mix is not feasible for any practical run of a pool mix. In the next section we
make some simplifying assumptions and show that it is possible to extract some
information out of this scenario efficiently.

5 Efficient Statistical Attack on the Pool Mix

This attack is a modification of the attack presented in [5] to apply in the case
of the pool mix. It is worth noting that the threshold mix is a special example of
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a pool mix, with no messages feeding forward to the next mixing round. Figure
1 illustrates the model used for the attack.

As before, one of the senders, Alice, is singled out to be the victim of the
attack. Each time she has to send a message, she selects a recipient randomly
out of a probability distribution described by the vector v over all possible NV
receivers in the system. Alice does not send in each round (as was the case in
the model described in [5]) but only sends at rounds described by the function
s(k). Depending on whether it is a round when Alice sends or not, B — 1 or
B other senders respectively, send a message. They each choose the recipient
of their messages, each independently, according to a probability distribution
u over all possible recipients N. The initial b messages present in the pool at
round 1 are also destined to recipients chosen independently according to the
same probability distribution .

To—=—1Uu
b
B
. B-1 .
’Ll:w —{ Round 1 Holzmg—f;’“’
T
| Bk;+bmy,_
b | TE = 1B+7Ir>k :
Vv
B .
. B—1 Bigy1+b
Thg1 = vt = o~ =\ Round k +1——= Opy1 = 7%;:_1, T
T
|
! Th41
v

Fig. 1. The pool mix model and the probability distributions defined

6 Approximating the Model

We are going to define a series of approximations. These approximations distance
the generalised statistical disclosure attack from other exact attacks, but allow
the adversary to make very quick calculations and to decrease the anonymity of
Alice’s set of recipients.

We will first model the input distribution #j of recipient of messages of each
round k£ as being a combination of the distributions w and v. Depending on
whether Alice sends a message or not the component v will be present.

v+(B—1)u if —
i {73 if s(k)

1
u if s(k) =0 M)
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1k is a vector modelling the distribution of messages expected after a very
large number of rounds with the input characteristic of input round k. Depending
on whether Alice is sending at round k, (s(k) being equal to one), the appropriate
distribution is used to model this input.

At the same time we model the output of each round k, and name it oy.
This output is the function of the input distribution at the particular round k&
and the distribution of recipients that is forwarded to the present round via the
pool. We call the distribution of recipients that are in the pool g —1. The output
distribution of each round can then be modelled as

Big + bmp—1
%= T Brb (2)
By definition g = w and for all other rounds the distribution that represents
the pool has no reason to be different from the distribution that represents the
output of the round. Therefore mp = og.

The attacker is able to observe the vector s describing the rounds at which
Alice is sending messages to the anonymous communication channel. The ad-
versary is also able to observe for each round the list Oy, of receivers, to whom
messages were addressed.

The generalised statistical disclosure attack relies on some approximations:

— The set of receivers at round Oy can be modelled as if they were each inde-
pendently drawn samples from the distribution oz as modelled above.

— The outputs of the rounds are independent from each other, and can be
modelled as samples from the distribution og.

Using the samples Oy, we will try to infer the the distributions og and in turn
infer the distribution v of Alice’s recipients.

One can solve Equation 2 for a given function s(k) and calculate oy for all
rounds k. Each distribution og is a mixture of u, the other senders’ recipients,
and v Alice’s recipients. The coefficient x;, can be used to express their relative
weights.

or = zv + (1 —zp)u (3)

By combining Equations 1 and 2 one can calculate x;, as:

b \"Y B 1
_ - 4
m= ) <B+b> B+bB 4

i<k,s(i)=1

This x;, expresses the relative contribution of the vector v, or in other words
Alice’s communication, to each output in Oy observed during round k. When
seen as a decision tree, each output contained in Oy, has a probability (1 — ) of
being unrelated to Alice’s set of recipients, but instead be drawn from another
participant’s distribution .
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6.1 Estimating v

The aim of the attack is to estimate the vector v that Alice uses to choose the
recipients of her messages. Without loss of generality we will select a partic-
ular recipient Bob, and estimate the probability vge, Alice selects him as the
recipient.

We can calculate the probability of Bob being the recipient of Alice for each
sample we observe in 0. We denote the event of Bob receiving message ¢ in the
observation Oy as Op; — Bob. Given our approximations we consider that the
particular message Oj; was the outcome of sampling o and therefore by using
equation 3 we can calculate the probabilities.

Pr[Or; — Bob|vgob, UBob, Tk] = (TkUBob + (1 — Tk )uBob) (5)
Pr[=0Oy; — Bob|vBob, uBob, Tk] = 1 — (2xVBob + (1 — Tk )uBob) (6)
As expected, Bob being the recipient of the message is dependent on the
probability Alice sends a message vpop, (that is Bob’s share of v), the probability
others have sent a message uponr, (which is Bob’s share of u) and the relative
contributions of Alice and the other’s to the round &, whose output we examine.

Now applying Bayes’ theorem to Equations 5 and 6 we estimate p.

Pr[UBob|Oki — BOb, UBob» :L‘k] =
Pr[Oy; — Bob|vgon, UBob, Tk Pr[vBob [UBob, Tk]

1
Jo Pr[Oi — Bob|vpon, uBob, k] Pr[vBon [uBob, Z1]dvBob

d ~ (zrvBob + (1 — xk)upob) Pr[Prior ven]

Pr{vpen|Ok; — Bob, upoen, k) =
Pr[=0; = Bob|vob, UBob, k] Pr{UBob|UBob, k]

fol Pr[=Ok; — Bob|vgob, uBob, Zk] Pr[voeb|uBob; Zr]|dvBon
~ (1 = (zvBob + (1 — 2 )upopb)) Pr[Prior vpep]

Note that we choose to ignore the normalising factor for the moment since
we are simply interested in the relative probabilities of the different values of
UBob- The Pr[Prior vp,p]| encapsulates our knowledge about vp,ep before the ob-
servation, and we can use it to update our knowledge of vpo,. We will therefore
consider whether each message observed has been received or not by Bob and
estimate vpop considering in each step the estimate of vpo, given the previous
data as the a priori distribution®. This technique allows us to estimate the prob-
ability distribution describing vp,1, given we observed Rj messages sent to Bob
in each round k respectively.

Prlvgob|(z1, R1) - - . (21, Ry), uBob)

~ H(l“kUBob + (1 = zp)upon) ™ (1 — (zxvBob + (1 — 2k )uBon))) P~
k

* Since we are calculating relative probabilities we can discard the a priori since it is
the uniform distribution over [0, 1]
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The calculation above can be performed for each receiver in the system to
estimate the likelihood it is one of Alice’s receivers. The resulting probability
distributions can be used as an indication of who Alice is communicating with,
and their standard deviations can be used to express the certainty that this
calculation provides.

7 Evaluation of the Attack

Figure 2 shows the set of probability distributions for 60 receivers. In this case we
take the the probability distribution u to be uniform over all receivers and Alice
to be choosing randomly between the first two receivers and sending messages
for a thousand consecutive rounds (the mix characteristics in this case were
B =10,b =0, namely it was a threshold mix). Figure 3 shows the same data for
a pool mix with characteristics B = 30,b = 15. Note that the receivers 1 and 2
are Alice’s and their respective v and vy have different characteristics from the
other receivers.

0.35
0.3
0.25
0.2

& 0.15

0.1

120

Receivers 1...50 Estimation of v

receivers

Fig. 2. Comparing the distributions of vyeceiver for B = 10,b = 0

The same information can be more easily visualised if we take the average
of all the distributions of receivers that do not belong to Alice, and compare
them with the receivers of Alice. Figures 4(a) and 4(b) show the distributions
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0.05

Receivers 1...50 Estimation of Vreceiver

Fig. 3. Comparing the distributions of vreceiverfor B = 30,b = 15

of Alice’s receivers and the averaged distributions of other receivers. The curves
can be used to calculate the false positive rates, namely the probability a receiver
has been attributed to Alice but is actually not in Alice’s set, and false negative,
namely a receiver wrongly being excluded from Alice’s set of receivers.

It is unfortunate that we do not yet have analytic representations for the
means and variances of the distribution describing vyeceiver- Such representations
would allow us to calculate the number of rounds for which Alice can send
messages, given a particular set of mix characteristics, without being detected
with any significant degree of certainty. The attack presented allows an attacker
to understand where they stand, and how much certainty the attack has lead to,
by numerically calculating them. On the other hand the network designer must
simulate the behaviour of the network for particular characteristics to get some
confidence that it does not leak information.

8 Conclusions

In this paper we presented a thorough account of attacks which consider repeated
communication and the attacker’s knowledge of it. First we gave some analytical
results which enable the attacker to compute the probability of a set being
Alice’s set of receivers, and therefore the anonymity of that set of receivers.
Then we presented a similar result for the pool mix. However, computing the
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Probability

George Danezis and Andrei Serjantov

Alice’s first receiver

Alice’s second receiver

06 07 08 09 1 o 01 02 03 04 05 06
Estimate of probability Ve,

04 05
Estimator of p

(a) Comparing the distributions of (b) Comparing the distributions of
vl and others. B=10, b=0 v1, v2 and others. B=30,b=15

probabilities in this case is expensive, and we resorted to using approximations to
yield an efficient attack against a pool mix. The approximations were validated
by simulations; the results show that the attack is powerful as well as efficient.
This is an important and unfortunate result for the designers of anonymity
systems.
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