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Abstract facts to keep hidden, the outputs are the observables, and th
matrix represents the correlation between the facts and the
Randomized protocols for hiding private information observed events, in terms of conditional probabilities. An
can often be regarded as noisy channels in the information-adversary can try to infer the facts from the observed events
theoretic sense, and the inference of the concealed informawith the Bayesian method, which is based on the principle
tion can be regarded as a hypothesis-testing problem. Weof assuming an a priori probability distribution on the hid-
consider the Bayesian approach to the problem, and inves-den facts iypothesésand deriving from that (and from the
tigate the probability of error associated to the inference matrix) the a posteriori distribution after a certain evieas
when the MAP (Maximum Aposteriori Probability) decision been observed. It is well known that the best strategy for
rule is adopted. Our main resultis a constructive character the adversary is to apply the MAP (Maximum Aposteriori
ization of a convex base of the probability of error, which al  Probability) criterion, which, as the name says, dictates t
lows us to compute its maximum value (over all possible in- choose the hypothesis with the maximum a posteriori prob-
puts’ distribution), and to identify functional upper baisx  ability. “Best” means that this criterion induces the srastl
for it. As a side result, we are able to substantially improve probability of guessing the wrong hypothesis. The proba-
the Hellman-Raviv and the Santhi-Vardy bounds expressedility of error, in this case, is also call®hyes’ risk
in terms of conditional entropy. We then discuss an appli-  Even if the adversary does not know the a priori distribu-
cation of our methodology to the Crowds protocol, and in tjon, the method is still valid asymptotically, under theneo
particular we show how to compute the bounds on the prob- gition that the matrix’ rows are all pairwise distinguished
ability that an adversary break anonymity. By repeating the experiment, in fact, the contribution @f th
a priori probability becomes less and less relevant for the
computation of the a posteriori probability, and it “washes
1 Introduction out” in the limit. Furthermore, the probability of error con
verges td) in the limit [8]. If the rows are all equal, namely
Information-hiding protocols try to hide the relation be- f the channel has capacity then the Bayes' risk is maxi-
tween certain facts, that we wish to maintain hidden, and theMa! and does not converge(o This is the ideal situation,
observableconsequences of these facts. Example of suchffom the point of view of information-hiding protocols. In
protocols are the anonymity protocols like Crowds [21], prchce, however, it is difficult tq achleye_s_uch degree of
Onion Routing [26], and Freenet [7]. Often these protocols Prvacy: We are then interested in maximizing the Bayes'
use randomization to obfuscate the link between the hiddenfiSk; S0 to make the convergence(i@s slow as possible.
information and the observed events. Crowds, for instance, | '€ main purpose of this paper is to investigate the Bayes
tries to conceal the identity of the originator of a message 1Sk, in relation to the channel's matrix, and its bounds.
by forwarding randomly the message till its destination, so ~ There are many bounds known in literature for the
that if an attacker intercepts the message, it cannot be sur@ayes’ risk. One of these is thejuivocation bounddue
whether the sender is the originator or just a forwarder. to Rényi [22], which states that the probability of error is
In most cases, protocols like the above can be regardedound by the conditional entropy of the channel’s input
as information-theoretic channels, where the inputs ae th given the output. Later, Hellman and Raviv improved this
*This work has been partially supported by the INRIA DR‘Eui e bound by half [13]. Recently, Santhi and Va_rdy have pro-
Associée PRINTEMPS. 'FI)'he wgrk oapKonstariinos Chatzikakid a‘rjld posed a new bound, that depends exponentially on the (op-
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ProNoBiS. improves the Hellman-Raviv bound in the case of multi-




hypothesis testing [23]. of the attacker about the distribution of the users, ratem t
on the capability of the protocol to conceal this informatio
1.1 Contribution despite of the observables that are made available to the at-
tacker. Moreover, a uniform user distribution is assumed,
The main contributions of this paper are the following: ~ while in this paper we abstract from the user distribution in

i ) the functional sense.
1. We consider what we call “the corner points” of a

piecewise linear function, and we propose criteria to |y [17, 18] the ability to have covert communication as
compute the maximum of the function, and to identify g result of non-perfect anonymity is explored. Those works
concave upper bounds for it, based on the analysis offocus on the possibility of constructing covert channels by
its corner points only. the users of the protocol, using the protocol mechanisms,
and on measuring the amount of information that can be
transferred through these channels. In [18] the authoos als
we show that the probability of error associated to the suggest thatthe channel's capacit.y can be. used as an asymp-
MAP rule is piecewise linear, and we give a construc- totic measure .Of the worgt-case mformgtmn leakage. An-
tive characterization of a set of corner points, which other information-theoretical a}pproac_h is the one of [9],
turns out to be finite. Together with the previous re- where the authors use the notionrefative entropyto de-

sults, this leads to constructive methods to compute fine the degree of anonymity.
the maximum probability of error over all the chan-
nel’s input distributions, and to define tight functional
upper bounds.

2. We consider the hypothesis testing problem in relation
to an information-theoretic channel. In this context,

In the field of information flow and non-interference
there is a line of research which is related to ours. There
have been various works [16, 11, 5, 6, 14] in which the the
3. As a side result of the above Study’ we are able to hlgh informationand thdow informationare seen as the in-

improve on the Hellman-Raviv and the Santhi-Vardy Putand output respectively of a channel. From an abstract

bounds, which express relations between the BayesPoint of view, the setting is very similar; technically it e®
risk and the conditional entropy. The Santhi-Vardy not matter what kind of information we are trying to con-
bound, which is better than the Hellman-Raviv one ceal, what is relevant for the analysis is only the probsadbili
when we consider more than two hypotheses, is tight tic relation between the input and the output information.

(i.e. it coincides with the Bayes’ risk) on the corner The conceptual and technical novelties of this paper w.r.t.

points only in the case of channels with capadity ~ the above works are explained in Section 1.1. We believe

Our improved bound is tight on those points for every that our results are applicable more or less directly also to

channel. The same holds with respect to the Hellman- the field of non-interference.

Raviv bound (the latter is better than the Santhi-Vardy

one in the case of two hypotheses). The connection between the adversary’s goal of inferring

a secret from the observables, and the field of “hypothesis
4. We show how to apply the above results to random- testing”, has been explored in other papers in literatwe, s
ized protocols for information hiding. In particular, in particular [15, 19, 20, 3]. To our knowledge, however,
we work out in detail the application to Crowds, and [3]is the only work exploring the Bayes'’ risk in connection
derive the maximum probability of error for an adver- to the channel associated to an information-hiding proto-
sary who tries to break anonymity, and bounds on this col. More precisely, [3] considers a framework in which
probability in terms of conditional entropy, for any in-  anonymity protocols are interpreted as particular kinds of

put distribution. channels, and the degree of anonymity provided by the pro-
tocol as the converse of the channel’s capacity (an idea al-
1.2 Related work ready suggested in [18]). Then, [3] considers a scenario in

which the adversary can enforce the re-execution of the pro-

Probabilistic notions of anonymity and information- tocol with the same input, and studies the Bayes’ risk on the
hiding have been explored in [4, 12, 1, 2]. We discuss the repeated experiment. The focus is on how the adversary can
relation with these works in detail in Section 5. approximate the MAP rule when the a priori distribution is

Arecentline of work has been dedicated to exploring the not known, and the main result of [3] on this topic is the
concept of anonymity from an information-theoretic point investigation of the characteristics of the matrix that mak
of view [24, 10]. The main difference with our approach this task possible or impossible. In the present paper, on
is that in those works the anonymity degree is expressedthe contrary, we study the Bayes’ risk as a function of the
in terms of input entropy, rather than conditional entropy. a priori distribution, and we give criteria to compute tight
More precisely, the emphasis is on the lack of information bounds for it.



1.3 Plan of the paper of a are related by Bayes’ theorem:

. o _ _ plola) p(a)
Next section recalls some basic notions in information plalo) = )

theory, and about hypothesis testing and probability of er-

ror. Section 3 proposes some methods to identify tight I hypothesis testing we try to infer thteue hypothe-

bounds for a function that is generated by a set of cornersis (i.e. the input fact that really took place) from the ob-

points. Section 4 presents the main result of our work, Served output. In general it is not possible to determine

namely a constructive characterization of the corner goint the right hypothesis with certainty. We are interestedpthe

of Bayes' risk. In Section 5 we discuss the relation with in minimizing the probability of error, i.e. the probabil-

some probabilistic information-hiding notions in litewas.
Finally, Section 6 illustrates an application of our resuidt
the anonymity protocol Crowds.

ity of making the wrong guess. Formally, the probability
of error is defined as follows. Given thigecision function
f: O — Aadopted by the observer to infer the hypothesis,

The report version of this paper, containing the proofs, |6t Ey : A — O be the function that gives theror region

is available on line at:
~catuscia/papers/ProbabilityError/full.pdf

2 Information theory, hypothesis testing and
probability of error

In this section we briefly revise some basic notions in
information theory and hypothesis testing that will be used

trough the paper. We refer to [8] for more details.

A channelis a tuple(A, O, p(:|-)) whereA, O are the
sets of input and output values respectively aiida) is
the conditional probability of observing output O when
a € Ais the input. In this paper, we assume that hdth
andQ are finite with cardinality» andm respectively. We

http://www.lix.polytechniqué.fr

of f whena € A has occurred, namely:

{oc O] f(o) #4a}

Letn; : A — [0,1] be the function that associates to each
a € A the probability that f gives the the wrong input fact
whena € A has occurred, namely:

np(@)= > plola)

o€E¢(a)

Ey¢(a) =

The probability of error forf is then obtained as the sum of
the probability of error for each possible input, averaged o
the probability of the input:

Py = Zp(a)n (a)

will also sometime use indices to represent their elements:|n the Bayesian framework, the best possible decision func-

A = {ay,as,...,a,} andO = {o1,as,...,0,}. The
p(ola)’s constitute what is called theatrix of the channels.
The usual convention is to arrange #is by rows and the
0’'s by columns.

In general, we consider the input of a channehaklen
information and the output agbservable informationThe
set of input values can also be regarded as a setutf-
ally exclusive(hidden)facts or hypotheses A probability
distributionp(-) over A is calleda priori probability, and it
induces a probability distribution ove? (calledmarginal
probability of O). In fact

(0) = 3" pla,0) = 3" plofa) pla)

wherep(a, o) represents the joint probability afando, and
we use its Bayesian definitigr{a, o) = p(o|a)p(a).

When we observe an output the probability that the
corresponding input has been a certais given by the
conditional probability(a|o), also called posteriori prob-
ability of a giveno, which in general is different from(a).

This difference can be interpreted as the fact that obsgrvin
o gives us evidence that changes our degree of belief in the
hypothesis:. The a priori and the a posteriori probabilities

tion fz, namely the decision function that minimizes the
probability of error, is obtained by applying the MAM&x-
imum Aposteriori Probabilitycriterion, that chooses an in-
puta with a maximalp(a|o). Formally:

felo)=a = Va' p(alo) = p(a’|o)

The probability of error associated ifg;, akaBayes’ risk
is then given by

_1_Zp

Note thatfz, and the Bayes’ risk, depend on the inputs’
a priori probability. The input distributions can be repre-
sented as the elemenis= (x1,x2,...,x,) of a domain
D™ defined as

D™ = (7| Z@ = landVi z; > 0}

max p (alo) =1 — Zmaxp ola) p(a)

where the correspondence is givenwiyr; = p(a;). In the
rest of the paper we will assume the MAP rule and view the
Bayes' risk as a functio®. : D(™) — [0, 1] defined by

P(f)=1-) max p(oila;)x; 1)



There are some notable results in literature relating theWe remark that, while the bound (2) is tighter than (3) in

Bayes'’ risk to the information-theoretic notion obndi-
tional entropy akaequivocationLet us first recall the con-
cept ofrandom variableand itsentropy A random variable
A'is determined by a set of valugsand a probability dis-
tribution p(a) over A. The entropy ofd, H(A), is given

by
E:p

)logp(a

case of binary hypothesis testing, i.e. whes: 2, (3) gives
a much better bound whenbecomes larger. In particular
the bound in (3) is always limited by, which is not the case
for (2).

3 Convexly generated functions and their
bounds

The entropy measures the uncertainty of a random variable.

It takes its maximum valuébg n when A’s distribution is
uniform and its minimum valu@ when A is constant. We
usually consider the logarithm with a baeand measure
entropy inbits.

Now let A, O be random variables. Ttanditional en-
tropy H(A|O) is defined as

}:p

H(A|O) = )Y p(alo)log p(alo)

The conditional entropy measures the amount of uncer-

tainty of A whenO is known. It can be shown thét <
H(A|O) < H(A). Ittakes its maximum valu& (A) when
O reveals no information about, i.e. whenA andO are
independent, and its minimum valdevhenO completely
determines the value of.

ComparingH (A) and H(A|O) gives us the concept of
mutual information/ (4; O), which is defined as

I(A;0) = H(A) — H(A|O)

Mutual information measures the amount of information
that one random variable contains about another random
variable. In other words, it measures the amount of uncer-
tainty aboutA that we lose when observing. It can be
shown that it is symmetricI(A; O) = I(A;O)) and that

0 < I(A;0) < H(A). The maximum mutual information
betweend andO over all possible input distributionsa)

is known as the channelksapacity

C =max1(4;0)
p(a)
The capacity of a channel gives the maximum rate at which
information can be transmitted using this channel.

Given a channel, let be the a priori distribution on the
inputs. Recall that’ also determines a probability distri-
bution on the outputs. Left and O be the random vari-
ables associated to the inputs and outputs respectivedy. Th
Bayes’ risk is related td{ (A|O) by the Hellman and Ra-
viv's bound [13]:

R 1
Pe(T) < 5H(A[O) @
and by the Santhi and Vardy’s bound [23]:
P(#) <1 -2 79 (3)

In this section we characterize a special class of func-
tions on probability distributions, and we present variais
sults regarding their bounds which lead to methods to com-
pute their maximum, to prove that a concave function is an
upper bound, and to derive an upper bound from a concave
function. The interest of this study is that the probabitity
error will turn out to be a function in this class.

We start by recalling some basic notions: [Rete the
set of real numbers. The elements, \o,..., \x € R
constitute a set ofonvex coefficientdf Vi \; > 0 and
>-; Ai = 1. Given a vector spack, aconvex combination
of #,#2,...,%" € V is any vector of the formy -, A\ &
where the);’s are convex coefficients. A subsgtof V' is
convexff every convex combination of vectors il is still
in S. Itis easy to see that for any the domainD() of
probability distributions of dimension is convex. Given a
subsetS of V, theconvex hullof S, which we will denote
by ch(5), is the smallest convex set containifiglt is well
known thatch(S) always exists.

We now introduce (with a slight abuse of terminology)
the concept oEonvex base

Definition 3.1 Given the vector setS, U, we say that/ is
a convex base faf iff U C SandS C ch(U).

In the following, given a vectof = (z1,zo,...
we will use the notatioiz, f(Z)) to denote the vector (in a
space with an additional dimension), , za, . . . , Zn, f(Z)).
Similarly, given a vector s&f in an-dimensional space, we
will use the notation.S, f(.5)) to represent the vector set
{(@, f(&)) | £ € S} ina(n+ 1)-dimensional space. The
notation f(S) represents the image ¢fin S, i.e. f(S) =
{£(7) | T €S}

We are now ready to introduce the class of functions that
we announced at the beginning of this section:

’xn)l

Definition 3.2 Given a vector sef, a convex basé/ of
S, and a functionf : S — R, we say thatU, f(U)) is
a set of corner points of iff (U, f(U)) is a convex base
for (S, f(S)). We also say thaf is convexly generated by

FO)

1To be more precise we should say thfats convexly generated by

(U, f(U)).




Of particular interest are the functions that are convexly
generated by a finite number of corner points. This is true
for piecewise linear functionm which S can be decom-
posed into finitely many convex polytopes-(imensional
polygons) andf is equal to a linear function on each of
them. Such functions are convexly generately by the (finite)
set of vertices of these polytopes.

We now give a criterion for computing the maximum of
a convexly generated function.

Proposition 3.3 Let f : S — R be convexly generated by
fU). If f(U) has a maximum elemehitthend is the max-
imum value off on S.

Proof Let b be the maximum off (U). Then for every
u € U we have thatf(u) < b. Consider now a vector
Z € S. Sincef is convexly generated bj(U), there exist
it i? , " in U such thatf (&) is obtained by convex

U, u
combination fromf (@'), f(@?), ..., f(@*) via some con-

vex coefficients\{, Ao, ..., \x. Hence:
@ = XZnf@)
< SuNb sincef (@) <b
= b Ai's being convex combinators

O

Note that ifU is finite thenf (U) has always a maximum
element.

Next, we propose a method for proving (functional) up-
per bounds forf, when they are in the form afoncave
functions.

We recall that, given a vector st a functiong : S — R
is concave iff for anyz',22,...,#* € S and any set of
convex coefficienta, As, .. /\k, € R we have

Z/\g <g2m

Proposition 3.4 Let f : S — R be convexly generated by
f(U) and letg : S — R be concave. Assume that for all
i € U f(@) < g(u) holds. Then we have thatis an upper
bound forf, i.e.

Ve S f(Z) <g()

Proof Let # be an element ofS Since f is con-
vexly generated, there exist', @2, ..., @* in U such
that (Z, f(¥)) is obtained by convex combination from

(@, f(a")), (@2, f(a?)), ..., (@", f(a*)) via some convex
coefficients\i, Aq, ..., \x. Hence:
f@) = X, nf@)
< X hg(a')  sincef(d’) < g(a')
< g(3>; @) by the concavity ofy
= g()

O

Finally, we give a method to obtain tight functional upper
bounds from concave functions.

Proposition 3.5 Let f : S — R be convexly generated by
fU) and letg : S — R be concave. Assume that for
eachi € U if g(@) = 0then f(@) < 0. Consider the set
R={f(u)/g(u) | ue U,g(d)#0}. If Rhas amaximum
element, then the functior g is a tight functional upper
bound forf, i.e.

VieS f(Z) < cg(@)
and f andc g coincide at least in one point.

Proof Sincec is the maximum ofR, we have that, for
everyu € U with g(@) # 0, f(@) < cg(@) holds. On the
other hand, ifg(@) = 0, thenf(@) < 0 = cg(@). Hence
by Proposition 3.4 we have thay is an upper bound for
f. Furthermore, ify is the vector for whichf (@) /g(@) is
maximum, therf (¢) = ¢ g(¥) so the bound is tight. O

Note that, ifU is finite, then the maximum element &f
always exists.

3.1 An alternative proof for the Hellman-
Raviv and Santhi-Vardy bounds

Using Proposition 3.4 we can give an alternative, sim-
pler proof for the bounds in (2) and (3). We start with the
following proposition, whose proof can be found in the ap-
pendix:

Proposition 3.6 Let f : D(™) — R be the functiory (7)) =
1 — max; y;. Thenf is convexly generated bf(U) with
U=U UUU...UU, where, for eachk, Uy is the set
of all vectors that have valug/k in exactlyk components,
and0 everywhere else.

Consider now the functiong h : D(™ — R defined as

and h(7) =1-2"H®

where (with a slight abuse of notatiolJ represents the

entropy of the distribution, i.e. H(§) = — Zj y;logy;.
We have that bothy and h satisfy the conditions of

Proposition 3.4 with respect tf, and therefore

9(%) and f() < h(y) (4)

The rest of the proof proceeds as in [13] and [23]:
Let & represent an a priori distribution a4 and let the
abovey denote the a posteriori probabilities of with
respect to a certain observahiei.e. y;, = p(ajlo) =

viye D™ f(j) <



(p(ola;)/p(0)) ;.

(4) we obtain

P(#) < Y plo) g H(F) =

ThenP.(Z) = >, p(o)f(¥), so from

1

- H(A|O) (5)
and

_ 9—H(4|0)

(1-2"H®) < (6)

< Zp

where the Iast step in (6) is obtained by applying Jensen’s
inequality. This concludes the alternative proof of (2) and
(3).

We end this section with two remarks. First, we note that
g coincides withf only on the points of/; andU,, whereas
h coincides withf on all U. In fact, if @* is an element of
Uk, we havef(@') = 0 = 1/2logl = g(a'), f(@?)
1/2 = 1/2log2 = g(@?), and fork > 2, f(a@*) = 1 —
1/k < 1 while g(@*) = 1/2logk > 1. On the other hand,
for all k, h(@*) = 1 — 2718k = f(g*). This explains,
intuitively, why (3) is a better bound than (2) for dimension
higher tharp.

Second, we observe that, althougis a very tight bound
for f, when we averagk and f on the output probabilities
to obtainy " p(o)(1 —2~H#®) and P, (¥) respectively, and
then we apply Jensen’s inequality, we usually loosen this
bound a lot, as we will see in some examples later. The
only case in which we do not loose anything is when the
channel has capacity (maximally noisy channel), i.e. all

is maximum, i.e. it satisfies the inequatipfv;|a;)z; >

p(o;|ag)xe for eachf. The intersection ofv — 1 hyper-

planes of this kind, and of the one determined by the equa-
tiony_ z; = 1,isavertexy such thatv, (7)) is a corner
point of P..

Definition 4.1 Given a channel = (A, O,p(:|-)), the
family S(C) of the systems generated Byis the set of alll
systems of inequations of the following form:

p(oil |aj2 )xh
p(oiz |aj3 )szs

p(oi|aj, )z,
p(olé |aj2 )xh

ploilaj,)zj.

0 for] g {]17]27 s
1

p(oi, |lag)xe forl < hl<rmn

p(oik |ajr—1)xjr—1
€T

1 +xo+ ...+ Xy
p(0i, laj,)zj,

 Jr}

VAN

wheren is the cardinality of4, » < n, andji, jo, ...
are pairwise different.

s Jr

A system is callecsolvableif it has solutions. Note that a
system of the kind considered in the above definition has at
most one solution.

We are now ready to state our main result:

Theorem 4.2 Given a channel, the Bayes’ riskP. as-
sociated taC is convexly generated by, (U ), whereU is

the rows of the matrix are the same. In the general case ofconstituted by the solutions to all solvable systent(@).

non-zero capacity, however, this implies that if we want to
obtain a better bound we need to follow a different strategy.
In particular, we need to find directly the corner points of
P, instead than those of theédefined above. This is what
we are going to do in the next section.

4 The corner points of the Bayes’ risk

In this section we present our main contribution, namely
we show thatP, is convexly generated b¥. (U) for a finite
U, and we give a constructive characterizatio®/oo that
we can apply the results of previous section to compute tight
bounds orP..

The idea behind the construction of suthis the fol-
lowing: recall that the Bayes’ risk is given b¥. (%) =
1 — >, max; p(oi|aj)z;. Intuitively, this function is lin-
ear as long as, for eaghthej which gives the maximum
p(os|a;)x; remains the same while we vagy When, for
somei andk, the maximum becomeso;|ax )z, the func-
tion changes its inclination and then it becomes linearagai
The exact point in which the inclination changes is a solu-
tion of the equatiom(o;|a;)z; = p(o;i|ar)zr. This equa-
tion actually represents a hyperplane (a space i1 di-
mensions, where is the cardinality ofA) and the incli-
nation of P, changes in all its points for which(o;|a;)z;

Proof We need to prove that, for everye D™, there exist
wt, w2, ..., 4t € U, and convex combinatoss , As, . .., A

such that
v=> N Z AiP.(

Let us consider a particulat € D). In the following,
for eachi, we will useyj; to denote the indey for which
p(0s|a;)v; is maximum. Hence, we can rewrifg (¢) as

and P.(

(7)

v) = Zp(0i|aji)vji
i

We proceed by induction om.

Base caser{ = 2) Inthis casdJ is the set of solutions of
all the systems of the form

{p(0s|lar)z1 = p(o;laz)xzs , x1 4+ x2 =1}

andv € D@, Letc be the minimum betweew, and the
minimumz > 0 such that

p(oslar)(v1 — x) = p(o;|az)(ve + x) for somei



Analogously, letl be the minimum betweer and the min-
imumz > 0 such that

p(o;laz)(ve — x) = p(o;]ar)(vy + ) for somei

Let us defingi!, #? as

7' = (v1 —c,v9 +¢) 7 = (v1 + d, vy — d)

Consider the convex coefficients

d c
A= Ay =
1714 27 14

A simple calculation shows that
T = M0+ \i?
It remains to prove that
Po(0) = M Pe(i") + A Pe (@) (8)

To this end, we need to show thAt is defined ing! andv?
by the same formulaas (7), i.e. that for eaamdk # j; the
inequationp(o;|a;, Jvj, > p(oi|ax)vy holds, and similarly
for 2.

Lets andk be given. Ifj; = 1, and consequently = 2,
we have that for some > 0 the equalityp(o;|az)(ve—x) =
p(oila1)(vi + x) holds. Therefore:

poilar)vi = p(oilai)(vi —c) by definition of!
= p(ojlar)(vy —x) sincec <z
= p(oilaz)(ve +x) Dby definition ofz
> plojlaz)(ve +¢) sincec < x
= ploilar)vi by definition of#*

If, on the other handj; = 2, and consequently = 1, we
have:

ploilaz)vs = ploilaz)(v2 +¢) by definition of 7
> plojlaz)ve sincec > 0
= ploilar)vr sincej; = 2
> p(oslar)(vy —¢) sincec >0
= ploilar)vi by definition of#!

The proof that for each and ¥ # j; the inequation
p(oilaj, )vj, > p(oilax)vy, holds is analogous.

Hence we have proved that
P.(7") =) ploilas)vj, and P.(t®) =) p(oila;,)v},

and a simple calculation shows that (8) holds.

Inductive case Letw € D™, Letc be the minimum be-
tweenwv,,_; and the minimumz > 0 such that for some
andk

p(0i|an—1)(vn—1 - 33) = p(0i|an)(vn + 33)

p(0ilan—1)(vn—1 —x) = plos|ar)vk k#n

Ji#Fn—1

Analogously, letd be the minimum between, ; and the
minimumz > 0 such that for soméandk

ploilaj)vj, = ploilan)(vn + x)

p(oilan)(vy —x) = ploilan—1)(vn—1 + )

plodlan)(va —2) = ploslax)ux ktn-1

ploilaj)vj, = ploilan—1)(vn-1 +2) ji#n

Similarly to the base case, defifig, 2 as

—1

U = (v1,V2, ..., Vp—2,Vp—1 — C,Up + C)

and

—2

Vo= ('Ul,'UQ, vy Un—2,Un—1 + d,Un - d)
and consider the same convex coefficients
d c

)\ =
! c+d

Again, we havei = \ 7t + Ao 92,

By case analysis, and following the analogous proof
given forn = 2, we can prove that for eachand k the
inequationg(oilaj,)vj, > p(oilax)vy, andp(o|aj, )vf, >
p(o;|ax)vi hold, hence, following the same lines as in the
base case, we derive

Po(3) = MP.(7Y) + Ao Pu(P)

We now prove that* and#? can be obtained as con-
vex combinations of corner points 6f in the hyperplanes
(instances oD (1)) defined by the equations that give, re-
spectively, the: andd above. More precisely, i = v,
the equation iz, —; = 0. Otherwise, the equation is of the
form

p(oilax )i = p(oilae)ze

and analogously fod. We develop the proof for?; the
case ofi! is analogous.

If d = 0, then the hyperplane is defined by the equa-
tion x,, = 0, and it consists of the set of vectors of the
form (z1,22,...,2,—1). The Bayes' risk is defined in this



hyperplane exactly in the same way Bs (since the con- by p(og|an—1)zn—1 if p1(k) > p2(k), and byp(ox|a,)xn

tribution of x,, is null) and therefore the corner points are otherwise. The transformation to apply on the inequational

the same. By inductive hypothesis, those corner points arepart is trivial. O

given by the solutions to the set of disequations of the form

given in Definition 4.1. To obtain the corner pointsiH™

it is sufficient to add the equatiaf), = 0. Note thatS(C) is finite, hence thé/ in Theorem 4.2 is
Assume now that! is given by one of the other equa- finite as well.

tions. Let us consider the first one, the cases of the otherExam le 4.3 (Binary hypothesis testing)The caser = 2
two are analogous. Let us consider, therefore, the hyper- pie 4. yhyp 9 -

. o . . is particularly simple: the systems generated(wgre all
plane™ (instance ofD'n — 1)) defined by the equation those of the form

p(0ilan)rn = p(0i|an—1)Tn_1 9 {p(oilar)x1 = p(o;lag)ze , 1 + 29 =1}
It is convenient to perform a transformation of coordinates plus the two systems

Namely, represent the elementstofas vectorg/ with
y P Y {x1=0,x1+x2:1}

z; 1<j<n-2 (10) {22=0, 21 4+22=1}
Yj = )
’ Tp-1 j=n-—1 These systems are always solvable, hence we haye2
) corner points, where we recall that is the cardinality of
Consider the channel 19)

Let us illustrate this case with a concrete exampleClet

’r / (.
C'=(A,0,0 () be the channel determined by the following matrix:

with A’ = {aj,a9,...,a,-1},and
01 02 03
, p(oxla) 1<j<n-—2 an [1/2]1/3]1/6
p'(okla;) = .
max{pi(k),p2(k)} j=n-1 ag | 1/6 | 1/2 | 1/3
where
The systems generated Gare:
pr(K) = plo, an_) ——2014n) e g
p(oilan—1) + p(oilan) {z1=0 , 21+22=1}
and {321 =422 , m1+a2=1}
pa(k) = plog, an)—2L0In=1) Bon=1e |, m+m=1)
S p.(0i|an71) + p(oilan) {%$1 = %]}2 , 1+ a0 =1}
The Bayes's risk irt{ is defined by (01=0 , z1+as=1)
P.(y) = Z max p'(oxla;j)y; The solutions of these systems aréd, 1), (1/4,3/4),
g 1sgsnel (3/5,2/5), (2/3,1/3), and(1,0), respectively. The value

of P. on these points i8, 1/4, 3/10 (maximum)/3, and

0 respectively, andP, is piecewise linear between these
points, i.e. it can be generated by convex combination of
these points and its value on them. Its graph is illustrated
in Figure 1, wherer; is represented by andx, by 1 — .

and a simple calculation shows that(y) = P.(&) when-
ever satisfies (9) ang’ andx are related by (10). Hence
the corner points of?.(Z) over H can be obtained from
those of P, (7).

The systems of inequations 8(C) are obtained from
those inS(C’) in the following way. For each system in Example 4.4 (Ternary hypothesis testing)Let us con-

S(C’), replace the equatiop; + y2 + ... + yp_1 = 1 sider now a channel with three inputs. Assume the
by 21 + @2 + ... + 2n_1 + ¥, = 1, and replace, in  channel has the following matrix:

each equation, every occurrencegfby «;, for j from

1 ton — 2. Furthermore, ify,,_1 occurs in an equatiofy 01 09 03

of the formy,,—; = 0, then repl_aceE_ by the equations a | 2/3 | 1/6 | 1/6
r,—1 = 0 andx, = 0. Otherwise, it must be the case

that for somek, p’(ox|an—1)yn—1 OCcurs in some (two) of ap | 1/8 | 3/4 | 1/8
the other equations. In that case, replace that expression as | 1/10 | 1/10 | 4/5
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Figure 1. The graph of the Bayes' risk for the channel in Example 4.3wartbus bounds for it. Curve represents

the probability of error if we ignore the observables, ilee functionf(Z) = 1 — max; z;. Curve 2 represents the
Bayes' risk P.(Z). Curve3 represents the Hellman-Raviv bouddf (A|O). Curve4 represents the Santhi-Vardy
bound1 — 2= #(A19) " Finally, Curvess and6 represent the improvements 8rand4, respectively, that we get by

applying the method induced by our Proposition 3.5.

The following is an example of a solvable system generatedhe second case, we illustrate the relation with the notfon o

byC:
b = o
b = Ao
T1+T2+23 = 1
ir > s
%332 > %331
Another example is
%xl %xg
I3 0
1 +axos+x3 = 1

The graph ofP, is depicted in Figure 2, whete; is repre-
sented byl — 1 — 5.

5 Maximum Bayes’ risk and relation with
strong anonymity

probabilistic strong anonymity existing in literature.

Maximum capacity If the channel has no noise, which
means that for each observabléhere exists at most one
a such thaip(o|a) # 0, then the Bayes’ risk i8 for every
input’s distribution. In fact

Pe(Z)

1=, max; p(ola;)z;
1=32; >, p0laj)z;
1——§:jxj::0

Capacity0 The case in which the capacity of the channel
is 0 is by definition obtained wheh(A; O) = 0 for all pos-
sible input distributions ofA. From information theory we
know that this is the case il andO are independent (cfr.
[8], page 27). Hence we have the following characteriza-
tion:

Proposition 5.1 Given an anonymity systefd, O, p(-|-)),
the capacity of the corresponding channelOisff all the

In this section we discuss the Bayes' risk in the extreme rows of the channel matrix are the same, i.e(ola) =

cases of maximum and minimum (i.8) capacity, and, in

p(ola’) forall o,a,a’.



Pe

Figure 2. Ternary hypothesis testing. The solid curve representBdyes’ risk for the channel in Example 4.4, while
the dotted curve represents the Santhi-Vardy bduad®—#(A10)

The conditionp(o|a) = p(o|a’) for all 0,a,a’ has been it to improve the bound for the probability of error. We
calledstrong probabilistic anonymitin [1] and it is equiv- illustrate our ideas on a variation of Crowds, a well-known
alent to the conditiop(a|o) = p(a) for all o,a. The latter  anonymity protocol from the literature.
was considered as a definition of anonymity in [4] and itis  |n this protocol, introduced by Reiter and Rubin in [21],
calledconditional anonymityn [12]. a user (called thénitiator) wants to send a message to a

Capacityl is the optimal case also w.r.t. the capability of \eb server without revealing its identity. To achieve that,
the adversary of inferring the hidden information. In faCt, routes the message through a crowd of users participating in
we can prove that the Bayes' risk achieves its highest possithe protocol. The routing is performed using the following
ble value, for a givem (cardinality of.4), when the rows of  protocol: in the beginning, the initiator selects randomly
the matrix are all the same and the distribution is uniform. user (Ca”ed Eforwardenl possibiy himseh" and forwards

In this case, we have the request to him. A forwarder, upon receiving a message,
performs a probabilistic choice. With probability (a pa-
Pe(gyasesy) = 1=, max;plofaj)z; rameter of the protocol) he selects a new user and forwards
= 1- Zop(oia)% once again the message. With probability- p; he sends
_ % _plola) the message directly to the server.

n_1 It is easy to see that the initiator is strongly anonymous
o wrt the server, as all users have the same probability of be-
ing the forwarder who finally delivers the message. How-
ever, the more interesting case is when the attacker is one
of the users of the protocol (calleccarrupteduser) which
uses his information to find out the identity of the initia-
tor. A corrupted user has more information than the server
L since he sees other users forwarding the message through
6 Application: Crowds him. The initiator, being the in first in the path, has greater
probability of forwarding the message to the attacker than
In this section we discuss how to compute the channelany other user, so strong anonymity cannot hold. How-
matrix for a given protocol using automated tools, and use ever, under certain conditions on the number of corrupted

An example of protocol with capacit§ is the dining
cryptographersn a connected graph [4], under the assump-
tion that it is always one of the cryptographers who pays,
and that the coins are fair.
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dy dy de ds
up | 0.33 0.33 0.17 0.17
ugz | 0.33 0.17 0.33 0.17
ur | 0.17 0.33 0.17 0.33
ug | 0.17 0.17 0.33 0.33
uz | 0.68 0.07 0.07 0.17
ug | 0.07 0.68 0.17 0.07

Figure 3. An instance of Crowds with nine users in
a grid network. User 5 is the only corrupted one. ug | 0.07 0.17 0.68 0.07

ug | 0.17 0.07 0.07 0.68

Figure 4. The channel matrix of the examined in-
users, Crowds can be shown to satisfy a weaker notion of stance of Crowds. The symbalg, d; mean that user
anonymity callecorobable innocence i is the initiator and usej was detected respectively.

In the original protocol, all users are considered to be
able to communicate with any other user, in other words the
connection graph is a clique. To make the example more
interesting, we consider a more restricted grid-shaped net Message arrives to the server without passing by user 5.
work as shown in Figure 3. In this network there is a total ~ After defining.4,© we should model the protocol in
of nine users, each of whom can only communicate with the some formal probabilistic language. In our example, we
four that are adjacent to him. We assume that the networkhave modeled Crowds in the language of the PRISM model-
“wraps” at the edges, so user 1 can communicate with bothchecker, that is essentially a formalism to describe Markov
user 3 and user 7. Also, we assume that the only corruptedecision Processes. Then the channel matrix of conditional
user is user 5. probabilitiesp(o|a) must be computed, either by hand or

To construct the channel matrix of the protocol, we start by using an automated tool like PRISM which can compute
by identifying the set of anonymous facts, which depends the probability of reaching a specific state starting from a
on what the system is trying to hide. In protocols where given one. Thus, each conditional probabilitii; |u;) is
one user performs an action of interest (like initiating a computed as the probability of reaching a state where the
message in our example) and we want to protect his iden-attacker has detected ugestarting from the state wheie
tity, the set.4 would be the set of the users of the proto- is the initiator. Ifp; < 1 there is always a non-zero proba-
col. Note that the corrupted users should not be includedbility of not detecting any user at all, which happens if the
in this set, since we cannot expect the attacker’s own ac-message arrives at the server without passing by user 5. In
tions to be hidden from him. So in our case we have this case, the execution of the protocol passes completely
A = {uy,u2, u3,us, ue, ur, ug, ug} Whereu; means that  unnoticed by the adversary. Thus, in our analysis, we com-
user; is the initiator. pute all probabilities conditioned on the fact tisaimeob-

The set of observables should also be defined, based o§€rvation was made. This corresponds to normalizing the
the visible actions of the protocol and on the various as- Fows of the table, that is dividing afl(o|a;) by 3, p(ola;).
sumptions made about the attacker. In Crowds we assume In Figure 4 the channel matrix is displayed for the ex-
that the attacker does not have access to the entire networlamined Crowds instance, computed using a probability of
(such an attacker would be too powerful for this protocol) forwardingp; = 0.8. We have split the users in two
but only to the messages that pass through a corrupted usegroups, the ones who cannot communicate directly with
Each time that a usérforwards the message to a corrupted the corrupted user, and the ones who can. When a user
user we say that he detectedvhich corresponds to an ob- of the first group, say user 1, is the initiator, there is a
servable action in the protocol. Along the lines of other higher probability of detecting the users that are adjacent
studies of Crowds (eg [25]) we consider that an attacker will to him (users 2 and 4) than the other two (users 6 and
not forward a message himself, since by doing so he would8) since the message needs two steps to arrive to the lat-
not gain more information. So at each execution there isters. Sop(ds|u;) = p(ds|u;) = 0.33 are greater than
at most one detected user and since only the users 2, 4, ®(ds|u1) = p(dslu1) = 0.17. In the second group users
and 8 can communicate with the corrupted user, we havehave direct communication to the attacker, so when user 2
O = {d2,ds, ds, ds} whered; means that usei was de- is the initiator, the probability(ds|u2) of detecting him is
tected. As we explain later, there is also a non-zero prob-high. From the remaining three observahigshas higher
ability that no user is detected, which is the case when theprobability since user 8 can be reached from user 2 in one

11
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Figure 5. The lower curve is the probability of error
in the examined instance of Crowds. The upper two
are the Santhi and Vardy’s bound and it's improved
version.
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7 Appendix which concludes the proof. O

We give here the proof of Proposition 3.6.

Proposition 3.6Let f : D(™ — R be the functiorf () =
1 —max; z;. Thenf is convexly generated bf(U) with
U=U,UU;U...UU, where, for eachk, Uy is the set
of all vectors that have valug/k in exactlyk components,
and0 everywhere else.

Proof Observe thaff coincides with the Bayes’ risk for a
channelC with 0 capacity, i.e. a channel in which for every
o, a, a’ we havep(ola) = p(o|da’). In fact, the Bayes’s risk

13



