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Abstract

Randomized protocols for hiding private information
can often be regarded as noisy channels in the information-
theoretic sense, and the inference of the concealed informa-
tion can be regarded as a hypothesis-testing problem. We
consider the Bayesian approach to the problem, and inves-
tigate the probability of error associated to the inference
when the MAP (Maximum Aposteriori Probability) decision
rule is adopted. Our main result is a constructive character-
ization of a convex base of the probability of error, which al-
lows us to compute its maximum value (over all possible in-
puts’ distribution), and to identify functional upper bounds
for it. As a side result, we are able to substantially improve
the Hellman-Raviv and the Santhi-Vardy bounds expressed
in terms of conditional entropy. We then discuss an appli-
cation of our methodology to the Crowds protocol, and in
particular we show how to compute the bounds on the prob-
ability that an adversary break anonymity.

1 Introduction

Information-hiding protocols try to hide the relation be-
tween certain facts, that we wish to maintain hidden, and the
observableconsequences of these facts. Example of such
protocols are the anonymity protocols like Crowds [21],
Onion Routing [26], and Freenet [7]. Often these protocols
use randomization to obfuscate the link between the hidden
information and the observed events. Crowds, for instance,
tries to conceal the identity of the originator of a message
by forwarding randomly the message till its destination, so
that if an attacker intercepts the message, it cannot be sure
whether the sender is the originator or just a forwarder.

In most cases, protocols like the above can be regarded
as information-theoretic channels, where the inputs are the
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facts to keep hidden, the outputs are the observables, and the
matrix represents the correlation between the facts and the
observed events, in terms of conditional probabilities. An
adversary can try to infer the facts from the observed events
with the Bayesian method, which is based on the principle
of assuming an a priori probability distribution on the hid-
den facts (hypotheses), and deriving from that (and from the
matrix) the a posteriori distribution after a certain eventhas
been observed. It is well known that the best strategy for
the adversary is to apply the MAP (Maximum Aposteriori
Probability) criterion, which, as the name says, dictates to
choose the hypothesis with the maximum a posteriori prob-
ability. “Best” means that this criterion induces the smallest
probability of guessing the wrong hypothesis. The proba-
bility of error, in this case, is also calledBayes’ risk.

Even if the adversary does not know the a priori distribu-
tion, the method is still valid asymptotically, under the con-
dition that the matrix’ rows are all pairwise distinguished.
By repeating the experiment, in fact, the contribution of the
a priori probability becomes less and less relevant for the
computation of the a posteriori probability, and it “washes
out” in the limit. Furthermore, the probability of error con-
verges to0 in the limit [8]. If the rows are all equal, namely
if the channel has capacity0, then the Bayes’ risk is maxi-
mal and does not converge to0. This is the ideal situation,
from the point of view of information-hiding protocols. In
practice, however, it is difficult to achieve such degree of
privacy. We are then interested in maximizing the Bayes’
risk, so to make the convergence to0 as slow as possible.
The main purpose of this paper is to investigate the Bayes’
risk, in relation to the channel’s matrix, and its bounds.

There are many bounds known in literature for the
Bayes’ risk. One of these is theequivocation bound, due
to Rényi [22], which states that the probability of error is
bound by the conditional entropy of the channel’s input
given the output. Later, Hellman and Raviv improved this
bound by half [13]. Recently, Santhi and Vardy have pro-
posed a new bound, that depends exponentially on the (op-
posite of the) conditional entropy, and which considerably
improves the Hellman-Raviv bound in the case of multi-



hypothesis testing [23].

1.1 Contribution

The main contributions of this paper are the following:

1. We consider what we call “the corner points” of a
piecewise linear function, and we propose criteria to
compute the maximum of the function, and to identify
concave upper bounds for it, based on the analysis of
its corner points only.

2. We consider the hypothesis testing problem in relation
to an information-theoretic channel. In this context,
we show that the probability of error associated to the
MAP rule is piecewise linear, and we give a construc-
tive characterization of a set of corner points, which
turns out to be finite. Together with the previous re-
sults, this leads to constructive methods to compute
the maximum probability of error over all the chan-
nel’s input distributions, and to define tight functional
upper bounds.

3. As a side result of the above study, we are able to
improve on the Hellman-Raviv and the Santhi-Vardy
bounds, which express relations between the Bayes
risk and the conditional entropy. The Santhi-Vardy
bound, which is better than the Hellman-Raviv one
when we consider more than two hypotheses, is tight
(i.e. it coincides with the Bayes’ risk) on the corner
points only in the case of channels with capacity0.
Our improved bound is tight on those points for every
channel. The same holds with respect to the Hellman-
Raviv bound (the latter is better than the Santhi-Vardy
one in the case of two hypotheses).

4. We show how to apply the above results to random-
ized protocols for information hiding. In particular,
we work out in detail the application to Crowds, and
derive the maximum probability of error for an adver-
sary who tries to break anonymity, and bounds on this
probability in terms of conditional entropy, for any in-
put distribution.

1.2 Related work

Probabilistic notions of anonymity and information-
hiding have been explored in [4, 12, 1, 2]. We discuss the
relation with these works in detail in Section 5.

A recent line of work has been dedicated to exploring the
concept of anonymity from an information-theoretic point
of view [24, 10]. The main difference with our approach
is that in those works the anonymity degree is expressed
in terms of input entropy, rather than conditional entropy.
More precisely, the emphasis is on the lack of information

of the attacker about the distribution of the users, rather than
on the capability of the protocol to conceal this information
despite of the observables that are made available to the at-
tacker. Moreover, a uniform user distribution is assumed,
while in this paper we abstract from the user distribution in
the functional sense.

In [17, 18] the ability to have covert communication as
a result of non-perfect anonymity is explored. Those works
focus on the possibility of constructing covert channels by
the users of the protocol, using the protocol mechanisms,
and on measuring the amount of information that can be
transferred through these channels. In [18] the authors also
suggest that the channel’s capacity can be used as an asymp-
totic measure of the worst-case information leakage. An-
other information-theoretical approach is the one of [9],
where the authors use the notion ofrelative entropyto de-
fine the degree of anonymity.

In the field of information flow and non-interference
there is a line of research which is related to ours. There
have been various works [16, 11, 5, 6, 14] in which the the
high informationand thelow informationare seen as the in-
put and output respectively of a channel. From an abstract
point of view, the setting is very similar; technically it does
not matter what kind of information we are trying to con-
ceal, what is relevant for the analysis is only the probabilis-
tic relation between the input and the output information.
The conceptual and technical novelties of this paper w.r.t.
the above works are explained in Section 1.1. We believe
that our results are applicable more or less directly also to
the field of non-interference.

The connection between the adversary’s goal of inferring
a secret from the observables, and the field of “hypothesis
testing”, has been explored in other papers in literature, see
in particular [15, 19, 20, 3]. To our knowledge, however,
[3] is the only work exploring the Bayes’ risk in connection
to the channel associated to an information-hiding proto-
col. More precisely, [3] considers a framework in which
anonymity protocols are interpreted as particular kinds of
channels, and the degree of anonymity provided by the pro-
tocol as the converse of the channel’s capacity (an idea al-
ready suggested in [18]). Then, [3] considers a scenario in
which the adversary can enforce the re-execution of the pro-
tocol with the same input, and studies the Bayes’ risk on the
repeated experiment. The focus is on how the adversary can
approximate the MAP rule when the a priori distribution is
not known, and the main result of [3] on this topic is the
investigation of the characteristics of the matrix that make
this task possible or impossible. In the present paper, on
the contrary, we study the Bayes’ risk as a function of the
a priori distribution, and we give criteria to compute tight
bounds for it.
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1.3 Plan of the paper

Next section recalls some basic notions in information
theory, and about hypothesis testing and probability of er-
ror. Section 3 proposes some methods to identify tight
bounds for a function that is generated by a set of corner
points. Section 4 presents the main result of our work,
namely a constructive characterization of the corner points
of Bayes’ risk. In Section 5 we discuss the relation with
some probabilistic information-hiding notions in literature.
Finally, Section 6 illustrates an application of our results to
the anonymity protocol Crowds.

The report version of this paper, containing the proofs,
is available on line at: http://www.lix.polytechnique.fr/
∼catuscia/papers/ProbabilityError/full.pdf

2 Information theory, hypothesis testing and
probability of error

In this section we briefly revise some basic notions in
information theory and hypothesis testing that will be used
trough the paper. We refer to [8] for more details.

A channelis a tuple〈A,O, p(·|·)〉 whereA,O are the
sets of input and output values respectively andp(o|a) is
the conditional probability of observing outputo ∈ O when
a ∈ A is the input. In this paper, we assume that bothA
andO are finite with cardinalityn andm respectively. We
will also sometime use indices to represent their elements:
A = {a1, a2, . . . , an} andO = {o1, a2, . . . , om}. The
p(o|a)’s constitute what is called thematrixof the channels.
The usual convention is to arrange thea’s by rows and the
o’s by columns.

In general, we consider the input of a channel ashidden
information, and the output asobservable information. The
set of input values can also be regarded as a set ofmutu-
ally exclusive(hidden)factsor hypotheses. A probability
distributionp(·) overA is calleda priori probability, and it
induces a probability distribution overO (calledmarginal
probabilityof O). In fact

p(o) =
∑

a

p(a, o) =
∑

a

p(o|a) p(a)

wherep(a, o) represents the joint probability ofa ando, and
we use its Bayesian definitionp(a, o) = p(o|a)p(a).

When we observe an outputo, the probability that the
corresponding input has been a certaina is given by the
conditional probabilityp(a|o), also calleda posteriori prob-
ability of a giveno, which in general is different fromp(a).
This difference can be interpreted as the fact that observing
o gives us evidence that changes our degree of belief in the
hypothesisa. The a priori and the a posteriori probabilities

of a are related by Bayes’ theorem:

p(a|o) =
p(o|a) p(a)

p(o)

In hypothesis testing we try to infer thetrue hypothe-
sis (i.e. the input fact that really took place) from the ob-
served output. In general it is not possible to determine
the right hypothesis with certainty. We are interested, then,
in minimizing theprobability of error, i.e. the probabil-
ity of making the wrong guess. Formally, the probability
of error is defined as follows. Given thedecision function
f : O → A adopted by the observer to infer the hypothesis,
let Ef : A → O be the function that gives theerror region
of f whena ∈ A has occurred, namely:

Ef (a) = {o ∈ O | f(o) 6= a}

Let ηf : A → [0, 1] be the function that associates to each
a ∈ A the probability that f gives the the wrong input fact
whena ∈ A has occurred, namely:

ηf (a) =
∑

o∈Ef (a)

p(o|a)

The probability of error forf is then obtained as the sum of
the probability of error for each possible input, averaged on
the probability of the input:

Pf =
∑

a

p(a) ηn(a)

In the Bayesian framework, the best possible decision func-
tion fB, namely the decision function that minimizes the
probability of error, is obtained by applying the MAP (Max-
imum Aposteriori Probability) criterion, that chooses an in-
puta with a maximalp(a|o). Formally:

fB(o) = a ⇒ ∀a′ p(a|o) ≥ p(a′|o)

The probability of error associated tofB, akaBayes’ risk,
is then given by

Pe = 1 −
∑

o

p(o) max
a

p(a|o) = 1 −
∑

o

max
a

p(o|a) p(a)

Note thatfB, and the Bayes’ risk, depend on the inputs’
a priori probability. The input distributions can be repre-
sented as the elements~x = (x1, x2, . . . , xn) of a domain
D(n) defined as

D(n) = {~x |
∑

i

xi = 1 and∀i xi ≥ 0}

where the correspondence is given by∀i xi = p(ai). In the
rest of the paper we will assume the MAP rule and view the
Bayes’ risk as a functionPe : D(n) → [0, 1] defined by

Pe(~x) = 1 −
∑

i

max
j

p(oi|aj)xj (1)
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There are some notable results in literature relating the
Bayes’ risk to the information-theoretic notion ofcondi-
tional entropy, akaequivocation. Let us first recall the con-
cept ofrandom variableand itsentropy. A random variable
A is determined by a set of valuesA and a probability dis-
tribution p(a) overA. The entropy ofA, H(A), is given
by

H(A) = −
∑

a

p(a) log p(a)

The entropy measures the uncertainty of a random variable.
It takes its maximum valuelog n whenA’s distribution is
uniform and its minimum value0 whenA is constant. We
usually consider the logarithm with a base2 and measure
entropy inbits.

Now let A, O be random variables. Theconditional en-
tropyH(A|O) is defined as

H(A|O) = −
∑

o

p(o)
∑

a

p(a|o) log p(a|o)

The conditional entropy measures the amount of uncer-
tainty of A whenO is known. It can be shown that0 ≤
H(A|O) ≤ H(A). It takes its maximum valueH(A) when
O reveals no information aboutA, i.e. whenA andO are
independent, and its minimum value0 whenO completely
determines the value ofA.

ComparingH(A) andH(A|O) gives us the concept of
mutual informationI(A; O), which is defined as

I(A; O) = H(A) − H(A|O)

Mutual information measures the amount of information
that one random variable contains about another random
variable. In other words, it measures the amount of uncer-
tainty aboutA that we lose when observingO. It can be
shown that it is symmetric (I(A; O) = I(A; O)) and that
0 ≤ I(A; O) ≤ H(A). The maximum mutual information
betweenA andO over all possible input distributionsp(a)
is known as the channel’scapacity:

C = max
p(a)

I(A; O)

The capacity of a channel gives the maximum rate at which
information can be transmitted using this channel.

Given a channel, let~x be the a priori distribution on the
inputs. Recall that~x also determines a probability distri-
bution on the outputs. LetA andO be the random vari-
ables associated to the inputs and outputs respectively. The
Bayes’ risk is related toH(A|O) by the Hellman and Ra-
viv’s bound [13]:

Pe(~x) ≤
1

2
H(A|O) (2)

and by the Santhi and Vardy’s bound [23]:

Pe(~x) ≤ 1 − 2−H(A|O) (3)

We remark that, while the bound (2) is tighter than (3) in
case of binary hypothesis testing, i.e. whenn = 2, (3) gives
a much better bound whenn becomes larger. In particular
the bound in (3) is always limited by1, which is not the case
for (2).

3 Convexly generated functions and their
bounds

In this section we characterize a special class of func-
tions on probability distributions, and we present variousre-
sults regarding their bounds which lead to methods to com-
pute their maximum, to prove that a concave function is an
upper bound, and to derive an upper bound from a concave
function. The interest of this study is that the probabilityof
error will turn out to be a function in this class.

We start by recalling some basic notions: letR be the
set of real numbers. The elementsλ1, λ2, . . . , λk ∈ R

constitute a set ofconvex coefficientsiff ∀i λi ≥ 0 and
∑

i λi = 1. Given a vector spaceV , aconvex combination
of ~x1, ~x2, . . . , ~xk ∈ V is any vector of the form

∑

i λi ~xi

where theλi’s are convex coefficients. A subsetS of V is
convexiff every convex combination of vectors inS is still
in S. It is easy to see that for anyn the domainD(n) of
probability distributions of dimensionn is convex. Given a
subsetS of V , theconvex hullof S, which we will denote
by ch(S), is the smallest convex set containingS. It is well
known thatch(S) always exists.

We now introduce (with a slight abuse of terminology)
the concept ofconvex base:

Definition 3.1 Given the vector setsS, U , we say thatU is
a convex base forS iff U ⊆ S andS ⊆ ch(U).

In the following, given a vector~x = (x1, x2, . . . , xn),
we will use the notation(~x, f(~x)) to denote the vector (in a
space with an additional dimension)(x1, x2, . . . , xn, f(~x)).
Similarly, given a vector setS in an-dimensional space, we
will use the notation(S, f(S)) to represent the vector set
{(~x, f(~x)) | ~x ∈ S} in a (n + 1)-dimensional space. The
notationf(S) represents the image off in S, i.e. f(S) =
{f(~x) | ~x ∈ S}.

We are now ready to introduce the class of functions that
we announced at the beginning of this section:

Definition 3.2 Given a vector setS, a convex baseU of
S, and a functionf : S → R, we say that(U, f(U)) is
a set of corner points off iff (U, f(U)) is a convex base
for (S, f(S)). We also say thatf is convexly generated by
f(U)1.

1To be more precise we should say thatf is convexly generated by
(U, f(U)).
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Of particular interest are the functions that are convexly
generated by a finite number of corner points. This is true
for piecewise linear functionsin which S can be decom-
posed into finitely many convex polytopes (n-dimensional
polygons) andf is equal to a linear function on each of
them. Such functions are convexly generately by the (finite)
set of vertices of these polytopes.

We now give a criterion for computing the maximum of
a convexly generated function.

Proposition 3.3 Let f : S → R be convexly generated by
f(U). If f(U) has a maximum elementb, thenb is the max-
imum value off onS.

Proof Let b be the maximum off(U). Then for every
u ∈ U we have thatf(u) ≤ b. Consider now a vector
~x ∈ S. Sincef is convexly generated byf(U), there exist
~u1, ~u2, . . . , ~uk in U such thatf(~x) is obtained by convex
combination fromf(~u1), f(~u2), . . . , f(~uk) via some con-
vex coefficientsλ1, λ2, . . . ,λk. Hence:

f(~x) =
∑

i λif(~ui)

≤
∑

i λib sincef(~ui) ≤ b

= b λi’s being convex combinators

�

Note that ifU is finite thenf(U) has always a maximum
element.

Next, we propose a method for proving (functional) up-
per bounds forf , when they are in the form ofconcave
functions.

We recall that, given a vector setS, a functiong : S → R

is concave iff for any~x1, ~x2, . . . , ~xk ∈ S and any set of
convex coefficientsλ1, λ2, . . . , λk ∈ R we have

∑

i

λi g(~xi) ≤ g(
∑

i

λi~x
i)

Proposition 3.4 Let f : S → R be convexly generated by
f(U) and letg : S → R be concave. Assume that for all
~u ∈ U f(~u) ≤ g(~u) holds. Then we have thatg is an upper
bound forf , i.e.

∀~x ∈ S f(~x) ≤ g(~x)

Proof Let ~x be an element ofS. Since f is con-
vexly generated, there exist~u1, ~u2, . . . , ~uk in U such
that (~x, f(~x)) is obtained by convex combination from
(~u1, f(~u1)), (~u2, f(~u2)), . . . , (~uk, f(~uk)) via some convex
coefficientsλ1, λ2, . . . ,λk. Hence:

f(~x) =
∑

i λif(~ui)

≤
∑

i λig(~ui) sincef(~ui) ≤ g(~ui)

≤ g(
∑

i λi~u
i) by the concavity ofg

= g(~x)

�

Finally, we give a method to obtain tight functional upper
bounds from concave functions.

Proposition 3.5 Let f : S → R be convexly generated by
f(U) and let g : S → R be concave. Assume that for
each~u ∈ U if g(~u) = 0 thenf(~u) ≤ 0. Consider the set
R = {f(~u)/g(~u) | ~u ∈ U, g(~u) 6= 0}. If R has a maximum
elementc, then the functionc g is a tight functional upper
bound forf , i.e.

∀~x ∈ S f(~x) ≤ c g(~x)

andf andc g coincide at least in one point.

Proof Since c is the maximum ofR, we have that, for
every~u ∈ U with g(~u) 6= 0, f(~u) ≤ c g(~u) holds. On the
other hand, ifg(~u) = 0, thenf(~u) ≤ 0 = c g(~u). Hence
by Proposition 3.4 we have thatc g is an upper bound for
f . Furthermore, if~v is the vector for whichf(~u)/g(~u) is
maximum, thenf(~v) = c g(~v) so the bound is tight. �

Note that, ifU is finite, then the maximum element ofR
always exists.

3.1 An alternative proof for the Hellman-
Raviv and Santhi-Vardy bounds

Using Proposition 3.4 we can give an alternative, sim-
pler proof for the bounds in (2) and (3). We start with the
following proposition, whose proof can be found in the ap-
pendix:

Proposition 3.6 Let f : D(n) → R be the functionf(~y) =
1 − maxj yj . Thenf is convexly generated byf(U) with
U = U1 ∪ U2 ∪ . . . ∪ Un where, for eachk, Uk is the set
of all vectors that have value1/k in exactlyk components,
and0 everywhere else.

Consider now the functionsg, h : D(n) → R defined as

g(~y) =
1

2
H(~y) and h(~y) = 1 − 2−H(~y)

where (with a slight abuse of notation)H represents the
entropy of the distribution~y, i.e. H(~y) = −

∑

j yj log yj .
We have that bothg and h satisfy the conditions of

Proposition 3.4 with respect tof , and therefore

∀~y ∈ D(n) f(~y) ≤ g(~y) and f(~y) ≤ h(~y) (4)

The rest of the proof proceeds as in [13] and [23]:
Let ~x represent an a priori distribution onA and let the
above~y denote the a posteriori probabilities onA with
respect to a certain observableo, i.e. yj = p(aj |o) =
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(p(o|aj)/p(o))xj . ThenPe(~x) =
∑

o p(o)f(~y), so from
(4) we obtain

Pe(~x) ≤
∑

o

p(o)
1

2
H(~y) =

1

2
H(A|O) (5)

and

Pe(~x) ≤
∑

o

p(o)(1 − 2−H(~y)) ≤ 1 − 2−H(A|O) (6)

where the last step in (6) is obtained by applying Jensen’s
inequality. This concludes the alternative proof of (2) and
(3).

We end this section with two remarks. First, we note that
g coincides withf only on the points ofU1 andU2, whereas
h coincides withf on all U . In fact, if ~uk is an element of
Uk, we havef(~u1) = 0 = 1/2 log 1 = g(~u1), f(~u2) =
1/2 = 1/2 log 2 = g(~u2), and fork ≥ 2, f(~uk) = 1 −
1/k < 1 while g(~uk) = 1/2 log k > 1. On the other hand,
for all k, h(~uk) = 1 − 2− log k = f(~uk). This explains,
intuitively, why (3) is a better bound than (2) for dimensions
higher than2.

Second, we observe that, althoughh is a very tight bound
for f , when we averageh andf on the output probabilities
to obtain

∑

o p(o)(1− 2−H(~y)) andPe(~x) respectively, and
then we apply Jensen’s inequality, we usually loosen this
bound a lot, as we will see in some examples later. The
only case in which we do not loose anything is when the
channel has capacity0 (maximally noisy channel), i.e. all
the rows of the matrix are the same. In the general case of
non-zero capacity, however, this implies that if we want to
obtain a better bound we need to follow a different strategy.
In particular, we need to find directly the corner points of
Pe instead than those of thef defined above. This is what
we are going to do in the next section.

4 The corner points of the Bayes’ risk

In this section we present our main contribution, namely
we show thatPe is convexly generated byPe(U) for a finite
U , and we give a constructive characterization ofU , so that
we can apply the results of previous section to compute tight
bounds onPe.

The idea behind the construction of suchU is the fol-
lowing: recall that the Bayes’ risk is given byPe(~x) =
1 −

∑

i maxj p(oi|aj)xj . Intuitively, this function is lin-
ear as long as, for eachi, thej which gives the maximum
p(oi|aj)xj remains the same while we vary~x. When, for
somei andk, the maximum becomesp(oi|ak)xk, the func-
tion changes its inclination and then it becomes linear again.
The exact point in which the inclination changes is a solu-
tion of the equationp(oi|aj)xj = p(oi|ak)xk. This equa-
tion actually represents a hyperplane (a space inn − 1 di-
mensions, wheren is the cardinality ofA) and the incli-
nation ofPe changes in all its points for whichp(oi|aj)xj

is maximum, i.e. it satisfies the inequationp(oi|aj)xj ≥
p(oi|a`)x` for each`. The intersection ofn − 1 hyper-
planes of this kind, and of the one determined by the equa-
tion

∑

j xj = 1, is a vertex~v such that(~v, Pe(~v)) is a corner
point ofPe.

Definition 4.1 Given a channelC = 〈A,O, p(·|·)〉, the
family S(C) of the systems generated byC is the set of all
systems of inequations of the following form:

p(oi1 |aj1)xj1 = p(oi1 |aj2)xj2

p(oi2 |aj2)xj2 = p(oi2 |aj3)xj3

...
p(oik

|ajr−1
)xjr−1

= p(oik
|ajr

)xjr

xj = 0 for j 6∈ {j1, j2, . . . , jr}
x1 + x2 + . . . + xn = 1

p(oih
|ajh

)xjh
≥ p(oih

|a`)x` for 1 ≤ h, ` ≤ r, n

wheren is the cardinality ofA, r ≤ n, andj1, j2, . . . , jr

are pairwise different.

A system is calledsolvableif it has solutions. Note that a
system of the kind considered in the above definition has at
most one solution.

We are now ready to state our main result:

Theorem 4.2 Given a channelC, the Bayes’ riskPe as-
sociated toC is convexly generated byPe(U), whereU is
constituted by the solutions to all solvable systems inS(C).

Proof We need to prove that, for every~v ∈ D(n), there exist
~u1, ~u2, . . . , ~ut ∈ U , and convex combinatorsλ1, λ2, . . . , λt

such that

~v =
∑

i

λi~u
i and Pe(~v) =

∑

i

λiPe(~u
i)

Let us consider a particular~v ∈ D(n). In the following,
for eachi, we will useji to denote the indexj for which
p(oi|aj)vj is maximum. Hence, we can rewritePe(~v) as

Pe(~v) =
∑

i

p(oi|aji
)vji

(7)

We proceed by induction onn.

Base case (n = 2) In this caseU is the set of solutions of
all the systems of the form

{p(oi|a1)x1 = p(oi|a2)x2 , x1 + x2 = 1}

and~v ∈ D(2). Let c be the minimum betweenv1 and the
minimumx ≥ 0 such that

p(oi|a1)(v1 − x) = p(oi|a2)(v2 + x) for somei

6



Analogously, letd be the minimum betweenv2 and the min-
imumx ≥ 0 such that

p(oi|a2)(v2 − x) = p(oi|a1)(v1 + x) for somei

Let us define~v1, ~v2 as

~v1 = (v1 − c, v2 + c) ~v2 = (v1 + d, v2 − d)

Consider the convex coefficients

λ1 =
d

c + d
λ2 =

c

c + d

A simple calculation shows that

~v = λ1~v
1 + λ2~v

2

It remains to prove that

Pe(~v) = λ1Pe(~u
1) + λ2Pe(~u

2) (8)

To this end, we need to show thatPe is defined in~v1 and~v2

by the same formula as (7), i.e. that for eachi andk 6= ji the
inequationp(oi|aji

)v1
ji

≥ p(oi|ak)v1
k holds, and similarly

for ~v2.
Let i andk be given. Ifji = 1, and consequentlyk = 2,

we have that for somex ≥ 0 the equalityp(oi|a2)(v2−x) =
p(oi|a1)(v1 + x) holds. Therefore:

p(oi|a1)v
1
1 = p(oi|a1)(v1 − c) by definition of~v1

= p(oi|a1)(v1 − x) sincec ≤ x

= p(oi|a2)(v2 + x) by definition ofx

≥ p(oi|a2)(v2 + c) sincec ≤ x

= p(oi|a1)v
1
2 by definition of~v1

If, on the other hand,ji = 2, and consequentlyk = 1, we
have:

p(oi|a2)v
1
2 = p(oi|a2)(v2 + c) by definition of~v1

≥ p(oi|a2)v2 sincec ≥ 0

= p(oi|a1)v1 sinceji = 2

≥ p(oi|a1)(v1 − c) sincec ≥ 0

= p(oi|a1)v
1
1 by definition of~v1

The proof that for eachi and k 6= ji the inequation
p(oi|aji

)v1
ji
≥ p(oi|ak)v1

k holds is analogous.
Hence we have proved that

Pe(~v
1) =

∑

i

p(oi|aji
)v1

ji
and Pe(~v

2) =
∑

i

p(oi|aji
)v2

ji

and a simple calculation shows that (8) holds.

Inductive case Let ~v ∈ D(n). Let c be the minimum be-
tweenvn−1 and the minimumx ≥ 0 such that for somei
andk

p(oi|an−1)(vn−1 − x) = p(oi|an)(vn + x)

or

p(oi|an−1)(vn−1 − x) = p(oi|ak)vk k 6= n

or

p(oi|aji
)vji

= p(oi|an)(vn + x) ji 6= n − 1

Analogously, letd be the minimum betweenvn+1 and the
minimumx ≥ 0 such that for somei andk

p(oi|an)(vn − x) = p(oi|an−1)(vn−1 + x)

or

p(oi|an)(vn − x) = p(oi|ak)vk k 6= n − 1

or

p(oi|aji
)vji

= p(oi|an−1)(vn−1 + x) ji 6= n

Similarly to the base case, define~v1, ~v2 as

~v1 = (v1, v2, . . . , vn−2, vn−1 − c, vn + c)

and

~v2 = (v1, v2, . . . , vn−2, vn−1 + d, vn − d)

and consider the same convex coefficients

λ1 =
d

c + d
λ2 =

c

c + d

Again, we have~v = λ1~v
1 + λ2~v

2.
By case analysis, and following the analogous proof

given for n = 2, we can prove that for eachi andk the
inequationsp(oi|aji

)v1
ji

≥ p(oi|ak)v1
k andp(oi|aji

)v2
ji

≥

p(oi|ak)v2
k hold, hence, following the same lines as in the

base case, we derive

Pe(~v) = λ1Pe(~v
1) + λ2Pe(~v

2)

We now prove that~v1 and~v2 can be obtained as con-
vex combinations of corner points ofPe in the hyperplanes
(instances ofD(n−1)) defined by the equations that give, re-
spectively, thec andd above. More precisely, ifc = vn−1

the equation isxn−1 = 0. Otherwise, the equation is of the
form

p(oi|ak)xk = p(oi|a`)x`

and analogously ford. We develop the proof for~v2; the
case of~v1 is analogous.

If d = 0, then the hyperplane is defined by the equa-
tion xn = 0, and it consists of the set of vectors of the
form (x1, x2, . . . , xn−1). The Bayes’ risk is defined in this
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hyperplane exactly in the same way asPe (since the con-
tribution of xn is null) and therefore the corner points are
the same. By inductive hypothesis, those corner points are
given by the solutions to the set of disequations of the form
given in Definition 4.1. To obtain the corner points inD(n)

it is sufficient to add the equationxn = 0.
Assume now thatd is given by one of the other equa-

tions. Let us consider the first one, the cases of the other
two are analogous. Let us consider, therefore, the hyper-
planeH (instance ofD(n − 1)) defined by the equation

p(oi|an)xn = p(oi|an−1)xn−1 (9)

It is convenient to perform a transformation of coordinates.
Namely, represent the elements ofH as vectors~y with

yj =

{

xj 1 ≤ j ≤ n − 2

xn−1 j = n − 1
(10)

Consider the channel

C′ = 〈A′,O, p′(·|·)〉

with A′ = {a1, a2, . . . , an−1}, and

p′(ok|aj) =

{

p(ok|aj) 1 ≤ j ≤ n − 2

max{p1(k), p2(k)} j = n − 1

where

p1(k) = p(ok, an−1)
p(oi|an)

p(oi|an−1) + p(oi|an)

and

p2(k) = p(ok, an)
p(oi|an−1)

p(oi|an−1) + p(oi|an)

The Bayes’s risk inH is defined by

Pe(~y) =
∑

k

max
1≤j≤n−1

p′(ok|aj)yj

and a simple calculation shows thatPe(~y) = Pe(~x) when-
ever~x satisfies (9) and~y and~x are related by (10). Hence
the corner points ofPe(~x) over H can be obtained from
those ofPe(~y).

The systems of inequations inS(C) are obtained from
those inS(C′) in the following way. For each system in
S(C′), replace the equationy1 + y2 + . . . + yn−1 = 1
by x1 + x2 + . . . + xn−1 + xn = 1, and replace, in
each equation, every occurrence ofyj by xj , for j from
1 to n − 2. Furthermore, ifyn−1 occurs in an equationE
of the form yn−1 = 0, then replaceE by the equations
xn−1 = 0 andxn = 0. Otherwise, it must be the case
that for somek, p′(ok|an−1)yn−1 occurs in some (two) of
the other equations. In that case, replace that expression

by p(ok|an−1)xn−1 if p1(k) ≥ p2(k), and byp(ok|an)xn

otherwise. The transformation to apply on the inequational
part is trivial. �

Note thatS(C) is finite, hence theU in Theorem 4.2 is
finite as well.

Example 4.3 (Binary hypothesis testing)The casen = 2
is particularly simple: the systems generated byC are all
those of the form

{p(oi|a1)x1 = p(oi|a2)x2 , x1 + x2 = 1}

plus the two systems

{x1 = 0 , x1 + x2 = 1}

{x2 = 0 , x1 + x2 = 1}

These systems are always solvable, hence we havem + 2
corner points, where we recall thatm is the cardinality of
O.

Let us illustrate this case with a concrete example: letC
be the channel determined by the following matrix:

o1 o2 o3

a1 1/2 1/3 1/6

a2 1/6 1/2 1/3

The systems generated byC are:

{x1 = 0 , x1 + x2 = 1}

{ 1
2x1 = 1

6x2 , x1 + x2 = 1}

{ 1
3x1 = 1

2x2 , x1 + x2 = 1}

{ 1
6x1 = 1

3x2 , x1 + x2 = 1}

{x1 = 0 , x1 + x2 = 1}

The solutions of these systems are:(0, 1), (1/4, 3/4),
(3/5, 2/5), (2/3, 1/3), and(1, 0), respectively. The value
of Pe on these points is0, 1/4, 3/10 (maximum),1/3, and
0 respectively, andPe is piecewise linear between these
points, i.e. it can be generated by convex combination of
these points and its value on them. Its graph is illustrated
in Figure 1, wherex1 is represented byx andx2 by1 − x.

Example 4.4 (Ternary hypothesis testing)Let us con-
sider now a channelC with three inputs. Assume the
channel has the following matrix:

o1 o2 o3

a1 2/3 1/6 1/6

a2 1/8 3/4 1/8

a3 1/10 1/10 4/5
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Figure 1. The graph of the Bayes’ risk for the channel in Example 4.3 andvarious bounds for it. Curve1 represents
the probability of error if we ignore the observables, i.e. the functionf(~x) = 1 − maxj xj . Curve 2 represents the
Bayes’ riskPe(~x). Curve3 represents the Hellman-Raviv bound1

2H(A|O). Curve4 represents the Santhi-Vardy
bound1 − 2−H(A|O). Finally, Curves5 and6 represent the improvements on3 and4, respectively, that we get by
applying the method induced by our Proposition 3.5.

The following is an example of a solvable system generated
byC:

2
3x1 = 1

8x2

1
8x2 = 4

5x3

x1 + x2 + x3 = 1
2
3x1 ≥ 1

10x3

1
8x2 ≥ 1

6x1

Another example is

1
6x1 = 3

4x2

x3 = 0

x1 + x2 + x3 = 1

The graph ofPe is depicted in Figure 2, wherex3 is repre-
sented by1 − x1 − x2.

5 Maximum Bayes’ risk and relation with
strong anonymity

In this section we discuss the Bayes’ risk in the extreme
cases of maximum and minimum (i.e.0) capacity, and, in

the second case, we illustrate the relation with the notion of
probabilistic strong anonymity existing in literature.

Maximum capacity If the channel has no noise, which
means that for each observableo there exists at most one
a such thatp(o|a) 6= 0, then the Bayes’ risk is0 for every
input’s distribution. In fact

Pe(~x) = 1 −
∑

o maxj p(o|aj)xj

= 1 −
∑

j

∑

o p(o|aj)xj

= 1 −
∑

j xj = 0

Capacity 0 The case in which the capacity of the channel
is 0 is by definition obtained whenI(A; O) = 0 for all pos-
sible input distributions ofA. From information theory we
know that this is the case iffA andO are independent (cfr.
[8], page 27). Hence we have the following characteriza-
tion:

Proposition 5.1 Given an anonymity system〈A,O, p(·|·)〉,
the capacity of the corresponding channel is0 iff all the
rows of the channel matrix are the same, i.e.p(o|a) =
p(o|a′) for all o, a, a′.
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Figure 2. Ternary hypothesis testing. The solid curve represents theBayes’ risk for the channel in Example 4.4, while
the dotted curve represents the Santhi-Vardy bound1 − 2−H(A|O).

The conditionp(o|a) = p(o|a′) for all o, a, a′ has been
calledstrong probabilistic anonymityin [1] and it is equiv-
alent to the conditionp(a|o) = p(a) for all o, a. The latter
was considered as a definition of anonymity in [4] and it is
calledconditional anonymityin [12].

Capacity0 is the optimal case also w.r.t. the capability of
the adversary of inferring the hidden information. In fact,
we can prove that the Bayes’ risk achieves its highest possi-
ble value, for a givenn (cardinality ofA), when the rows of
the matrix are all the same and the distribution is uniform.
In this case, we have

Pe(
1
n
, 1

n
, . . . , 1

n
) = 1 −

∑

o maxj p(o|aj)xj

= 1 −
∑

o p(o|a) 1
n

= 1 − 1
n

∑

o p(o|a)

= n−1
n

An example of protocol with capacity0 is the dining
cryptographersin a connected graph [4], under the assump-
tion that it is always one of the cryptographers who pays,
and that the coins are fair.

6 Application: Crowds

In this section we discuss how to compute the channel
matrix for a given protocol using automated tools, and use

it to improve the bound for the probability of error. We
illustrate our ideas on a variation of Crowds, a well-known
anonymity protocol from the literature.

In this protocol, introduced by Reiter and Rubin in [21],
a user (called theinitiator) wants to send a message to a
web server without revealing its identity. To achieve that,he
routes the message through a crowd of users participating in
the protocol. The routing is performed using the following
protocol: in the beginning, the initiator selects randomlya
user (called aforwarder), possibly himself, and forwards
the request to him. A forwarder, upon receiving a message,
performs a probabilistic choice. With probabilitypf (a pa-
rameter of the protocol) he selects a new user and forwards
once again the message. With probability1 − pf he sends
the message directly to the server.

It is easy to see that the initiator is strongly anonymous
wrt the server, as all users have the same probability of be-
ing the forwarder who finally delivers the message. How-
ever, the more interesting case is when the attacker is one
of the users of the protocol (called acorrupteduser) which
uses his information to find out the identity of the initia-
tor. A corrupted user has more information than the server
since he sees other users forwarding the message through
him. The initiator, being the in first in the path, has greater
probability of forwarding the message to the attacker than
any other user, so strong anonymity cannot hold. How-
ever, under certain conditions on the number of corrupted
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Figure 3. An instance of Crowds with nine users in
a grid network. User 5 is the only corrupted one.

users, Crowds can be shown to satisfy a weaker notion of
anonymity calledprobable innocence.

In the original protocol, all users are considered to be
able to communicate with any other user, in other words the
connection graph is a clique. To make the example more
interesting, we consider a more restricted grid-shaped net-
work as shown in Figure 3. In this network there is a total
of nine users, each of whom can only communicate with the
four that are adjacent to him. We assume that the network
“wraps” at the edges, so user 1 can communicate with both
user 3 and user 7. Also, we assume that the only corrupted
user is user 5.

To construct the channel matrix of the protocol, we start
by identifying the set of anonymous facts, which depends
on what the system is trying to hide. In protocols where
one user performs an action of interest (like initiating a
message in our example) and we want to protect his iden-
tity, the setA would be the set of the users of the proto-
col. Note that the corrupted users should not be included
in this set, since we cannot expect the attacker’s own ac-
tions to be hidden from him. So in our case we have
A = {u1, u2, u3, u4, u6, u7, u8, u9} whereui means that
useri is the initiator.

The set of observables should also be defined, based on
the visible actions of the protocol and on the various as-
sumptions made about the attacker. In Crowds we assume
that the attacker does not have access to the entire network
(such an attacker would be too powerful for this protocol)
but only to the messages that pass through a corrupted user.
Each time that a useri forwards the message to a corrupted
user we say that he isdetectedwhich corresponds to an ob-
servable action in the protocol. Along the lines of other
studies of Crowds (eg [25]) we consider that an attacker will
not forward a message himself, since by doing so he would
not gain more information. So at each execution there is
at most one detected user and since only the users 2, 4, 6
and 8 can communicate with the corrupted user, we have
O = {d2, d4, d6, d8} wheredj means that userj was de-
tected. As we explain later, there is also a non-zero prob-
ability that no user is detected, which is the case when the

d2 d4 d6 d8

u1 0.33 0.33 0.17 0.17

u3 0.33 0.17 0.33 0.17

u7 0.17 0.33 0.17 0.33

u9 0.17 0.17 0.33 0.33

u2 0.68 0.07 0.07 0.17

u4 0.07 0.68 0.17 0.07

u6 0.07 0.17 0.68 0.07

u8 0.17 0.07 0.07 0.68

Figure 4. The channel matrix of the examined in-
stance of Crowds. The symbolsui, dj mean that user
i is the initiator and userj was detected respectively.

message arrives to the server without passing by user 5.

After definingA,O we should model the protocol in
some formal probabilistic language. In our example, we
have modeled Crowds in the language of the PRISM model-
checker, that is essentially a formalism to describe Markov
Decision Processes. Then the channel matrix of conditional
probabilitiesp(o|a) must be computed, either by hand or
by using an automated tool like PRISM which can compute
the probability of reaching a specific state starting from a
given one. Thus, each conditional probabilityp(dj |ui) is
computed as the probability of reaching a state where the
attacker has detected userj, starting from the state wherei
is the initiator. Ifpf < 1 there is always a non-zero proba-
bility of not detecting any user at all, which happens if the
message arrives at the server without passing by user 5. In
this case, the execution of the protocol passes completely
unnoticed by the adversary. Thus, in our analysis, we com-
pute all probabilities conditioned on the fact thatsomeob-
servation was made. This corresponds to normalizing the
rows of the table, that is dividing allp(o|ai) by

∑

i p(o|ai).

In Figure 4 the channel matrix is displayed for the ex-
amined Crowds instance, computed using a probability of
forwarding pf = 0.8. We have split the users in two
groups, the ones who cannot communicate directly with
the corrupted user, and the ones who can. When a user
of the first group, say user 1, is the initiator, there is a
higher probability of detecting the users that are adjacent
to him (users 2 and 4) than the other two (users 6 and
8) since the message needs two steps to arrive to the lat-
ters. Sop(d2|u1) = p(d4|u1) = 0.33 are greater than
p(d6|u1) = p(d8|u1) = 0.17. In the second group users
have direct communication to the attacker, so when user 2
is the initiator, the probabilityp(d2|u2) of detecting him is
high. From the remaining three observablesd8 has higher
probability since user 8 can be reached from user 2 in one
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Figure 5. The lower curve is the probability of error
in the examined instance of Crowds. The upper two
are the Santhi and Vardy’s bound and it’s improved
version.

step, while users 4 and 6 need two steps. Inside each group
the rows are symmetric since the users behave similarly.
However between the groups the rows are different which
is caused by the different connectivity to the corrupted user
5.

We can now compute the probability of error for this in-
stance of Crowds, which is displayed in the lower curve of
Figure 5. Since we have eight users, to plot this function
we have to map it to the three dimensions. We do this by
considering the users 1, 3, 7, 9 to have the same probability
x1, the users 2, 8 to have the same probabilityx2 and the
users 4, 6 to have the same probability1−x1−x2. Then we
plot Pe as a function ofx1, x2 in the ranges0 ≤ x1 ≤ 1/4,
0 ≤ x2 ≤ 1/2. Note that whenx1 = x2 = 0 there are still
two users (4, 6) among whom the probability is distributed,
soPe is not0. The upper curve of Figure 5 shows the Santhi
and Vardy’s bound on the probability of error. Since all the
rows of the matrix are different the bound is not a tight one
as it can be seen in the Figure.

We can obtain a better bound by applying Proposi-
tion 3.5. The set of corner points, characterized by The-
orem 4.2, is finite and can be automatically constructed
by solving the corresponding systems of inequations. Af-
ter computing the corner points, it is sufficient to take
c = maxu Pe(~u)/h(~u), whereh is the original bound,
and takec h as the improved bound. In our example we
found c = 0.925 which was given for the corner point
~u = (0.17, 0.17, 0.17, 0.17, 0.08, 0.08, 0.08, 0.08).

References

[1] M. Bhargava and C. Palamidessi. Probabilistic anonymity.
In M. Abadi and L. de Alfaro, editors,Proceedings
of CONCUR, volume 3653 ofLecture Notes in Com-
puter Science, pages 171–185. Springer, 2005. Avail-
able at http://www.lix.polytechnique.fr/∼catuscia/papers/
Anonymity/concur.pdf.

[2] K. Chatzikokolakis and C. Palamidessi. Probable innocence
revisited. Theoretical Computer Science, 367(1-2):123–
138, 2006. Available at http://www.lix.polytechnique.fr/
∼catuscia/papers/Anonymity/tcsPI.pdf.

[3] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden.
Anonymity protocols as noisy channels. InPostpro-
ceedings of the Symp. on Trustworthy Global Comput-
ing, Lecture Notes in Computer Science. Springer, 2006.
To appear. Available at http://www.lix.polytechnique.fr/
∼catuscia/papers/Anonymity/Channels/full.pdf.

[4] D. Chaum. The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability.Journal of Cryp-
tology, 1:65–75, 1988.

[5] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis
of the leakage of confidential data. InProc. of QAPL 2001,
volume 59 (3) ofElectr. Notes Theor. Comput. Sci, pages
238–251. Elsevier Science B.V., 2001.

[6] D. Clark, S. Hunt, and P. Malacaria. Quantified interference
for a while language. InProc. of QAPL 2004, volume 112
of Electr. Notes Theor. Comput. Sci, pages 149–166. Elsevier
Science B.V., 2005.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. InDesigning Privacy Enhancing Technologies, In-
ternational Workshop on Design Issues in Anonymity and
Unobservability, volume 2009 ofLecture Notes in Computer
Science, pages 44–66. Springer, 2000.

[8] T. M. Cover and J. A. Thomas.Elements of Information
Theory. John Wiley & Sons, Inc., 1991.

[9] Y. Deng, J. Pang, and P. Wu. Measuring anonymity with rel-
ative entropy. InProceedings of the 4th International Work-
shop on Formal Aspects in Security and Trust (FAST), Lec-
ture Notes in Computer Science. Springer, 2006. To appear.

[10] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards
measuring anonymity. In R. Dingledine and P. F. Syverson,
editors,Proceedings of the workshop on Privacy Enhancing
Technologies (PET) 2002, volume 2482 ofLecture Notes in
Computer Science, pages 54–68. Springer, 2002.

[11] J. W. Gray, III. Toward a mathematical foundation for in-
formation flow security. InProceedings of the 1991 IEEE
Computer Society Symposium on Research in Security and
Privacy (SSP ’91), pages 21–35, Washington - Brussels -
Tokyo, May 1991. IEEE.

[12] J. Y. Halpern and K. R. O’Neill. Anonymity and information
hiding in multiagent systems.Journal of Computer Security,
13(3):483–512, 2005.

[13] M. Hellman and J. Raviv. Probability of error, equivocation,
and the chernoff bound.IEEE Trans. on Information Theory,
IT–16:368–372, 1970.

[14] G. Lowe. Quantifying information flow. InProc. of CSFW
2002, pages 18–31. IEEE Computer Society Press, 2002.

12



[15] U. M. Maurer. Authentication theory and hypothesis test-
ing. IEEE Transactions on Information Theory, 46(4):1350–
1356, 2000.

[16] J. McLean. Security models and information flow. InIEEE
Symposium on Security and Privacy, pages 180–189, 1990.

[17] I. S. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R.
Miller. Covert channels and anonymizing networks. In S. Ja-
jodia, P. Samarati, and P. F. Syverson, editors,WPES, pages
79–88. ACM, 2003.

[18] I. S. Moskowitz, R. E. Newman, and P. F. Syverson. Quasi-
anonymous channels. InIASTED CNIS, pages 126–131,
2003.

[19] A. D. Pierro, C. Hankin, and H. Wiklicky. Approximate
non-interference.Journal of Computer Security, 12(1):37–
82, 2004.

[20] A. D. Pierro, C. Hankin, and H. Wiklicky. Measuring the
confinement of probabilistic systems.Theoretical Computer
Science, 340(1):3–56, 2005.

[21] M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web
transactions.ACM Transactions on Information and System
Security, 1(1):66–92, 1998.
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7 Appendix

We give here the proof of Proposition 3.6.

Proposition 3.6Let f : D(n) → R be the functionf(~x) =
1 − maxj xj . Thenf is convexly generated byf(U) with
U = U1 ∪ U2 ∪ . . . ∪ Un where, for eachk, Uk is the set
of all vectors that have value1/k in exactlyk components,
and0 everywhere else.

Proof Observe thatf coincides with the Bayes’ risk for a
channelC with 0 capacity, i.e. a channel in which for every
o, a, a′ we havep(o|a) = p(o|a′). In fact, the Bayes’s risk

for such channel is given by

Pe(~x) = 1 −
∑

o maxj p(o|aj)xj

= 1 −
∑

o p(o|a)maxj xj for a choosena

= 1 − maxj xj since
∑

o p(o|a) = 1

By Theorem 4.2,Pe is convexly generated byPe(U), where
U is the set of solutions of the solvable systems inS(C).
Now, each such system is of the form

p(oi1 |aj1)xj1 = p(oi1 |aj2)xj2

p(oi2 |aj2)xj2 = p(oi2 |aj3)xj3

...

p(oir
|ajk−1

)xjk−1
= p(oir

|ajk
)xjk

xj = 0 for j 6∈ {j1, j2, . . . , jk}

x1 + x2 + . . . + xn = 1

p(oih
|ajh

)xjh
≥ p(oih

|a`)x` for 1 ≤ h, ` ≤ k, n

Which, given the fact that for alli, j, j′ the equality
p(oi|aj) = p(oi|aj′) holds, can be simplified to

xj1 = xj2

xj2 = xj3

...

xjk−1
= xjk

xj = 0 for j 6∈ {j1, j2, . . . , jk}

x1 + x2 + . . . + xn = 1

xjh
≥ x` for 1 ≤ h, ` ≤ k, n

A simple calculation shows that such a system has one (and
only one) solution~u = (u1, u2, . . . , un) where

uj =

{

1
k

if j ∈ {j1, j2, . . . , jk}

0 otherwise

which concludes the proof. �
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