
Appears in M. Joye (Ed.): Topics in Cryptology – CT-RSA 2003,

Springer-Verlag LNCS 2612, pp. 244–262, ISBN 3-540-00847-0.

Provably Secure Public-Key Encryption
for Length-Preserving Chaumian Mixes

Bodo Möller

Technische Universität Darmstadt, Fachbereich Informatik
moeller@cdc.informatik.tu-darmstadt.de

Abstract. Mix chains as proposed by Chaum allow sending untraceable
electronic e-mail without requiring trust in a single authority: messages
are recursively public-key encrypted to multiple intermediates (mixes),
each of which forwards the message after removing one layer of en-
cryption. To conceal as much information as possible when using vari-
able (source routed) chains, all messages passed to mixes should be of
the same length; thus, message length should not decrease when a mix
transforms an input message into the corresponding output message di-
rected at the next mix in the chain. Chaum described an implementa-
tion for such length-preserving mixes, but it is not secure against active
attacks. We show how to build practical cryptographically secure length-
preserving mixes. The conventional definition of security against chosen
ciphertext attacks is not applicable to length-preserving mixes; we give
an appropriate definition and show that our construction achieves prov-
able security.

1 Introduction

Chaum’s mix concept [6] is intended to allow users to send untraceable elec-
tronic e-mail without having to trust a single authority. The idea is to use a
number of intermediates such that it suffices for just one of these to be trust-
worthy in order to achieve untraceability. (The sender does not have to decide
which particular intermediate he is willing to trust, he just must be convinced
that at least one in a given list will behave as expected.) These intermediates,
the mixes, are remailers accepting public-key encrypted input. Messages must
be of a fixed size (shorter messages can be padded, longer messages can be
split into multiple parts). To send a message, it is routed through a chain of
mixes M1, . . .,Mn: the sender obtains the public key of each mix; then he recur-
sively encrypts the message (including the address of the final recipient) yield-
ing EM1

(
EM2(. . . EMn(payload) . . .)

)
where EMi denotes encryption with Mi’s

public key, and sends the resulting ciphertext to mix M1. (The public-key cryp-
tosystem will typically be hybrid, i.e. involve use of symmetric-key cryptography
for bulk data encryption.) Each mix removes the corresponding layer of encryp-
tion and forwards the decrypted message to the next mix; thus mix Mn will
finally recover payload .

1

Each mix is expected to collect a large batch of messages before forwarding
the decryption results. The messages in the batch must be reordered (mixed) to
prevent message tracing. It is important to prevent replay attacks – a mix must
not process the same message twice, or active adversaries would be able to trace
messages by duplicating them at submission to cause multiple delivery. (Time-
stamps can be used to limit the timespan for which mixes have to remember
which messages they have already processed; see [6] and [7].)

Usually it is desireable to allow source routing, i.e. let senders choose mix
chains on a per-message basis. This increases the flexibility of the whole scheme:
senders can make use of new mixes that go into operation, and they can avoid
mixes that appear not to work properly; in particular, they can avoid mixes that
suppress messages (be it intentionally or because of technical problems), which
might be noticed when sending probe messages to oneself over mix chains. For
source routing, in the recursively encrypted message, each layer must contain the
address of the next mix in the chain so that each mix knows where to forward the
message. A problem with the straightforward implementation of source routing
is that messages will shrink as they proceed through the chain, not only because
of the forwarding address for each layer that must be included, but also because
public-key encryption increases message sizes. For optimal untraceability, we
need length-preserving mixes: the messages that mixes receive should essentially
look like the resulting messages that they forward to other mixes.

A construction of length-preserving mixes is given in [6] (a variant of this
is used in the fielded system Mixmaster [15]): mix messages consist of a fixed
number of slots of a fixed size. The first slot is public-key encrypted so that it
can be read by the first mix in the chain. Besides control information directed
at the respective mix (such as the address of the next mix in the chain or,
in case of the last mix, the address of the final recipient), decryption yields
a symmetric key that the mix uses to decrypt all the other slots. Then slots
are shifted by one position: the decryption of the second slot becomes the new
first slot, and so on. A new final slot is added consisting of random (garbage)
data to obtain a mix message of the desired fixed length, which can the be
forwarded to the next mix. On the way through the chain, each mix message
consists of a number of slots with valid data followed by enough slots with
garbage to fill all available slots; mixes are oblivious of how many slots contain
valid data and how many are random. Each mix in the chain, when decrypting
and shifting the slots, will “decrypt” the garbage slots already present and add
a new final slot, thus increasing the number of random slots by one. We note
that while the transformation of an incoming mix message to the corresponding
outgoing mix message is length-preserving, the decryption step itself is actually
length-expanding because some of the data obtained by decryption is control
data directed at the current mix.

The problem with this method for obtaining a hybrid public-key cryptosys-
tem with length-expanding decryption is that it is not secure against active
attacks: assume that an adversary controls at least one mix, and that all senders
submit well-formed messages. Now when the victim submits a message, the ad-
versary can mark it by modifying one of the slots. This mark will persist as

2

the message is forwarded through the mix chain: assuming CBC or CFB mode
block cipher encryption, certain blocks of the corresponding slot will essentially
contain garbage due to the decryption and slot shifting performed by each mix
(whereas unmarked messages will not show such defects). If the final mix is con-
trolled by the adversary, the adversary may be able to notice the modification
and thus break untraceability.

To rule out such attacks, the hybrid public-key cryptosystem should pro-
vide security against adaptive chosen ciphertext attacks (CCA security): that
is, it should be secure against an adversary who can request the decryption of
arbitrary ciphertexts.

In this paper, we present a secure and practical hybrid construction for
length-preserving mixes, which is also more flexible than the slot-based approach.
The structure of each layer of encryption resembles that of the public-key en-
cryption scheme DHAES/DHIES ([1], [2]). The standard notion of CCA security
for public-key cryptosystems is not applicable to our hybrid public-key cryp-
tosystem with length-expanding decryption because the encryption operation
must be defined differently for our application: encryption cannot be treated as
an atomic black-box operation that takes a plaintext and returns a ciphertext
– in this model, we could not have length-expanding decryption. Rather, our
encryption process first is input part of the desired ciphertext and determines
a corresponding part of what will be the decryption result (it is this step that
provides length expansion); then it is input the payload plaintext and finally
outputs the complete ciphertext, which includes the portion requested in the
first input.

We describe the hybrid construction in section 2. Section 3 discusses appro-
priate security notions and gives provable security results for the construction.

This paper shows essentially how Mixmaster ([15], [16]) should have been
specified to be cryptographically secure against active attacks. (Note that an
entirely different model of operation for mix networks is assumed by Ohkubo and
Abe [17] and Jakobsson and Juels [11]: these constructions assume the existence
of a shared authenticated bulletin board, whereas in the present paper we are
interested in an open system that can be used with point-to-point communication
by e-mail or similar means.) We use many ideas and techniques described by
Cramer and Shoup in [8], but adapt them to fit the new notions of security
needed in the context of length-preserving mixes.

1.1 Notation
Strings are binary, i.e. elements of {0, 1}∗. The concatenation of strings s and t
is denoted s || t. The length of string s is |s|. For |s| ≥ w, prefixw(s) denotes the
string consisting of the leftmost w bits of s; thus, prefix|s|(s || t) = s. Messages
(plaintexts, ciphertexts) are strings.

Algorithms are usually probabilistic (randomized).

2 A Construction for Length-Preserving Mixes

Our construction allows much flexibility in the choice of cryptographic schemes,
even in a single chain. The single parameter that must be fixed for all mixes is

3

the desired mix message length `. Also it may be desireable to define a maximum
length for the actual message payload, i.e. the part of the plaintext as recovered
by the final mix that can be chosen by the sender: as a message proceeds through
the mix chain, more and more of the data will be pseudo-random gibberish; the
length of the useful part of the final plaintext reveals that chains leaving less
than this amount cannot have been used. The length n of the mix chain need
not be fixed.

For purposes of exposition, we number the mixes M1, . . .,Mn according to
their position in the chain chosen by the sender (note that the same mix might
appear multiple times in one chain). For each mix Mi, the following must be
defined and, with the exception of the secret key SKMi

, known to senders who
want to use the mix:

– A key encapsulation mechanism

KEMMi

and a key pair
(PKMi

,SKMi
)

consisting of a public key PKMi
and a secret key SKMi

for this key encapsu-
lation mechanism. A key encapsulation mechanism, similarly to a public-key
encryption mechanism, provides an algorithm

KEMMi .Encrypt

using the public key and an algorithm

KEMMi .Decrypt

using the secret key. Associated with KEMMi
is a key generation algorithm

KEMMi
.KeyGen

that returns appropriate key pairs (PK,SK). (Note that our formalization
uses no explicit security parameter, so desired key sizes are implicit to
KEMMi

.KeyGen.) In contrast with public-key encryption, the Encrypt algo-
rithm of a key encapsulation mechanism takes no input apart from the public
key: KEMMi .Encrypt(PKMi) generates a ciphertext K of a fixed length

KEMMi .CipherLen

corresponding to a (pseudo-)random string K of a fixed length

KEMMi .OutLen

and outputs the pair (K,K). Evaluation of KEMMi .Decrypt(SKMi ,K) will
return said string K if the key pair (PKMi

,SKMi
) has been produced by

KEMMi
.KeyGen. In this sense, ciphertext K encapsulates the random mes-

sage K (which can be used as a key for symmetric-key cryptography). On

4

arbitrary inputs K, the computation KEMMi
.Decrypt(SKMi

,K) may either
return some string K or fail (return the special value invalid).
One example of a key encapsulation mechanism is the Diffie-Hellman key
exchange [9] with static keys for one party and ephemeral keys for the other
party where the concatenation of the ephemeral public key with the common
secret group element is hashed to obtain K (cf. [1], [19]); KEMMi

.CipherLen
can be kept particularly small for elliptic curve Diffie-Hellman using just x co-
ordinates of points (see [14]). Specifications for various key encapsulation
mechanisms can be found in [19].

– A one-time message authentication code

MACMi

with key length
MACMi .KeyLen

and output length
MACMi .OutLen.

A one-time message authentication code specifies an efficient determinis-
tic algorithm that takes as input a key K of length MACMi

.KeyLen and
a bit string s and returns a string MACMi(K, s) of length MACMi .OutLen.
In our construction, MACMi will only be used for strings s of fixed length
`− KEMMi .CipherLen−MACMi .OutLen.
Candidate one-time message authentication codes are UHASH [12]1 and
HMAC [3].

– A pseudo-random bit string generator

STREAMMi

taking as input a key K of length

STREAMMi .KeyLen

and deterministically generating an output string STREAMMi
(K) of length

STREAMMi
.OutLen.

This will be used for an XOR-based stream cipher. A convenient example
implementation is the so-called counter mode of a block cipher (the output
sequence is the prefix of appropriate length of EK(0) || EK(1) || EK(2) || . . .
where EK denotes block cipher encryption using key K; see [4] and [13]).

1 UHASH is the combination of a key derivation function with an almost strongly
universal hash function [20] and is the core of UMAC as specified in [12]. Note that
the security arguments provided for the earlier version of UMAC described in [5] are
based on a different approach.

5

– An integer
PlainLenMi

specifying the length of the prefix of each decrypted message that is consid-
ered control data directed to mix MMi

and will not be forwarded. (This is
the amount of message expansion: the decrypted message minus the prefix
must be of size ` because that is what will be sent to the next mix.)

The parameters must fulfil the following conditions:

KEMMi
.CipherLen + MACMi

.OutLen + PlainLenMi
< ` (1)

KEMMi .OutLen = STREAMMi .KeyLen + MACMi .KeyLen (2)
STREAMMi .OutLen = PlainLenMi + ` (3)

2.1 Encryption

We now describe encryption for sending a message through a chain M1, . . .,Mn.
Let payload be the message of length

|payload | = `−
∑

1≤i≤n

(KEMMi .CipherLen + MACMi .OutLen + PlainLenMi) (4)

(messages shorter than this maximum should be randomly padded on the right).
For each i, let plaini be the control message of length PlainLenMi directed to the
respective mix. The encryption algorithm for these arguments is denoted

chain encryptM1,...,Mn
(plain1, . . ., plainn; payload)

or
chain encryptM1,...,Mn

(plain1, . . ., plainn; payload ;λ)

where λ is the empty string. The algorithm is defined recursively. Let 1 ≤ i ≤ n,
and let Ci be a string of length

|Ci| =
∑

1≤k<i

(KEMMk
.CipherLen + MACMk

.OutLen + PlainLenMk
) (5)

(thus specifically |C1| = 0). Then algorithm

chain encryptMi,...,Mn
(plaini, . . ., plainn; payload ;Ci)

works as follows:

1. Use KEMMi
.Encrypt(PKMi

) to generate a pair (Ki,Ki).
2. Split Ki in the form

Ki = Ki,MAC ||Ki,STREAM

such that |Ki,MAC| = MACMi
.KeyLen (so |Ki,STREAM| = STREAMMi

.KeyLen
by (2)).

6

3. Compute STREAMMi
(Ki,STREAM) and split this string in the form

streami,L || streami,R

such that the left part streami,L is of length

`− |Ci| − KEMMi .CipherLen−MACMi .OutLen.

4. If i = n (last mix), then by (4) and (5) it follows that |streamn,L| =
PlainLenn + |payload |. In this case, set

Cn =
(
streamn,L ⊕ (plainn || payload)

)
|| Cn.

Otherwise, let

Ci+1 = streami,R ⊕ (Ci || 0KEMMi
.CipherLen+MACMi

.OutLen+PlainLenMi),

by recursion compute

xi = chain encryptMi+1,...,Mn
(plaini+1, . . ., plainn; payload ;Ci+1),

and let

Ci =
(
streami,L ⊕ (plaini || prefix|streami,L|−PlainLenMi

(xi))
)
|| Ci.

5. Compute Mi = MACi(Ki,MAC,Ci).
6. Return the ciphertext Ki ||Mi || Ci, which is of length `.

Appendix A.1 illustrates a ciphertext generated by chain encryptM1,...,Mn
.

2.2 Decryption

The decryption algorithm for mix Mi (1 ≤ i ≤ n) works as follows, given
a length-` ciphertext K ||M || C (split into its three components according to
parameters KEMMi .CipherLen = |K| and MACMi .OutLen = |M|). We denote it

mix decryptMi
(K ||M || C).

Remember that Mi in general is not aware of the mix chain used by the sender
or even of its own position i in the chain.

1. Compute K = KEMMi .Decrypt(SKMi ,K). If this computation fails, abort
with an error (return invalid).

2. Split K in the form
K = KMAC ||KSTREAM

such that |KMAC| = MACMi
.KeyLen.

7

3. Compute
M̃ = MACMi

(KMAC,C)

and test whether
M̃ = M.

If this is not the case, abort with an error (return invalid).
4. Compute the string

stream = STREAMMi
(KSTREAM)

of length STREAMMi
.OutLen.

5. Compute

stream ⊕ (C || 0KEMMi
.CipherLen+MACMi

.OutLen+PlainLenMi)

and split the resulting string in the form

plaini || P

where plaini is of length PlainLenMi (and thus, by (3), P is of length `).
6. Return the pair (plaini, P).

If this algorithm finishes without an error, plaini is a control message directed
to the current mix, and P is the message to be forwarded to another mix or to
the final recipient (as requested by the control message).

It is straightforward to verify that for ciphertexts computed as

chain encryptM1,...,Mn
(plain1, . . ., plainn; payload),

iterative decryption by mixes M1, . . .,Mn will indeed work without an error and
recover the respective strings plaini and finally also the message payload con-
catenated with some (useless) extra data. Appendix A.2 illustrates decryption.

3 Provable Security

The mix concept is intended to provide security when at least one mix can be
trusted and behaves correctly. (However note that denial-of-service attacks by
incorrectly operating mixes cannot be ruled out; the only option is to avoid mixes
that appear to malfunction.) Thus we assume that some single mix Mi works as
expected while all other mixes are controlled by the adversary and may not follow
the protocol (also the cryptographic schemes KEMMj , MACMj , and STREAMMj

associated with mixes Mj , j 6= i, might be not secure, and KEMMj might even
not be a valid key encapsulation mechanism according to the description given
in section 2).

This leaves only Mi to be attacked: outer layers of encryption for mixes that
appear before Mi in a mix chain are easily removed by the adversary and thus

8

are not relevant for security; and inner layers of encryption for mixes that appear
after Mi in a mix chain are involved in the encryption process

chain encryptMi,...,Mn
(plaini, . . ., plainn; payload ;Ci)

described in section 2.1, but cannot provide protection against the adversary.
An important security property for mixes is unlinkability: an adversary who

observes a batch of encrypted messages as these are sent to a mix and who sees
the resulting decrypted messages when these are forwarded should not be able
to tell better than by chance which decrypted messages correspond to which
encrypted messages.

Beyond this basic security notion, we also want to achieve security against
active attacks. As noted in the introduction, it is crucial to detect message replay
and ignore replayed message. However, this does not rule out active attacks based
on message modifications. To show that our construction for length-preserving
mixes is secure against this kind of attacks, we will model an active adversary
who is able to launch an adaptive chosen ciphertext attack (CCA).

We point out that in the model of operation that we assume, unlinkability
cannot be fully guaranteed in the presence of active attacks: an active adversary
who suppresses all but a single one of the legitimate encrypted messages in a
batch and substitutes new messages for them can easily trace the remaining
legitimate message. This can be avoided only heuristically (each sender of mix
messages should occasionally route a message to himself to see if it gets through).
To avoid related flooding attacks, mixes should not start a new batch whenever
a certain fixed number of messages has arrived; instead, each batch should be
kept open for additional messages during some time frame.

We show how the security of the mix construction can be captured formally
by describing unlinkability (section 3.1) and CCA security (section 3.2). We
then provide security definitions for the underlying key encapsulation method
(section 3.3), one-time message authentication code (section 3.4), and pseudo-
random bit string generator (section 3.5). Finally, section 3.6 present security
results that relates the security of the mix encryption scheme to the security of
these cryptographic schemes: we will see that if the mix encryption scheme is
not secure, then this is because one of the underlying cryptographic schemes is
not secure.

3.1 Unlinkability of the Mix Encryption Scheme

An intuitive approach to defining unlinkability is as follows: the adversary sees a
batch of m ciphertexts and a random permutation of the resulting m decryption
results; for each decryption result, the adversary makes a guess on the index
of the corresponding ciphertext. With random guessing, the expected number
of correct guesses is one. An adversary who can do better than this breaks
unlinkability.

More specifically, we let the adversary select the plaintexts as far as possible
(remember that as we have length-expanding decryption, it is not possible to

9

choose all of the decryption result arbitrarily when generating a ciphertext). In
the formal definition, we confine to a setting with two plaintexts where only one
ciphertext is shown to the adversary (an adversary in the unrestricted setting can
be used to build an adversary in this setting). This is captured in the following
attack game:

1. The adversary queries a key generation oracle, which uses KEMMi .KeyGen to
compute a key pair

(PK,SK)

and responds with PK (and secretly stores SK).
2. The adversary uses an encryption oracle as follows (cf. the encryption al-

gorithm from section 2.1 in the case of a length-1 mix chain, i.e. with no
recursion and |Ci| = 0):
– The adversary submits a pair of string pairs(

(plaini,0,m0), (plaini,1,m1)
)

where
|plaini,b| = PlainLenMi

and

|mb| = `− KEMMi
.CipherLen−MACMi

.OutLen− PlainLenMi

for b = 0, 1.
– The encryption oracle chooses a bit b ∈ {0, 1} uniformly at random.

Then it uses KEMMi .Encrypt(PK) to generate a pair (Koracle,Koracle) and
splits Koracle in the form

Koracle = KMAC ||KSTREAM

such that |KMAC| = MACMi .KeyLen; it computes STREAMMi(KSTREAM)
and splits the resulting string stream in the form

stream = streamL || streamR

such that |streamL| = ` − KEMMi
.CipherLen − MACMi

.OutLen; and it
computes

C = streamL ⊕ (plaini,b ||mb)

and
M = MACMi

(KMAC,C).

Then it outputs the pair

(Koracle ||M || C, streamR).

3. The adversary outputs a bit b̃ ∈ {0, 1}.

10

The bit b̃ output by the adversary is its guess for the value of b. Note that the
decryption result corresponding to the ciphertext Koracle ||M || C is

(plaini,b,mb || streamR)

(see section 2.2), and all of this except for the choice of the bit b is known to the
adversary.

Let A be any adversary (interactive probabilistic algorithm with bounded
runtime) in this attack game. Its advantage against unlinkability for Mi’s in-
stantiation of the mix encryption scheme is

AdvLinkMi,A =
∣∣∣Pr
[̃
b = 1 | b = 1

]
− Pr

[̃
b = 1 | b = 0

]∣∣∣.
3.2 CCA Security of the Mix Encryption Scheme

Due to the recursive nature of our encryption algorithm for mix chains, we cannot
directly apply the usual definitions of security under adaptive chosen ciphertext
attack (CCA) for ordinary public-key encryption. We adapt the attack game
described in [8, section 3.2] (which goes back to [10] and [18]) as follows to take
into account the special properties of our construction:

1. The adversary queries a key generation oracle, which uses KEMMi
.KeyGen to

compute a key pair
(PK,SK)

and responds with PK (and secretly stores SK).
2. The adversary makes a sequence of queries to a decryption oracle. Each query

is an arbitrary string s of length `, and the oracle responds with

mix decryptMi
(s),

using the secret key SK from step 1. That is, each oracle response is either
a pair (plain, P) where |plain| = PlainLenMi

and |P | = `, or the special
value invalid.

3. The adversary uses an interactive encryption oracle as follows (compare with
the encryption algorithm in section 2.1):
– First the adversary submits some string Ci subject only to the condition

that
0 ≤ |Ci| < `− KEMMi .CipherLen−MACMi .OutLen.

– The interactive encryption oracle uses KEMMi .Encrypt(PK) to generate
a pair (Koracle,Koracle) and splits Koracle in the form

Koracle = KMAC ||KSTREAM

such that |KMAC| = MACMi
.KeyLen; it computes STREAMMi

(KSTREAM)
and splits the resulting string stream in the form

stream = streamL || streamR

11

such that |streamL| = `−|Ci|−KEMMi
.CipherLen−MACMi

.OutLen; and
it computes

Ci+1 = streamR ⊕ (Ci || 0KEMMi
.CipherLen+MACMi

.OutLen+PlainLenMi)

and sends Ci+1 to the adversary.
– The adversary submits a pair of string pairs(

(plaini,0,m0), (plaini,1,m1)
)

satisfying
|plaini,b| = PlainLenMi

and

|mb| = `− |Ci| − KEMMi .CipherLen−MACMi .OutLen− PlainLenMi

for b = 0, 1.
– The interactive encryption oracle chooses a uniformly random bit b ∈
{0, 1}, determines

C =
(
streamL ⊕ (plaini,b ||mb)

)
|| Ci

and
M = MACMi

(KMAC,C),

and responds with the challenge ciphertext

Koracle ||M || C.

4. The adversary again makes a sequence of queries to a decryption oracle as
in step 2, except that this time the decryption oracle refuses being asked for
the challenge ciphertext Koracle ||M || C from step 3 (it returns invalid for this
case).

5. The adversary outputs a bit b̃ ∈ {0, 1}.

The bit b̃ output by the adversary is its guess for the value of b.
The essential difference to the adaptive chosen ciphertext attack game for

ordinary public-key encryption is that we have made the encryption oracle in-
teractive to reflect the recursiveness of the encryption algorithm for mix chains,
where encryption to mixes later in the chain than Mi can have potentially ar-
bitrary effects on a large part of the plaintext. Appendix A.3 illustrates the
ciphertext resulting from the invocation of the interactive encryption oracle.

Let A be any adversary (interactive probabilistic algorithm with bounded
runtime) in the above attack game. Its CCA advantage against Mi’s instantiation
of the mix encryption scheme is

AdvCCAMi,A =
∣∣∣Pr
[̃
b = 1 | b = 1

]
− Pr

[̃
b = 1 | b = 0

]∣∣∣.
12

3.3 Security of the Key Encapsulation Mechanism

CCA security for the key encryption mechanism KEMMi is defined through the
following attack game (cf. [8, section 7.1.2]):

1. The adversary queries a key generation oracle, which uses KEMMi .KeyGen to
compute a key pair (PK,SK) and responds with PK (and secretly stores SK).

2. The adversary makes a sequence of queries to a decryption oracle. Each query
is an arbitrary string s of length KEMMi .CipherLen; the oracle responds with

KEMMi .Decrypt(SK, s).

Thus each oracle response is either a string of length KEMMi .OutLen or the
special value invalid.

3. The adversary queries an encryption oracle, which works as follows: it uses
KEMMi

.Encrypt(PK) to obtain a pair (K0,Koracle), it generates a uniformly
randomly string K1 such that |K0| = |K1|, chooses a uniformly random bit
bKEM ∈ {0, 1}, and responds with (KbKEM

,Koracle).
4. The adversary again makes a sequence of queries to a decryption oracle as in

step 2, but this time the oracle refuses the specific query Koracle and responds
invalid in this case.

5. The adversary outputs a bit b̃KEM ∈ {0, 1}.

The CCA advantage of an adversary A (an interactive probabilistic algorithm
with bounded runtime) against KEMMi

in this attack game is

AdvCCAKEMMi
,A =

∣∣∣Pr
[̃
bKEM = 1 | bKEM = 1

]
− Pr

[̃
bKEM = 1 | bKEM = 0

]∣∣∣.
3.4 Security of the One-Time Message Authentication Code

To define the security of MACMi
, we use the following attack game (cf. [8, sec-

tion 7.2.2]:

1. The adversary submits a string s (which for our purposes may be assumed
to be of fixed length ` − KEMMi

.CipherLen −MACMi
.OutLen) to an oracle.

The oracle generates a uniformly random string K of length MACMi
.KeyLen

and responds with MACMi(K, s).
2. The adversary outputs a list (s1, t1), (s2, t2), . . ., (sm, tm) of pairs of strings.

An adversary A again is an interactive probabilistic algorithm with bounded
runtime; the runtime bound implies a bound on the list length m. We say that
adversary A has produced a forgery if sk 6= s and MACMi(K, sk) = tk for some k
(1 ≤ k ≤ m). Its advantage against MACMi

, denoted AdvForgeMACMi
,A, is the

probability that it produces a forgery in the above game.

13

3.5 Security of the Pseudo-Random Bit String Generator

To define the security of STREAMMi
, we use the following attack game:

1. The adversary queries an oracle. The oracle generates a uniformly random
string K of length STREAMMi .KeyLen, computes stream0 = STREAMMi(K),
generates a uniformly random string stream1 with |stream0| = |stream1|,
chooses a uniformly random bit bSTREAM ∈ {0, 1}, and responds with streamb.

2. The adversary outputs a bit b̃STREAM ∈ {0, 1}.

The advantage of an adversary A (again an interactive probabilistic algorithm
with bounded runtime) against STREAMMi

is

AdvSTREAMMi
,A

=
∣∣∣Pr
[̃
bSTREAM = 1 | bSTREAM = 1

]
− Pr

[̃
bSTREAM = 1 | bSTREAM = 0

]∣∣∣.
3.6 Security Results

First let A be an adversary against the unlinkability of the mix encryption
scheme, attacking a mix Mi as described in section 3.1. It can be shown that
there are adversaries A1 and A2 against KEMMi

and STREAMMi
, respectively,

with essentially the same runtime as A such that

AdvLinkMi,A ≤ 2 ·
(
AdvCCAKEMMi

,A1 + AdvSTREAMMi
,A2

)
.

Details of the proof can be found in appendix B.1.
Now let A be an adversary against the CCA security of the mix encryption

scheme, attacking a mix Mi as described in section 3.2. It can be shown that
there are adversaries A1, A2, A3 against KEMMi

, MACMi
, STREAMMi

all having
essentially the same runtime as A such that

AdvCCAMi,A ≤ 2 ·
(
AdvCCAKEMMi

,A1 + AdvForgeMACMi
,A2

+ AdvSTREAMMi
,A3

)
.

Details of the proof are given in appendix B.2.

Acknowledgement

David Hopwood and the anonymous reviewers provided valuable comments on
earlier versions of this paper.

14

References

1. Abdalla, M., Bellare, M., and Rogaway, P. DHAES: An encryption
scheme based on the Diffie-Hellman problem. Submission to IEEE P1363a.
http://grouper.ieee.org/groups/1363/P1363a/Encryption.html, 1998.

2. Abdalla, M., Bellare, M., and Rogaway, P. The oracle Diffie-Hellman as-
sumptions and an analysis of DHIES. In Progress in Cryptology - CT-RSA 2001
(2001), D. Naccache, Ed., vol. 2020 of Lecture Notes in Computer Science, pp. 143–
158.

3. Bellare, M., Canetti, R., and Krawczyk, H. Keying hash functions for
message authentication. In Advances in Cryptology – CRYPTO ’96 (1996),
N. Koblitz, Ed., vol. 1109 of Lecture Notes in Computer Science, pp. 1–15.

4. Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science (FOCS ’97) (1997), IEEE Computer Society, pp. 394–403.

5. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P.

UMAC: Fast and secure message authentication. In Advances in Cryptology –
CRYPTO ’99 (1999), M. Wiener, Ed., vol. 1666 of Lecture Notes in Computer
Science, pp. 216–233.

6. Chaum, D. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24 (1981), 84–88.

7. Cottrell, L. Mixmaster & remailer attacks.
http://www.obscura.com/%7Eloki/remailer/remailer-essay.html, 1997.

8. Cramer, R., and Shoup, V. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. Manuscript,
http://shoup.net/papers/, 2001.

9. Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE Trans-
actions on Information Theory 22, 6 (1976), 644–654.

10. Goldwasser, S., and Micali, S. Probabilistic encryption. Journal of Computer
and System Sciences 28 (1984), 270–299.

11. Jakobsson, M., and Juels, A. An optimally robust hybrid mix network. In
20th Annual ACM Symposium on Principles of Distributed Computing (PODC
2001) (2001), ACM Press, pp. 284–292.

12. Krovetz, T., Black, J., Halevi, S., Hevia, A., Krawczyk, H., and

Rogaway, P. UMAC: Message authentication code using universal hash-
ing. Internet-Draft draft-krovetz-umac-01.txt, http://www.cs.ucdavis.edu/
~rogaway/umac/, 2000.

13. Lipmaa, H., Rogaway, P., and Wagner, D. Comments to NIST concern-
ing AES modes of operation: CTR-mode encryption. http://csrc.nist.gov/

encryption/modes/workshop1/papers/lipmaa-ctr.pdf, 2000.
14. Miller, V. S. Use of elliptic curves in cryptography. In Advances in Cryptology –

CRYPTO ’85 (1986), H. C. Williams, Ed., vol. 218 of Lecture Notes in Computer
Science, pp. 417–428.

15. Mixmaster anonymous remailer software. http://sourceforge.net/projects/

mixmaster/.
16. Möller, U., and Cottrell, L. Mixmaster protocol version 2.

http://www.eskimo.com/~rowdenw/crypt/Mix/draft-moeller-v2-01.txt,
2000.

17. Ohkubo, M., and Abe, M. A length-invariant hybrid mix. In Advances in
Cryptology – ASIACRYPT 2000 (2000), T. Okamoto, Ed., vol. 1976 of Lecture
Notes in Computer Science, pp. 178–191.

15

18. Rackoff, C. W., and Simon, D. R. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology – CRYPTO
’91 (1992), J. Feigenbaum, Ed., vol. 576 of Lecture Notes in Computer Science,
pp. 433–444.

19. Shoup, V. A proposal for an ISO standard for public key encryption. Version
2.1, December 20, 2001. http://shoup.net/papers/.

20. Wegman, M. N., and Carter, J. L. New hash functions and their use in authen-
tication and set equality. Journal of Computer and System Sciences 22 (1981),
265–279.

A Illustrations

A.1 Encryption

We depict a ciphertext generated by the encryption algorithm

chain encryptM1,M2,M3
(plain1, plain2, plain3; payload)

as described in section 2.1. In the illustration, we have concatenation horizontally
and XOR vertically (i.e. boxes in the same row represent bit strings that are
concatenated, and the ciphertext is the XOR of the multiple rows shown).

K1 M1 stream1,L

plain1 K2 M2 stream2,L

plain2 K3 M3 stream3,L

plain3 payload

A.2 Decryption

The result obtained by mix M1 when applying the decryption algorithm from
section 2.2 to the ciphertext from appendix A.1 is composed as follows:

stream1,R

plain1 K2 M2 stream2,L

plain2 K3 M3 stream3,L

plain3 payload

The string plain1 is directed to M1. The remainder of the decryption result is
a ciphertext that should be forwarded to the next mix in the chain, M2, which
will then obtain the following result:

stream1,R

stream2,R

plain2 K3 M3 stream3,L

plain3 payload

16

Similarly, mix M3 will obtain the following final decryption result:

stream1,R

stream2,R

stream3,R

plain3 payload

A.3 Interactive Encryption Oracle

In the adaptive chosen ciphertext attack game from section 3.2, recursive en-
cryption is replaced by an interactive encryption oracle to generate the challenge
ciphertext, which has the following structure:

Koracle M streamL

plaini,b mb Ci

Applying algorithm mix decryptMi
from section 2.2 to this ciphertext would

yield the following result:

streamR

plaini,b mb Ci

This can also be written as follows:

plaini,b mb Ci+1

B Security Proofs

B.1 Unlinkability

We prove the security result from section 3.6 for the unlinkability of the mix
encryption scheme. Let G0 denote the attack game from section 3.1. Let G1 be
like G0 except that a uniformly random string is used for Koracle, whereas Koracle

is still generated by KEMMi .Encrypt(PK). Let G2 be like G1 except that the
encryption oracle uses a uniformly random string stream instead of computing
STREAMMi

(KSTREAM).
Now we consider an adversary A as in section 3.1, exposed to these differ-

ent attack games Gx, 0 ≤ x ≤ 2, and look at the respective success proba-
bilities Pr Gx

[̃
b = b

]
. Based on A, adversaries A1 and A2 against KEMMi

and
STREAMMi

, respectively, will be built, each with essentially the same runtime
as A.

A1 attacks KEMMi as follows (cf. section 3.3; note that this A1 never actually
uses its decryption oracle). At first, it generates b ∈ {0, 1} uniformly at random.
Then, it runs the adversary A; when A queries its encryption oracle, A1 queries
its own encryption oracle to obtain a pair (Koracle,Koracle) and performs step 2

17

from section 3.1 using this pair and the pregenerated bit b. Finally, when A
outputs its bit b̃, A1 outputs 1 if b̃ = b and 0 otherwise. Observe that∣∣∣Pr G1

[̃
b = b

]
− Pr G0

[̃
b = b

]∣∣∣ = AdvCCAKEMMi
,A1

(G0 corresponds to bKEM = 0, G1 corresponds to bKEM = 1 in section 3.3).
A2 attacks STREAMMi as follows (cf. section 3.5). First, it generates b ∈

{0, 1} and a string Koracle of length KEMMi .OutLen uniformly at random. Then,
it runs the adversary A, playing the role of the key generation oracle and the role
of the encryption oracle, wherein it substitutes the pregenerated string Koracle

and the pregenerated bit b in step 2 of section 3.1. When A outputs its bit b̃, A2

outputs 1 if b̃ = b and 0 otherwise. Observe that∣∣∣Pr G2

[̃
b = b

]
− Pr G1

[̃
b = b

]∣∣∣ = AdvSTREAMMi
,A2

(G1 corresponds to bSTREAM = 0, G2 corresponds to bSTREAM = 1 in section 3.5).
Finally observe that Pr G2

[̃
b = b

]
= 1

2 .
From this we obtain the inequality

AdvLinkMi,A = 2 ·
∣∣∣1
2
− Pr G0

[̃
b = b

]∣∣∣
= 2 ·

∣∣∣ ∑
1≤x≤2

(
Pr Gx

[̃
b = b

]
− Pr Gx−1

[̃
b = b

])∣∣∣
≤ 2 ·

(
AdvCCAKEMMi

,A1 + AdvSTREAMMi
,A2

)
,

which concludes the proof.

B.2 CCA Security

We prove the CCA security result given in section 3.6. Let G0 denote the attack
game from section 3.2. We will modify it in multiple steps, essentially disabling
the underlying cryptographic schemes (key encryption method, one-time message
authentication code, and pseudo-random bit string generator) one after another.

G1 is like G0 except that a uniformly random string is used for Koracle,
whereas Koracle is still generated by KEMMi

.Encrypt(PK). In the decryption or-
acle, K is substituted whenever KEMMi

.Decrypt(SK,Koracle) would have to be
computed.

G2 is like G1 except that the decryption oracle always responds with invalid
when faced with any query prefixed with string Koracle. (This applies to both
step 2 and step 4 in section 3.2. Thus, the invocation of KEMMi .Encrypt(PK) to
generate (Koracle,Koracle) must be advanced from step 3 to an earlier step; in G1,
this is only a descriptive change and does not affect the behaviour observed by
the adversary.)

G3 is like G2 except that the interactive encryption oracle uses a uniformly
random string stream instead of computing STREAMMi

(KSTREAM).

18

Now we consider an adversary A as in section 3.2, exposed to these different
attack games Gx, 0 ≤ x ≤ 3, and look at the respective success probabilities
Pr Gx

[̃
b = b

]
. Based on A, adversaries A1, A2, A3 against KEMMi

, MACMi
,

STREAMMi
will be built all having essentially the same runtime as A.

A1 attacks KEMMi
as follows (cf. section 3.3). At first, it generates b ∈

{0, 1} uniformly at random. Then, it runs the adversary A; when A queries its
decryption oracle, A1 uses its own decryption oracle to perform the decryption
algorithm from section 2.2, and when A queries its interactive encryption oracle,
A1 queries its own encryption oracle to obtain a pair (Koracle,Koracle) and performs
step 3 from section 3.2 using this pair and the pregenerated bit b. Finally, when A
outputs its bit b̃, A1 outputs 1 if b̃ = b and 0 otherwise. Observe that∣∣∣Pr G1

[̃
b = b

]
− Pr G0

[̃
b = b

]∣∣∣ = AdvCCAKEMMi
,A1

(G0 corresponds to bKEM = 0, G1 corresponds to bKEM = 1 in section 3.3).
A2 attacks MACMi as follows (cf. section 3.4). At first, it generates b ∈ {0, 1}

and a string Koracle of length KEMMi
.OutLen uniformly at random. Then, it runs

the adversary A, playing the roles of the key generation oracle, decryption oracle,
and interactive encryption oracle, substituting the pregenerated string Koracle

and the pregenerated bit b in step 3 of section 3.2. Whenever A submits a query
K ||M || C to the decryption oracle, A2 adds the pair (C,M) to its own output
(A’s final output bit b̃ is ignored). Observe that∣∣∣Pr G2

[̃
b = b

]
− Pr G1

[̃
b = b

]∣∣∣ ≤ AdvForgeMACMi
,A2

(G2 behaves differently from G1 only if a forgery has been produced).
A3 attacks STREAMMi as follows (cf. section 3.5). First, it generates b ∈

{0, 1} and a string Koracle of length KEMMi
.OutLen uniformly at random. Then,

it runs the adversary A, playing the roles of the key generation oracle, de-
cryption oracle, and interactive encryption oracle, substituting the pregenerated
string Koracle and the pregenerated bit b in step 3 of section 3.2. When A outputs
its bit b̃, A3 outputs 1 if b̃ = b and 0 otherwise. Observe that∣∣∣Pr G3

[̃
b = b

]
− Pr G2

[̃
b = b

]∣∣∣ = AdvSTREAMMi
,A3

(G2 corresponds to bSTREAM = 0, G3 corresponds to bSTREAM = 1 in section 3.5).
Finally observe that Pr G3

[̃
b = b

]
= 1

2 .
From this we obtain the inequality

AdvCCAMi,A = 2 ·
∣∣∣1
2
− Pr G0

[̃
b = b

]∣∣∣
= 2 ·

∣∣∣ ∑
1≤x≤3

(
Pr Gx

[̃
b = b

]
− Pr Gx−1

[̃
b = b

])∣∣∣
≤ 2 ·

(
AdvCCAKEMMi

,A1 + AdvForgeMACMi
,A2

+ AdvSTREAMMi
,A3

)
,

which concludes the proof.

19

