
GAS: Overloading a File Sharing Network as an
Anonymizing System

Elias Athanasopoulos1, Mema Roussopoulos2,1, Kostas G. Anagnostakis3, and
Evangelos P. Markatos1

1 Institute of Computer Science (ICS)
Foundation for Research & Technology Hellas (FORTH)

{elathan,mema,markatos}@ics.forth.gr
2 Harvard University

mema@eecs.harvard.edu
3 Institute for Infocomm Research, Singapore

kostas@i2r.a-star.edu.sg

Abstract

Anonymity is considered as a valuable property as far as everyday transactions
in the Internet are concerned. Users care about their privacy and they seek for
new ways to keep secret as much as of their personal information from third
parties. Anonymizing systems exist nowadays that provide users with the tech-
nology, which is able to hide their origin when they use applications such as the
World Wide Web or Instant Messaging. However, all these systems are vulnera-
ble to a number of attacks and some of them may collapse under a low strength
adversary. In this paper we explore anonymity from a different perspective. In-
stead of building a new anonymizing system, we try to overload an existing file
sharing system, Gnutella, and use it for a different purpose. We develop a tech-
nique that transforms Gnutella as an Anonymizing System (GAS) for a single
download from the World Wide Web.

Keywords: Security, Anonymity, P2P, Gnutella

1 Introduction

Anonymity is considered as a valuable property in both physical and digital life.
Acting in an anonymous fashion may be considered suspicious, and in many cases
the actor may not follow legal procedures. Apart from these ill cases, anonymity
is considered the basic building block for someone who demands to keep her
privacy. We are interested in cases, in which technology is used to preserve a
user’s private information from third parties.

David Chaum[7] in 1981 was the first to vision an electronic mail service
that will operate in an anonymous fashion, using some intermediate MIX nodes.
These intermediate MIX nodes decouple the correlation between the sender and
the recipient; this correlation is the outcome of having the recipient contacting
directly the electronic mail service. Since then, many systems that are especially

developed in order to serve as anonymizing systems have been published. These
constructs may be used as means for having interactions with third parties with-
out revealing the user’s identity. More precisely, anonymity is usually required
when two parties are having a transaction. For example a Web client is visiting
a Web server. We distinguish between sender and receiver anonymity. In this
paper we are dealing with sender anonymity; we develop techniques that allow
a user to send an HTTP request to a Web server and receive the Web content,
without revealing her identity.

Many anonymizng systems like Crowds[14], Tarzan[10], Cashmere[20] and
MorphMix[15] have been designed theoretically and released as academic pub-
lications; some others, like Tor[11] and Freenet[8], have been deployed and are
actively used. All these systems have been created from the ground up, with
the explicit purpose of providing guarantees for a user’s anonymity. Using, for
example, Tor[11] a user may surf the World Wide Web without revealing her
identity (her IP address) to the Web sites she visits.

In this paper, we do not build another anonymizing system. Instead, we
use an existing system, Gnutella[1], whose prime goal is the exchange of files
between users, as a mean of delivering a file from a Web site to a user in an
anonymous fashion. We also present guidelines on how to use Gnutella as a
covert communication channel.

The main contributions of this paper are the followings:

– We overload a file-sharing system for anonymous Web downloads.
– We use an existing system in a way, which was not included in the original

implementors’ intentions.
– We evaluate the strength of anonymity provided by our technique using

metrics already proposed by academia.
– We present some ideas and guidelines on how to use the Gnutella system as

a covert communication channel.

The rest of this paper is organized as follows. Section 2 highlights the basic
technical details of the Gnutella architecture. This Section aims on making the
reader, who has not further experience with Gnutella in the past, be able to
follow the rest of the paper. In Section 3 we present the fundamental concepts
of our techniques, which transform Gnutella into a means for anonymous Web
downloads and in Section 4 we evaluate the strength of anonymity provided by
Gnutella using well established metrics. In Section 5 we present some ideas on
how to transform Gnutella into a covert communication channel. We present
related efforts in Section 6 and we conclude in Section 7.

2 Gnutella Architecture

Gnutella[1] is an open system targeting file sharing. It promotes the peer-to-peer
paradigm and it is purely a decentralized distributed system having millions
of concurrent participants. This section describes fundamental concepts of the
Gnutella architecture.

2.1 Generic View

Gnutella is built on a two layer random graph topology. The core layer composed
by some thousands of peers that are involved in routing of messages. These
peers are also called Ultrapeers. Each Ultrapeer maintains approximately 30
connections with other Ultrapeers and approximately 30 connections with peers
of the second layer, which are called Leaves. Leaves are not involved in routing;
they send and receive messages via their Ultrapeers. Each Leaf is connected into
approximately 3 Ultrapeers.

More information about the Gnutella topology and peer distribution’s char-
acteristics can be found in [18].

Each basic operation in the Gnutella system is carried out by constructing
messages and routing them through the overlay. The basic lookup operation uses
the flooding algorithm to query the overlay. A peer constructs a message that
embeds search criteria relative to the file it is looking for, and it forwards the
query message to its neighbors. Its neighbors further forward the message to
their neighbors and so on. Along the path the original message is routed, every
peer is free to answer to the query, by constructing a message with possible
results relative to the search criteria and its identity; namely its IP address and
a Port number. This message is routed back to the original peer that issued the
lookup operation following the reverse of the path taken by the query.

Finally, if a peer is satisfied with the search results, it connects to the peer
using the identity embedded in the search results message and it downloads the
file using the HTTP protocol.

2.2 Gnutella as a Web Download Platform

It is shown in [5] that with the current Gnutella architecture it is possible for a
Web server to become advertised in Gnutella search results messages. Further-
more in [5] the authors have developed techniques that trick Gnutella peers into
downloading a specific file from a Web server.

Shortly, in [5] the authors managed to misuse the lookup procedure of the
Gnutella protocol, in order to force peers to download files from third parties, and
especially, as it is illustrated in detail in [5], from Web servers. The main idea, is
to insert a malicious peer in the Gnutella system that answers query messages
with responses, which instead of containing the identity of the malicious peer,
they contain the identity of a third party; a Web server. This is feasible, because
Gnutella is completely decentralized and there is no way to distinguish between
a message contains authentic information or a message that is specially crafted
to contain fake information.

Acting as described above has the effect of tricking Gnutella peers to try to
download files from a Web server. Furthermore, the authors in [5] have managed
not only to trick Gnutella peers to request a file from Web server, but they illus-
trate that it is possible to trick Gnutella peers to actually download a specific file
from a Web server. This can be achieved by embedding special crafted filenames
in query responses that take advantage of some HTTP characteristics, so as to

force a Web server to serve a specific file upon accepting a download request
from a Gnutella peer.

The authors’ intentions in [5] was to cause a distributed denial of service
attack to a Web server by tricking Gnutella peers to massively request a file
from a Web server. In this paper, we build upon this idea to trick a few peers
to fetch a file from a Web server inside Gnutella and then make a user able to
download the file from Gnutella instead of requesting it from the Web server. In
this way, a user can download a file from a Web server in an anonymous fashion;
without coming in direct contact with the Web server.

2.3 HOPs Spoofing

A vital characteristic of the Gnutella system is that you can never tell if a
message originates from a peer or the latter simple routes the message on behalf
of another one. More precisely, each message of the Gnutella protocol has a
TTL (Time To Live) and HOPs field. Each peer is responsible for increasing the
HOPs field and decreasing the TTL field upon a route operation. When the TTL
field reaches the zero value, the peer that received the message is responsible for
dropping the message from the system. The interesting part is that each peer
is free to create messages with spoofed TTL and HOPs field. In this fashion, a
peer can inject a new message into the system, but, by spoofing the HOPs and
TTL field, the peer can pretend that the message is routed and not created by
itself.

3 GAS Architecture

In this section we analyze in detail the GAS architecture. In Table 1 we list the
meaning of symbols used frequently in the current and following sections.

3.1 Overview

GAS’ goal is to transfer a file from a Web Server to a computer machine in an
anonymous fashion. Strictly, what we are trying to achieve is:

GAS’ Goal: Transfer a file, F, from a Web Server, W, to a computer
machine, C, that never comes in a direct contact with W, nor with another
computer, which is able to prove with a great probability that C was in
contact with W in order to retrieve the particular file.

In order to achieve GAS’ goal we use the real-world file-sharing system Gnutella.
The whole GAS algorithm is divided into two separate phases: the FETCH and
the MIX phase. The FETCH phase transfers F from W to some peers in the
Gnutella system and the MIX phase populates F in the Gnutella system. We
explore the two different phases of GAS in the following paragraphs.

Symbol Explanation

C Computer, GAS user, the user who desires the anonymity

F The desired file located in a Web sever

W The Web server that hosts the desired file

FETCH Initial phase of GAS (a file is transfered from the Web
server to Gnutella)

MIX Second phase of GAS (a file hosted by Gnutella peers is
further propagated to the Gnutella system)

d Degree of Anonymity (anonymity metric)

HM Maximum entropy of the system

H(X) Entropy of the system after the adversary’s attack

N Peers that compose the set of the FETCH phase

Mi Peers that compose the set of the ith MIX phase

Ac Peers which are controlled by the adversary

Table 1. Symbols which are used frequently in the description of the GAS architecture
and evaluation.

3.2 FETCH Phase

The FETCH phase is the initial part of GAS. The main goal of the FETCH
phase is to transfer F from W to Gnutella. This must be done, without having
a direct contact of C with W. Thus we use the techniques illustrated in [5].
In [5] the authors present a technique to use Gnutella as a Denial of Service
attack platform against Web Servers. More precisely the authors have developed
a technique that tricks Gnutella peers to download a file from a third party Web
server. If a large population of Gnutella peers is tricked to download from the
Web server, the Web server is faced with a flash crowd event and eventually
becomes a victim of a distributed Denial of Service attack. In GAS we employee
the same idea, but we use it in a controlled way, so as not to cause any harm in
Web servers.

GAS uses a special modified peer, C, as it is done in [5], in order to advertise
F, which is served by W, in Gnutella, so that some Gnutella peers proceed and
download the file.

During the FETCH phase we assume that N Gnutella peers will have down-
loaded F from W. Note, that there is no way - up to this point - for any external
observer to associate with any information C with W. Since C is connected to
the Gnutella system and feeds it with fake results, that embed the identity of
W.

According to the experiments illustrated in [5] a modified peer which issued
10,000 fake results managed to trick 133 Gnutella peers in 10 minutes of working
time. More experiments can be found in [5].

Up to this point, we have managed anonymously to force Gnutella to down-
load F from W. We could use C to query for F the Gnutella system, using some
keywords that are relevant to F’s name and then download F from one peer that
belongs to the set of peers N that have fetched F from W. In this fashion, C has

managed to retrieve F without coming in direct contact with W but only with
some tricked Gnutella peers. However, as we further investigate in Section 4, we
assume that an adversary against GAS has managed to control a peer, A, which
belongs to the N set of Gnutella peers. This peer may associate C with W since
A and W may cooperate in order to attack GAS. In order to deal with this case
we employ the MIX phase.

3.3 MIX Phase

The MIX phase aims on populating F in the Gnutella system in a chaotic way.
That is, C tries to further trick other Gnutella peers to download F from the N
peers that were tricked during the FETCH phase.

In order to achieve this C needs to have a list of IP addresses that potentially
map to tricked peers belonging to the N set. As it is explained in detail in [5],
in order for a malicious peer to trick a peer to download a file served by a Web
Server or another Gnutella peer, the malicious one must know in advance the IP
address of the victim, in order to embed it in fake QueryHits (reply messages to
Query messages). It is hard for C to know exactly which peers were tricked to
download F from W, since the download process via Gnutella involves in great
extent the human factor. However, C can try to use as victims all the peers
which it sent fake responses during the FETCH phase. This process requires C
to know for which peer it generates a fake response when it receives a Query
message. In the original Gnutella specification a Query message does not embed
the identity (IP address and Port number) of the initial querier. During the last
few years, an extension has been introduced in order to promote direct delivery
of responses to requesting peers via UDP[4]. Peers that support this extension
include their identity in their Query messages. We performed measurements,
using a modern Gnutella client[2], in order to find out the ratio of popularity of
this extension in current Gnutella. In other words, we measured how many Query
messages embed Gnutella identities. In Table 2 we list the results. The majority
of Query messages in current Gnutella embed identities of Gnutella peers. Thus,
C can generate fake responses only for Query messages, which embed a Gnutella
identity and keep the identity in a list. These collected identities may potentially
take part in the N set.

Having collected an identity list of potentially tricked peers, the N set, C
may proceed and further trick other Gnutella peers to download F from peers
belonging to N set. These new tricked peers compose the M1 set.

The MIX phase may be applied i times in order to gain stronger anonymity.
Finally, C may query the peers composing the Mi−1 set and download F from
them. That is C will be - artificially - part of the final Mi set.

4 GAS Evaluation

There are several attempts to quantify the anonymity provided by an anonymiz-
ing system. Most recent papers [9], [16] and [19] use the notion of information

Queries Received OOB Queries Percentage

1,000 751 75%

2,000 1,536 77%

3,000 2,183 73%

4,000 2,840 71%

5,000 3,498 77%

10,000 6,617 66%

Table 2. OOB Queries percentage, measured using a modern Gnutella client [2]. OOB
Query messages embed the identity (IP Address and Port number) of the peer that
issued the Query.

Gnutella

`` `
`

`
``

`
` `

` ``N

GAS

Gnutella

`` `
`

`
``

`
` `

` ``N

GAS

M1
Mi-1

Gnutella

`` `
`

`
``

`
` `

` `N

M1
Mi-1

Mi

Fig. 1. The different phases of the GAS architecture. During the FETCH phase N
Gnutella peers are tricked to download a file from the Web Server. During the MIX
phases, the file is further populated in the Gnutella system (in Mi sets). Finally, the
user of GAS participates in the final Mi set and downloads the requested file from
peers in the Mi−1 set.

entropy to measure the information which leaks from the system and can be
used by an adversary in order to degrade the anonymity provided by the sys-
tem. We will use [9] in order to measure the degree of anonymity provided by
GAS. This theoretic metric depicts the effort required from an adversary to be
able to identify with great probability a sender from a set of possible senders.

In [9] the authors have illustrated the degree of anonymity of known systems
such as Crowds[14] and Onion Routing[11] and, thus, using the same methodol-
ogy GAS can be compared with the above systems.

Before we proceed, in the rest of this evaluation the term anonymity follows
the precise definition given by [13]: the state of being not identifiable within a
set of subjects, the anonymity set.

The degree of anonymity as expressed in [9] is related to sender anonymity.
Of course, as the authors mention in the paper, recipient anonymity can also
be modeled using the same concept. It is vital to understand that, in contrast
to other anonymizing systems, GAS introduces the notion of separate phases,
the FETCH and a series of possible MIX phases. In order for complete Web
transaction to take place using GAS, C becomes a sender and a recipient. It is
a pure sender during the FETCH phase and the possible MIX phases, but in
the final stage, when the actual download is performed from the Mi set, C is
a recipient. Thus, we have to evaluate the degree of anonymity of GAS in two
separated phases: one, in which the user acts like a sender and one, in which the
user acts like a recipient.

4.1 Degree of Anonymity

As the authors state in [9] the degree of anonymity is expressed as:

d =
H(X)
HM

, (1)

where

H(X) = −
N∑

i=1

pi log2(pi)

is denoted as the entropy of the system after the attack has taken place, while

HM = log2(N),

is denoted as the maximum entropy of the system, when N is the size of the
anonymity set that includes the number of legitimate senders (or recipients).

In the above, we denote with pi the probability mass function pi = Pr(X =
i), where i represents each possible value the discrete random value X may take.
Specifically, each i corresponds to an element of the anonymity set (a sender or
a recipient). If we have a system with i possible senders, an adversary assigns a
probability pi to each one of the set.

4.2 Degree of Anonymity of GAS

In order to estimate the degree of anonymity in GAS we have to define the
adversary model. We believe that a realistic adversary model is an active attack.
That is, the attacker has under its full control Ac nodes that take part in the
GAS MIX phase.

The maximum entropy of GAS can be measured if we define the anonymity
set that includes the nodes of Gnutella that take part in the process of the
file downloading. Let Gp to be the complete population of Gnutella nodes. The
nodes that take part in GAS are

N +
m∑

i=1

Mi,

assuming we have m MIX phases. It is always

N +
m∑

i=1

Mi ≤ Gp.

The maximum entropy of GAS is:

HM = log2(N +
m∑

i=1

Mi). (2)

Now, each node in the Ac may come in contact with:

– the Web server, W, and possibly with a Gnutella peer that belongs to the
M1 set, if it is part of the N set,

– another Gnutella peer that belongs to Mi+1 if it is part in the Mi set.

The adversary must assign probabilities to each node it comes in contact
with. Assuming, that the GAS user is hidden in a Gnutella subset, i.e. it may
not be distinguished in a trivial way from other Gnutella nodes that take part
in an Mi set, the probability is uniform and depends on the requests recorded
from the adversary. Thus, the adversary assigns pi = 1

Rin,i
, where Rin,i denotes

the number of incoming requests of a node controlled by the adversary which is
in an Mi set. It is always Rin,i ≤ Mi+1.

There is only one case, where the adversary may spot the GAS user with
great probability. Assuming we have m MIX phases, if the adversary manages
to control all nodes in Mm−1 set and the final set Mm includes only the GAS
user, then the identity of the GAS user is fully revealed. We argue that, although
this is possible, it may be adjusted by the GAS user, so that each Mi set is quite
dense. This is manageable, since the GAS user constructs the sets, by tricking
other Gnutella peers. In addition, it is difficult for the adversary to know in
which MIX set she belongs to - it requires the effort of having at least one node
controlled by the adversary in each MIX set.

Thus, in the general case and assuming that Rin,i = Mi+1−Ac (this, simply,
means that a node in the Mi+1 set is forced to generate requests to each node
of the Mi set, excluding nodes controlled by the adversary), the probability
assigned by the attacker to each GAS participant is pi = 1

Mi+1−Ac
. The entropy

for a given set k will be:

H(X) = −
Mk+1−Ac∑

i=1

1
Mk+1 −Ac

log2(
1

Mk+1 −Ac
). (3)

In order to calculate the entropy of the whole system, we need to sum up all
the probabilities for all MIX phases.

4.3 Degree of Anonymity in a MIX phase

Assuming we have only one MIX phase the degree of anonymity is:

d = −
∑M−Ac

i=1
1

M−Ac
log2(

1
M−Ac

)
log2(M)

=
log2(M −Ac)

log2M
. (4)

Since, we are interested in the degree of anonymity of a MIX phase, we
excluded from HM the N nodes that take part in the initial FETCH phase.

In Figure 2 we depict the degree of anonymity for a given MIX phase for
various set’s populations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

d

Ac

Degree of Anonymity for a MIX phase

M=10
M=20
M=50

M=100

Fig. 2. Degree of Anonymity for a MIX phase for various set’s populations. The degree
of anonymity is expressed in equation (4). Initially the degree of anonymity provided by
the system is equal to 1 (complete anonymity). As the adversary injects more nodes in
the system, the degree of anonymity is reduced. If the adversary manages to substitute
all nodes with nodes controlled by her, then the anonymity degrades to zero.

4.4 Degree of Anonymity of a series of MIX phases

In order to calculate the degree of anonymity of the whole system, we have to
sum up all the MIX sets and extend equation (4) to include the nodes that
compose all the MIX phases. It is trivial to observe that equation (4) will not
differ with the equivalent of a series of MIX phases, since in order to calculate

the entropy of a series of MIX phases we just sum up all senders (all the Mi

sets) and subtract the nodes which are controlled by the adversary. Thus:

d = −
∑Mk−Ac

i=1
1

Mk−Ac
log2(

1
Mk−Ac

)

log2(Mk)
=

log2(Mk −Ac)
log2Mk

, (5)

where now with Mk we denote the sum of the nodes of all the MIX phases.
We omit the

∑
symbol for readability reasons.

4.5 The benefit of having multiple MIX phases

Comparing equations (4) and (5) reveals that there is no benefit of having mul-
tiple MIX phases in terms of the degree of anonymity metric. In other words,
the degree of anonymity, according to the above model, depends only in the
percentage of nodes controlled by the adversary over the nodes that are tricked
by the GAS user and serve as possible senders. To give it with numbers, two
MIX phases, M1 and M2, with Ac1 and Ac2 nodes controlled by the adversary
have the same degree of anonymity with one MIX phase, M ′, having A′c nodes
controlled by the adversary, if M ′ = M1 + M2 and A′c = Ac1 + Ac2.

This seems a little bit contradictory. Why, then do we need multiple MIX
phases? The answer is that having multiple MIX phases forces the attacker to
spread the controlled nodes to all MIX sets if she wants to calculate correctly
the degree of anonymity of the last MIX set. Recall that the GAS user performs
a download - and this action is the only action which qualifies as evidence that
someone is utilizing GAS - only as part of the last MIX set.

By having only one MIX phase, the adversary may assign pi probabilities to
all the nodes taking part in the MIX phase. By having multiple MIX phases,
the adversary must distinguish nodes that take part in different MIX phases
and focus on the nodes of the last MIX set. This requires the effort of having
at least one attacker in each of the MIX sets.

The intuition of having multiple MIX phases is the same as having multiple
chaumian MIXes in a MIXnet [7].

4.6 Comparison of GAS and other ASs

In [9] there is a similar evaluation with the above one regarding the degree of
anonymity in existing anonymizing systems. It is interesting to observe that the
degree of anonymity of GAS is equal to the degree of anonymity provided by
Onion Routing [11]. However, there are some properties of GAS that differen-
tiate 4 it from Onion Routing. In terms of advantages, GAS has the following
properties:

4 The degree of anonymity is a well defined and accepted metric in order to measure
the anonymity provided by a system. However, some practical characteristics of
a system make it ideal for performing some tasks in an anonymous fashion than
another one, even if both systems have exactly the same degree of anonymity.

– The sender sets of GAS can have much more entries than a typical sender
set of Onion Routing,

– The adversary must inject many nodes to control a substantial number of
nodes in the system, so as to be able to perform a realistic attack.

In terms of disadvantages:

– GAS does not have as fine-grained controls control as Onion Routing,
– GAS can not be used for real-time Web Browsing, but for a simple download

from WWW,
– GAS uses unencrypted communications.

5 Using GAS as a covert communication channel

Besides using Gnutella as a platform for anonymous downloads via the WWW,
Gnutella may also transformed into a covert communication channel. For ex-
ample, two parties that want to communicate anonymously via Gnutella can
exchange Query and QueryHit messages. These messages can be also encrypted.
Below we list a numerous ways of using some of the Gnutella internals to trans-
form the system into a covert communication channel.

5.1 Using the Gnutella lookup procedure

A peer may flood a query with encrypted payload5 in Gnutella. A colluding
peer, which is located in the initial peer’s horizon may answer the Query with a
response with encrypted payload6. The two colluding peers have managed to:

– Exchange information using the lookup mechanism of Gnutella.
– Exchange information using encrypted messages.
– Exchange information without coming in direct contact with each other, but

using Gnutella as a means to route the information from one party to the
other.

The Query message, since it is flooded in the system, will be received from
many peers, as well as the response in the Query message will be routed back
to the initial peer through a series of Gnutella peers. Since both payloads of the
Query and the Query response are encrypted, it is unlikely that an adversary
that has injected its nodes in the system can perform a Man in the Middle
attack and reveal the contents of the messages. The two colluding peers may
also exchange secret keys occasionally again using the lookup operation of the
Gnutella system.

5 We consider the search criteria of a Query message as the payload of a Gnutella
query

6 We consider the search results of a Query response message as the payload of a
Gnutella Query hit.

5.2 Using the Gnutella message tagging

Apart from taking advantage of Gnutella’s lookup procedure to exchange private
information there are more elaborate methods for using the Gnutella system as
a covert channel. A lot of Gnutella messages contain unused bits; bits that will
never used by a normal Gnutella client. Two colluding peers may inject the
information they want to exchange in these unused bits. In order to illustrate
a more concrete example, consider that each Gnutella message is tagged with a
16-byte GUID[3]. Assuming that a GUID tag is totally random, two colluding
parties may arrange to use some part of the 128-bit GUID tag as an information
carrier. All normal Gnutella clients will treat this portion of the GUID tag as a
random subportion of the complete identifier, but the colluding peers will treat
specially this portion of information according to their prior arrangement.

5.3 Using the Gnutella PING-PONG exchange

A less efficient, in terms of flexibility, technique is to use the PING-PONG ex-
change mechanism to transmit and receive secret information. Although, this
mechanism is not widely used in the current Gnutella system, since it produces
network traffic overhead, it is still possible for peers to use this mechanism to
discover new hosts. When a peer does not have many entries in its host cache
and it is in need of discovering new Gnutella peers, it broadcasts (using again
the flooding process) a Gnutella PING packet. In response, it receives Gnutella
PONGs from active Gnutella peers. These PONG messages embed the peers’
identities (IP address and Port number) as well as some statistics in regards
to the data files they share. Again, two colluding peers may encode secret in-
formation in these PING-PONG messages. For example a peer may encode the
message it wants to transmit in a PONG packet. Peers that passively monitor
the PONG traffic will try to connect to a non existing IP address and Port
number, since it is unlikely that the special encoded message will map to a valid
Gnutella IP address and Port.

The profound property of Gnutella that makes all the above easily achievable
is the lack of a central mechanism to verify if a message is authentic or fake.
Since every Gnutella participant may inject messages in the system that seem to
originate from another node and not by itself, then it is feasible to also embed in
these messages secret information, which can only be interpreted in a meaningful
way by another colluding node (see HOPs spoofing in Section 2.3).

6 Related Work

Since David Chaum introduced the term of an anonymous and untraceable elec-
tronic mail in 1981 [7] a lot of research has been taken place in the academic
and industrial field. Nowadays, there are plenty of anonymzing systems, such as
Crowds [14], Tarzan [10], MorphMix [15], Freenet [8], Cashmere [20] and Tor
[11]. Each system tries to provide anonymous communication by routing mes-
sages between a sender and a receiver through nodes that try to decouple any

relation between the two communicating parties. It is worth mentioning that all
these systems have certain advantages and disadvantages, and thus this is an
active field for further research.

As far as GAS is concerned the two key properties that differentiate it from
current anonymizng systems are that (a) GAS is built over an existing infrastruc-
ture that was not designed to provide any mean of anonymous communication
and (b) GAS is built over a large set of nodes that can be used as relayers in
order to provide anonymous communication.

As far as the first property is concerned, there has been an attempt for
utilizing the World Wide Web as a covert channel [6] in order to provide anony-
mous communication. Beyond that, there is no similar work in exploiting exist-
ing systems, designed for other purposes than anonymous communications, for
anonymity purposes, as far as we know.

As far as the second property is concerned, most of current anonymizing sys-
tems rely on a small set of nodes that in most cases [10, 11, 15, 20] full knowledge
of the system is required, and thus there are scalability issues. Anonymizing
systems such as P 5 [17] and Salsa [12] have been designed in order to provide
scalable anonymous communications. But, again it is hard to implement a dedi-
cated system for anonymous communication that hosts a few millions of nodes.

7 Concluding Remarks

In this paper we presented GAS (Gnutella as Anonymizing System), which trans-
forms the open file sharing system, Gnutella, to a platform for performing file
downloads from the World Wide Web in an anonymous fashion.

We furthermore evaluated GAS with already accepted scientific metrics, such
as the degree of anonymity [9]. We compared GAS using the metric of degree
of anonymity with other anonymizing systems and showed that GAS has the
same degree of anonymity with Onion Routing. We presented crucial properties
of GAS which differentiate it from Onion Routing in various aspects.

To conclude, we believe that this paper is the first attempt to use an already
existing system, which has not been initially designed as an anonymizing sys-
tem, for anonymous communication. The fact that GAS is based in Gnutella,
which has not been designed for anonymity purposes, makes it less controllable
and unsuitable for real-time communications compared to other practical imple-
mentation of anonymizing systems, like Tor [11] for example. But, on the other
hand, the increasingly popularity of Gnutella, gives GAS, potentially, a very
large anonymity set composed by millions of nodes, which, as far as we know,
has never been accomplished by any other anonymizing system.

In terms of the degree of anonymity metric and according to equation (5)
having a large anonymity set requires from the attacker to inject more attacking
nodes in the set in order to reduce the metric, and thus degrade the anonymity
provided.

We believe that GAS is not suitable for real-time Web Surfing, but for a
single Web download, it is up to the GAS user to trick a huge base of Gnutella
peers and form a huge anonymity set that will hide her activities inside.

Last but not least, we listed some possible usages of Gnutella as a covert
communication channel.

8 Acknowledgments

We thank the anonymous reviewers and George Danezis (K.U.Leuven) for his
valuable feedback in various aspects of GAS. This work was supported in part
by project SecSPeer (GGET USA-031), funded in part by the Greek Secretariat
for Research and Technology and by the CoreGrid Network of Excellence. Elias
Athanasopoulos, Mema Roussopoulos and Evangelos P. Markatos are also with
the University of Crete.

References

1. Gnutella protocol. http://rfc-gnutella.sourceforge.net/.
2. Gtk-gnutella servent. http://gtk-gnutella.sourceforge.net.
3. GUID Specification. http://en.wikipedia.org/wiki/Guid.
4. OOB Specification. http://gtk-gnutella.asselman.com/gtk-gnutella-

current/doc/gnutella/out-of-band.
5. Elias Athanasopoulos, Kostas G. Anagnostakis, and Evangelos P. Markatos. Misus-

ing Unstructured P2P Systems to Perform DoS Attacks: The Network That Never
Forgets. In Jianying Zhou, Moti Yung, and Feng Bao, editors, ACNS, volume 3989
of Lecture Notes in Computer Science, pages 130–145, 2006.

6. Matthias Bauer. New Covert Channels in HTTP: Adding Unwitting Web Browsers
to Anonymity Sets. In Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2003), Washington, DC, USA, October 2003.

7. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

8. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
Distributed Anonymous Information Storage and Retrieval System. In Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, July 2000.

9. Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measur-
ing anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of
Privacy Enhancing Technologies Workshop (PET 2002). Springer-Verlag, LNCS
2482, April 2002.

10. Michael J. Freedman and Robert Morris. Tarzan: A Peer-to-Peer Anonymizing
Network Layer. In Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS 2002), Washington, DC, November 2002.

11. David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding Routing
Information. In R. Anderson, editor, Proceedings of Information Hiding: First
International Workshop, pages 137–150. Springer-Verlag, LNCS 1174, May 1996.

12. Arjun Nambiar and Matthew Wright. Salsa: A Structured Approach to Large-Scale
Anonymity. In Proceedings of CCS 2006, October 2006.

13. Andreas Pfitzmann and Marit Hansen. Anonymity, Unobservability, and
Pseudonymity: A Consolidated Proposal for Terminology. Draft, July 2000.

14. Michael Reiter and Aviel Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1), June 1998.

15. Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-to-Peer
based Anonymous Internet Usage with Collusion Detection. In Proceedings of
the Workshop on Privacy in the Electronic Society (WPES 2002), Washington,
DC, USA, November 2002.

16. Andrei Serjantov and George Danezis. Towards an information theoretic metric
for anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of
Privacy Enhancing Technologies Workshop (PET 2002). Springer-Verlag, LNCS
2482, April 2002.

17. Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. P5: A protocol for
scalable anonymous communication. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, May 2002.

18. Daniel Stutzbach and Reza Rejaie. Characterizing the two-tier gnutella topology.
SIGMETRICS Perform. Eval. Rev., 33(1):402–403, 2005.

19. Gergely Tóth, Zoltán Hornák, and Ferenc Vajda. Measuring anonymity revisited.
In Sanna Liimatainen and Teemupekka Virtanen, editors, Proceedings of the Ninth
Nordic Workshop on Secure IT Systems, pages 85–90, Espoo, Finland, November
2004.

20. Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron. Cashmere: Resilient
Anonymous Routing. In Proc. of NSDI, Boston, MA, May 2005. ACM/USENIX.

