
How (not) to Build a Transport Layer
for Anonymity Overlays

Florian Tschorsch Björn Scheuermann

Institute of Computer Science 4
University of Bonn, Germany

{tschorsch, scheuermann}@cs.uni-bonn.de

ABSTRACT
Internet anonymity systems, like for instance Tor, are in widespread
use today. Technically they are realized as overlays, i. e., they add
another instance of routing, forwarding, and transport functionality
on top of the Internet protocol stack. This has important (and often
subtle) implications, as overlay and underlay may interact. Far too
often, existing designs neglect this. Consequently, they suffer from
performance issues that are hard to track down and fix. The existing
body of work in this area often takes a quite narrow view, tweak-
ing the design in order to improve one specific aspect. The behav-
ior of the interacting underlay and overlay transport layers is com-
plex, though, and often cause unexpected—and unexplored—side
effects. Therefore, we show that so far considered combinations
of overlay and underlay protocols cannot deliver good throughput,
latency, and fairness at the same time, and we establish guidelines
for a future, better suited transport layer design.

1. INTRODUCTION
Overlay protocol designers, including those of anonymity over-

lays, tend to perceive overlay links as an equivalent of dedicated
point-to-point links, just like the ones forming the basis of the In-
ternet. Another instance of data forwarding and transport function-
ality is then added on the overlay level. There, it is tempting to
take up concepts from their Internet counterparts. An unreflected
re-use is treacherous, though: in various contexts, it has already
been shown (and sometimes painfully felt) that end-to-end Internet
connections may not be mistaken as point-to-point links.

One well-known example is the TCP meltdown effect: if a TCP
connection is sent through a TCP-based VPN tunnel, the stacked
TCP implementations will start interacting. This can cost 55 % or
more throughput performance [11]. There are more such effects
and constraints which are often and easily overlooked.

The anonymity overlays deployed and used today, including Tor
[5], JAP [4], or I2P [10], suffer from severe performance problems,
mostly due to various transport layer effects [6]. Therefore, it is
highly necessary to think about anonymity overlays from a net-
work performance perspective: while there is a significant body
of work on cryptographic aspects, there are surprisingly little in-
sights into how to design the overlay in such a way that it makes
efficient and proper use of network resources. Previous work typ-
ically focused on isolated aspects, and the proposed mechanisms
more often than not cause undesired deteriorations in other parts of
the system. Means from related areas such as VPNs and Mobile IP
tend to move the logic to the network edge to keep the core simple

Copyright is held by author/owner(s).

and clean. In anonymity overlays, this is generally not desirable,
though, as end-to-end mechanisms always increase the danger of
information leakage. Therefore, nodes in anonymity overlays typ-
ically maintain per-connection status—and transport layer designs
can make use of that fact.

This paper intends to provide an integral perspective on per-
formance aspects of transport in anonymity overlays. In particu-
lar, we are interested in the interrelations between underlay trans-
port, transmission scheduling, and overlay transport, with respect
to throughput, latency, and fairness. Our key contribution is that
we show that anonymity overlays cannot in general deliver satisfac-
tory performance with any so far considered combination of over-
lay and underlay protocols. We will argue that an overlay-aware
joint congestion control mechanism for multiple sources is neces-
sary. Such a mechanism would make use of the abovementioned
per-connection knowledge of anonymity overlay nodes in order to
implement suitable rate control.

The remainder of the paper is structured as follows. We first
discuss related work in Sec. 2. An overview of the design space
follows in Sec. 3. We then discuss the effects of different design de-
cisions on throughput and packet loss frequency in Sec. 4, on data
transmission latency in Sec. 5, and on fairness aspects in Sec. 6. In
Sec. 7, we conclude our findings and derive lessons on the choice
of transport layer mechanisms.

2. RELATED WORK
In recent years, a number of transport layer modifications for the

Tor anonymity overlay have been proposed [3,12,19,25]. They fo-
cus on different weaknesses in the current design [6]. Even though
each proposal improves individual aspects, they often cause unde-
sirable side effects. In the remainder of this paper, we will take
up and discuss some of the ideas. A descriptive comparison of
feasibility is provided in [15]. Here, our focus is on a performance-
oriented perspective and on establishing guidelines for well-suited
designs. Approaches which improve the performance by classify-
ing and prioritizing traffic [2, 22] or modified path selection [1] are
orthogonal to the problem considered here.

Also beyond specific improvements of Tor, there is existing liter-
ature on transport aspects of overlays. As an example, [9] on con-
gestion control in Gnutella is noteworthy. The focus is on per-hop
TCP connections; as we will see, the design space for anonymity
systems is much larger.

BitTorrent recently introduced a transport protocol named µTP
[21]. µTP implements congestion control based on the “less-than
best-effort” principle [20]. It aims to be “over-friendly” to TCP,
i. e., to give way for TCP connections when sharing a bottleneck.
This is reasonable, since BitTorrent intends to make use of remain-

Figure 1: Layers in the transport architecture design space.

ing bandwidth in the background. But it is not desirable for inter-
active applications like web browsing in anonymity overlays.

For a setting in which a mix network is used to re-order IP pack-
ets, Fu et al. [8] argue that reordering and batching will lead to
more duplicate ACKs. As a countermeasure they propose to mod-
ify the dupthresh parameter in the TCP implementation. In [18],
Tor’s end-to-end throughput was examined, showing dependencies
on the path length. In both [8] and [18], Floyd and Fall’s TCP
model [7] was used. In some aspects of our analysis, we build
upon Padhye et al.’s TCP model [17], which is more sophisticated
and considers TCP implementation parameters. This will provide
valuable hints for the overlay transport layer design.

3. DESIGN SPACE
In anonymization overlays like Tor [5], unicast connections are

forwarded over a sequence of overlay links. These overlay links are
transport layer connections through the Internet. We illustrate this
in the bottom two layers of Fig. 1. In analogy to the terminology of
circuit-switched networks (and also resembling Tor’s terminology),
we call the end-to-end unicast tunnels circuits.

The most obvious design choice is the transport protocol used
for hop-by-hop communication, i. e., for the overlay links. Overlay
links may, in principle, be based on TCP, UDP, or any other proto-
col implemented on its endpoints. In practice, only TCP and UDP
are widely available. Both can be extended to provide security and
message integrity by SSL/TLS or DTLS, respectively. To avoid
the necessity of implementing a transport protocol in the operat-
ing system kernel, alternative transport layers are sometimes real-
ized in user space and tunneled over UDP. Another reason for the
same measure can be to not use overly many transport layer sock-
ets. Realizing alternative transport layers in this way is possible
since UDP—apart from port addressing—does not change the ser-
vice model of IP. An example is BitTorrent’s µTP [21]; Reardon et
al. propose an architecture for Tor which tunnels application-layer
TCP connections over UDP [19].

A single overlay link can be traversed by a varying number of
circuits. The most commonly used architecture—and arguably the
one closest to the “idea” of an overlay—is that all circuits traversing
a given overlay link share one common transport layer connection.
However, it is also conceivable to establish multiple parallel trans-
port layer connections, as in [19]. As shown in Fig. 1, this degree
of freedom can be perceived as another layer in the design space,
which we call the multiplexing layer: here, circuits are multiplexed
into one or more transport layer connections.

One of the most central aspects in the choice of the transport pro-
tocol is an appropriate congestion control mechanism. The choice
for a transport protocol on each overlay link implies a choice for a
congestion control mechanism used on that link. There is a broad
spectrum of options: TCP alone comes in a variety of different fla-

vors. Further possibilities range from an application-specific mech-
anism (as in µTP) or no congestion control at all in case of UDP.

The latter need not necessarily be a bad idea, if appropriate con-
gestion control is performed on higher layers, e. g., on the circuit
level. Indeed, it is noteworthy that per-link congestion control alone
does not suffice anyway: consider a circuit which first traverses a
high-bandwidth link, and then subsequently a much tighter one. If
there were no feedback, data would pile up before the bottleneck,
and would either need to be dropped or lead to excessive queues.
Therefore, regardless whether a design implements congestion con-
trol on individual overlay links, circuit-level congestion feedback is
always necessary. In Tor, for example, TCP is used on each link,
complemented by a circuit-level end-to-end sliding window.

Note that none of these concepts limits whether the traffic that
is carried through a circuit is UDP-like datagram or TCP-like byte-
stream traffic. Given proper encapsulation, any overlay design can
carry both. The only noteworthy difference is that pure UDP-like
traffic allows for additional degrees of freedom, since reliability
and order guarantees need not be provided then.

In all cases, one needs to be aware of the implications on ano-
nymity. In general, end-to-end approaches come at a higher risk
of leaking information, as headers and parameters are forwarded in
an unmodified way along the whole circuit. This is also the rea-
son why active queue management techniques (like RED or ECN)
do not appear to be a wise choice within an anonymity overlay.
On a general level, hop-by-hop feedback seems more appropriate,
because it does not directly reveal parameter choices or other in-
formation to further away nodes, and because it can make use of
per-circuit knowledge that anyway exists in intermediate nodes.

4. THROUGHPUT AND LOSS

4.1 Analytical throughput characterization
The achieved throughput is perhaps what first comes to mind

when the aim is to “improve the performance” of an anonymity
overlay. Not surprisingly, many of the existing works focus on im-
proving throughput performance by more or less subtle modifica-
tions. Their effects are typically demonstrated either by measure-
ments on real hard- and software, or by simulations. Both can only
cover specific, narrow settings, though.

More general insights can be obtained by taking analytical char-
acterizations of transport protocol performance into account. The
TCP performance model by Padhye et al. [17] is particularly note-
worthy. TCP is by far the most important transport protocol, and
virtually all anonymity overlay designs make use of TCP in one
way or another. TCP performs congestion control based on packet
loss: when transmitted segments do not arrive at the receiver, this
is taken as an indication of network congestion. Assume that the
number b of packets that are typically acknowledged in a single
ACK, the retransmission timeout (RTO) T0, and the round trip time
(RTT) of the network path are given. If we furthermore assume that
there is no hard limit on the window size (i. e., TCP is free to make
full use of the available bandwidth), Padhye et al. give the follow-
ing formula for TCP Reno, which sets the packet loss frequency
p observed by the TCP connection and the achieved throughput B
into relation:

B ≈ 1

RTT ·
√

2bp
3 +T0 ·min

{
1,3
√

3bp
8

}
· p · (1+32p2)

. (1)

Typical parameter values are b = 2 (cf. delayed ACKs) and T0 =
0.2 s (cf. initial RTO).

In a nutshell, a higher loss rate p will increase the denominator
of (1), and thus—all other parameters unchanged—corresponds to
a lower achieved throughput. Note that the available bandwidth
of the used network links does not appear in the formula: if the
available bandwidth is exceeded, packet drops will occur (i. e., p
will increase), which in turn implies a lower throughput. Padhye
et al.’s model describes the steady state, in which bandwidth and
observed packet loss have reached an equilibrium.

This also underlines that throughput and loss are closely inter-
twined, so that they cannot be treated independently. While some
of the more modern, post-Reno TCP variants (NewReno, Vegas,
CUBIC, etc.) vary this theme in different regards, this is still and
generally at the heart of how TCP congestion control works. In
fact, it is likewise the case for other congestion controlled transport
protocols on the Internet: if they aim to be TCP friendly, they must
react at least as strongly to packet loss as TCP, so as not to unfairly
“steal” bandwidth from competing TCP connections.

Latency-based congestion control like, for instance, in TCP Ve-
gas or µTP takes changes in the RTT into account in order to react
early to congestion and to thus reduce the number of packet drops.
Yet, this comes at the cost of a high sensitivity to changes in the
RTT, as they are to be expected on long, bandwidth-scarce overlay
paths. For TCP Vegas, a discussion can be found in [13]. It also
means that such protocols react earlier than classical TCP variants
if they compete for bandwidth at a common bottleneck—and that
they therefore “lose” in such a competition.

4.2 Multiplexing on TCP overlay links
Perhaps the most important implication of the interrelation be-

tween throughput and packet loss becomes clear if we look at the
multiplexing layer. Which differences should we expect if we either
use (a) one single connection between each pair of onion routers
shared by all circuits traversing the overlay link, or (b) multiple
independent TCP connections, each carrying a single circuit?

For simplicity, assume that no other connections are present on
an overlay link’s underlay path and that n circuits are currently ac-
tive on the overlay link. Then, in case of (a), one TCP connection
with bandwidth B will carry all circuits. For (b), there are n connec-
tions, each with bandwidth B/n. We saw above that a lower band-
width corresponds to a higher packet loss frequency. Therefore, if
n > 1 connections share a bottleneck, each of them will necessar-
ily experience a higher packet loss rate than one single connection
across the same TCP bottleneck.

We show this effect in Fig. 2, where we “invert” Padhye et al.’s
model: while (1) cannot be solved for p in closed form, we can use
Newton’s method to determine the value of p for which the pre-
dicted throughput reaches a given level. In the figure, we vary the
number n of circuits, which are either (as, e. g., in Tor) multiplexed
over a single connection or (as proposed, e. g., in [19]) use separate,
parallel connections. Here, we chose a total bandwidth of 1 MBit/s
and an RTT of 200 ms. As expected, the loss rate drastically in-
creases for more and more parallel TCP connections.

Note that this is an inherent property of TCP congestion control.
It does not depend on where exactly the congestion control mech-
anism is implemented, be it at the transport layer or in userspace
tunneled over packet-based transport.

Of course, TCP is a reliable transport protocol, therefore losses
will be repaired by retransmissions. Nevertheless, packet loss is
a problem, because it causes additional delay: until the loss is re-
paired, no subsequent data can be forwarded to the application. We
will soon look at this in more detail. For now, we conclude that a
higher number of TCP connections on an overlay link very signifi-
cantly increases the number of packet loss events.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6 7 8

lo
s
s
 p

ro
b
a
b
ili

ty

number of circuits

separate per-circuit TCP connections
multiplexing into single TCP connection

Figure 2: Loss probability according to Padhye model.

4.3 Stacking TCP connections
Not all TCP-related effects are covered by the Padhye model.

One well-known problem, TCP meltdown, has already been men-
tioned before: when TCP connections are tunneled through a TCP-
based VPN, then the “link” which they traverse (namely the VPN
TCP connection) has entirely different characteristics than a typi-
cal Internet link. The resulting severe throughput loss is discussed
in [11]. For anonymization overlays, this means that any design
where multiple TCP connections are “stacked” must be avoided.

4.4 Transitional effects
While the Padhye model only covers the steady state, transitional

effects also need to be considered. This becomes clear when we
contrast the alternatives of using TCP on the end-to-end level in
combination with datagram transport on individual overlay links
on one hand, and per-hop TCP connections on the other hand. The
former is, for instance, used in [12] and [25].

There are two effects that should be taken into account: first, we
observe that the former approach implies separate TCP connections
per end-to-end connection. Therefore, if multiple circuits share one
overlay link, there necessarily are multiple parallel TCP connec-
tions. Consequently, similar observations as above hold: the band-
width per TCP connection will be lower, and a higher frequency
of packet losses is to be expected. This is particularly problematic
in a setting with long TCP connections spanning the whole path of
a circuit, because packet retransmissions for repairing these losses
will take place end-to-end through the overlay. Due to the longer
RTT, they will take longer to be detected and to be repaired.

Second, the high round trip time of an end-to-end path through
an anonymization overlay has implications on TCP dynamics be-
fore the steady state is reached: classical TCP variants will take
much longer to initially ramp up the bandwidth. In order to get an
idea of the time span for this ramp-up, we performed network simu-
lations with ns-3 [16], an advanced packet-level network simulator.
We implemented an overlay in ns-3, which we modeled closely af-
ter Tor. We used TCP NewReno, which is today (beside CUBIC)
the most common TCP implementation. The scenario is intention-
ally kept very simple, in order to clearly show the key reasons for
the performance problems that will, of course, likewise be present
in more complex setups. Circuits with fixed-window end-to-end
congestion control traverse a sequence of three intermediate over-
lay nodes (= onion routers). All up- and downstream connections
of a given overlay node share a common link to the network core.
The round trip time between any pair of nodes through the underlay
is set to 80 ms. All links are configured to 10 MBit/s, except for one
bottleneck link (between the intermediate overlay nodes closest to
the client) which is restricted to 1 MBit/s.

Ideally, the throughput achieved by the circuit would be 1 MBit/s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

th
ro

u
g
h
p
u
t
(M

B
it
/s

)

time (s)

hop-by-hop TCP
end-to-end TCP

Figure 3: Circuit throughput in ns-3 simulations.

In practice, protocol overheads and the effects of congestion con-
trol will not allow to always fully utilize the bandwidth.

In Fig. 3, we show the throughput of a single circuit over time,
measured end-to-end on the application layer. The hop-by-hop TCP
line shows the result with separate TCP connections along each
overlay hop. End-to-end TCP denotes one single TCP connection
along the whole circuit, forwarded over datagram transport. As can
be seen, the latter takes time in the order of one minute to reach a
throughput level that is comparable to what hop-by-hop TCP can
deliver almost instantaneously.

TCP CUBIC ramps up based on real-time clock ticks and thus
overcomes the RTT dependency. However, as shown in [14], CU-
BIC generally—that is, also for short RTTs—converges to the long-
term bandwidth rather slowly. Therefore, our conclusion from these
results is that end-to-end TCP (or TCP-like) congestion control re-
acts far too slowly to constitute a viable design alternative.

5. DELAY
Because anonymization networks forward data multiples times

over potentially long Internet links, higher latency compared to a
direct connection is inevitable. The overlay nodes are located all
around the world, so that the sum of delays on the traversed overlay
links can easily be hundreds of milliseconds. The question is: how
much additional delay is caused by the transport layer design?

Additional delays occur when data is queued for processing or
forwarding. An interesting observation is that if multiple TCP con-
nections are used in parallel, then queuing delays on the IP layer
will typically be higher. This can be understood by again looking
at Padhye’s TCP model: a higher number of parallel TCP connec-
tions through a common bottleneck will, as discussed before, result
in a higher packet loss rate. That is, queue overflows—the source of
packet loss—happen more frequently. Consequently, higher packet
loss rates also correspond to queues that are, on average, longer.

We performed ns-3 simulations similar to those described above,
and increased the number of circuits. We found that the queue
lengths are indeed 10% higher than for a single TCP connection,
with correspondingly higher queuing delays.

For reliable transport protocols like TCP, packet loss is another
source of delays: lost packets need to be retransmitted. As ob-
served by Reardon et al. [19], this has severe implications if mul-
tiple circuits are multiplexed over one transport layer connection:
TCP delivers one single reliable, in-order bytestream. It does not
distinguish between data from different circuits. Consequently, a
missing segment with data from one circuit will also temporarily
stall any other circuit on the same connection.

Reardon et al.’s remedy is to use separate TCP connections. As
seen above, though, this comes at the cost of an increased loss
rate for each individual connection. To assess the impact, we build
upon our results from Sec. 4.2 above and determine the frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

e
x
p
e
c
te

d
 l
o
s
s
 e

v
e
n
ts

 /
 s

number of circuits

separate per-circuit TCP connections
multiplexing into single TCP connection

Figure 4: Loss event frequency per circuit.

at which loss events would affect any individual circuit (assuming
TCP segments of 1500 byte). The results are shown in Fig. 4. The
additional delays in fact overcompensate the gain that results from
separating circuits into independent connections: each circuits suf-
fers much more often from segment recovery delays.

Apart from network layer queues and the need to wait for re-
transmissions, application layer queues in the overlay implemen-
tation can also cause significant delays. For example, as we have
shown in earlier work [23], significant latency in Tor is caused by
undesired interactions of two separate rate limiting mechanisms.

6. FAIRNESS
The question of fairness refers to the sharing of bandwidth: do

multiple independent, competing connections get equal (fair) shares
of the available bandwidth? Relevant is both fairness within the
anonymization overlay (i. e., between circuits) and fairness between
the anonymization overlay and other applications.

6.1 Fairness within the overlay
Concurrent TCP connections tend to share resources fairly: con-

nections traversing the same bottleneck will experience the same
loss probability. In the Internet as an underlay, TCP connections
with different RTTs will share bottlenecks, so that perfect fairness
cannot be taken for granted anyway. In fact, since higher RTTs at
equal loss rates result in lower throughput for most TCP variants,
high-delay connections “suffer” twice. As mentioned before, TCP
CUBIC overcomes this dependency, but in turn converges much
slower to a fair bandwidth share.

Even if overlay links share the bandwidth fairly, this does not
imply a fair sharing between circuits. For instance, assume that
two circuits are multiplexed over one transport layer connection.
Another connection uses equal bandwidth, but carries only one cir-
cuit. Then bandwidth is in fact not fairly shared between circuits.
We showed such unfairness effects for Tor in [24].

Solving these problems is hard, because it would require un-
equal, “unfair” sharing of bandwidth between TCP connections in
order to prefer connections with a higher number of circuits. The
gross unfairness between circuits could be remedied by not multi-
plexing multiple circuits into one connection. Yet, the severe draw-
backs of doing so have been discussed above. In order to achieve
fairness with multiplexing, it would be necessary to adjust the rela-
tive fairness level across competing TCP connections, based on the
number of active circuits that they currently carry. This, however,
is not possible with current TCP algorithms.

6.2 Fairness towards other applications
Fairness should also be considered towards other applications.

This is easy to see from a straightforward gedankenexperiment: as-
sume an anonymization overlay using n parallel connections across

a network link (e. g., the Internet link of an overlay node), and a
separate, independent application which also has a TCP connection
open on that link. For comparable RTTs at least, TCP connections
share bandwidth fairly. Thus, since there are n+ 1 connections in
total, n of which belong to the anonymization overlay, this overlay
will get a total share of n/(n+1) of the bandwidth, while the other
application gets only 1/(n+1).

A higher number of (TCP-based or TCP-friendly) transport layer
connections will thus, if considered in sum, be more aggressive.
Proposals which increase the number of TCP connections therefore
are at risk to unfairly disadvantage other applications running in
parallel to the anonymization overlay.

Unequal sharing of the bandwidth need not even necessarily be
wrong or undesired—but it should be independent from the number
of active circuits and overlay links (i. e., n). Ideally, it should be
configurable by the user. This can even be considered an additional
incentive for donating bandwidth: overlay node operators might
be more willing to allocate additional bandwidth if they are able
to configure how aggressively this bandwidth is “claimed” by the
overlay if other applications also have demand.

7. LESSONS LEARNED
In summary, what have we learned about the choice of trans-

port protocols when building anonymity overlays? Can we narrow
down the design space?

First, we conclude that pure end-to-end mechanisms without re-
liability and congestion control on individual overlay links are not
a favorable design choice. The high total latency along an entire
path through an anonymity overlay will necessarily lead to very
long reaction times for repairing packet loss and to slow conver-
gence towards a balanced bandwidth share. The high number of
connections causes unfairness towards other applications. This is
particularly undesirable since the degree of unfairness heavily de-
pends on the current load situation in the overlay; it is thus outside
the sphere of influence of the node operator.

Separate per-hop, per-circuit connections are likewise not a con-
vincing solution: the aggressive behavior of a large number of bun-
dled TCP connections results in (again, non-controllable) unfair-
ness towards other applications and in frequent packet loss. The
latter, in turn, causes frequent delays while waiting for retransmis-
sions. Multiplexing circuits into shared connections, on the other
hand, raises fairness issues that cannot be fully resolved by changes
in the application layer alone.

From these insights it becomes clear that a congestion control al-
gorithm that considers only the individual circuit level is not suffi-
cient—and an algorithm which operates only on overlay links like-
wise is not. Consequently, it is necessary to take into account both
the circuit level and the information which circuits share an under-
lay path. We therefore envision an overlay-aware algorithm which
locally performs joint congestion control for all circuits traversing
an overlay node. Such a scheme would observe packet loss and/or
RTT variations along all outgoing overlay links, and would con-
tinuously adjust the assigned bandwidths. It would therefore make
use of knowledge about individual circuits, and thus of the specifics
of anonymity overlays. Such a scheme could well be implemented
in the application/multiplexing layer over UDP transport, without
modifications to the overlay nodes’ operating system.

Of course, as discussed in Sec. 3, this needs to be combined
with some form of end-to-end congestion feedback to avoid ex-
cessive queuing. Again, it seems wise to make use of the fact that
intermediate overlay nodes already maintain per-circuit status in-
formation: nodes in an anonymization overlay can (and should)
actively contribute to per-circuit congestion control by appropriate

feedback and queue management. We believe that a hop-by-hop,
backpressure-based congestion control scheme is a promising di-
rection. First steps in this direction have actually already been taken
by experimentally applying the N23 scheme to Tor [3].

Acknowledgments
The authors thank the DFG for funding this work.

8. REFERENCES
[1] M. Akhoondi, C. Yu, and H. V. Madhyastha. LASTor: A low-latency

AS-aware Tor client. In SP ’12, May 2012.
[2] M. AlSabah, K. Bauer, and I. Goldberg. Enhancing Tor’s

performance using real-time traffic classification. Technical Report
CACR 2012-12, University of Waterloo, Canada, 2012.

[3] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy,
S. Savage, and G. Voelker. DefenestraTor: Throwing out windows in
Tor. In PETS ’11, July 2011.

[4] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: A system
for anonymous and unobservable Internet access. In DIAU ’00, July
2000.

[5] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security ’04, Aug. 2004.

[6] R. Dingledine and S. J. Murdoch. Performance improvements on Tor
or, why Tor is slow and what we’re going to do about it, Mar. 2009.
www.torproject.org/press/presskit/2009-03-11-performance.pdf.

[7] S. Floyd and K. Fall. Promoting the use of end-to-end congestion
control in the Internet. IEEE/ACM Trans. Netw., 7, August 1999.

[8] X. Fu, W. Yu, S. Jiang, S. Graham, and Y. Guan. TCP performance
in flow-based mix networks: Modeling and analysis. IEEE Trans.
Parallel Distrib. Syst., 20, May 2009.

[9] Q. He and M. Ammar. Congestion control and message loss in
Gnutella networks. In MMCN ’04, Jan. 2004.

[10] I2P: Invisible Internet Project. www.i2p2.de.
[11] S. Khanvilkar and A. Khokhar. Virtual private networks: An

overview with performance evaluation. IEEE Communications
Magazine, 42(10):146–154, Oct. 2004.

[12] C. Kiraly, G. Bianchi, and R. Lo Cigno. Solving performance issues
in anonymization overlays with a L3 approach. Technical Report
DISI-08-041, Ver. 1.1, Univ. degli Studi di Trento, Sept. 2008.

[13] R. J. La, J. Walrand, and V. Anantharam. Issues in TCP Vegas.
Technical Report M99/3, Univ. of California, Berkeley, Jan. 1999.

[14] D. J. Leith, R. Shorten, and G. McCullagh. Experimental evaluation
of Cubic-TCP. In PFLDnet ’08, Mar. 2008.

[15] S. J. Murdoch. Comparison of Tor datagram designs. Technical
report, Nov. 2011.
www.cl.cam.ac.uk/~sjm217/papers/tor11datagramcomparison.pdf.

[16] ns-3 network simulator. www.nsnam.org.
[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP

throughput: A simple model and its empirical validation. In
SIGCOMM ’98, pages 303–314, Aug. 1998.

[18] R. Pries, W. Yu, S. Graham, and X. Fu. On performance bottleneck
of anonymous communication networks. In IPDPS ’08, Apr. 2008.

[19] J. Reardon and I. Goldberg. Improving tor using a TCP-over-DTLS
tunnel. In USENIX Security ’09, Aug. 2009.

[20] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. IETF-draft:
Low extra delay background transport, Oct. 2011.
www.tools.ietf.org/pdf/draft-ietf-ledbat-congestion-09.

[21] L. Strigeus, G. Hazel, S. Shalunov, A. Norberg, and B. Cohen. BEP
29: µTorrent transport protocol.
www.bittorrent.org/beps/bep_0029.html.

[22] C. Tang and I. Goldberg. An improved algorithm for Tor circuit
scheduling. In CCS ’10, pages 329–339, Oct. 2010.

[23] F. Tschorsch and B. Scheuermann. Tor proposal 182: Credit bucket.
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/
182-creditbucket.txt.

[24] F. Tschorsch and B. Scheuermann. Tor is unfair – and what to do
about it. In LCN ’11, pages 432–440, Oct. 2011.

[25] C. Viecco. UDP-OR: A fair onion transport design. In HotPETS ’08,
July 2008.

	Introduction
	Related Work
	Design Space
	Throughput and Loss
	Analytical throughput characterization
	Multiplexing on TCP overlay links
	Stacking TCP connections
	Transitional effects

	Delay
	Fairness
	Fairness within the overlay
	Fairness towards other applications

	Lessons Learned
	References

