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Abstract. Client puzzles have been proposed as a useful mechanism
for mitigating denial of service attacks on network protocols. Several dif-
ferent puzzles have been proposed in recent years. This paper reviews
the desirable properties of client puzzles, pointing out that there is cur-
rently no puzzle which satisfies all such properties. We investigate how
to provide the property of non-parallelizability in a practical puzzle. Af-
ter showing that obvious ideas based on hash chains have significant
problems, we propose a new puzzle based on the subset sum problem.
Despite some practical implementation issues, this is the first example
that satisfies all the desirable properties for a client puzzle.

Keywords: Denial of Service Attacks, Client Puzzles, Non-Parallelizable
Cryptographic Puzzles.

1 Introduction

Cryptographic puzzles, or client puzzles, have been proposed as a mechanism to
defeat resource exhaustion denial of service (DoS) attacks in network protocols,
particularly in key exchange protocols. Client puzzles counterbalance computa-
tional usage between client and server machines. By forcing the client to solve a
computational puzzle before attending to a request, the server ensures that the
client spends sufficient resources before committing its own. In particular, an ad-
versary who wishes to flood a server with connection requests will have to solve
a huge number of puzzles. The idea of using cryptographic puzzles in computer
networks was first introduced by Dwork and Naor [5] for combating junk emails.
Juels and Brainard [10] extended the concept of puzzles to thwart Denial-of-
Service (DoS) attacks in network protocols. Recently, Moskowitz developed the
host identity protocol (HIP) [16], which employs a client puzzle mechanism for
protecting the server against resource exhaustion attacks.

Although a variety of client puzzles have been proposed to solve DoS attacks,
limited analysis of these proposals has appeared in the literature. An exception is
the work of Price [17], who introduces a generic attack against hash-based client
puzzles. Another investigation of hash-based client puzzles has been carried out
by Feng et al. [7]. They examine client puzzles based on six parameters: unit
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work, range, mean granularity, maximum granularity, exact control and parallel
computation.

A client puzzle is non-parallelizable if the solution to the puzzle cannot be
computed in parallel. Non-parallelizable client puzzles can be used to defend
against distributed denial-of-service (DDoS) attacks, where a single adversary
can control a large group of compromised machines and launch attacks to the
targeted server from those machines. If the client puzzle is parallelizable, such
an adversary could distribute puzzles to other compromised machines to obtain
puzzle solutions faster than the time expected by the server. A client puzzle is
said to provide fine granularity if it allows servers to adjust the solution time
precisely. Both non-parallelizability and fine granularity are important proper-
ties of good puzzles. A survey of existing client puzzles reveals that only time
lock puzzles [19] are able to provide both non-parallelizability and fine-grained
control. However, these puzzles suffer from being computationally expensive in
puzzle construction and verification.

In this paper we propose a new puzzle construction based on the subset sum
problem. The primary strengths of this puzzle over others are the simple and
cheap construction and verification for the server, as well as non-parallelizability.
The main contributions of this work are:

– to provide a summary and analysis of client puzzles for DoS-resistance;
– to compare strengths and weaknesses of existing client puzzles;
– to propose a new construction, called Subset Sum Client Puzzles.

In the next section we will summarise existing proposals for client puzzles and
review their properties. Section 3 examines possible ways to use hash chains as
non-parallelizable puzzles and then Section 4 introduces and analyses our new
puzzle.

2 Survey and Analysis of Client Puzzles Approaches

Client puzzles functioning as proofs of work can be constructed from a number of
underlying problems. Although many puzzles have been proposed using different
techniques, all of them should satisfy seven important properties described by
Aura et al. [2]; for instance puzzles should be easy and cheap to construct and
verify for the server, but lead to a significant computational effort for adversaries
who attempt to flood a large number of bogus requests to the server.

Feng et al. [7] proposed some additional criteria for evaluating efficiency and
resolution of cryptographic puzzles. As defined by Feng et al. [7], the puzzle
efficiency represents speed of puzzle generation and verification on the server’s
machine compared to the puzzle solving on the client’s machine. Meanwhile,
the resolution or puzzle granularity represents the ability of the server to finely
control the amount of work done by calibrating the puzzle difficulty to the client.
The following list represents the properties that we examine in this paper.

Server’s Cost identifies the computational effort on the server’s machine. This
factor is divided into three subcategories consisting of pre-computation cost,
construction cost, and verification cost.
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Client’s Cost represents the amount of computational effort on the client’s
machine. We assume that the server and the client have similar resources re-
garding both CPU and memory units to process these puzzles. We note that
this may not be realistic in some applications; for example, some legitimate
clients may have restricted resources.

Non-parallelizability describes whether the client puzzles can be distributed
and solved in parallel computation. In some circumstances, non-parallelizable
puzzles can prevent coordinated adversaries from distributing puzzles to a
group of high performance machines to obtain solutions quicker than the
specified period assigned by the server. Consequently, the server becomes
overloaded by a huge amount of attack traffic and unable to process any
upcoming legitimate messages.

Granularity represents the ability of the server to finely adjust puzzle diffi-
culty to different levels. Indirectly, this parameter also affects the traffic flow
of arriving packets to the connection queue within a certain time. Three
different types of granularity; linear, polynomial, and exponential are com-
pared. Linear granularity is the best that we hope to deal with, while an
exponential one is the worst case.

We now conduct a short survey and comparison in term of strengths and
weaknesses of existing proposals for client puzzles.

Hash-based Reversal Puzzles: In 1999, Juels and Brainard [10] introduced
the construction of client puzzles using a hash function; clients need to calculate a
reverse one-way hash value of a puzzle generated by the server. In this technique,
the server is able to adjust the difficulty level of the client puzzle by increasing
or decreasing the number of hidden bits of the pre-image sent to clients in the
puzzle. The client performs a brute-force search to find missing bits of pre-image
whose output is given by hashing each pattern until matching the answer. To
verify the solution, the server needs to perform only a single hash operation.

An alternative construction was proposedby Aura et al. [2]. Different from Juels
and Brainard’s construction, the puzzle generation requires only a single hash in-
stead of two hash operations as in Juels and Brainard’s scheme. Given part of the
pre-image and the length (k) of zero bits at the beginning of the hashed output,
clients need to perform a brute-force search to find a matching solution.

In summary, the major strength of these two hash-based reversal schemes is the
simple and fast construction and verification. On the other hand, the weaknesses
are that they are parallelizable and their granularity is exponential which brings
a difficult task to the server to control and adjust the incoming rate of requests.

Hint-Based Hash Reversal Puzzles: As the granularity of hash-based re-
versal schemes is too coarse, Feng et al. [6] proposed the idea of hint-based
hash reversal puzzles to allow the granularity to be linear. The technique of this
mechanism is that the server provides extra information called hints attached
to the puzzle. Instead of checking every possible solution, the client searches for
a solution within a range of a given hint. Apart from this action, all remaining
processes are similar to the original work from Juels and Brainard [10]. Hence,
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the simple puzzle generation and verification as well as the linear granularity
for fine grained control are the strengths of this construction. However, it is
still susceptible to distribution and parallel processing attacks, as is the original
hash-based reversal scheme.

Repeated-Squaring or Time-Lock Puzzles: Time-lock puzzles were devel-
oped by Rivest et al. [19] in 1996. The major goal of this technique is to defeat
the high-end adversaries who attempt to solve puzzles more quickly by using par-
allel computers. Time-lock puzzles rely on the notion that a client has to spend
a pre-determined amount of computation time performing repeated squaring to
search for a solution. To achieve this goal, the server estimates the performance
of a client by the number of squaring operations a client can perform in a certain
period, and determines the amount of time it expects a client to spend solving
the puzzle.

To solve the puzzle, the client is required to compute a modular squaring
operation repeatedly. This computation must be calculated sequentially so it
cannot be distributed and solved in parallel. Since the period of solving the
puzzle is easily controlled and determined by the server at puzzle generation time,
we can conclude that the time-lock puzzles have a linear granularity. Another
strength of this scheme is its non-parallelizable characteristic because it requires
an inherently sequential operation to solve a puzzle. In the original paper, the
major purpose of this scheme is the long term protection of secret information,
for example, in the application of the on-line auction. However, the primary
concern of this scheme in DoS mitigation applications is the high-computation
in the construction and verification because the underlying technique requires
the server to perform a costly modular exponentiation.

DH-based Puzzles: Diffie-Hellman based puzzles were proposed by Waters
et al. [25] in 2004. The construction requires an expensive Diffie-Hellman op-
eration, while the verification could be simply done via table lookup, which is
considered a cheap operation, because the server has already generated puzzle
solutions at the construction and stores them in the memory. Therefore, the
expensive construction would be a drawback, while the cheap verification would
be the major positive characteristic.

Given the range of a solution as in hint-based schemes, the client searches
for a solution by testing each candidate value in the range until it finds a cor-
rect solution. Similar to other hint-based puzzles, this scheme then provides a
linear-grained control to the server. Considering the non-parallelizability, be-
cause clients require a specific range of attempts to find a correct solution, the
puzzle can be distributed and computed in parallel to obtain a correct solution.
As a result, this scheme does not support non-parallelizability.

Trapdoor RSA-based and DH-based Puzzles: Gao [8] developed two puz-
zle mechanisms based on trapdoor functions to overcome weaknesses over the
hash-based construction. By pre-computing some parameters and expensive
operations before starting the protocol, Gao’s implementation can reduce the
overhead of puzzle construction. However, this pre-computation workload is a
disadvantage to these types of puzzles.
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On the positive side, the protocol computes and stores the solutions at puzzle
generation time to save workload at verification. As a result, the server requires
only a single comparison in order to check validity of the solution from the client.
In the puzzle solving, the client is given a range of candidates to run a brute-force
search for a correct solution. Hence, the granularity of these two constructions
is linear-grained.

On the negative side, both trapdoor-function based schemes can be distributed
and solved in parallel by a group of adversaries as for other hint-based puz-
zles. Moreover, these schemes involve modular arithmetical operations which
are more expensive than hash functions. Although Gao [8] suggested to perform
pre-computations to avoid CPU burden at construction time, puzzle generation
still requires a number of modular exponentiations.

Table 1 compares seven cryptographic puzzle constructions based on the anal-
ysis criteria previously discussed. For purposes of comparison, we include our new
subset sum puzzles in the table. Details will be discussed in Section 4.1. The high-
lighted field (displayed as the bold and italic style) in individual columns rep-
resents the best candidate for each analysis criterion. In the server’s and client’s
cost entry, we use the number of operations as a measurement for comparison.
More precisely, the hash-based cryptographic puzzles require a number of hash
function computations displayed as hash in the table, while the arithmetic-based
puzzles require a number of modular exponentiations represented by mod exp and
modular multiplications represented by mod mul. Modular arithmetic consumes
much greater resources than hash functions. Hence, the preference for this entry
would be the technique which expends a small number of hash operations. We
can conclude that the puzzle construction based on hash-based reversal would
be the most effective technique.

The non-parallelizability characteristic plays an important role for defending
against coordinated adversaries who attempt to distribute puzzles to other users

Table 1. Comparison of existing Client Puzzles for DoS Resistance

Puzzle Type
Server’s Cost

Client’s Cost
Non

Granularity
Pre-Compute Construction Verification

Parallel

Hash-based Reversal - 1 hash 1 hash O(2k) hash No Exponential

Hint-Based Hash Reversal - 1 hash 1 hash O(k) hash No Linear

Repeated-Squaring - 2 mod mul 2 mod mul O(k) mod mul Yes Linear

DH-based - 1 mod exp 1 comparison O(k) mod exp No Linear

Trapdoor RSA
1 mod exp 3 mod mul

1 comparison O(k) mod exp No Linear
1 mod mul 2 additions

2 mod mul
Trapdoor DLP 1 mod exp 1 comparison O(k) mod exp No Linear

3 additions

Subset Sum n hash 1 hash 1 comparison L3 reduction Yes Polynomial
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or high-performance machines in order to obtain puzzle solutions quicker than the
specified time without wasting their own resources. Since non-parallelizability has
not been defined as a primary requirement in the original work [10,2], most exist-
ing techniques lack this characteristic. From the evaluation shown in Table 1 only
repeated-squaring puzzles can thwart this type of attack strategy. Unfortunately,
high computation of the puzzle construction causes this technique to be suscep-
tible to flooding attacks. As a result, this gap becomes the most interesting point
for our work to develop new schemes which achieve non-parallelizability, while the
puzzle construction and verification are also simple and cheap.

3 Hash Chain Puzzles

We have seen in the previous section that currently only time-lock puzzles can
provide the characteristic of non-parallelizability but they suffer from an expen-
sive set up operation for the server. One promising method to prevent adver-
saries from distributing and computing a puzzle in parallel would be a chaining
technique. Because the characteristic of chaining requires the previous value for
constructing the next consecutive items, it will defeat those coordinated adver-
saries who attempt to solve puzzles by parallel computing. Recently, there are
two constructions using the chaining technique based on hash functions proposed
by Ma [14] in 2005 and by Groza and Petrica [9] a year later. The aim of these
constructions is slightly different from what we have in mind, since they are in-
terested in partial solving of the chained puzzles. Nevertheless it is interesting to
examine whether they will be useful as stand-alone puzzles. Following are short
descriptions of these two puzzles and an analysis of their suitability.

Ma’s Hash Chain Reversal Puzzles: The concept of hash chain puzzles was
introduced by Ma [14] in 2005 as password puzzles for use in the IP layer. The
construction begins with a random number chosen as an initial value h0. Then
the server applies a one-way function to h0 repeatedly to generate a hash chain
h0, h1, . . . , hk where hi+1 = hash(hi) and k is the desired length of the chain.
According to Ma, this computation would lead to an advantage for the server by
storing the entire hash chain for future use. Because the server knows a corre-
sponding solution in advance, the server saves computation and time when verify-
ing the puzzle solution by reducing the cost of verification to a single table lookup.

For puzzle solving, given a puzzle challenge containing the last value of a hash
chain (hk) along with an index value k, a client is required to compute a hash
reversal starting from index k back to the beginning point h0 to obtain the entire
hash chain. A characteristic of hash chain operation is that an output from the
former state is required to be fed to the next state as an input, similar to a
recursion in programming. We conclude that this scheme is a non-parallelizable
technique, and the cost of the verification requires k hash operations similar to
the construction.

This is a simple and intuitive construction, but there are a number of practical
problems. First, it requires the server to store every value of the entire hash
chain in order to be able to verify the solution. Although this has an advantage
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in verification effort, this scheme is susceptible to memory exhaustion attacks.
Second, when used with a typical cryptographic hash function the scheme will be
too difficult to invert for even one hash value, let alone a chain of many values.
Therefore some mechanism must be chosen to make the individual steps in the
chain invertible with reasonable effort. Ma [14] suggested that a hash function
be used which has 16-bit outputs, but this does not seem to be an acceptable
requirement since such a function can be easily stored completely in a look-up
table which makes solving the puzzle as easy as constructing it. A more plausible
mechanism is used in the next construction that we consider.

Groza and Petrica’s Hash Chain Puzzles: This puzzle scheme [9] was
constructed from a hash chain of random numbers. Generally, the idea is similar
to the puzzle auction proposed by Wang and Reiter [24]; i.e. the more links of the
chain computed on a client’s machine, the more services from a server a client
obtains. At the beginning, the server generates the first element by choosing two
state-dependent random numbers, ρ and r, and concatenating them to obtain a
value σ. The first output, P0, is constructed by double hashing σ0. Hence, the
parameter σ0 serves as an input to the next state of the chain. The rest of the
puzzle will be created by XORing two new state-dependent values with hashed
output of σ from the previous state. Thus, the puzzle elements challenged to
the client would be a series of pairs [(P0, r0), (P1, r1), . . . , (Pn, rn)], where n ≥ 1
is the length of the hash chain. Meanwhile, the client is required to perform a
forward process of reconstructing the hash chain by searching for ρi values, with
σi = ρi ‖ ri.

Unfortunately, this scheme has a major drawback which risks resource exhaus-
tion attacks on the server because it requires three hash operations per state for
producing a series of hashes chained either in the construction or verification
phase. This action requires a similar amount of computational effort as the solv-
ing task on the client’s machine. This circumstance violates the fundamental re-
quirement; i.e. client puzzles should be easy to generate and verify by the server
but hard to solve by the client. Furthermore, the high-bandwidth consumption
required to transmit a puzzle challenge is another drawback of this scheme.

In summary, we have seen that the hash chain puzzle has a major strength in
non-parallelizability and linear-grained control because of its structure. Light-
weight verification by one comparison is another interesting potential property.
However, the proposals so far using this technique require high computation
in the construction, high-bandwidth connection for communication, and huge
storage to cache an entire chain for avoiding CPU burden at the verification.
Therefore, currently it seems impractical to use hash chains as client puzzles
and we look for an alternative.

4 Subset Sum Puzzles

Hash based puzzles are the most prevalent due to their simple construction and
cheap verification. As shown in Section 2, such puzzles are susceptible to coordi-
nated attacks because they do not provide the non-parallelizability property. In
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this section, we propose a technique called subset sum puzzles. The predominant
characteristic of this new approach is not only a simple construction and verifica-
tion as cheap as hash based puzzles, but also a non-parallelizable characteristic.

A subset sum (or knapsack) system associates a given set of items which
have specified weight, with a knapsack which can carry the number of items no
more than a certain weight. The solver is required to search for a maximum
value by picking as many items as the knapsack can carry in terms of weight.
To find whether a solution exists for a specified weight, this becomes a deci-
sion problem and the knapsack falls into the NP-completeness category which
means no polynomial algorithm can break the knapsack problem within poly-
nomial time as long as P �= NP. This is why the knapsack problem was long
considered a promising underlying technique for constructing a public-key based
cryptosystem.

A famous tool used to successfully break subset sum cryptosystems is the
lattice reduction. There are several lattice reduction algorithms but the best
method so far for breaking the subset sum problems is the LLL or L3 algorithm
(details are provided in Appendix A) developed by Lenstra et al. [13] in 1982. The
interesting characteristic of the LLL scheme is that it is a polynomial time and
non-parallelizable algorithm because it requires highly sequential computation
on an iterative function. We remark that practical application of our construction
requires clients to implement the LLL algorithm. While this is not a major
problem on PC platforms it may be undesirable, particularly on low-powered
platforms. Therefore we regard our construction as more a proof-of-concept that
non-parallelizable puzzles are feasible, rather than as an ideal solution.

4.1 A New Proposal – Subset Sum Puzzles

We first introduce the notation used in the puzzle challenge-response protocol.
I represents a client and R represents a server of the protocol. Communicating
messages used in the protocol execution will carry the subscript I or R repre-
senting whose these messages are; for instance, IDI represents the identity of the
client and NR represents a nonce generated by the server. A secret parameter
is denoted as s and puzzle difficulty by k. The desired weight of the subset sum
problem is W , while the set of candidate weights is w1, w2, . . . , wn. Finally, H(·)
represents a hash operation on arbitrary length input messages, and LSB(·, k)2
obtains the k least significant bits from the output of the hash function.

Puzzle Construction
To establish a secure connection to a server, I sends a request containing an iden-
tity (IDI) along with a random nonce (NI) to R. The server chooses a secret
parameter s randomly in order to make the output unique for each communi-
cation, and decides a puzzle difficulty k depending on the workload condition.
The value of k1 should be selected to be at least 25 (refer to Table 2 for a

1 For the definition of subset sum puzzles, the number of items n is used as the puzzle
difficulty k.
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I R

Precomputed parameters

set of random weight wn

wn = H (wn−1 )
choose secret s ∈R Zn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1) send request
IDI ,NI−−−−−−−→ choose puzzle difficulty k

25 ≤ k ≤ 100

C = LSB(H (IDI ,NI , IDR,NR, s)), k)2
W =

∑k
i=1 Ci · wi

2) verify IDI ,NI IDI ,NI , puzzle = (w1 ,W , k)

generate wk = H (wk−1 ) IDR,NR, puzzle←−−−−−−−
form a Basis Set B
run LLL Reduction → get C’

check W
?=

∑k
i=1 C ′

i · wi

3) return C ′ IDI ,NI , IDR, check C ′ ?= C

NR, puzzle,C ′
−−−−−−−→

Fig. 1. Subset Sum Puzzles

comparison of the experimental result) to guarantee that the coordinated adver-
saries approximately requires over a thousand compromised machines to brute-
force search or over a hundred compromised machines to run the branch & bound
algorithm on the subset sum puzzles at the equivalent proportion to the legit-
imate user performing LLL lattice reduction. As a practical choice we suggest
to take a value of k between 25 and 100 and then if weights are chosen to be
of length 200 bits we can ensure that the generated knapsack has density at
most 0.5. Practical experimental tests are shown in Section 4.2 which support
our proposal.

To construct a puzzle, R computes a hash operation (H(·)), and computes
(LSB((·), k)2) to obtain k bits from the output of hash function. In practice H
could be implemented by truncating the output of SHA-256. Finally, R forms a
puzzle by computing a desired weight (W ) that it wants a client to solve from
a pre-computed set of random weight (wn). To save on protocol bandwidth, the
weights can be generated given the initial random weight w1 by iterative hashing.
Hence, a puzzle contains an initial value of weight of the first item (w1), a desired
weight (W ), and puzzle difficulty (k). The construction of the subset sum puzzle
requires only one hash operation and addition. Figure 1 demonstrates the puzzle
challenge-response protocol.
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Puzzle Solving
To ensure that the client follows our requirement, we have to configure the puzzle
difficulty so that the efficient LLL method of solving is more efficient than brute-
force searching, even when the latter is divided amongst many parallel attacking
machines. As mentioned above in the description of puzzle construction, when
k is in the range between 25 to 100 we can expect that a puzzle would not be
solved faster by brute-force technique. Moreover, when k is around 50 or larger
the LLL method is more efficient than brute-force search even when the latter
is divided amongst 10000 parallel machines in approximation.

By using the LLL algorithm, users can simply treat the subset sum schemes
as a lattice problem. In 1985, Lagarias and Odlyzko [11] announced the first
successful attack on low density2 subset sum cryptosystems; i.e. a density below
0.6464 approximately. A few years later, Coster et al. [4] proposed the improved
version of the Lagarias and Odlyzko technique. They claimed that their method
was able to break almost all subset sum problems having density below 0.9408
in polynomial time. This result guarantees that our subset sum puzzle would be
solvable in polynomial time by using LLL algorithm.

Consider the client’s job when receiving a puzzle challenge from a server. It
begins to generate a series of random weights, (w1, w2, . . . , wk), by computing a
hash chain on an initial value w1. Then, the client constructs a basis reduction
set B as follows.

b1 = (1, 0, . . . , 0, w1); b2 = (0, 1, . . . , 0, w2)
...

bk = (0, 0, . . . , 1, wk); bk+1 = (0, 0, . . . , 0, −W )

Finally, the client runs a L3 lattice reduction [13] which is known from the
community to be the most effective method to find moderately short lattice
vectors in polynomial time. The algorithm guarantees to return a set of outputs
in which one is a solution of the puzzle. To the best of our knowledge, almost all
subset sum problems having density below 0.9408 can be effectively solved by the
improved LLL version of Coster et al. [4]. In addition, this improved version is
a highly sequential process because the underlying algorithm requires recursive
computation as explained in Appendix A, so the puzzle cannot be distributed
for parallel computation.

In terms of the puzzle granularity, there are two possible options for the server
to adjust the puzzle difficult; 1) adjusting the item size (n), or 2) adjusting the
density (which will cause a change in B because the density relates to the max-
imum weight of the items). Both modifications affect the running time by a
factor (nα · logβ B), where α and β are real numbers dependent on the version
of LLL basis reduction. Since the complexity of LLL basis reduction is a poly-
nomial function, we conclude that our subset sum puzzles provide a polynomial
granularity.
2 The density is defined as n

log(max an) , where n is a number of items and max an is
the maximum item value.
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Puzzle Verification
Puzzle verification is a simple and cheap task for a server which eliminates the
risk of puzzle solution flooding attacks. Generally, there are two options for the
verification process;

1. avoiding CPU usage: this case minimizes CPU usage at verification time.
By storing the value of C and W corresponding to the client’s identity
(IDI , NI), the verification requires only a table lookup for comparing the
claimed solution from a client to the stored solution.

2. avoiding memory usage: this option eliminates memory usage prior to ver-
ification. The server uses a stateless connection in which no information is
stored until the puzzle is solved. Once the server receives a solution, it is
required to re-generate C and W from the arriving message. In order to
protect against replay attacks, implementation of the timestamp should be
used in the computation of the parameter C. The re-constructing process
is a very cheap and fast computation that costs little more than a single
hash computation, which is the typical cost of verification for hash-reversal
puzzles.

We conclude that the upper bound of computational complexity in the former
case is O(1 ) for the table lookup, whereas the upper bound for computational
complexity in the latter case is O(k) additions which is similar to the construction
of the first state. The evaluation and comparison of the subset sum puzzles is
previously shown in Table 1.

4.2 Experimental Results

To demonstrate how LLL lattice reduction and the subset sum problems work in
practice on client machines, we set up an experiment to create a random set of
subset sum problems based on different criteria including density and a number
of chosen items. In terms of hardware, we simulated the LLL reduction algorithm
using a Sun Enterprise 420R computer operating with four UltraSPARC-II 450
MHz CPUs with 4096 MB of RAM running on Sun Solaris 9 (Sparc). We created
MATLAB source code for generating random subset sum problems which have
different densities between 0.3 and 0.8 for a range of instance sizes between 20 and
100. To solve these problems we wrote a subset sum solving function for testing
the LLL implementation provided in MAGMA. The version of MAGMA installed
on our testing machine was a full version patch number V2.13-11 released on
April 5, 2007 (details at http://magma.maths.usyd.edu.au). The LLL version
provided in MAGMA is based on the floating point arithmetic version (FP-LLL)
proposed by Schnorr and Euchner [21].

The following briefly provides the methods that we used to evaluate our new
scheme. Two different searching methods, a backtracking and a branch & bound
algorithm [15], are taken into account for comparing with the LLL lattice reduc-
tion method.

Backtracking or Brute Force Searching: This is the simplest method which
is also known as exhaustive search because it gathers all possible solutions

http://magma.maths.usyd.edu.au
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and then checks for one satisfying the solution. This guarantees that it will
always return an optimal solution. However, this technique consumes more
CPU power as well as running time.

Branch & Bound Technique: To reduce the time of the brute force search-
ing, pruning techniques can be used for avoiding some unnecessary nodes
during the searching process. By storing and traveling only to states whose
total weight does not exceed the limit, it can generate a specified solution
faster than brute force. The branch & bound technique is one of those prun-
ing methods. It specifies an upper bound on the output, so any descendant
tracks having value above or not below their ascendant node will be elimi-
nated from the possible solution. This can reduce running time and storage
space.

LLL Lattice Reduction: This advanced tool, explained in Appendix A, can
efficiently solve subset sum problems. This method can solve the subset
sum puzzle within polynomial time rather than exponential time as the two
previous techniques do. Recently, there have been many implementations for
accelerating the running time of LLL reduction. In our experiment, we use
two techniques: the first one, Int-LLL, is the original developed in 1982 by
Lenstra et al. [13] provided in Mathematica, while the second one, FP-LLL,
developed by Schnorr and Euchner [21], is a modified version using floating
point arithmetic and provided in MAGMA.

Table 2 shows the experimental result compared among the brute force search-
ing, branch & bound technique, and LLL Lattice Reduction examining puzzles
having small size between 5 and 30.

Table 2. Average Running Time of The Subset Sum Puzzle on the specified methods

Number Average Running Time (seconds)

of Items Backtracking Branch & Bound LLL

(n) Data 1 Data 2 Data 3 Data 1 Data 2 Data 3 Data 1 Data 2 Data 3

5 0.034 0.034 0.025 0.049 0.049 0.053 0 0 0

10 0.086 0.083 0.083 0.06 0.064 0.082 0 0 0

15 1.70 1.69 1.67 0.134 0.40 0.137 0 0 0

20 51.85 52.74 53.74 2.633 3.691 1.43 0 0 0.01

25 2320.70 2262.80 2428.60 315.743 456.97 602.81 0.01 0.01 0.01

30 – – – 1437.758 1865.001 1647.246 0.01 0.01 0.01

By evaluating the results from Table 2, we summarize that the reasonable range
of puzzle difficulty would be at least 25 for preventing coordinated adversarieswho
can control a number of compromised machines to obtain puzzle solutions at the
same capacity to the legitimate user performing LLL lattice reduction.
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Table 3. The Experimental Result of The Subset Sum Puzzle

Number Average Running Time (seconds)

of Random Set 1 Random Set 2 Random Set 3

Items Density Density Density

(n) 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8

60 0.10 0.12 0.23 1.02 2.42 77.11 0.16 0.28 0.19 0.31 3.64 3.70 0.14 0.22 0.21 0.61 0.64 3.21

65 0.14 0.14 0.29 1.59 4.09 190.68 0.18 0.29 0.23 0.57 6.53 6.86 0.17 0.23 0.26 1.70 2.19 18.94

70 0.15 0.15 0.32 2.94 7.33 342.53 0.18 0.29 0.28 1.34 12.97 26.30 0.21 0.25 0.27 2.29 2.29 41.72

75 0.20 0.14 0.78 5.23 13.47 663.24 0.24 0.31 0.38 1.95 27.23 35.65 0.23 0.25 0.34 3.49 4.37 92.37

80 0.27 0.22 0.89 9.63 26.17 1745.97 0.25 0.33 0.52 2.75 58.70 87.12 0.26 0.29 0.45 5.66 8.82 226.76

85 0.37 0.25 1.24 17.38 49.22 4158.73 0.29 0.37 0.72 4.44 120.44 208.86 0.28 0.32 0.62 9.40 18.15 1315.29

90 0.50 0.29 1.63 31.44 96.39 9435.02 0.39 0.40 1.17 7.58 250.52 509.60 0.30 0.37 0.89 16.42 37.75 1344.35

95 0.59 0.34 2.34 55.68 173.30 21351.72 0.43 0.43 1.75 12.78 504.88 1158.45 0.36 0.43 1.28 28.14 79.36 3160.86

100 0.70 0.40 3.43 98.39 317.27 51124.86 0.46 0.47 2.87 21.45 1008.23 2737.79 0.41 0.50 2.03 46.63 168.72 7451.26

Before illustrating the second experimental result, we need to briefly explain
the reasoning behind our configuration. By investigating the primary result com-
paring between FP-LLL and Int-LLL, we have found that Int-LLL works well
for low density problems with data size below 100. Once the density grows, the
Int-LLL performance drops gradually and becomes ineffective when we run it on
high density examples. This behaviour was also observed by LaMacchia [12] as
well as by Schnorr and Euchner [21]. Due to this degradation of Int-LLL with
large instance and high density problems, we suggest to use FP-LLL in the puz-
zle solving to avoid the situation that legitimate users are unable to solve their
puzzles. The reason is that a floating point arithmetic returns the Gram-Schmidt
coefficient in the reduction process more precisely than integer arithmetic. As a
result, the FP-LLL reduction provides a more correct output.

Table 3 shows the result of puzzles having size between 60 and 100. We restrict
to this range because we are only interested in the values where the LLL performs
faster than brute force searching, otherwise the protocol would be vulnerable to
parallel attacks if the adversaries are able to run a brute force searching. The
table shows that there is a good range of puzzle times suitable for practical use.

5 Discussion and Open Problem

As our main objective has been to design non-parallelizable puzzles, subset sum
problems with the LLL lattice reduction bring us this characteristic and ful-
fill our requirement. However, simplicity and performance of the existing LLL
schemes are a concern for deploying them in general applications. As several ex-
periments have shown the failure of original LLL in dealing with large instances
and high density problems, recently several attempts have been made to scale
down the computation time of the size reduction process as well as increase the
accuracy for dealing with the large instances. One example was using dynamic
approximation and heuristic technique [3] to speed up the reduction process. To
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our knowledge, the fastest LLL reduction scheme for solving subset sum prob-
lems is the segmentation FP-LLL proposed by Schnorr [20] that minimizes the
running time to be O(n3 log n).

Parallelization of the LLL lattice reduction was discussed and proposed by
Villard [23]. The idea of that paper is to select non-overlapping parameters and
separate them into two independent phases in order to speed up the exchange
of parameters during the size reduction of the lattice basis. Thus, these outputs
might be able to be computed in parallel by using n ·m processors, and dividing
them into n columns of m processors. Villard claimed that the running time
complexity of this technique may be reduced to O(n5 log3 B) binary arithmetic
steps and O(n4 log2 B) binary communication steps by using O(n) processors.
This running time complexity could be improved by the factor of n by increasing
the number of processors to O(n2) units. However, the unclear practical efficiency
of the algorithm and the requirement for the larger size of parameters than in
the original LLL algorithm [13] mean that future investigation and development
are required.

Another disadvantage of the subset sum puzzle is the memory requirement.
By investigating instances when the item size n exceeds 100, we found that the
memory resource is exhausted in some trials. That is because the LLL reduction
constructs a n × n lattice matrix and allocates it into reserved memory. As a
result, the practical range of puzzle difficulty would be up to n = 100 for avoiding
memory exhaustion. In addition, the running time within this range would be
reasonable and acceptable for most users. When we compare this bound with
the hash-based reversal puzzles, the reasonable puzzle difficulty for hash-based
reversal schemes would have k between 0 and 40 which results in a smaller length
puzzle than our construction.

Since we are concerned with the problem of puzzle distribution and paralleliz-
ability, we focus on resolving the parallelizable characteristic rather than imple-
menting linear granularity. However, even though our new scheme has coarser
granularity than other hint-based schemes, it does offer polynomial granularity
which is better than exponential granularity found in hash-based reversal puz-
zles recently used in some client puzzle protocols. As a result, our new design
can be easier to control than many existing ones.

Comparing our construction with repeated squaring (Table 1) we find that,
although repeated squaring offers non-parallelism and linear-grained control to
the user, it suffers from high computation at construction time which means that
a server using these puzzles would be susceptible to flooding attacks. As a result,
an interesting open problem for the research community is to explore techniques
to find new puzzles providing both non-parallelization and linear granularity.
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Appendix

A A Brief Overview of Lattice Reduction

LLL lattice basis reduction is a polynomial time algorithm developed by
Lenstra et al. [13] in 1982. The concept was originally used to solve the shortest
vector problem (SVP) and closet vector problem (CVP) of a lattice. Adleman [1]
seems to have been the first researcher to apply LLL lattice basis reduction as
a cryptanalysis tool to successfully break the subset sum problem. By using the
LLL, users simply treat the subset sum schemes as a lattice problem. Since its
original use, many researchers have improved not only the performance of the
algorithm, but also its accuracy when dealing with large instances of the lattice
dimension.

LLL lattice basis reduction algorithm has been widely used in breaking
subset sum cryptosystems because the algorithm is able to terminate in poly-
nomial time. Moreover, it is highly sequential because an underlying program
requires recursive computation. From this perspective, LLL is a promising tech-
nique to fulfill our requirement in terms of non-parallelizability and thwart coor-
dinated adversaries from distributing the client puzzle to calculate the solution
in a parallel manner. To explain the LLL lattice basis reduction, we refer to
materials provided in Smart’s book: Cryptography: An Introduction (2nd edi-
tion) [22].

Definition 1. Let {b1, b2, . . . , bn} be a set of vectors in Zn that are linearly inde-
pendent over R. Then the set of all integer linear combinations of {b1, b2, . . . , bn}
is called an integer lattice. In a formula:

B =

{
n∑

i=1

ai · bi | ai ∈ Z, 1 ≤ i ≤ n

}
(1)

Definition 2. The Gram-Schmidt algorithm transforms a given basis {b1, b2,
. . . , bn} into a basis {b∗1, b∗2, . . . , b∗m} which is pairwise orthogonal. The algorithm
uses equations
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μi,j =

〈
bi, b

∗
j

〉
〈
b∗j , b

∗
j

〉 for 1 ≤ j < i ≤ n (2)

where μi,j is called a Gram-Schmidt coefficient.

b∗i = bi −
i−1∑
j=1

μi,j b∗j (3)

Definition 3. A basis {b1, b2, . . . , bm} is called LLL reduced if the associated
Gram-Schmidt basis {b∗1, b

∗
2, . . . , b

∗
m} satisfies

|μi,j | ≤ 1
2

for 1 ≤ j < i ≤ m (4)

‖b∗i ‖
2 ≥

(
3
4

− μ2
i,i−1

) ∥∥b∗i−1

∥∥2
for 1 < i ≤ m (5)

Equation (4), so called size reduction, ensures that we obtain a basis in which the
vectors are short in length, while equation (5), the so called Nearly Orthogonal
Condition, guarantees that the obtained vectors are nearly orthogonal. The LLL
algorithm works as follows (also in Fig. 2);

1. We examine a fixed column k in which k starts at k = 2;
2. If equation (4) does not hold, we need to perform size reduction by modifying

the basis B;
3. If equation (5) does not hold for column k and k − 1 (it means the obtained

vectors are non-orthogonal), we have to swap those columns and decrease a
value of k by one (unless k is already equal to two). Otherwise, we increase
k by one;

4. Once k reaches to m, the algorithm stops.

Since attacks on the subset sum problem using LLL reduction were proposed,
there have been several experiments set up to compare the practical performance
with the theoretical limits. The first such experiment was published by Radzis-
zowski and Kreher [18] in 1988 to run a performance test of LLL on subset sum
problems that have an item size (n) between 26 and 98 with different densities.
The experimental result showed that when n grows up to 98, their implemen-
tation succeeded at density below 0.3 which is lower than the theoretical value
proposed by Lagarias and Odlyzko [11]. Later, LaMacchia [12] set up an empiri-
cal test on problem sizes between 26 and 106. The result showed that the original
LLL worked well for all problems with n ≤ 26 and density ≤ 0.6408, but the
accuracy degraded quickly when n grows above 50. By running on the improved
version, the performance was improved up to n = 106 with density 0.3. In the
meantime, Schnorr and Euchner [21] proposed a way to speed up the reduction
step by using floating point instead of integer arithmetic as in the original LLL,
plus adding the deep insertion technique to their scheme. In comparison with
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Fig. 2. LLL Lattice Reduction Process

LaMacchia [12], they claimed that their experimental result had higher success
rate at the same data range. In this paper, our experiment was set up and tested
using the implementation of the Schnorr and Euchner [21] version provided in
MAGMA (http://magma.maths.usyd.edu.au).

http://magma.maths.usyd.edu.au

	Toward Non-parallelizable Client Puzzles
	Introduction
	Survey and Analysis of Client Puzzles Approaches
	Hash Chain Puzzles
	Subset Sum Puzzles
	A New Proposal -- Subset Sum Puzzles
	Experimental Results

	Discussion and Open Problem
	A Brief Overview of Lattice Reduction



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




