Tor Protoecol Specification

Roger Dingledine
Nick Mathewson

Note: This document aims to specify Tor as currently implemented, though it
may take it a little time to become fully up to date. Future wversions of Tor
may implement improved protocels, and compatibility is not guaranteed.
Compatibility notes are giwven for wversions 0.1.1.15-rc and later. We may or
may not remeove compatibility notes for other cbsoclete versicns of Tor as they
become cbsolete.

This specification is not a design document; most design criteria
are not examined. For more information on why Tor acts as it does,
see tor—design.pdf.

0. Preliminaries

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTICHNAL" in this document are to be interpreted as described in
RFC Z2114.

(=]
-

Notation and encoding

PE -- a pubklic key.

SE -— a private key.

E -— a key for a symmetric cipher.

alb —— concatenation of "a' and 'b'.

[0 Bl CZ] -— a three-byte segquence, containing the bytes with
hexadecimal wvalues RJ, Bl, and CZ, in that order.

H(m) -- a cryptographic hash of m.

We use "byte" and "octet" interchangeably. Possibly we shouldn't.
0.1.1. Encoding integers

Unless we explicitly say otherwise below, all numeric wvalues in the

Tor protocol are encoded in network (big-endian) order. Soc a "32-bit

integer" means a big-endian 32-bit integer; a "2-byte" integer means

a big-endian lé-bit integer, and sco forth.

0.2. Security parameters

Tor uses a stream cipher, a public-key cipher, the Diffie-Hellman
protocecl, and a hash function.

REY_LEN -- the length of the stream cipher's key, in bytes.
PE_ENC LEN -— the length of a public-key encrypted message, in bytes.
PE_PAD LEN -- the number of bytes added in padding for public-key

encryption, in bytes. (The largest number of bytes that can be encrypted
in a single public-key operation is therefore PE_ENC LEN-PEK_PAD LEN.)

DH_LEN —- the number of bytes used to represent a member of the
Diffie-Hellman group.
DH_SEC LEN -- the number of bytes used in a Diffie-Hellman private key (x).
HASH LEN —- the length of the hash function's cutput, in bytes.
PAYLOAD LEN —— The longest allowable cell payload, in bytes. (308)
CELL LEN(w) —— The length of a Tor cell, in bytes, for link protoccl
versicn v.
CELL LEN(w) = 512 if v is less than 4;
= 514 otherwise.

0.3. Ciphers

For a stream cipher, we use 128-bit AES in counter mode, with an IV of all
0 bytes.

For a public-key cipher, we use RSZE with 1024-bit keys and a fixed
expenent of €5337. We use OREP-MGFl padding, with SH&-1 as its digest
functieon. We leave the optional "Label™ parameter unset. (For OBEP
padding, see ftp://ftp.rsasecurity.com/pub/pkcs/pkes-1/pkcs—1v2-1.pdf)

For the "ntor" handshake, we also use the CurwveZ3519 elliptic curve group.

For Diffie-Hellman, we use a generator (g) of 2. For the modulus (p), we
use the 1024-bit safe prime from rfc2409% section 6.2 whose hex
representation is:

"FFFFFFFFFFFFFFFFCO0FDRARZ2168C234C4Ce628BE0DCICD1Z8024E0E"
"BR6TCCT4020BBERG3IB139B22514A08T7%8E3404DDEFS519B3CD3R431B"
"30ZBOREDFZ5F1437T4FEL356D6D51C245E485B576625ETECEF44C42EQ"
"263T7EDEEOBFFSCEB6F406BT7EDEE2E6BEFBSAS 0CFASRESF24117C4B1FEG"
"45286651ECE6S381FFFFFFFFFFFFFFFE"

As an cptimizaticn, implementations SHOULD chocse DH private keys (x) of
320 bits. Implementations that do this MUST never use any DH key more
than once.

[May other implementations reuse their DH keys?? —RD]

[Frobably not. Conceivably, you could get away with changing DH keys once
per second, but there are too many oddball attacks for me to be
comfortable that this is safe. —NM]

For a hash function, wes use SHA-L.
REY LEN=1E.

DE_LEN=128; DH SEC_LEN=40.



PR_ENU_LEN—LAS; ER_FAL LEN—4%Z.
HASH LEN=20.

When we refer to "the hash of a public key", we mean the SHR-1 hash of the
DER encoding of an ASN.1 RSA public key (as specified in PRCS.1).

A1l "random" walues MUST be generated with a cryptographically
strong pseudorandom number generator seeded from a strong entropy
source, unless otherwise noted.

The "hybrid encryption" of a byte segquence M with a public key PE is
computed as follews
1. If M is less than PR _ENC LEN-PE FAD LEN, pad and encrypt M with PFK.
Z. Otherwise, generate a EEY LEN byte random key K.
Let M1 = the first PK ENC LEN-PE FAD LEN-KEY LEN bytes of M,
and let MZ = the rest of M.
Pad and encrypt EIM1 with PE. Encrypt M2 with cur stream cipher,
using the key K. Concatenate these encrypted wvalues.
[XXX Note that this "hybrid encryption" approach does not prevent
an attacker from adding or removing bytes tc the end of M. It alsc
allews attackers to medify the bytes not covered by the OAEP —
see Goldberg's PET2006 paper for details. We will add a MAC to this
scheme one day. —-RD]

1. System overview

Tor is a distributed overlay netweork designed to anonymize

low-latency TCP-based applicatiens such as web browsing, secure shell,
and instant messaging. Clients choose a path through the network and
build a " “ecircuit'', in which each node (ecr ~“ecnion rocuter'' er TTOR'")
in the path knows its predecesscr and successor, but no cther nocdes in
the circuit. Traffic flowing down the circuit is sent in fixed-size
““gells'', which are unwrapped by a symmetric key at each node (like
the layers of an onion) and relayed downstream.

1.1. Eeys and names
Every Tor relay has multiple public/private keypairs:
These are 1024-bit R3R keys:

- B long-term signing-enly "Identity key" used to sign documents and
certificates, and used to estabklish relay iden Y.

— A medium—term TAP "COnion key" used to decrypt onion skins when accepting
circuit extend attempts. (See 3.1.) 0ld keys MUST be accepted for at
least one week after they are nc longer advertised. Because of this,
relays MUST retain old keys for a while after they're rotated.

— & short-term "Connection key" used te negotiate TLS connecticns.

Tor implementations MAY rotate this key as often as they like, and
SHOULD rotate this key at least once a day.

This is CurveZ3531l9 key:

— A medium—term ntor "Onion key™ used to handle onion key handshakes when
accepting incoming circuit extend requests. &s with TAP onion keys,
old ntor keys MUST be accepted for at least one week after they are no
longer advertised. Because of this, relays MUST retain old keys for a
while after they're rotated.

These are Ed23531% keys:

- R long-term "master identity" key. This key never
changes; it is used only to sign the "signing" key below. It may be
kept ocffline.

- A medium-term "signing" key. This key is signed by the master identity
key, and must be kept online. 2 new one shculd be generated
periodically.

— A short-term "link authentication" key. Not yet used.

The RS& identity key and Ed25519 master identity key together identify a
router unigquely. ©Once a rcuter has used an Ed25519 master identity key
together with a giwven RS5Z identity key, neither of those keys may ever be
used with a different key.

(3]

Connections

Connections between two Tor relays, or between a client and a relay,
use TL5/55Lv3 for link authentication and encryption. 211
implementations MUST support the 55Lwv3 ciphersuite

"TLS DHE RSA WITH RES 128 CBC_SHA" if it is available. They SHOULD
support better ciphersuites if available.

There are three ways to perform TLS handshakes with a Tor server. In
"

the first way, "certificates—up—fror both the initiator and
responder send a two-certificate chain as part of their initial

handshake. (This is supported in all Ter wversions.) In the second
way, "renegotiation", the responder provides a single certificate,
and the initiator immediately performs a TLS renegotiatien. (This is

supported in r 0.2.0.21 and later.) And in the third way,
"in-protocol”™, the initial TLS renegotiation completes, and the
parties bootstrap themselves to mutual authentication wvia use of the
Tor protocol without further TLS handshaking. (This is supported in
0.2.3.6-alpha and later.)

Each of these opticns provides a way for the parties to learn it is
available: a client deces not need to know the versicn of the Tor
server in order to connect to it properly.

In "certificates up-front" (a.k.a "the vl handshake"),
the connection initiator always sends a
two-certificate chain, consisting of an X.309% certificate using a
short-term connection public key and a second, self-signed X.509
certificate containing its identity key. The other party sends a similar
certificate chain. The initiateor's ClientHellc MUST NOT include any
ciphersuites other than:

TT.R TMEFT BSL WITE LFS 75& CRC SHL



S51_DHE_RSZ_WITE 3DES_EDE_CBC_SHA

In "renegotiation" (a.k.a. "the vZ handshake"},

the connection initiator sends no certificates, and

the respcnder sends a single connection certificate. Once the TLS
handshake is complete, the initiator renegotiates the handshake, with each

party sending a two-certificate chain as in "certificates up-front”.
The initiateor's ClientHelleo MUST include at least one ciphersuite not in
the list above —-— that's how the initiator indicates that it can

handle this handshake. For other considerations on the initiateor's
ClientHello, see section 2.1 below.

In "in-protocel” (a.k.a. "the v3 handshake"), the initiator sends no
certificates, and the

responder sends a single connecticon certificate. The cheoice of
ciphersuites must be as in a "renegotiaticn" handshake. There are
additicnally a set of constraints on the connection certificate,

which the initiator can use te learn that the in-protocol handshake

is in use. Specifically, at least one of these properties must be

true of the certificate:

* The certificate is self-signed

* Some component other than "commonName™ is set in the subject or

isguer DN of the certificate.

* The commonMame of the subject or issuer of the certificate ends

with a suffix other than ".net".

* The certificate's public key modulus is longer than 1024 bits.
The initiatcr then sends a VERSIONS cell to the responder, which then
replies with a VERSIONS cell; they have then negotiated a Teor
protocel versicn. Assuming that the version they negotiate is 3 or higher
(the only ones specified for use with this handshake right now), the
responder sends a CERTS cell, an AUTH CHALLENGE cell, and a NETINFO
cell te the initiator, which may send either CERTS, AUTHENTICATE,
NETINFO if it wants te authenticate, or just NETINFO if it does not.

For backward compatibility between later handshakes and "certificates
up—front", the ClientHello of an initiator that supports a later
handshake MUST include at least one ciphersuite other than those listed
above. The connection respeonder examines the initiator's ciphersuite list
to see whether it includes any ciphers cther than those included in the
list above. If extra ciphers are included, the responder proceeds as in
"renegotiation" and "in-preoteocol™: it sends a single certificate and

does not request

client certificates. Otherwise (in the case that no extra ciphersuites
are included in the ClientHello) the respender proceeds as in

"certificates up—front™: it requests client certificates, and sends a
two-certificate chain. In either case, once the responder has sent its
certificate or certificates, the initiator counts them. If two

certificates have been sent, it proceeds as in "certificates up-front";
otherwise, it proceeds as in "renegotiatien" or "in-protecol”.

To decide whether to do "renegotiation" or "in-protecel”, the
initiator checks whether the responder's initial certificate matches
the criteria listed above.

211 new relay implementaticns of the Tor protocol MUST support
backwards-compatible renegeotiation; clients SHOULD do this too. If

this is not pessible, new client implementations MUST suppert beth
"renegotiation"™ and "in-preotocol"™ and use the router's

published link protoceols list (see dir-spec.txt on the "protocols" entry)
to decide which to use.

In all of the above handshake variants, certificates sesnt in the clesar
SHOULD NOT include any strings to identify the heost as a Ter relay. In
the "renegotiation" and "backwards—compatible renegotiation" steps, the
initiator SHOULD choose a list of ciphersuites and TLS extensions

to mimic one used by a popular web browser.

Even though the connection protecel is identical, we will think of the
initiator as either an onion router (OR) if it is willing te relay
traffic for other Tor users, or an onion proxy (OF) if it only handles
local requests. Onion proxies SHOULD NOT provide long-term-trackable
identifiers in their handshakes.

In all handshake wvariants, once all certificates are exchanged, all
parties receiving certificates must confirm that the identity key is as
expected. (When initiating a connection, the expected identity key is
the one giwven in the directory; when creating a connecticn because of an
EXTEND cell, the expected identity key is the cne given in the cell.) If
the key is not as expected, the party must close the connectien.

When connecting to an OR, all parties SHOULD reject the connection if that
CR has a malformed or missing certificate. When accepting an incoming
connecticn, an CR SHOULD NOT reject incoming connecticns from parties with
malformed or missing certificates. (However, an OR should not belisve
that an incoming connection is from ancther OR unless the certificates

are present and well-formed.)

[Before wversicn 0.1.2.8-rc, ORs rejected incoming connecticns from ORs and
OPs alike if their certificates were missing or malformed.]

Cnce a TLS connecticon is established, the two sides szend cells
({specified below) to cone another. Cells are sent serially. Standard
cells are CELL LEN(link proto) bytes long, but variable-length cells
alsc exist; see Secticn 3. Cells may be sent embedded in TLS records
of any size or divided across TLS records, but the framing of TLS
records MUST NOT leak informatien about the type or contents of the
cells.

TLS connections are not permanent. Either side MAY close a connection

if there are no circuits running over it and an amount of time
(ReepalivePeriod, defaults to 5 minutes) has passed since the last time
any traffic was transmitted over the TLS connection. Clients SHOULD
alsc hold a TLS connection with no circuits open, if it is likely that a
circuit will be built scon using that connect




()

Client-only Ter instances are encouraged to aveid using handshake
variants that include certificates, if theose certificates prowvide
any persistent tags to the relays they contact. If clients do use
certificates, they SHOULD NOT keep using the same certificates when
their IP address changes. Clients MAY send certificates using any
of the above handshake wvariants.

.1. Picking TLS ciphersuites

Clients SHOULD send a ciphersuite list checsen to emulate scme popular
web browser or other program commen on the internet. Clients may send
the "Fixed Cipheruite List" belew. If they do not, they MUST NOT
advertise any ciphersuite that they cannot actually support, unless that
cipher is one not supported by Open5sL 1.0.1.

The fixed ciphersuite list is:
TLS1 _ECDHE ECDSA WITH AES 256 _CBC_SHA
TLS1 ECDHE RSA W ITH LES 256 LBC SHA
TLS1 _DHE RSR WITH AES 256 SHA
DHE DS5 WITH AES 256 SHA
TLS1 ECDE RSA WITH RES 256 CEC SHA
TLS1_ECDH_ECDSA WITH AES 256 CBC_SHEA
RSA WITH RE
ECDHE ECDSE W RC4_128 SHR
ECDHE_ECDEA ITH_AES 128 _CBC_SHA
ECDHE_RSA WITH | RC4 128 SHA
ECDHE_RSA WITH . qES 128 _CBC_SHA
DHE RSA WITH AES 128 SHAR
DHE DS5_WITH AES 128 SHAR
ECDH th WITH RC4 128 _SHR
ECDH th WITH AEQ 128 CBC SHA
ECDH_ECDSA WITH ] RC4 ch SHL
1 _ECDH ECDSR WITH RES 148 _CBC_SHA
S5L3 _R5& RC4 'AE_MD:
S55L3 RQA RC4_
TLS1 RQA WITH AEQ
TLS1 _ECDHE ECDSZ WITH DE“ 1%2 CBC3 _SHR
TLS1 ECDHE RSA W ITH DES 152 uBC3 SHH
S5L3 _EDH RSAR DES_| 194 CB\_.Q SHA
S5L3 _EDH DS5_DES_. 194 CBC3 SHA
ECDH th hI”H DES _CBC3_SHR
TLS1_ECDH ECDSA | WI”H DES_ 192 CBCQ SHRE
S5L3 _RS5L FIPS WITH QDES EDE uBC SHA
S5L3 R3A_DES Z CECJ SHA
[¥] The "extended renegotiation is supported" ciphersuite, 0x00£ff, is
not counted when checking the list eof ciphersuites.

If the client sends the Fixed Ciphersuite List, the responder MUST NOT
select any ciphersuite besides TL5_DHE_RSA WITH AES 256 CBC_SHA,

TLS_DHE RSA WITH ZES 128 CBC SHA, and S5SL_DHE RSA WITH 3DES EDE CBC_SHA:
such ciphers might not actually be 3uppo::ed by the client.

If the client sends a v2+ ClientHello with a list of ciphers other then
the Fixed Ciphersuite List, the responder can trust that the client

supports every cipher advertised in that list, sc leng as that ciphersuite
is alsc supported by Open5SsSL 1.0.1.

Responders MUST NOT select any TL5 ciphersuite that lacks ephemeral keys,
or whose symmetric keys are less then REY LEN bits, or whose digests are
less than HASH LFN bits. Responders SHOULD NOT select any SS5Lv3
ciphersuite other than the DHE+3DES suites listed above.

.2. TL5 security consideratiecns

Implementations MUST NOT allow TLS session resumption —— 1t can
exacerbate some attacks (e.g. the "Triple Handshake" attack from
Feb 2013), and it plays havoc with forward secrecy guarantees.

Cell Packet format

The basic unit of communication for onien rcuters and onion
proxies is a fixed-width "cell™.

Cn a wversion 1 connection, each cell contains the feollowing
fields:

CircID [CIRCID_LEN bytes]
Command [1 bytel]
Payload (padded with 0 bytes) [PAYLOAD LEN bytes]

Cn a version 2 or higher ceonnecticn, all cells are as in version 1
connections, except for variable-length cells, whose format is:

CircID [CIRCID_LEN octets]

Cemmand [1 cctet]

Length [2 cctets; big-endian integer]
Payload [Length bytes]

Cn a version 2 ceonnection, wvariable-length cells are indicated by a
command byte equal to 7 ("VERSIONS"). On a version 3 or

higher connection, wvariable-length cells are indicated by a ccmmand
byte egqual to 7 ("VERSIONS"), or greater than cor equal te 128.

CIRCID LEN is 2 for link proteocel wersions 1, 2, and 3. CIRCID LEN
is 4 for link protocol wversion 4 or higher. The VERSIONS cell itszelf
always has CIRCID LEN == Z for backward compatibility.

The CircID field determines which circuit, if any, the cell is
associated with.

The 'Command' field of a fixed-length cell holds one of the feollowing
values:

0 -- PADDING (Padding) (See Sec T7.2)

1 -— CREATE (Create a circuit) {See Sec 5.1)



—— CREATED (Rcknowledge create) (See Sec 53.1)

—-— RELAY (End-te-end data) ({See Sec 5.5 and &)

-- DESTROY (Stop using a circuit) (See Sec 5.4)

-— CREATE FAST (Create a circuit, no PE) (See Sec 5.1)
5
4
5
5

—-— CREATED FAST (Circuit created, no PR} (See Sec 5.1)

WOy LN G B

—— NETINFO (Time and address info) {See Sec 4.5)

-— RELAY ERRLY (End-to-end data; limited) (See Sec 5.&)
10 -- CREATEZ (Extended CREATE cell) (See Sec 5.1)
11 -- CREATEDZ (Extended CREATED cell) (S52e Sec 5.1)

Variable-length command valuesz are:

7 -— VERSIONS {(Negotiate proto wersion) (See Sec 4)
128 -- VPRDDING (Variable—length padding) (See Sec 7.Z)
129 —-- CERTS (Certificates) (See Sec 4.2)
130 -- AUTH_CHALLENGE (Challenge wvalue) (See Sec 4.3)
131 -- AUTHENTICATE (Client authenticaticn) (See Sec 4.5)
132 —-- AUTHORIZE (Client authorization) (Mot yet used)

The interpretation of 'Payload' depends on the type of the cell.
PADDING: Paylcad is unused.
CREATE: Payleoad contains the handshake challenge.
CREATED: Payload contains the handshake response.
RELAY: Payload contains the relay header and relay body.
DESTROY: Paylcoad contains a reason for cleosing the circuit.
(see 5.4)
Upon receiving any other value for the command field, an OR must
drop the cell. Since more cell types may be added in the future, ORs
should generally not warn when encountering unrecognized commands.

The paylcad is padded with 0 bytes.

PADDING cells are currently used to implement connection keepaliwve.
If there iz nc other traffic, OR= and CPs =zend one ancther a FADDING
cell every few minutes.

CREATE, CREATED, and DESTROY cells are used to manage circuits;
see section 3 below.

RELAY cells are used to send commands and data aleng a circuit; see
section & below.

VERSIONS and NETINFO cells are used to set up connections in link
protocels v2 and higher; in link protocol v3 and higher, CERTS,
AUTH_CHALLENGE, and AUTHENTICATE may also be used. See section 4
below.

Negeotiating and initializing connections

After Tor instances negotiate handshake with either the "renegotiation" or
"in-protocol"™ handshakes, they must exchange a set of cells te set up
the Tor connecticn and make it "open" and usable for circuits.

When the renegotiation handshake is used, beth parties immediately

send a VERSIONS cell (4.1 below), and after negotiating a link

protocel version (which will be 2), each send a NETINFO cell (4.5
below) to confirm their addresses and timestamps. No other intervening
cell types are allowed.

When the in-protoccl handshake is used, the initiater sends a

VERSIONS cell to indiecate that it will not be renegotiating. The
responder sends a VERSIONS cell, a CERTS cell (4.2 below) te give the
initiator the certificates it needs to learn the responder's

iden ¥, an RAUTH CHALLENGE cell (4.3) that the initiator must include
as part cof its answer if it chooses to authenticate, and a NETINFO

cell (4.5). BRAs socn as it gets the CERTS cell, the initiater knows
whether the responder is correctly authenticated. &t this point the
initiator may send a NETINFC cell if it dees not wish to

authenticate, or a CERTS cell, an AUTHENTICATE cell (4.4), and a NETINFO
cell if it does. When this handshake is in use, the first cell must

be VERSIONS, VPADDING or AUTHORIZE, and nec other cell type is allowed to
intervene besides those specified, except for PADDING and VPADDING cells.

The AUTHORIZE cell type is reserved for future use by scanning-resistance
designs.

[Tor versions before 0.2.3.ll1-alpha did not recognize the RAUTHORIZE cell,
and did not permit any command other than VERSIONS as the first cell of
the in-protocel handshake.]

.1. Negotiating wversions with VERSIONS cells

There are multiple instances of the Tor link connection protocol. Any
connection negotiated using the "certificates up frent" handshake (see

section £ above) is "wversion 1". In any connection where both parties
have behaved as in the "renegotiation™ handshake, the link protocol
version must be Z. In any connection where both parties have behaved

as in the "in-preotocol"™ handshake, the link protocol must be 3 or higher.

To determine the wversion, in any connectien where the "renegotiatieon"
or "in-protoccl” handshake was used (that is, where the responder
sent only one certificate at first and where the initiator did not
send any certificates in the first negotiation), both parties MUST
send a VERSIONS cell. In "renegotiaticon", they send a VERSICNS cell
right after the renegetiation is finished, before any other cells are
sent. In "in-protocol"™, the initiator sends a VERSIONS cell
immediately after the initial TLS handshake, and the responder
replies immediately with a VERSIONS cell. Parties MUST NOT send any
other cells on a connection until they have received a VERSIONS cell.

The payload in a VERSIONS cell is a series of big-endian two-byte

integers. Both parties MUST select as the link protocol wversion the
highest number contained both in the VERSIONS cell they sent and in the
wversions cell they received. If they have no such versiecn in commen,

they cannot communicate and MUST close the connecticn. Either party MUST
close the connection if the wversiocns cell is not well-formed (feor example,



if it contains an odd number of bytes).

Since the wersion 1 link protocel does not use the "renegotiation"”
handshake, implementaticns MUST NOT list versicn 1 in their VERSICNS
cell. When the "renegotiation" handshake is used, implementaticns
MUST list only the wersion 2. When the "in-protecol” handshake is
used, implementaticns MUST NOT list any version before 3, and SHOULD
list at least versiom 3.

Link protoeccls differences are:

1 —— The "certs up front" handshake.

2 —— Uses the renegotiation-—based handshake. Introduces
wvariable-length cells.

3 —— Uses the in-protocol handshake.

—— Increases circuit ID width to 4 bytes.

4.2. CERTS cells

The CERTS cell describes the keys that a Tor instance is claiming

to have. It is a wariable-length cell. Its payleoad format is:
N: Number of certs in cell [1 cctet]
N times:
CertType [1 ecctet]
CLEN [2 cctets]
Certificate [CLEN cctets]

Any extra octets at the end of a CERTS cell MUST be ignored.

CertType values are:
1: Link key certificate certified by R521024 identity
Z: RSA1024 Identity certificate
3: RSA10Z4 RUTHENTICATE cell link certificate

The certificate format for the above certificate types is DER encodead
X3089.

A CERTS cell may have nc meore than one certificate of each CertType.

To authenticate the responder, the initiator MUST check the following:
* The CERTS cell contains exactly one CertType 1 "Link" certificate.
* The CERTS cell contains exactly one CertType 2 "ID" certificate.
* Both certificates have validAfter and validUntil dates that
are not expired.
* The certified key in the Link certificate matches the
link key that was used to negotiate the TLS connection.
key in the ID certificate is a 1024-bit RSZ key.
i key in the ID certificate was used te sign both

* The link certificate is correctly signed with the key in the
ID certificate
* The ID certificate is correctly self-signed.
Checking these conditions is sufficient te authenticate that the
initiator is talking to the Tor node with the expected identity,
as certified in the ID certificate.

To authenticate the initiator, the responder MUST check the
following:
* The CERTS cell contains exactly one CertType 3 "AUTH" certificate.
* The CERTS cell contains exactly one CertType 2 "ID" certificate.
* Both certificates have wvalidafter and walidUntil dates that
are not expired.
key in the RUTH certificate is a 1024-bit RSA key.
key in the ID certificate is a 1024-bit RSA key.
key in the ID certificate was used toc sign both

&

&

&

* The auth certificate is correctly signed with the key in the
ID certificate.
* The ID certificate is correctly self-signed.
Checking these conditions is NOT sufficient to authenticate that the
initiator has the ID it claims; to do so, the cells in 4.3 and 4.4
below must be exchanged.

4.3. AUTH CHALLENGE cells

An AUTH CHALLENGE cell is a variable-length cell with the following
fields:

Challenge [32 cctets]

N Methods [2 octets]

Metheods [2 ¥ N_Methods octets]
It is sent from the responder to the initiator. Initiators MUST
ignore unexpected bytes at the end of the cell. Responders MUST
generate every challenge independently using a strong RNG or PRNG.

The Challenge field is a randomly generated string that the
initiator must sign (a hash of)} as part of authenticating. The
methods are the authentication methods that the responder will
accept. Only one authentication method is defined right now:
see 4.4 below.

4.4. AUTHENTICATE cells

If an initiator wants to authenticate, it responds to the
AUTH_CHALLENGE cell with a CERTS cell and an AUTHENTICATE cell.
The CERTS cell is as a server would send, except that instead of
sending a CertType 1 cert for an arbitrary link certificate, the
client sends a CertType 3 cert for an R5Z& AUTHENTICATE key.

{This difference is because we allow any link key type on a TLS
link, but the pretocol described here will enly work for 1024-bit
R52 keys. A later protocol wversion should extend the preotocol
here to work with non-1024-bit, non-RSA keys.)

An AUTHENTICATE cell contains the following:



ZuthType [2 cctets]
AButhLen [2 cctets]
Buthentication [RZuthLen occtets]

Responders MUST ignore extra bytes at the end cof an AUTHEENTICATE
cell. If RAuthType is 1 (meaning "RSA-SHAZS56-TLSSecret")}, then the
Authentication contains the fellowing:

TY¥PE: The characters "AUTHOOO1"™ [B ecctets]

CID: & SHR256 hash of the initiator's RS5A1024 identity key [32 octets]
SID: Z SHR256 hash of the responder's RS521024 identity key [32 octets]
SLOG: A SHRZ256¢ hash of all bytes sent from the responder to the

initiator as part of the negotiation up to and including the
AUTH_CHRLLENGE cell; that is, the VERSICNS cell, the CERTS cell,
the AUTH CHALLENGE cell, and any padding cells. [3Z octets]

CLOG: A SHRZ25¢ hash of all bytes sent from the initiator to the
responder as part of the negotiation seo far; that is, the
VERSIONS cell and the CERTS cell and any padding cells. [32
octets]

SCERT: A SHZ256 hash of the responder's TLS link certificate. [32
octets]

TLSSECEETS: A SHA256 HMAC, using the TLS master secret as the
secret key, of the follewing:
— client random, as sent in the TLS Client Hello
- server_ random, as sent in the TLS Server Hello
- the NUL terminated ASCII string:
"Tor V3 handshake TL5 cross—certification"
[32 octets]
REND: A 24 byte wvalus, randomly chosen by the initiator. (In an
imitaticon of S55L3's gmt_unix time field, older versicns of Tor
sent an 8-byte timestamp as the first 8§ bytes of this field;

new implementations should not deo that.) [24 occtets]
SIG: A signature of a SHAR256 hash of all the previcus fields
uging the initiater's "Ruthenticate" key as presented. (&s

always in Tor, we use OREP-MGFl padding; see tor—spec.txt
gecticn 0.3.)
[variable length]

To check the RUTHENTICATE cell, a responder checks that all fields
from TYPE through TLSSECRETS contain their unique

correct values as described above, and then verifies the signature.
The server MUST ignore any extra bytes in the signed data after
the SHAZ56 hash.

Initiators MUST NOT send an AUTHENTICATE cell before they have
verified the certificates presented in the responder's CERTS
cell, and authenticated the responder.

4.5. NETINFO cells

If version 2 or higher is negotiated, each party sends the other a
NETINFO cell. The cell's payload is:

Timestamp [4 bytes]
Other COR's address [variakle]
Number of addresses [1 byte]
This OR's addresses [variakle]

The address format is a type/length/value sequence as given in sectien
6.4 below. The timestamp is a big—endian unsigned integer number of
secends since the Unix epoch.

Implementations MAY use the timestamp value to help decide if their

clocks are skewed. Initiators MAY use "other COR's address" to help
learn which address their connections are originating frem, if they de
not know it. [&s of 0.2.3.1-alpha, nodes use neither of these values.]

Initiators SHOULD use "this OR's address" to make sure
that they have connected to another OR at its canconical address.
(See 5.3.1 below.)

5. Circuit management
5.1. CREATE and CREATED cells

Users set up circuits incrementally, one hop at a time. To create a
new circuit, OPs send a CREATE cell to the first node, with the first
half of an authenticated handshake; that node responds with a CREATED
cell with the second half of the handshake. To extend a circuit past
the first hop, the OF sends an EXTEND relay cell (see section 5.1.2)
which instructs the last ncde in the circuit tec send a CREATE cell tco
extend the circuit.

There are two kinds of CREATE and CREATED cells: The clder
"CREATE/CREATED" format, and the newer "CREATEZ/CREATEDZ" format. The

newer format is extensible by design; the older cne is not.

A CREATEZ cell ccntains:

HTYPE (Client Handshake Type) [2 bytes]
HLEN (Client Handshake Data Len} [2 bytes]
HDATR (Client Handshake Data) [HLEN bytes]

A CREATEDZ cell contains:
HLEN (Server Handshake Data Len) [2 bytes]
HDATR (Server Handshake Data) [HLEN bytes=]

Recognized handshake types are:

0x0000 TAP -- the original Tor handshake; see 5.1.3
0x0001 reserved
0x0002 ntor -- the ntor+curveiZ551%+shaZ56 handshake; see 5.1.4

The format of a CREATE cell is cne of the following:
HDATR (Client Handshake Data) [TAP_C_HANDSHAERE LEN bytes]



ur
HTLG (Client Handshake Type Tag) [16 bytes]
HDATR (Client Handshake Data) [TAP C_HANDSHAKE LEN-16€ bytes]

The first format is equivalent to a CRERTEZ cell with HTYPE of 'tap’
and length of TAP C_HANDSHARE LEN. The second format is a way to
encapsulate new handshake types into the old CREATE cell format for

migration. See 5.1.2.1 below. Receognized HTAG values are:

nter —— "'ntorNTORntorNTOR'
The format of a CREATED cell is:

HDATR (Server Handshake Data) [TAP S_HANDSHAKE LEN bytes]
(It's eguivalent toc a CREATEDZ cell with length of TAF_ 5 HANDSHARE LEN.

As usual with DH, x and y MUST be gensrated randeomly.

In general, clients SHOULD use CREATE whenever they are using the TAP
handshake, and CREATEZ ctherwise. Clients SHOULD NOT send the

second format of CREATE cells (the one with the handshake type tag)
to a server directly.

Servers always reply to a successful CREATE with a CREATED, and to a
successful CREATEZ wi CREATEDZ. On failure, a server sends a
DESTROY cell to tear down the circu

[CREATEZ is handled by Tor 0.2.4.7-alpha and later.]
5.1.1. Cheoosing circuit IDs in create cells

The CircID for a CREATE cell is an arbitrarily chosen nonzero integer,
selected by the node (OF or OR} that sends the CREATE cell. In link
protocel 3 or lower, CircIDs are 2 bytes long; in protocel 4 or
higher, CircIDs are 4 bytes long.

To prevent CircID collisions, when one node sends a CREATE cell to
another, it chooses from only one half of the possible walues based
on the ORs' public identity keys. 1In link protocel wversion 3 or
lower, if the sending node has a lower key, it chooses a CircID with
an MSE of 0; ctherwise, it cheoses a CirelD with an MSB cf 1. (Public
keys are compared numerically by medulus.)

In link protocel version 4 or higher, whichever node initiated the
connecticn sets its MSE to 1, and whichever node didn't initiate the
connection sets its MSB to 0.

(An OFP with nc public key MAY chocose any CireID it wishes, since an OF
never needs to process a CREATE cell.)

The CircID value 0 is specifically reserved for cells that do not
beleong to any circuit: CircID 0 must not be used for circuits. No
other CircID walue, including 0x8000 or 0x80000000, is reserved.

5.1.2. EXTEND and EXTENDED cells

To extend an existing circuit, the client sends a EXTEND or EXTENDEDZ
relay cell to the last nede in the circuit.

An EXTENDZ cell's relay payload contains:

NSPEC [(Number of link specifiers) [1 byte]
NSPEC times:
LSTYPE (Link specifier type) [1 byte]
LSLEN (Link specifier length) [1 byte]
LSPEC (Link specifier) [LSLEN bytes]
HTYPE (Client Handshake Type) [2 bytes]
HLEN (Client Handshake Data Len) [2 bytes]
HDATRA (Client Handshake Data) [HLEN bytes]

Link specifiers describe the next node in the circuit and how to
connect to it. Recognized specifiers are:
[00] TLS-over—-TCP, IPv4 address
B four-byte IPv4 address plus two-byte ORPort
[01] TLS-owvexr—-TCP, IPvé address
B sixteen-byte IPv6 address plus two-byte CRPort
[02] Legacy identity
L 20-byte SHAl identity fingerprint. At most cne may be listed.

Nodes MUST ignore unrecognized specifiers, and MUST accept multiple
instances of specifiers other than 'legacy identity'.

The relay payload for an EXTEND relay cell consists of:

Lddress [4 bytes]

Fort [2 bytes]

Onion skin [TAP_C_ HANDSHARE LEN bytes]
Identity fingerprint [HRSH _LEN bytes]

The "legacy identity" and "identity fingerprint fields are the SHAL
hash of the PECS#1 ASN] encoding of the next onicn router's identity
(signing) key. (See 0.3 above.) Including this hash allows the
extending OR verify that it is indeed connected to the correct target
CR, and prevents certain man-in—the-middle attacks.

The paylocad of an EXTENDED cell is the same as the payload of a
CREATED cell.

The paylocad of an EXTENDEDZ cell is the same as the paylead of a
CRERTEDZ cell.

[Support for EXTENDZ was added in Tor 0.2.4.8-alpha.]

Clients SHOULD use the EXTEND format whenever sending a TAP
handshake, and MUST use it whenever the EXTEND cell will be handled
by a nede running a version of Tor too old to support EXTENDZ. In
other cases, clients SHOULD use EXTENDZ.

Whan ancndina a2 nan=TLP handshaka in an FYTFNT ~a11 ~lianta SHATIT.N



- iy -
the format with 'clie

s S
use t handshake type tag'.
5.1.3. The "TAP"™ handshaks

This handshake uses Diffie-Hellman in Z_p and RSA to compute a set of
shared keys which the client knows are shared conly with a particular
server, and the server knows are shared with whomever sent the
original handshake (or with ncbedy at all). It's net wvery fast and
not very good. (See Goldberg's "On the Security of the Tor
Buthentication Proteocel™.)

Define TAF C_HANDSHARE LEN as DH_LEN+REY_ LEN+PK_FAD LEN.
Define TAF_S_HANDSHARE LEN as DH_LEN+HASH_LEN.

The paylocad for a CREATE cell is an 'onion skin', which consists of
the first step of the DH handshake data (alsc known as g~x). This
value is hybrid-encrypted (see 0.3) to the server's onion key, giving
a client handshake of:

PE-encrypted:

Padding [PE_PAD LEN bytes]
Symmetric key [EEY_LEN bytes]
First part of g"x [PE_ENC LEN-PE_PAD LEN-EEY LEN bytes]
Symmetrically encrypted: - - - - -
Second part of g*x [DH_LEN- (PK_ENC_LEN-PE_PAD LEN-REY_ LEN)
bytes]

The paylcad for a CREATED cell, or the relay paylead for an
EXTENDED cell, contains:
DH data (g™y) [DH_LEN bytes]
Derivative key data (EKH) [EAEH_LEX bytes] <see 5.2 below>

Cnce the handshake between the OFP and an OR is completed, both can

now calculate g°xy ordinary DH. Befere computing g™xy, both parties
MUST wverify that the received g™x or g"y value is not degenerate;

that is, it must be strictly greater than 1 and strictly less than p-1

where p is the DH modulus. Implementations MUST NOT complete a handshake
"

with degenerate keys. Implementations MUST NOT discard other "weak"

g"x values.

(Discarding degenerate keys is critical for security; if bad keys
are not discarded, an attacker can substitute the CR's CREATED
cell's g~y with 0 or 1, thus creating a known g~"xy and imperscnating
the OR. Discarding other keys may allow attacks to learn bits of

the private key.)

Once beoth parties have g"xy, they derive their shared circuit keys
and 'derivative key data' walue via the EDF-TCR funection in 5.2.1.

5.1.4. The "nteor" handshake

This handshake uses a set of DH handshakes to compute a set of
shared keys which the client knews are shared only with a particular
server, and the server knows are shared with whomewver sent the
original handshake (or with nobedy at all). Here we use the
"curve25519" group and representation as specified in "CurveZ5519:
new Diffie-Hellman speed records™ by D. J. Bernstein.

[The ntor handshake was added in Tor 0.2.4.8-alpha.]

In this secticn, define:
H(x,t) as HMAC SHAZ56 with message x and key t.
H_LENGTH = 32.
ID LENGTH = 20.

¢ LENGTH = 32

FROTOID = "ntor-curve23519-shaZ36-1"

t_mac = PROTOID | ":mac"

t_key = PROTOID | ":key_extract"

t_wverify = i

MULT {a,b) = ication of the curve2551% peint 'a' by the
scalar 'b".

G = The preferred base point for curveZ3519 ([9])

KEYGEN(} = The curveli5l% key generation algocrithm, returning
a private/public keypair.

m_expand = PROTOID | ":key_ expand"

KEYID(Z) =&

To perform the handshake, the client needs to know an identity key
digest for the server, and an ntor onicn key (a curve25519% public
key) feor that server. Call the ntor onien key "B". The client
generates a tempeorary keypair:

x,X = KEYGEN()
and generates a client-side handshake with contents:

NODEID Server identity digest [ID_LENGTH bytes]
EEYID EEY¥ID(EB) [H_LENGTH bytes]
CLIENT PE h-4 :G_LENGTH bytes]
The server generates a keypair of y,Y = REYGEN(), and uses its ntor

private key 'b' to compute:

secret_input = EXP(X,y) | EXPF(X,b) | ID | B | X ¥ | PROTOID
H(secret input, t_key)

H{secret_i;pu:, t_vErify]

auth input = verify | ID | B | ¥ X | PROTOID | "Server"

The server's handshake reply is:
SERVER FPK ¥ :G_LENGTH bytes]
ZUTH H{auth_input, t_mac) [E_LENGTH bytes]

The client then checks ¥ is in G"°* [see NOTE below], and computes

secret_input = EXP(Y,x) | EXF(B,x) | ID | B | X Y | PROTOQID
EEY_SEED = H(secret_input, t_key)
verify = H(secret_input, t_verify)

auth inout = wverifv | ID | B | ¥ X | FROTOID | "Server"



The client verifies that AUTH == H(auth_input, t_mac].

Both parties check that none of the EXP() operaticns produced the
point at infinity. [NOTE: This is an adequate replacement for
checking ¥ for group membership, if the group is curvez25319.]

Both parties now have a shared value for KEY SEED. They expand this
inte the keys needed for the Tor relay preteocol, using the EDF
described in 53.2.2 and the tag m expand.

5.1.5. CREATE_FAST/CREATED FAST cells

When initializing the first heop of a circuit, the CP has already
established the OR's identity and negotiated a secret key using TLS.
Because of this, it is not always necessary for the OP to perform the
public key cperaticns teo create a circuit. In this case, the

OF MAY send a CREATE_FAST cell instead of a CREATE cell for the first
hop enly. The OR responds with a CREATED FAST cell, and the circuit is
created.

A CREATE_FAST cell contains:
Eey material (X) [HRSE_LEN bytes]
A CREATED FAST cell contains:

Eey material (¥) [HRSH_LEN bytes]
Derivative key data [HASH LEN bytes] (See 5.2.1 below)

The wvalues of X and ¥ must be generated randomly.

Once both parties have X and ¥, they derive their shared circuit keys
and 'derivative key data' walue via the EDF-TOR funectiom in 5.2.1.

If an OR sees a circuit created with CREATE FAST, the OR is sure to be the
first hop of a circuit. ORs SHOULD reject attempts tc create streams with
RELAY BEGIN exiting the circuit at the first hop: letting Tor be used as a
single hop proxy makes exit nodes a more attractive target for compromise.

The CREATE_FAST handshake is currently deprecated whenever it is not
necessary; the migration is contrelled by the "usecreatefast”
networkstatus parameter as described in dir-spec.t=xt.

5.2. Setting circuit keys
5.2.1. EDF-TOR

This key derivation function is used by the TAP and CREATE_ FAST
handshakes, and in the current hidden service protocol. It shouldn't
be used for new functionality.

If the TRP handshake is used to extend a circuit, both parties
base their key material on RK0=g"xy, represented as a big-endian unsigned
integer.

If CREATE FAST is used, both parties base their key material con
RO=X1¥.

From the base key material K0, they compute EEY LEN*Z+HASH LEN*3 bytes of
derivative key data as
E = H(RO | [00]) | H(XO | [01]) | H(RO | [02]) |

The first HASH LEN bytes of K form RH; the next HASH LEN form the forward
digest Df; the next HASH LEN 41-60 form the backward digest Db; the next
EEY LEN 61-76 form Ef, and the final KEY LEN form Eb. Excess bytes from K
are discarded.

EH is used in the handshake response to demenstrate knowledge of the
computed shared key. Df is used to seed the integrity-checking hash
for the stream of data going from the OF to the OR, and Db seeds the
integrity-checking hash for the data stream from the OR to the CP. Ef
is used to encrypt the stream of data geing from the OF to the OR, and
Eb is used to encrypt the stream of data going from the OR to the OP.

5.2.2. EDF-RFC386%

For newer EDF needs, Tor uses the key deriwvation function HEDF from

RFCS586%, instantiated with SHRZS5E. (This is due to a construction
from Erawczyk.) The generated key material is:
E=K1| K2 &3] ...

Where H(x,t) is HMAC SHAZ56 with value x and key t
and K 1 = H(m_expand | INT8(l) , KEY_ SEED )
and K_(i+l) = H(E i | m expand | INT8(i+l) , KEY SEED )

and m expand is an arbitrarily chosen value,

and with the value "i".
In RFCS5869's vocabulary, this is HEDF-SHAZ56 with info == m expand,
salt == t_key, and IRKM == secret_input.

When used in the ntor handshake, the first HASH LEN bytes form the
forward digest Df; the next HASH LEN form the backward digest Db; the
next REY LEN form Kf, the next REY LEN form Eb, and the final
DIGEST_LEN bytes are taken as a nonce to use in the place of KH in the
hidden service protococl. Excess bytes from K are discarded.

5.3. Creating circuits

When crea g a circuit through the network, the circuit creator
(OP) performs the following steps:

1. Choose an onion router as an exit nede (R_N), such that the cnion
router's exit pelicy includes at least one pending stream that



5

5.

2

4.

needs a circuit (if there are any).

Chooze a chain of (N-1) onion routers
(R_1...R N-1) toc constitute the path, such that no router
appears in the path twice.

(3]

3. If not already connected to the first router in the chain,
open a new connection teo that router.

4. Choose a cireID not already in use on the connection with the
first router in the chain; send a CREATE cell along the

connection, to be received by the first onion router.

5. Wait until a CREATED cell is receiwved; finish the handshake
and extract the forward key Kf_l and the backward key Fb_l.

6. For each subsequent cnion router R (R_2 through R N), extend
the circuit to R.

To extend the circuit by a single onion router R_M, the OP performs
these steps:

1. Create an onion skin, encrypted to R M's public onion key.

2. Send the onicn skin in a relay EXTEND cell alcng
the circui (see section 5).

3. When a relay EXTENDED cell is receiwved, wverify KH, and
calculate the shared keys. The circuit is now extended.

When an cnicn router receives an EXTEND relay cell, it sends a CREARTE
cell te the next onion router, with the enclosed onion skin as its
payload. 2As special cases, if the extend cell includes a digest of
all zeroes, or asks tc extend back to the relay that sent the extend
cell, the circuit will fail and be torn down. The initiating onion
router chooses scme circID not yet used on the connection between the
two onion routers. (But see section 3.1.1 above, concerning cheoosing
cireIDs based on lexicographic erder of nicknames.)

When an onion router receives a CREATE cell, if it already has a
circuit on the given connection with the given circID, it drops the
cell. Otherwise, after receiving the CREATE cell, it completes the
DH handshake, and replies with a CREATED cell. Upon receiving a
CREATED cell, an onion router packs it paylead into an EXTENDED relay
cell (see section 5), and sends that cell up the circuit. Upen
receiving the EXTENDED relay cell, the OF can retrieve g y.

(A= an optimization, OR implementations may delay processing cnions
until a break in traffic alleows time tec do so without harming
network latency too greatly.)

.1l. Canonical connections

It is possible for an attacker to launch a man-in-the-middle attack
against a connection by telling OR Rlice to extend to OR Beb at some
address X controlled by the attacker. The attacker cannct read the
encrypted traffic, but the attacker is now in a position to count all
bytes sent between Alice and Bob (assuming Alice was not already
connected to Bob.)

To prevent this, when an OR gets an extend request, it SHOULD use an
existing OR connection if the ID matches, and ANY of the following
conditions hold:
— The IP matches the requested IP.
— The OR knows that the IP of the connecticn it's using is cancnical
because it was listed in the NETINFO cell.
— The CR knows that the IP of the connecticn it's using is cancnical
because it was listed in the server descriptor.

[This is not implemented in Tor 0.2.0.23-rc.]

Tearing down circuits

Circuits are torn down when an unrecoverable error occurs along
the circuit, or when all streams on a circuit are closed and the
circuit's intended lifetime is over. Circuits may be torn down
either completely or hop—by-hop.

To tear down a circuit completely, an CR or OF sends a DESTROY
cell te the adjacent nodes on that circuit, using the appropriate
direction's circID.

Upon receiving an cutgoing DESTROY cell, an OR frees rescurces
associated with the corresponding circuit. If it's not the end of
the circuit, it sends a DESTROY cell for that circuit to the next OR
in the circuit. If the node is the end of the circuit, then it tears
down any associated edge connecticns (see section 6.1)

After a DESTROY cell has been processed, an OR ignores all data or
destroy cells for the corresponding circuit.

To tear down pa of a circuit, the OP may send a RELAY TRUNCATE cell
signaling a given OR (Stream ID zero). That OR sends a DESTROY

cell te the next node in the circuit, and replies te the OP with a
RELAY TRUNCATED cell.

[Note: If an OR receives a TRUNCATE cell and it has any RELAY cells
still gqueued con the circuit for the next node it will drop them
without sending them. This is not considered conformant behavier,
but it probably won't get fixed until a later version of Tor. Thus,
clients SHOULD NOT send a TRUNCATE cell to a ncde running any current
version of Tor if a) they have sent relay cells through that node,
and b} they aren't sure whether those cells have been sent on yet.]

When an unrecoverable error occurs along cne connecticn in a



circuit, the nodes on either side of the connection should, if they
are able, act as fcllows: the node cleoser te the OP should send a
RELAY TRUNCATED cell towards the OPF; the node farther from the CP
should send a DESTROY cell down the circuit.

The payload of a RELAY TRUNCATED or DESTROY cell contains a single octet,
describing why the circuit is being closed or truncated. When sending a
TRUNCATED or DESTROY cell because of ancther TRUNCATED or DESTROY cell,
the error cecde should be propagated. The origin of a circuit always sets
this error code to 0, te avoid leaking its versieon.

The error codes are:

0 —— NCONE [(No reasen given.)

1 —— PROTOCCL [(Tor protocol wiclaticn.)

2 —— INTERNAL (Internal error.)

3 —- REQUESTED (& client sent a TRUNCATE command.)

4 —— HIBERNATING (Not currently cperating; trying to save bandwidth.)
3 —— RESOURCELIMIT (Out of memory, sockets, or circuit IDs.)

& —— CONNECTFAILED {Unable to reach relay.)

7 —— OR_IDENTITY (Connected to relay, but its OR identity was not

az expected.)

8§ —— OR_CONN_CLOSED (The OR connection that was carrying this circuit
died.)

9 —— FI¥ ED (The circuit has expired for being dirty or old.)

10 —— TIMEOUT (Circuit ceonstruction tock teo long)

11 —— DESTROYED (The circuit was destroyed w/o client TRUNCATE)

12 — NOSUCHSERVICE {(Request for unknown hidden service)

5.5. Reouting relay cells

When an OR receives a RELAY or RELAY EARLY cell, it checks the cell's
circID and determines whether it has a corresponding circuit aleong that
connection. If not, the OR drops the cell.

Otherwise, if the OR is not at the OP edge of the circuit (that is,
either an 'exit node' or a non-edge node), it de/encrypts the paylecad
with the stream cipher, as follows:
'Forward' relay cell (same direction as CREATE):
Use RKf as key; decrypt.
'Back' relay cell (cpposite direction from CREATE) :
Use Kb as key; encrypt.
Note that in counter mode, decrypt and encrypt are the same operation.

The OR then decides whether it recognizes the relay cell, by
inspecting the paylcad as described in secticn 6.1 below. If the CR
recognizes the ecell, it processes the contents of the relay cell.
Ctherwise, it passes the decrypted relay cell along the circuit if
the circuit continues. If the OR at the end of the circuit
enccunters an unrecognized relay cell, an error has occurred: the CR
sends a DESTROY cell to tear down the circuit.

When a relay cell arrives at an OF, the OF decrypts the payload
with the stream cipher as follows:
OF receives data cell:
For I=N...l,
Decrypt with Eb_I. If the payload is recognized (see
secticn 6..1), then stop and process the paylcad.

For more informaticon, see section & below.
5.6. Handling relay early cells

A RELAY ERRLY cell is designed to limit the length any circuit can reach.
When an OR receives a RELAY ERRLY cell, and the next node in the circuit

is speaking vZ of the link protececl or later, the OR relays the cell as a
RELAY FARLY cell. Otherwise, older Tors will relay it as a RELAY cell.

If a node ever receives more than 8 RELAY EARLY cells on a given
outbound circuit, it SHOULD close the circuit. If it receives any
inbound RELAY EARLY cells, it MUST close the circuit immediately.

When speaking v2 of the link protoceol cor later, clients MUST only send
EXTEND cells inside RELAY EARLY cells. Clients SHOULD send the first ~8
RELAY cells that are not Eargeted at the first hop of any circuit as
RELAY EARLY cells too, in order teo partially conceal the circuit length.

[Starting with Ter 0.2.3.1l-alpha, relays should
reject any EXTEND cell not received in a RELAY EARLY cell.]

6. Rpplication connections and stream management

6.1. Relay cells

Within a circuit, the OF and the exit necde use the contents of
RELAY packets to tunnel end-to-end commands and TCF cconnections
("Streams") across circuits. End-to-end commands can be initiated
by either edge; streams are initiated by the ©P.

The paylocad of each unencrypted RELAY cell consists of:

Relay ceommand 1 byte]

'Recognized’ 2 bytes]

StreamID 2 bytes]

Digest [4 bytes]

Length [2 bytes]

Data [PAYLOARD LEN-11 bytes]

The relay commands are:

1 -- RELAY BEGIN [forward]

2 -- RELAY DATA [forward or backward]

3 -— RELAY END [forward or backward]

4 -— RELALY CONNECTED [backward]

5 -— RELAY SENDME [forward or backward] [scmetimes ceontrol]
& —— RELAY EXTEND [forward] [control]

7 -— RELAY EXTENDED [backward] [eentrol]

8

—-— RELAY TRUNCATE [forward] [control]




HUNCATED |backward| leontrol |
DROP [forward or backward] [centrol]

11 —— RESOLVE [forward]

1z -- RESOLVED [backward]

13 — _ BEGIN DIR [forward]

14 -- RELAY EXTENDZ [forward] [control]
15 -- RELAY EXTENDEDZ [backward] [control]
32..40 —— Used for hidden services; see rend-spec.txt.

Commands labelled as "forward" must only ke sent by the criginator
of the circuit. Commands labelled as "backward" must conly be sent by
other nodes in the circuit back to the eriginator. Commands marked
as either can be sent either by the originator or other nodes.

The 'recognized' field in any unencrypted relay payload is always set
to zerec; the 'digest' field is computed as the first four bytes of
the running digest of all the bytes that have been destined for

this hep of the circuit er originated from this hep of the circuit,
seeded from Df or Db respectively (obtained in section 3.2 above),
and including this RELAY cell's entire paylocad (taken with the digest
field set to zero).

When the "recegnized' field of a RELAY cell is zero, and the digest
is correct, the cell is considersd "recognized" for the purposes of
decryption (see secticn 5.5 above).

{The digest does not include any bytes from relay cells that do
not start or end at this hop of the cirecuit. That is, it dees not
include forwarded data. Therefore if "receognized' is zerc but the
digest does not match, the running digest at that node should

not be updated, and the cell should be forwarded on.)

A1l RELAY cells pertaining to the same tunneled stream have the same
stream ID. StreamIDs are chosen arbitrarily by the OP. Neo stream
may have a StreamID of zerc. Rather, RELAY cells that affect the
entire circuit rather than a particular stream use a StreamID of zero
-— they are marked in the table above as "[control]" style

cells. (Sendme cells are marked as "sometimes contrel" because they
can include a StreamID or not depending on their purpose —- see
Section 7.)

The 'Length' field of a relay cell contains the number of bytes in
the relay paylead which contain real paylead data. The remainder of
the paylcad is padded with NUL bytes.

If the RELAY cell is recognized but the relay command is not
understood, the cell must be dropped and ignored. Its contents
still count with respect to the digests and flow control windows, though.

6.2. Opening streams and transferring data

To open a new anonymized TCP connection, the OF chooses an open

circ to an exit that may be able to connect tc the destination
address, selects an arbitrary StreamID not yet used on that circuit,
and constructs a RELAY BEGIN cell with a payload encoding the address
and port of the destination host. The paylocad format is:

ADDRPORT [nul-terminated string]
FLRGS [4 bytes]

ADDRPORT is made of ADDRESS

':' | PORT | [00]

where ADDRESS can be a DNS hostname, or an IPv4 address in
dotted-quad format, or an IPv6e address surrounded by sqguare brackets;
and where PORT is a decimal integer between 1 and 63335, inclusiwve.

The FLAGS value has one or more of the follewing bits set, where

"bit 1" is the LSE of the 32-kbit walus, and "bit 32" is the MSE.
(Remember that all values in Tor are big-endian (see 0.1.1 above), so
the MSB of a 4-byte value is the MSB of the first byte, and the LSB
of a 4-byte value is the LSB of its last byte.)

bit meaning

1 -- IPvt ckay. We support learning about IPvé addresses and
connecting to IFvEé addresses.
IPv4 not okay. We don't want te learn about IPv4 addresses
or connect to them.

[ 3]
I
|

3 —-- IPve preferred. If there are both IPv4 and IPvé addresses,
we want to connect te the IPvE one. (By default, we connect
to the IPv4 address.)

4..32 —— Reserved. Current clients MUST NOT set these. Servers

MUST igncre them.

Upon receiving this cell, the exit node resclves the address as
necessary, and opens a new TCP connection to the target port. If the
address cannot be resclved, or a connecticn can't be established, the
exit node replies with a RELAY END cell. {See €.4 below.)

Otherwise, the exit node replies with a RELAY CONNECTED cell, whose
payload is in cne of the following formats:

The IEPFv4 address to which the connection was made [4 cctets]

A number of seconds (TTL} for which the address may be cached [4 octets]

or

Four zero-valued cctets [4 cctets]

BAn address type (&) [1 cctet]

The IPv6 address to which the connection was made [l& octets]

A number of seconds (TTL) for which the address may be cached [4 occtets]
[Tor exit ncdes before 0.1.2.0 set the TTL field to a fixed walue. Later
versions set the TTL to the last value seen from a DNS server, and expire
their cwn cached entries after a fixed interval. This prevents certain
attacks.]

Once a ccocnnection has been established, the OP and exit node
package stream data in RELAY DATA cells, and upon receiving such

R T N IR, S P PR U P



Celld, SCNU LOSLD CUOLLELULE LU L0 CULLESpUNULNY LLF SLLcd.

If the exit node does not support optimistic data (i.e. its
version number is before 0.2.3.l1-alpha), then the COP MUST wait
for a RELAY CONNECTED cell before sending any data. If the exit
node supports cptimistic data (i.e. its version number is
0.2.3.1-alpha or later), then the OF MAY send RELAY DATA cells
immediately after sending the RELAY BEGIN cell (and before
receiving either a RELAY CONNECTED or RELAY END cell).

RELAY DATA cells sent to unrecognized streams are dropped. If
the exit node supports optimistic data, then RELAY DATZ cells it
receives on streams which have seen RELAY BEGIN but have not yet
been replied to with a RELAY CONNECTED or RELAY END are gueued.
If the stream creation succeeds with a RELAY CONNECTED, the gqueue
is processed immediately afterwards; if the stream creation fails
with a RELAY END, the contents of the queues are deleted.

Relay RELAY DROF cells are long-range dummies; upon receiving such
a cell, the OR or OP must drop it.

6.2.1. Opening a directory stream

If a Tor relay is a directory server, it should respond to a

RELAY BEGIN DIR cell as if it had received a BEGIN cell requesting a
connecticn to its directory port. RELAY BEGIN DIR cells ignore exit
policy, since the stream is lecal to the Tor process.

If the Tor relay is not running a directory service, it should respond
with a REASON NOTDIRECTORY RELAY END cell.

Clients MUST generate an all-zero paylcad for RELAY BEGIN_DIR cells,
and relays MUST ignore the paylead.

[RELAY BEGIN_DIR was not supported before Tor 0.1.2.2-alpha; clients
SHOULD NOT send it to routers running earlier versicns of Tor.]

6.3. Clesing streams

When an anonymized TCF connection is closed, or an edge node
encounters error on any stream, it sends a 'RELAY END' cell along the
circuit (if peossible) and closes the TCP connection immediately. If
an edge node receives a 'RELAY FEND' cell for any stream, it cleoses
the TCPF connection completely, and sends nothing more along the
circuit for that stream.

The paylcad of a RELAY END cell begins with a single 'reason' byte to
desecribe why the stream is closing, plus cptional data (depending eon

the reascn.) The walues are:
1 —— REASON MISC {catch-all for unlisted reasons)
2 —-— REARSON RESOLVEFRILED (cculdn't lock up hostname)
3 -— REASON CONNECTREFUSED (remote host refused conmection) [¥]
4 —— REASON_EXITPOLICY (OR refuses to connect to host or port)
5 —— REASON DESTROY (Circuit is being destroyed)
6 —— REASON DONE (Anonymized TCP ccnnection was closed)
7 —-— REASON_TIMEQUT (Connection timed out, or OR timed out
while connecting)
8 —— REASCON_NOROUTE (Routing errer while attempting to
centact destination)
% —— REASON HIBERNATING (OR is temporarily hibernating)
10 -— REASCN_INTERNAL (Internal error at the OR)
11 -— REASCN_ RESOURCELIMIT (OR has no resources te fulfill request)
12 -— REASCN_CONNRESET (Connection was unexpectedly reset)
13 -— REASCON_TORPROTCOCOL (Sent when closing connecticn because of
Tor protocol wviolations.)
14 -— REASCN_NOTDIRECTORY (Client sent RELAY BEGIN DIR to a

non-directory relay.)

(With REASON EXITPOLICY, the 4-byte IPv4 address or lé-byte IFvé address
forms the optional data, along with a 4-byte TTL; nc other reason
currently has extra data.)

CPs and ORs MUST accept reasons not on the above list, sinece future
versions of Tor may provide more fine—grained reasons.

Tors SHOULD NOT send any reason except REASON MISC for a stream that they
have originated.

[*] Older wversions of Ter alsc send this reason when connecticns are
reset.

-—— [The rest of this section describes unimplemented functionality.]

Because TCF connections can be half-open, we follow an equivalent
to TCP's FIN/FIN-ACK/ACK protocecl to close streams.

An exit connection can have a TCP stream in one of three states:
'OPEN', 'DONE PACEAGING', and 'DONE_DELIVERING'. For the purposes
of modeling transitions, we treat 'CLOSED' as a fourth state,
although connections in this state are not, in fact, tracked by the
onion router.

A stream begins in the 'OPEN' state. Upon receiving a 'FIN' frem
the corresponding ICF connection, the edge node sends a 'RELAY FIN'
cell along the circuit and changes its state to 'DONE_PACEAGING'.
Upon receiving a 'RELAY FIN' cell, an edge node sends a 'FIN' to
the corresponding TCP connection (e.g., by ecalling

shutdown (SHUT WR)) and changing its state to 'DONE_DELIVERING'.

When a stream in already in 'DONE_DELIVERING' receives a 'FIN', it
alsc sends a "RELAY FIN' along the circuit, and changes its state
to 'CLOSED'. When a stream already in '"DONE_PACRAGING' receives a
'RELAY FIN' cell, it sends a "FIN' and changes its state to

'CLOSED".



If an edge node encounters an errcr on any sStream, it sends a
'RELRY END' cell (if possible) and closes the stream immediately.

©.4. Remote hostname lookup

To find the address asscciated with a heostname, the OP =zends a

RELAY RESOLVE cell containing the hostname to be resolved with a NUL
terminating byte. (For a reverse lookup, the OF sends a RELAY RESOLVE
cell containing an in-—addr.arpa address.)} The OR replies with a
RELAY RESOLVED cell containing any number of answers. Each answer is
of the form:

Type (1l octet)

Length (1 cctet)

Value (variable-width)

TTL (4 octets)
"Length"™ is the length of the Value field.
"Type" is one of:

0x00 -- Hostname

0x04 -- IPv4 address

0x06 -- IPve address

0xF0 -- Erreor, transient
OxFl -- Error, nontransient

If any answer has a type of "Errer', then no cther answer may be given.

For backward compatibility, if there are any IFv4 answers, one of those
must be given as the first answer.

The RELAY RESOLVE cell must use a nonzerc, distinct streamID; the
corresponding RELAY RESOLVED cell must use the same streamID. No stream
is actually created by the OR when resolving the name.

7. Flow control

7.1. Link throttling

Each client or relay should do appropriate bandwidth throttling to
keep its user happy.

Communicants rely cn TCP's default flow ceontrol te push back when they
stop reading.

The mainline Tor implementation uses token buckets (one for reads,
one for writes) for the rate limiting.

Sinece 0.2.0.x, Ter has let the user specify an additicnal pair of
token buckets for "relayed" traffic, so people can deploy a Tor relay
with strict rate limiting, but alsc use the same Tor as a client. To
avold partiticning concerns we combine both classes of traffic over a
given OR connection, and keep track of the last time we read or wrcte
a high-priority (non-relayed) cell. If it's been less than N seconds
{currently N=30), we give the whole connection high priority, else we
give the whole connection low pricrity. We alsc give low priority

to reads and writes for connections that are serving directory
information. See propesal 111 for details.

7.2. Link padding

Link padding can be created by sending FADDING or VEADDING cells
along the connection; relay cells of type "DROP" can be used for
long-range padding. The ccontents of a PADDING, VEFADDING, cr DROP
cell SHOULD be chosen randemly, and MUST be ignored.

Currently ncdes are net required to do any sort of link padding or
dummy traffic. Because strong attacks exist even with link padding,
and because link padding greatly increases the bandwidth requirements
for running a node, we plan to leave out link padding until this
tradecff is better understood.

7.3. Circuit—-level flow control

To contrcl a circuit's bandwidth usage, each CR keeps track of two

'windows', consisting of how many RELAY DATA cells it is allowed to
originate (package for transmissiecn), and how many RELAY DATA cells
it is willing to consume (receive for lecal streams). These limits
do not apply to cells that the OR receives from cne host and relays
to another.

Each 'window' walue is initially set based on the consensus parameter
'circwindow' in the directory (see dir-spec.txt), or to 1000 data cells
if ne 'circwindow' walue is given,

in each direction (cells that are not data cells do neot affect

the window}. When an OR is willing to deliver more cells, it sends a
RELAY SENDME cell towards the OF, with Stream ID zerc. When an OR
receives a RELAY SENDME cell with stream ID zero, it increments its
packaging window.

Each of these cells increments the corresponding window by 100.

The OP behaves identically, except that it must track a packaging
windew and a delivery window for every OR in the circuit.

En OR or OF sends cells to increment its delivery window when the
corresponding window value falls under some threshold (800).

If a packaging window reaches 0, the OR or OP stops reading from

TCP connections for all streams on the corresponding cirecuit, and

sends no more RELAY DATA cells until receiving a RELAY SENIME cell.
[this stuff is badly worded; copy in the tor-design section —RD]

7.4. Stream-level flow control

Edge nodes use RELAY SENDME cells to implement end-to-end flow
control for individual connecticns across circuits. Similarlv to



circuit-lewvel flow contrel, edge nodes begin with a window of cells
(500) per stream, and increment the window by a fixed walue (30)
upon receiving a RELAY SENDME cell. Edge nodes initiate RELAY SENDME
cells when both a) the window is <= 450, and b) there are less than
ten cell paylcads remaining to be flushed at that edge.

8. Handling resource exhaustion

8.1. Memory exhaustion.

te until
more memocry is free again. We recommend the following algorithm:

If RZM becomes lew, an OR should begin destroying ecircu

- Set a thresheld amount of REM to recover at 10% of the total REM.

— Sort the circuits by their 'staleness', defined as the age of the
oldest data gqueued on the circud This data can be:

* Bytes that are waiting teo flush to or from a stream on that
circuit.

* Bytes that are waiting to flush from a connection created with
BEGIN_DIR.

* Cells that are waiting te flush er be processed.
— While we have not yet recovered encugh RAM:
* Free all memcry held by the mecst stale circuit, and send DESTROY

cells in both directions on that circuit. Ccunt the amount of
memory we recovered towards the total.

w

Subprotocol wversioning

This section specifies the Tor subprotocol wversiening. They are brocken down
inte different types with their current wversion numbers. Any new version
number should be added teo this section.

The dir-spec.txt details how theose wversions are encoded. See the
"proto"/"pr" line in a descriptor and the "recocmmended-relay-protocols”,
"required-relay-pretocols”, "recommended-client-protocels"™ and
"required-client-protocols™ lines in the vote/consensus format.

Here are the rules a relay and client should fellow when encountering a
protocel list in the consensus:

— When a relay lacks a protocol listed in recommended-relay—protocols,
it should warn its operator that the relay is cbsolete.

- When a relay lacks a protocol listed in regquired-relay-protoceols, it
must not attempt te jein the network.

- When a client lacks a protocecl listed in recommended-client—-protocels,
it should warn the user that the client is cbsaclete.

- When a client lacks a protocel listed in required-client—-protocels, it
must not connect te the netweork. This implements a "safe forward
shutdown" mechanism for zombie clients.

- If a client or relay has a cached consensus telling it that a given
protocel is required, and it does not implement that protoecel, it

SHQULD NOT try to fetch a newer consensus.

Starting in version 0.2.9.4-alpha, the initial required protocols for
clients that we will Recommend and Reguire are:

Cons=1-2 Desc=1-2 DirCache=1 HS5Dir=Z HS5Intro=3 HS5Rend=l Link=%
LinkButh=1 Microdesc=1-2Z Relay=2Z

For relays we will Reguire:

Cons=1 Desc=1 DirCache=1 HSDir=2 HSIntro=3 HSRend=1 Link=3-4
Link&Zuth=l1 Microdesc=l Relay=1-2

For relays, we will additicnally Recommend all proteccls which we
recommend for clients.

[t4]
-

"Link™

The "link" pretocols are those used by clients and relays te initiate and
receive OR connections and to handle cells eon OR connections. The "link"
protocel versicns correspond 1:1 to those wersions.

Two Tor instances can make a connection te each cther only if they have at
least cne link protocel in commen.

The current "link" versions are: "1" through "4". See section 4.1 for more
information. A1l current Tor versions support "1-3"; wversion from
0.2.4.11-alpha and on support "1-4". Eventually we will drop "1" and "2".

9.2. "LinkButh"

LinkZuth protocols correspond to varieties of ARuthenticate cells used for
the w3+ link protoceools.

The current wversion is "1".
2" is unused, and reserved by proposal 244.
"3"™ is the ed23519 link handshake of propecsal 220.

9.3. "Relay"



The "relay" protoccls are those used to handle CREATE cells, and those that
handle the various RELAZY cell types received after a CREATE cell. (Except,
relay cells used to manage intreduction and rendezvous peoints are managed
with the "HS5Intro" and "HSRend" protocols respectiwvely.)

Current versicons are:

"1™ —- suppcrts the TAP key exchange, with all features in Tor 0.2.3.
Support for CREATE and CREATED and CREATE_FAST and CREATED FAST
and EXTEND and EXTENDED.

—- suppcrts the ntor key exchange, and all features in Tor
0.2.4.19. Includes suppcrt for CREATEZ and CREATEDZ and
EXTENDZ and EXTENDEDZ.

9.4. "HSIntro"

The "HSIntrc"

protocol handles introducticn points.

3" —— supports authentication as of propesal 121 in Tor
0.2.1.6-alpha.

"4" —— suppcrt ed25519% authentication keys which is defined by the HS w3
protocol as part of propesal 224 in Tor 0.3.0.4-alpha.
9.5. "HSRend"

The "HSRend" protoccl handles rendezvous points.

"1l" —— supports all features in Tor 0.0.6.

o

2" —— supports RENDEZVOUSZ cells of arbitrary length as lcng as they
have 20 bytes of cockie in Tor 0.2.9.1-alpha.

%.6. "HSDir"

The "HSDir" proteococls are the set of hidden service document types that can
be uplcaded te, understood by, and downloaded frem a tor relay, and the set
of URLs available to fetch them.

"1" —- suppecrts all features in Tor 0.2.0.10-alpha.

"2" —- support ed25519% blinded keys request which is defined by the HS v3

protocol as part of propesal 224 in Tor 0.3.0.4-alpha.
9.7. "DirCache"
The "DirCache" protocels are the set of decuments available for download

from a directory cache via BEGIN DIR, and the set of URLs available to
fetch them. ({This excludes URLs for hidden service ocbjects.)

"1™ —- suppcrts all features in Tor 0.2.4.19.
9.8. "Deszc"
Describes features present or absent in descriptors.
Most features in descriptors don't regquire a "Desc" update —— only those

that need to someday be required. For example, someday clients will need
to understand =d25351% identities.

"1™ —- suppcrts all features in Tor 0.2.4.19.

"2" —- cross—signing with cnien—keys, signing with =d25519%

identities.
9.9. "Microdesc"
Describes features present or absent in microdescriptors.
Most features in descriptors don't regquire a "MicroDesc" update —— only
those that need to someday be required. These correspond more cr less with
consensus methods.
"1l" —- consensus methods 9 through 20.
"2" —- consensus methed 21 (adds ed25519 keys to micreodescs).
9.10. "Cons"

Describes features present or absent in consensus documents.

Most features in consensus documents don't require a "Cons" update —— only
those that need to someday be required.

These correspond more or less with consensus methods.
"1l" —- consensus metheds 9 through 20.

o

2" —— consensus method 21 (adds edZ551% keys to microdescs).



