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Abstract. In this paper, we present a steganalytic method that can reliably 
detect messages (and estimate their size) hidden in JPEG images using the 
steganographic algorithm F5. The key element of the method is estimation of 
the cover-image histogram from the stego-image. This is done by 
decompressing the stego-image, cropping it by four pixels in both directions to 
remove the quantization in the frequency domain, and recompressing it using 
the same quality factor as the stego-image. The number of relative changes 
introduced by F5 is determined using the least square fit by comparing the 
estimated histograms of selected DCT coefficients with those of the stego-
image. Experimental results indicate that relative modifications as small as 10% 
of the usable DCT coefficients can be reliably detected. The method is tested on 
a diverse set of test images that include both raw and processed images in the 
JPEG and BMP formats.  

1 Overview of Steganography and Steganalysis 

Steganography is the art of invisible communication. Its purpose is to hide the very 
presence of communication by embedding messages into innocuous-looking cover 
objects. In today’s digital world, invisible ink and paper have been replaced by much 
more versatile and practical covers for hiding messages – digital documents, images, 
video, and audio files. As long as an electronic document contains perceptually 
irrelevant or redundant information, it can be used as a “cover” for hiding secret 
messages. In this paper, we deal solely with covers that are digital images stored in 
the JPEG format. 

Each steganographic communication system consists of an embedding algorithm 
and an extraction algorithm. To accommodate a secret message, the original image, 
also called the cover-image, is slightly modified by the embedding algorithm. As a 
result, the stego-image is obtained. 

Steganalysis is the art of discovering hidden data in cover objects. As in 
cryptanalysis, we assume that the steganographic method is publicly known with the 
exception of a secret key. The method is secure if the stego-images do not contain any 



detectable artifacts due to message embedding. In other words, the set of stego-
images should have the same statistical properties as the set of cover-images. If there 
exists an algorithm that can guess whether or not a given image contains a secret 
message with a success rate better than random guessing, the steganographic system 
is considered broken. For a more exact treatment of the concept of steganographic 
security, the reader is referred to [1–3]. 

The ability to detect secret messages in images is related to the message length. 
Obviously, the less information we embed into the cover-image, the smaller the 
probability of introducing detectable artifacts by the embedding process. Each 
steganographic method has an upper bound on the maximal safe message length (or 
the bit-rate expressed in bits per pixel or sample) that tells us how many bits can be 
safely embedded in a given image without introducing any statistically detectable 
artifacts. Determining this maximal safe bit-rate (or steganographic capacity) is a non-
trivial task even for the simplest methods. Chandramouli et al. [4] give a theoretical 
analysis of the maximal safe bit-rate for LSB embedding in the spatial domain. 
Recently, Fridrich et al. [5,6] derived a more stringent estimate using dual statistics 
steganalysis. 

The choice of cover-images is important because it significantly influences the 
design of the stego system and its security. Images with a low number of colors, 
computer art, images with a unique semantic content, such as fonts, should be 
avoided. Aura [7] recommends grayscale images as the best cover-images. He also 
recommends uncompressed scans of photographs or images obtained with a digital 
camera containing a high number of colors, and considers them safest for 
steganography. 

The choice of the image format also makes a very big impact on the design of a 
secure steganographic system. Raw, uncompressed formats, such as BMP, provide the 
biggest space for secure steganography, but their obvious redundancy makes them 
very suspicious in the first place. Indeed, some researchers do not consider those 
formats for steganography claiming that exchanging uncompressed images is 
“equivalent” to using cryptography [8]. Never the less, most steganographic products 
available on the Internet work with uncompressed image formats or formats that 
compress data losslessly (BMP, PCX, GIF, PGM, and TIFF). 

Fridrich et al. [9] have recently shown that cover-images stored in the JPEG format 
are a very poor choice for steganographic methods that work in the spatial domain. 
This is because the quantization introduced by JPEG compression can serve as a 
"semi-fragile watermark" or a unique fingerprint that can be used for detection of very 
small modifications of the cover-image by inspecting the compatibility of the stego-
image with the JPEG format. Indeed, changes as small as flipping the least significant 
bit (LSB) of one pixel can be reliably detected. Consequently, one should avoid using 
decompressed JPEG images as covers for spatial steganographic methods, such as the 
LSB embedding or its variants. 

Despite its proven insecurity, the method of choice of most publicly available 
steganographic tools is the LSB embedding. This paradigm can be adapted not only to 
raw formats but also to palette images after pre-sorting the palette (EZ Stego [10]) 
and to JPEG images (J-Steg [10], JP Hide&Seek [10], and OutGuess [11]).  

Fridrich et al. [5,6] introduced the dual statistics steganalytic method for detection 
of LSB embedding in uncompressed formats. For high quality images taken with a 



digital camera or a scanner, the dual statistics steganalysis indicates that the safe bit-
rate is less than 0.005 bits per sample, providing a surprisingly stringent upper bound 
on steganographic capacity of simple LSB embedding. 

Pfitzmann and Westfeld [12] introduced a method based on statistical analysis of 
Pairs of Values (PoVs) that are exchanged during message embedding. For example, 
grayscales that differ in the LSBs only, could form these PoVs. This method, which 
became known as the χ2 attack, is quite general and can be applied to many 
embedding paradigms besides the LSB embedding. It provides very reliable results 
when the message placement is known (e.g., for sequential embedding). Pfitzmann 
[12] and Provos [13] noted that the method could still be applied to randomly 
scattered messages by applying the same idea to smaller portions of the image while 
comparing the statistics with the one obtained from unrelated pairs of values. 
Unfortunately, no further details regarding this generalized χ2 attack are provided in 
their papers, although Pfitzmann [12] reports that messages as small as one third of 
the total image capacity are detectable.  

Farid [14] developed a universal blind detection scheme that can be applied to any 
steganographic scheme after proper training on databases of original and cover-
images. He uses an optimal linear predictor for wavelet coefficients and calculates the 
first four moments of the distribution of the prediction error. Fisher linear 
discriminant statistical clustering is then used to find a threshold that separates stego-
images from cover-images. Farid demonstrates the performance on J-Steg, both 
versions of OutGuess, EZ Stego, and LSB embedding. It appears that the selected 
statistics is rich enough to cover a very wide range of steganographic methods. 
However, the results are reported for a very limited image database of large, high-
quality images, and it is not clear how the results will scale to more diverse databases. 
Also, the authors of this paper believe that methods that are targeted to a specific 
embedding paradigm will always have significantly better performance than blind 
methods. 

Johnson and Jajodia [15] pointed out that some steganographic methods for palette 
images that preprocess the palette before embedding are very vulnerable. For 
example, S-Tools [10] or Stash [10] create clusters of close palette colors that can be 
swapped for each other to embed message bits. These programs decrease the color 
depth and then expand it to 256 by making small perturbations to the colors. This 
preprocessing, however, will create suspicious and easily detectable pairs (clusters) of 
close colors. 

Recently, the JPEG format attracted the attention of researchers as the main 
steganographic format due to the following reasons: It is the most common format for 
storing images, JPEG images are very abundant on the Internet bulletin boards and 
public Internet sites, and they are almost solely used for storing natural images. 
Modern steganographic methods can also provide reasonable capacity without 
necessarily sacrificing security. Pfitzmann and Westfeld [16] proposed the F5 
algorithm as an example of a secure but high capacity JPEG steganography. The 
authors presented the F5 algorithm as a challenge to the scientific community at the 
Fourth Information Hiding Workshop in Pittsburgh in 2001. This challenge stimulated 
the research presented in this paper. 

In the next section, we give a description of the F5 algorithm as introduced in [16]. 
Then, in Sect. 3, we describe an attack on F5 and give a sample of experimental 



results. The limitations of the detection method and ways to overcome those 
limitations are discussed in Sect. 4. The paper is concluded in Sect. 5, where we also 
outline our future research. 

2 The F5 Algorithm 

The F5 steganographic algorithm was introduced by German researchers Pfitzmann 
and Westfeld in 2001 [16]. The goal of their research was to develop concepts and a 
practical embedding method for JPEG images that would provide high steganographic 
capacity without sacrificing security. Guided by their χ2 attack, they challenged the 
paradigm of replacing bits of information in the cover-image with the secret message 
while proposing a different paradigm of incrementing image components to embed 
message bits. Instead of replacing the LSBs of quantized DCT coefficients with the 
message bits, the absolute value of the coefficient is decreased by one. The authors 
argue that this type of embedding cannot be detected using their χ2 statistical attack. 

The F5 algorithm embeds message bits into randomly-chosen DCT coefficients 
and employs matrix embedding that minimizes the necessary number of changes to 
embed a message of certain length. According to the description of the F5 algorithm, 
version 11, the program accepts five inputs: 

 
• Quality factor of the stego-image Q; 
• Input file (TIFF, BMP, JPEG, or GIF); 
• Output file name; 
• File containing the secret message; 
• User password to be used as a seed for PRNG; 
• Comment to be inserted in the header. 

 
In the embedding process, the message length and the number of non-zero non-DC 

coefficients are used to determine the best matrix embedding that minimizes the 
number of modifications of the cover-image. Matrix embedding has three parameters 
(c, n, k), where c is the number of changes per group of n coefficients, and k is the 
number of embedded bits. In their paper [16], the authors describe a simple matrix 
embedding (1, 2k–1, k) using a “hash” function that outputs k bits when applied to 2k–
1 coefficients.  

The embedding process starts with deriving a seed for a PRNG from the user 
password and generating a random walk through the DCT coefficients of the cover-
image. The PRNG is also used to encrypt the value k using a stream cipher and embed 
it in a regular manner together with the message length in the beginning of the 
message stream. The body of the message is embedded using matrix embedding, 
inserting k message bits into one group of 2k–1 coefficients by decrementing the 
absolute value of at most one coefficient from each group by one. 

The embedding process consists of the following six steps: 
 

1. Get the RGB representation of the input image. 



2. Calculate the quantization table corresponding to quality factor Q and compress 
the image while storing the quantized DCT coefficients. 

3. Compute the estimated capacity with no matrix embedding C = hDCT – hDCT /64 – 
h(0) – h(1) + 0.49h(1), where hDCT is the number of all  DCT coefficients, h(0) is 
the number of AC DCT coefficients equal to zero,  h(1) is the number of AC 
DCT coefficients with absolute value 1, hDCT/64 is the number of DC 
coefficients, and –h(1)+0.49h(1) = –0.51h(1) is the estimated loss due to 
shrinkage (see Step 5). The parameter C and the message length together 
determine the best matrix embedding. 

4. The user-specified password is used to generate a seed for a PRNG that 
determines the random walk for embedding the message bits. The PRNG is also 
used to generate a pseudo-random bit-stream that is XOR-ed with the message to 
make it a randomized bit-stream. During the embedding, DC coefficients and 
coefficients equal to zero are skipped. 

5. The message is divided into segments of k bits that are embedded into a group of 
2k–1 coefficients along the random walk. If the hash of that group does not match 
the message bits, the absolute value of one of the coefficients in the group is 
decreased by one to obtain a match. If the coefficient becomes zero, the event is 
called shrinkage, and the same k message bits are re-embedded in the next group 
of DCT coefficients (we note that LSB(d)= d mod 2, for d > 0, and LSB(d)=1– d 
mod 2, for d < 0). 

6. If the message size fits the estimated capacity, the embedding proceeds, 
otherwise an error message showing the maximal possible length is displayed.  
There are rare cases when the capacity estimation is wrong due to a larger than 
anticipated shrinkage. In those cases, the program embeds as much as possible 
and displays a warning. 

 
While the F5 algorithm does modify the histogram of DCT coefficients, the 

authors show that some crucial characteristics of the histogram are preserved, such as 
its monotonicity and monotonicity of increments. The F5 algorithm cannot be 
detected using the χ2 attack because the embedding is not based on bit-replacement or 
exchanging any fixed Pairs of Values. 

In the next section, we describe an attack on F5. It is based on the idea that one can 
accurately estimate the histogram of the cover-image from the stego-image. Because 
F5 modifies the histogram in a well-defined manner, we can calculate the number of 
modified coefficients by comparing the estimated histogram with the histogram of the 
stego-image.  

3 Description of the Attack 

We divided our attack on F5 into two separate parts: (1) Finding distinguishing 
statistical quantities T that correlate with the number of modified coefficients, and (2) 
Determining the baseline values of the statistics T. In fact, it is not that difficult to 
find a quantity that changes with embedded message length. For example, the number 
of coefficients equal to zero increases while the number of remaining non-zero 



coefficients decreases. Another measure that can be used is the “blockiness“ or the 
measure of discontinuity at the boundaries of the 8×8 grid. Actually, the blockiness is 
likely to increase for any method that embeds message bits by modifying the 
quantized DCT coefficients of the cover-JPEG image (for example, in [17,18] we use 
the blockiness increase as the distinguishing quantity to successfully attack the 
OutGuess [11]). What is difficult, however, is finding the baseline values or their 
estimates for the distinguishing statistics T – the original value(s) of T for the cover-
image.  

In the following subsection, we first analyze how F5 changes the histogram values. 
Then, we describe a method for obtaining the estimate of the cover-image histogram 
from the stego-image. We continue with a detailed description of a detection method 
that is capable of estimating the message length. Finally, we close Sect. 3 with 
experimental results and their discussion. 

3.1 Analysis of Histogram Modifications 

Let h(d), d = 0, 1, … be the total number of AC coefficients in the cover-image with 
absolute value equal to d after the image has been compressed inside the F5 algorithm 
(Step 2 above). In a similar manner, we denote hkl(d) the total number of AC DCT 
coefficients corresponding to the frequency (k, l), 1 ≤ k, l ≤ 8, whose absolute value is 
equal to d. The corresponding histogram values for the stego-image will be denoted 
using the capital letters H and Hkl. 

Let us suppose that the F5 embedding process changes n AC coefficients. The 
probability that a non-zero AC coefficient will be modified is β = n/P, where P is the 
total number of non-zero AC coefficients (P = h(1) + h(2) + …). Because the 
selection of the coefficients is random in F5, the expected values of the histograms Hkl 
of the stego-image are 
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Let us further assume that we have an estimate )(ˆ dhkl of the cover-image histogram 

(the baseline). We can use this estimate to calculate the expected values )(dHkl  using 
Eq. (1) and estimate β as the value that gives us the best agreement with the cover-
image histogram. We have experimented with different formulas for β and the best 
performance was obtained using the least square approximation. Because the first two 
values in the histogram (d=0 and d=1) experience the largest change during 
embedding (see Fig. 1), we calculate β as the value that minimizes the square error 
between the stego-image histogram Hkl, and the expected values )(ˆ dHkl  calculated 

from the estimated histogram klĥ using Eq. (1): 
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The least square approximation in Eq. (2) leads to the following formula for β 
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The final value of the parameter β is calculated as an average over selected low-
frequency DCT coefficients (k, l) ∈{(1,2),(2,1),(2,2)}. We decided to not include the 
higher frequency coefficients due to problems with potential insufficient statistics 
especially for small images. 

The reasons why we opted to work with histograms of individual low-frequency 
DCT coefficients rather than the global histogram will become apparent in Sect. 3.2 
after we introduce the method for obtaining the cover-image histogram. 

3.2 Estimating the Cover-Image Histogram 

Accurate estimation of the cover-image histogram h is absolutely crucial for our 
detection method to work. We first decompress the stego-image to the spatial domain, 

then crop the image by 4 
columns, and recompress the 
cropped image using the 
same quantization matrix as 
that of the stego-image. The 
resulting DCT coefficients 
will provide the estimates 

)(ˆ dhkl for our analysis. 
Because the accuracy of the 
estimates is the major factor 
influencing the detection 
accuracy, we include a 
simple preprocessing step to 
remove possible JPEG 
blocking artifacts from the 
cropped image before 
recompressing. We have 
experimented with several 
spatial blocking-removing 
algorithms, but the best 

results were obtained using a simple uniform blurring operation with a 3×3 kernel B, 
B 22=1−4e, B 21 = B23 = B12 = B 32 = e, and Bij = 0 otherwise. This low-pass filter helps 
remove some spurious non-zero DCT coefficients produced by “discontinuities” at 
the block boundaries, which are in the middle of the 8×8 blocks of the cropped image. 

According to our experiments, the estimated histogram is quite close to the 
histogram of the original image. We provide a simple heuristic explanation of why the 

Fig. 1. The effect of F5 embedding on the histogram of
the DCT coefficient (2,1) 



method for obtaining the baseline histogram values is indeed plausible. In fact, unless 
the quality factor of the JPEG compression is too low (e.g., lower than 60), the stego-
image produced by F5 is still very close to the cover-image both visually and using 
measures, such as the PSNR. The spatial shift by 4 pixels effectively breaks the 
structure of quantized DCT coefficients and subsequent low-pass filtering helps to 
reduce any spurious frequencies due to discontinuities at block boundaries. Thus, it is 
not surprising that the statistical properties of DCT coefficients are similar to those of 
the cover-image. 

In Fig. 1, we show a typical example of how good the histogram estimate is when 
compared to the histogram of the original image. The graph shows the original 
histogram values h21(d) (crosses), histogram values after applying the F5 algorithm 
with maximal possible message, or β = 0.5 (stars), and the estimate of the original 
histogram (circles). 

The main reason why we decided to use histograms of individual low-frequency 
DCT coefficients rather than the global image histogram is as follows. Even with the 
low-pass pre-filtering, the spatial shift by 4 pixels introduces some non-zero 
coefficients in high frequencies due to the discontinuities at block boundaries. And 
the values that are most influenced are 0, 1, and –1, which are the most influential in 
our calculations. Individual histograms of low frequency coefficients are much less 
susceptible to this onset of spurious non-zero DCTs. 

We have identified two cases when the estimated histogram obtained using the 
algorithm described above does not give accurate values. This may occur, for 
example, when the cover-image sent to F5 has already been saved in the JPEG format 
with a different quality factor Q1 ≠ Q, or when the image contains some regular 
structure with a characteristic length comparable to the block size. Fortunately, both 
cases can be easily identified and our detection procedure correspondingly modified 
to obtain accurate results in those cases as well (see Sect. 4 and 5).  

3.3 Estimating the True Message Length 

Once the relative number of changes β has been estimated, we may attempt to further 
estimate the total message length. Let n be the total number of changes in quantized 
DCT coefficients introduced by the F5 algorithm. We can write n as n = s + m, where 
s is the shrinkage (modifications that did not lead to message bits embedding), and m 
is the number of changes due to actual message bit embedding. The probability of 
selecting a coefficient that may lead to shrinkage is PS = h(1)/P. Since the coefficients 
are selected at random, the expected value of s is nPS. Thus, we obtain the following 
formula: 

m + nPS  = n, 
 

which gives m=n(1–PS) for the number of changes due to message embedding. 
Assuming the (1,2k−1, k) matrix embedding, the expected number of bits per change 
W(k) is 
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Thus, the unknown message length M can be calculated as 
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The parameter k can be derived from the knowledge of n = βP and m and the 
estimated cover-image histogram by following the algorithm of determining the 
optimal matrix embedding as implemented in F5. 

3.4 Experimental Results 

We have created a database of 20 grayscale images with dimensions ranging from as 
small as 469×625 pixels up to 1336×1782 pixels. The images were obtained using ten 
different digital cameras and two scanners, resized to a smaller, randomly chosen size, 
and saved as BMPs. Then, we applied the F5 algorithm with quality factor 75 so that 
the ratio β of modified coefficients to the number of all non-zero, non-DC coefficients 
was 0, 0.25, and 0.5, corresponding to an empty message embedded, 25%, and 50% 
of usable coefficients modified. The estimated ratio β and its distribution across the 
test images are depicted in Fig. 2. All three Gaussian peaks are centered very close to 
the true value of β and all three are very well separated. In fact, based on this 
statistical data, the detection threshold T = 0.125 will lead to a false detection 
probability of 10—8, probability of missing a message with β = 0.25 equal to 10—7, 
and probability of missing a message with β = 0.5 (full capacity) equal to 10—32. 

To find out the limits of the detection methods, we have embedded a relatively 
short message of 4.5kB in 10 randomly chosen test grayscale BMP images (out of 20 
images) all of the same dimensions 800×600. Table 1 shows the estimated ratio β̂  
and the estimated number of modifications n̂  together with the actual values β and n. 

4 Eliminating the Effects of Double Compression 

When the cover-image is stored in the JPEG format, the F5 decompresses it first and 
then recompresses with a user-specified quality factor. After that, the message is 
embedded in the quantized DCT coefficients. This means that the stego-image has 
been double compressed before embedding. The double compression can have a 
profound effect on the image histogram and it complicates the detection. 



The process of obtaining the baseline histogram from the cropped image as 
described in the previous section will produce a histogram similar to the broken line 
in Fig. 3 instead of the solid line from which the F5 started its embedding. 
Consequently, the estimated relative number of changes β may be quite different from 
the actual value. Fig. 4 shows the estimated β for a grayscale cover-image saved as 
JPEG with quality factors Q1 = 55 to 95. Good accuracy is only obtained for values Q1 
close to the F5 quality factor of 75 and for high quality JPEGs with Q1 > 90. The 
estimated β is particularly inaccurate when the quality factor of the stego-image Q1 is 
lower than 75 (see the numbers in brackets in Table 3). 

To address the problems with inaccurate detection when the cover-images are 
stored in the JPEG format, we proposed the following modification of our detection. 

 

 
 

Table 1. The number of relative 
modifications of DCT coefficients β = n/P 
and its estimate obtained using our detection 
method for 20 test images. Ten images 
contain a 4.5kB message, while the other 10 
have only been compressed with F5. The 
absolute number of modified coefficients and 
its estimate are given in the last two columns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2. Estimated number and distribution of 
relative modifications of DCT coefficients β 
in 20 test images. The lines correspond to the 
actual modifications with β = 0, 0.25, 0.5 

 

Img β β̂  n    n̂  
1 0 0.106  11846
2 0.202 0.238 19845 21937
3 0 0.079  5214
4 0.259 0.273 20254 19490
5 0.244 0.265 21401 21011
6 0.234 0.276 20267 22040
7 0.216 0.248 19675 21176
8 0.347 0.409 24741 25873
9 0 0.044  2570

10 0 0.070  5124
11 0 0.103  6187
12 0.342 0.250 23589 15745
13 0.499 0.522 22775 21531
14 0 0.113  8386
15 0 0.078  4571
16 0.257 0.291 20164 20955
17 0 0.083  7222
18 0 0.073  4513
19 0.370 0.329 23930 19342
20 0.428 0.377 24278 19308



We calculate the ratio β for a fixed set of quantization tables, {Q1, Q2, …, Qr}. For 
each quantization table, we run our detection scheme with one small modification – 
after cropping the decompressed filtered stego-image, we compress it with the 
quantization table Qi and immediately decompress before proceeding with the rest of 
the baseline histogram estimation. Then, we calculate the estimated ratio βi, i = 1, …, 
r in the usual manner. For each i and for each DCT mode kl, we calculate the L2 
distance E(i)

kl between the stego-image histogram Hkl and the histogram obtained 
using Eq. (1) with β = βi : 
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sum being taken over all low-frequency coefficients that participate in our 
calculations (see Sect. 3.1). 
 

Fig. 3. Effect of double compression on the 
histogram of quantized DCT coefficients. The 
broken line is the image histogram with a 
single compression, the solid line after double 
compression with a lower quality factor being 
the first one. The histogram corresponds to 
the DCT coefficient (1,2) 

 
Fig. 4. Estimated number of relative 
modifications β for a grayscale 800×600 test 
cover-image saved as JPEG with quality 
factors QF = 55 to 95, and F5 quality factor 
75, as a function of QF. Circles, crosses, and 
stars correspond to β = 0, 0.25, and 0.5, 
respectively 

The estimated relative number of modifications improves dramatically when the 
double compression detection is added to the detection routine (see Table 2). The 
improvement in estimates due to incorporating double compression detection and 
correction is quite obvious. The table shows the estimated ratio β obtained without 
considering the effects of double compression (in brackets), and β calculated using 
the extended detection algorithm as described above. Although the overall accuracy 
of the estimated ratio β is somewhat lower when compared to the results obtained for 
cover-images that were not JPEG compressed, the results indicate that a reasonably 
accurate detection is still possible. 



Table 2. Estimated β obtained with double compression correction and without (in brackets) 

Image Dimensions β = 0.00 β = 0.25 β = 0.50 
kangaroo.jpg 533×800 0.02 (−0.10) 0.26 (0.15) 0.47 (0.35) 
portrait.jpg 469×625 −0.01 (0.14) 0.23 (0.48) 0.44 (0.79) 
mcdonalds.jpg 960×1280 −0.02 (0.13) 0.24 (0.41) 0.50 (0.65) 
kobe_pyramid.jpg 697×1045 0.02 (0.06) 0.28 (0.31) 0.53 (0.59) 
bday.jpg 1050×1400 0.17 (−0.13) 0.37 (0.14) 0.56 (0.42) 

 
 

 
Fig. 5. Example of an image with spatial resonance. The same image cropped by 4 and 4 pixels 
has very different block frequency characteristics than the original image 

Another case of test images that may produce large errors in our detection scheme 
are images that exhibit very different block frequency characteristics after the 
cropping.  This “spatial resonance” may occur when the cover-image contains some 
regular structure with a characteristic length comparable to the block size, such as the 
metal grid in Fig. 5. Fortunately, it is easy to identify such images both visually and 
algorithmically and take appropriate measures. One possibility is to use those 
frequency modes that are most stable with respect to cropping and avoid those that 
exhibit strong resonant behavior. In our tests, we have encountered only two images 
with spatial resonance among hundreds of images randomly selected from different 
sources. 

5 Conclusion 

In this paper, we present an attack on the F5 steganographic algorithm as proposed by 
Pfitzmann and Westfeld in [16]. The attack is based on the idea that it is possible to 



estimate the cover-image histograms of individual low-frequency DCT modes by 
cropping the decompressed stego-image by 4 and 4 pixels and recompressing it again 
using the stego-image quantization matrix. After these baseline histograms are 
obtained, we determine the relative number of modified non-zero non-DC coefficients 
β as the value that minimizes the least square error between the stego-image 
histograms and the histograms obtained by embedding a message that leads to exactly 
β modifications. The detection algorithm estimates β, which can consequently be 
turned into an estimate of the secret embedded message. 

When the cover-image is in some other format that the JPEG format, the detection 
results are very reliable and accurate. We demonstrated the performance of our 
detection method on a test database consisting of 20 grayscale images obtained with 
different digital cameras and scanners with various dimensions. The experimental 
results indicate that the detection threshold T = 0.125 leads to the probability of a 
false detection 10—8, probability of missing a message with β = 0.25 equal to 10—7, 
and probability of missing a message with β = 0.5 (full capacity) equal to 10—32. 

When the cover-images are stored in the JPEG format, the detection method must 
be modified to accommodate the effects of double JPEG compression produced by 
the embedding. The F5 always decompresses the cover-image and recompresses it 
using a user-defined quality factor. This leads to artifacts in coefficient histograms 
(jaggedness) that may introduce quite large detection errors. Fortunately, the previous 
JPEG compression can be estimated from the stego-image and the same 
compression/decompression that occurred prior to applying the F5 can be carried out 
for the cropped stego-image before deriving the estimated histograms for comparison. 
This small modification of the detection algorithm dramatically improves the 
performance and makes the accuracy and reliability of our results independent of the 
cover-image format. 

The method for obtaining the cover-image histogram by cropping and low-pass 
filtering can in fact be used for designing detection mechanisms for other 
steganographic schemes that manipulate quantized DCT coefficients. We can use 
different statistical quantities rather than first-order statistics in the frequency domain 
to obtain their baseline values. For example, the increase of “blockiness” (the sum of 
spatial discontinuities at block boundaries) during embedding can be used as the 
distinguishing quantity for OutGuess [11]. Using this measure, we have been able to 
successfully attack OutGuess [17,18]. The blockiness measure increases with 
embedding for most steganographic schemes for JPEGs independently of their inner 
mechanisms. This opens up a new direction in steganalysis of JPEG images that yet 
needs to be further explored.  
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