
Department of Informatics

University of Fribourg (Switzerland)

Pretty Good Anonymity
achieving high performance anonymity services with a single node

architecture

THESIS

presented to the Faculty of Science of the University of Fribourg

(Switzerland) in consideration for the award of the academic grade of

Doctor scientiarum informaticarum

by

Ronny Standtke

from

Germany

Thesis No: 1771

Logos Verlag Berlin GmbH

2012

i



Accepted by the Faculty of Science of the University of Fribourg (Switzerland)

upon the recommendation of Prof. Dr. Ulrich Ultes-Nitsche, Prof. Dr. Rüdiger

Grimm and Prof. Dr. Jacques Pasquier.

Fribourg, 12/12/2012

Thesis supervisor Dean

Prof. Dr. Ulrich Ultes-Nitsche Prof. Dr. Rolf Ingold

Jury president

Prof. Dr. Béat Hirsbrunner

ii



Acknowledgements

First of all I want to thank Prof. Dr. Ulrich Ultes-Nitsche, head of the Formal

Dependability and Security research group (FDS) at the University of Fribourg for

supervising my thesis. I also want to thank my colleagues in the research group,

namely Dominik Jungo, David Buchmann, Thierry Nicola, Christoph Ehret, Michael

Hayoz, Stephan Krenn, Stefania Barzan, and Carolin Latze for their feedback and

suggestions.

Furthermore I would like to thank my colleagues at secunet SwissIT AG for

their support and valuable input, namely Dr. Susanne Röhrig, Dr. Lorenz Frey and

Dr. Volker Zeuner.

And my biggest thanks go to my wife and my daughters for their endless support

and patience through all the time this work has taken.



Abstract

There are several anonymity architectures for Internet communication in use today.

They are either unsafe or very complex.

In this work the design, implementation and evaluation of an anonymity archi-

tecture that provides a high level of protection and is still simple enough to enable

high-bandwidth, low-latency Internet communications is presented.

The architecture uses a single-node anonymity service provider in combination

with anonymity groups. The software components of the architecture consist of a

client program for end-users, a server program for the anonymity service provider

and a remote management component for the server program.

To enable a high-bandwidth and low-latency communication between the client

program and the server program a new high-performance IO-framework was designed

and implemented.

anonymity, dummy tra�c, high performance IO



Zusammenfassung

Verschiedene Verfahren zur Anonymisierung von Internetkommunikation werden

heutzutage eingesetzt. Diese Verfahren sind entweder unsicher oder sehr komplex.

In dieser Arbeit wird das Design, die Implementierung und die Evaluation eines

Anonymisierungsverfahrens präsentiert, welches einen hohen Schutz bietet und den-

noch einfach genug ist, eine breitbandige Internetkommunikation mit niedrigen Latenz-

zeiten zu ermöglichen.

Das Verfahren verwendet einen nicht-verteilten Anonymisierungsdienst in Kom-

bination mit Anonymitätsgruppen. Die Softwarekomponenten des Verfahrens beste-

hen aus einem Clientprogramm für Endbenutzer, einem Serverprogramm für den

Anonymisierungsdienst und einer Komponente zur Fernwartung des Serverprogramms.

Um eine breitbandige Kommunikation mit geringer Latenzzeit zwischen dem

Clientprogramm und dem Serverprogramm zu ermöglichen, wurde ein neues Hoch-

leistungs-I/O-Rahmenwerk entworfen und implementiert.

Anonymität, Dummytra�c, Hochleistungs-I/O
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Chapter 1

Introduction

Anonymity is one of the major goals when aiming at achieving data security �

its purpose is con�dentiality of communication circumstances (participants, time,

duration and data volume of a communication). As with any other security goals, in

order to achieve anonymity, there exist various methods to protect oneself against

attackers of various strengths: The design and implementation of the anonymity

method will depend signi�cantly on the underlying threat model.

For Internet communications, several anonymization techniques have been de-

signed and implemented during the last years. Even within these relatively short

time, the attacker model has changed signi�cantly taking into account the increasing

monitoring and commercialization of the Internet.

1.1 State of the art

In this section only a very short summary of existing anonymization methods and

their corresponding implementations is presented. For a more detailed evaluation

see chapter 3.

1.1.1 Proxy

A proxy is a (trustworthy) third party placed in between a user and his/her commu-

nications partners. Proxies are well-known components of Internet communications

and are available for many protocols. Using a proxy is a very weak anonymization

method as an attacker wire-tapping the communication between users and proxy

1



2

can easily access any information about the current communication by analyzing

the address information exchanged between users and proxy.

In summary, anonymization via a proxy is simple but insecure.

1.1.2 Encrypting proxy

The additional feature of an encrypting proxy is that communications between the

proxy and its users are encrypted, rendering impossible to reveal communications

relations by address evaluation. Encrypting proxies are also well-known and avail-

able for many protocols, mostly by adding an SSL-layer [64] above the protocol.

But encryption alone does not protect against the many other known attacks on

anonymity (see chapter 3) besides address evaluation.

In summary, anonymization via an encrypting proxy is no longer trivial (because

of the necessary public key infrastructure needed for secure encryption) but still

insecure with respect to anonymization.

1.1.3 Anonymity group

To defend against most known attacks against anonymity, users have to join so-

called anonymity groups. Members of an anonymity group must behave identical in

many ways (frequency and size of sent and received messages). There are still some

attacks against anonymity groups but they are quite sophisticated. Currently, there

exists no implementation which solely aims at implementing anonymity groups in a

simple and stable way.

In summary, anonymization via anonymity groups is not overly complex, provides

a high level of security but lacks an implementation.

1.1.4 Mix

Using anonymity groups, no one can reveal communications relations � except the

anonymity provider where the anonymity group is formed. The method of mixes [10]

tries to exclude, in addition, the possibility of the third party being the attacker. To

do so, the third party is partitioned into several so-called mixes and every message

will go through all mix instances. A particular coding scheme is used, in which

messages are multiply encrypted and decrypted. The additional organizational and
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technical overhead makes mix implementations very complex. There are still so-

phisticated attacks against mixes so that the stated goal of protection against the

anonymity provider is not completely reached.

In summary, anonymization via mixes provides a high level of security but adds

a complex overhead for a questionable gain.

1.2 Motivation

The motivation of this work is the lack of a simple and secure implementation of

anonymization via anonymity groups. The goal of this work is to design, implement

and evaluate such a solution.

1.2.1 Goals

Here we list the objectives that were set for this work:

Defense against a global attacker: Because one can assume that the global at-

tacker (see section 2.3) will become more and more realistic (or maybe already

is), it is the fundamental threat model for this architecture.

Performance: The solution must not collide with current user expectations re-

garding Internet usage. It must provide users with anonymous, low-latency,

high-bandwidth communication links.

Simplicity: The solution's system design must be as simple as possible so that it

is easy to understand by developers or code reviewers and straightforward to

install and use for both service providers and end users.

Flexibility: The architecture must support TCP-based programs without modi�-

cation. The architecture should o�er multilevel security. This means it must

be possible to use the architecture in plain �encrypting proxy� mode if the own

security needs are not ranked as high.

1.2.2 Non-goals

Here we list objectives that are explicitly not taken into account by this work:
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No protocol normalization: If users want anonymity from peers while using pro-

tocols that may leak user information (e.g. HTTP) they must layer the solution

with a �ltering proxy such as Privoxy (http://www.privoxy.org1). By not

�ltering protocols, the solution enables users to stay anonymous against the

network but still authenticate to a peer.

Not steganographic: The solution has no mechanisms to conceal who is using its

services.

1last visited: January 2012

http://www.privoxy.org


Chapter 2

Threat models and countermeasures

The primary goal of anonymization is to protect communication circumstances. At

�rst, we present a simple formal speci�cation of communication circumstances which

will be used as the base for further considerations:

In communication there exists a non-empty set of senders X and a non-empty set

of recipients Y . The membership between X and Y is unde�ned, both sets could

be identical, be a subset of each other, share intersections or could be completely

disjoint. Messages that originate in X and arrive in Y form a graph G with X as

the domain and Y as the codomain (see Figure 2.1).

Figure 2.1: sets and graph in communication

Communication circumstances at a certain point in time is the symmetric (and

most of the time heterogeneous) binary relation (X, Y,G). An attack against anonymity

is therefore de�ned as gaining knowledge about the communication graph G. There

5
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are di�erent threat models against anonymity with di�erent strengths and common-

ness which are presented in the following sections. They will be evaluated as to their

certainty, complexity and existing countermeasures.

2.1 Remote adversary

In this threat model the adversary can only observe Y , i.e. the reception of messages

at one or more recipients. When the messages contain sender information (as it is the

norm in IP-based communication networks, all packages contain a sender IP), the

adversary can gain information about all observed parts of G. Real world examples

for adversaries of this threat model are:

• web server operators

• participants in a peer-to-peer communication protocol

This threat model is very weak but probably the most common.

2.1.1 Certainty

The certainty of this attack is absolute.

2.1.2 Complexity

An adversary has to store and evaluate all received messages. Therefore, if n is the

number of messages, the complexities of the attack are:

• space: O(n)

• time: O(n)

2.1.3 Countermeasures

To protect against a remote adversary, a sender must remove the sender information

from the messages. In IP-based communication networks, the most straightforward

solution is to use a proxy. A proxy is a (trustworthy) third party placed in between

a sender and its recipients. During connection establishment, each sender transfers

the recipient's address to the proxy by using an appropriate protocol. After the
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proxy has established a connection to the recipient, it will replace the original sender

information with its own information before forwarding messages from the sender

to the recipient. The sender remains anonymous as long as it does not reveal its

sender information to the recipient in another way (e.g. on a higher level protocol

as HTTP where browsers reveal many sender information e. g. via cookies).

2.2 Local adversary

In this threat model the adversary can only observe X, i.e. the sending of messages.

When the messages contain recipient information (as it is the norm in IP-based

communication networks, all packages contain a destination IP), the adversary can

gain information about all observed parts of G.

Real world examples for adversaries of this threat model are:

• intranet operators

• Internet Service Providers

This threat model is very common nowadays.

2.2.1 Certainty

The certainty of this attack is absolute.

2.2.2 Complexity

An adversary has to store and evaluate all sent messages. Therefore, if n is the

number of messages, the complexities of the attack are:

• space: O(n)

• time: O(n)

2.2.3 Countermeasures

To protect against a local adversary, a sender must hide the recipient information in

the messages. In IP-based communication networks, senders have to use a proxy but

in addition to the basic proxy mechanisms, senders have to encrypt their messages
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to the proxy. (Actually, only the recipient information must be encrypted to protect

anonymity but to also protect the con�dentiality of the communication, usually the

entire messages are encrypted.) As long as the adversary can not break the message

encryption it is impossible for the adversary to gain knowledge about G.

2.3 Global adversary

In this threat model the adversary can observe both X and Y , that means the adver-

sary can observe any message sent and any message received. Considering technical

as well as administrative developments in recent years, the potential for this threat

model to become reality for the Internet is increasing [16]. From law enforcement

authorities to the entertainment industries, various sectors have the need for and

technical measures to monitor Internet tra�c. Such a powerful adversary can apply

various strategies to attack anonymity. Most of these strategies have been mentioned

in [40].

2.3.1 Passive Attacks

Passive attacks are executed only by observations and calculations. The adversary

does not change any property of the communication infrastructure.

End-to-end content correlation

If the communication graph G has no delay and the adversary can read all messages

both in X and Y , the adversary can compare all sent messages with all received

messages. The senders and recipients of messages are the vertices and the links

between senders and recipients of equal messages form the communication graph G.

In the example given in Figure 2.2 the adversary can observe the following mes-

sages:

• sender1 is sending message s1 with the contents 'a'

• sender2 is sending message s2 with the contents 'b'

• recipient1 is receiving message r1 with the contents 'b'

• recipient2 is receiving message r2 with the contents 'a'
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Figure 2.2: end-to-end content correlation example

When x is the index of a sender and y the index of a recipient, attacking the

anonymity means to �nd all index pairs {x, y} so that sx = ry. In the example

given above, this would be:

• {1, 2}

• {2, 1}

Certainty The certainty of this attack is absolute, as long as the content of all

messages in the observation timespan is di�erent.

Complexity An adversary has to store and sort all sent messages of a certain

period of time in a collection and store and sort all received messages of the same

period of time in another collection. Therefore, if n is the number of messages sent

and using an e�cient sorting algorithm (e.g. quicksort [27]), the complexities of the

attack are:

• space: O(n)

• time: O(n· log(n))

Countermeasures End-to-end content correlation can be prevented encrypting

the messages using probabilistic public key encryption and sending them through a

third party in G.
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Figure 2.3: end-to-end content correlation prevented by probabilistic public key

encryption

In the example given in Figure 2.3 the third party in G has a public key p and

a private key q. All senders generate a random value rvx for every message sx to

send and encrypt it together with the message with p. The third party decrypts

these encrypted value pairs with the private key q, discards the random values and

forwards the plain text message value rx to the recipients.

To be able to execute end-to-end content correlation in this case, the adversary

must be able to compute q(p(r, x)). This is only the case when the adversary has

compromised the third party and gained access to the private key q or when the

adversary can break the encryption mechanism (which is very unlikely when using

only established and well-known mechanisms that have passed the test of time).

The encryption mechanism used in this scenario must be secure against adaptive

chosen-plain text attacks.

When non-probabilistic public key encryption would be used (no random value

would be created and combined with every sent message sx), the adversary could

just compute all p(rx) of all received messages rx and use these values for content

correlation with all sx.

End-to-end timing correlation

If the communication graph G has no delay and messages can not be sent simul-

taneously and the adversary can record all message timestamps both in X and Y ,

the adversary can compare all timestamps of sent messages with all timestamps of
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received messages. The senders and recipients of messages are the vertices and the

links between senders and recipients of messages with equal timestamps form the

communication graph G.

Certainty The certainty of this attack is absolute, as long as the timestamps of

all messages are di�erent.

Complexity The attack algorithm and its complexity are similar to the end-to-

end content correlation attack. End-to-end timing correlation is probably a little bit

more e�cient because only short values (timestamps) are stored and sorted instead

of large values (message content).

Countermeasures End-to-end timing correlation is impossible to circumvent by

one sender alone. Therefore anonymity groups [54] have to be established. An

anonymity group is formed by a number of senders. They must send all messages to

a third party with the same timing. This way an adversary can no longer correlate

message times to a single sender but only to a complete anonymity group. The third

party must collect and re-order all messages before forwarding. Otherwise the order

of incoming and outgoing messages at the third party would be identical and thus

again allow their correlation.

End-to-end data volume correlation

If the communication graph G has no delay and the adversary can record all message

sizes both in X and Y , the adversary can compare all sizes of sent messages with all

sizes of received messages. The senders and recipients of messages are the vertices

and the links between senders and recipients of messages with equal sizes form the

communication graph G.

Certainty The certainty of this attack is absolute, as long as the sizes of all

messages in the observation timespan are di�erent.

Complexity The attack algorithm and its complexity are similar to the end-to-

end timing correlation attack.
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Countermeasures End-to-end data volume correlation can only be prevented (as

in the previous case of end-to-end timing correlation) by an anonymity group. All

anonymity group members must send data at a �xed rate to the third party. If

senders have no (meaningful) data to be sent, they must create arbitrary, meaning-

less tra�c (dummy tra�c).

Exclusive data volume correlation

If the communication graph G can split but does not in�ate messages and the

adversary can record all message sizes both in X and Y , the adversary can compare

all sizes of sent messages with all sizes of received messages and can exclude that

certain received messages have been sent from the same sender when the sum of

their sizes is larger than the size of the sent message.

Here is a simple example:

Figure 2.4: exclusive data volume correlation example

At a certain point in time an adversary observes that sender s1 is sending a

message of size 2, sender s2 is sending a message of size 5, recipient r1 is receiving

a message of size 1 and recipient r2 is receiving a message of size 3. The adversary

then computes all possible size sums of received messages and excludes senders with

smaller sent messages:

The remaining possible scenarios in the example above are:

• s1 → r1 and s2 → r2 (both s1 and s2 where shortened by G)

• s2 → r1 and s2 → r2 (s2 was split and shortened by G)
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sum exclusion reminder

r1 = 1 none s1, s2

r2 = 3 s1 s2

r1 + r2 = 4 s1 s2

Table 2.1: Exclusive data volume correlation example

Certainty While the exclusion of certain possible parts of G is absolute, this

attack does not directly disclose parts of G. Therefore this attack is only useful to

support other types of attack.

Complexity An adversary has to store the sizes of all messages and compute the

sum of all possible combinations. Therefore, if n is the number of messages the

complexities of the attack are:

• space: O(n)

• time: O(n!)

The factorial time complexity of this attack makes it very di�cult to execute for

large numbers of messages.

Countermeasures Exclusive data volume correlation can only be prevented by

constructing a communication graph G where messages can be split and shortened.

When l(m) is the function that determines the length of a message m, S is the set of

sent messages and R = {r1, r2, ..., rn} is the set of received messages, the following

inequality must be true for G so that no exclusion is possible:

∀s ∈ S : l(s) >
n∑

i=1

l(rn) (2.1)

The consequence of this inequality is that the size of sent messages must increase

(by adding dummy tra�c) with every additional sender who wants to communicate

or that the the size of received messages must decrease. Both restrictions result in

a degradation of the usable bandwidth for every sender.
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Statistical disclosure

If senders send messages only to a limited set of recipients and the sets of senders

is not constant and the adversary can record all senders and all recipients of G

throughout the time period of the attack, the adversary can gain information about

G by statistic evaluation of the recorded data.

To be able to reconstruct the edges of the communication graph G originating

from a certain sender, the adversary has to add all distribution sets containing the

attacked sender and then subtract all distribution sets not containing the attacked

sender.

Here is a simpli�ed example where we assume that the limited set of recipients

of each sender is constant:

At the �rst observation the set of senders consists of S1 = {s1, s2} and the

set of recipients consists of R1 = {r1, r2, r3}. At the second observation the set

of senders consists of S2 = {s1, s2, s3} and the set of recipients consists of R2 =

{r1, r2, r3, r4}. The communication graph for sender s3 can be reconstructed by

calculating R2 −R1 = {r4}.

Certainty The certainty of this attack is absolute, as long as the limited set of

recipients of each sender is constant, otherwise the certainty of this attack is only

probabilistic.

Complexity An adversary has to store all senders and receivers of several obser-

vations and has to add and subtract di�erent distribution sets. Therefore, if n is

the number of messages and o the number of observations the complexities of the

attack are:

• space: O(n· o)

• time: O(n· o)

Countermeasures Statistical disclosure can only be prevented by disabling the

prerequisites of this attack. This can be achieved by using static sets of senders or

sending all messages to all recipients and let the recipients decide if a message was

meant for them (broadcast and local choice).
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In most modern forms of real communications nowadays it is probably unrealistic

to assume a static set of senders, users usually join and leave a communication

infrastructure very dynamically.

Broadcasting and local choice messages is possible for small communication in-

frastructures but does not scale very well. For global communication infrastructures

like the Internet it is practically impossible.

2.3.2 Active Attacks

Active attacks are executed by changes to communication infrastructure and subse-

quent observations and calculations.

n− 1 attack

As described in [33] the adversary isolates one speci�c sender by simulating all other

senders at a certain point in time. As the adversary knows the recipients of all own

messages, the set of the victim's recipients can be determined by subtracting the

own recipients from the set of all recipients of a certain communication observation.

Certainty The certainty of this attack is absolute.

Complexity Besides the very high social complexity to convince all other senders

of a communication infrastructure to cooperate with the adversary, the adversary

must store all senders and recipients and subtract sets of observed recipients. There-

fore, if n is the number of messages, the complexities of the attack are:

• space: O(n)

• time: O(n)

Countermeasures n−1 attacks can not be prevented by technical measures: The

adversary can always try to simulate many other senders or convince other senders

to cooperate. Technically speaking, benign senders cannot be distinguished from

malicious ones.
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2.3.3 Message tampering

If encrypted messages are sent via a third party and an adversary is able to modify

or delete these sent messages the adversary can trigger a noticeable change in the

set of received messages.

Decrypting a tampered ciphertext without integrity mechanisms (with even only

one bit �ipped) leads in modern cipher algorithms to a completely random plaintext.

This random plaintext can be distinguished from untampered plaintext by measuring

the entropy of received messages. Most plaintext messages in todays communication

protocols are uncompressed and therefore have a lower entropy than the random

plaintext produced by message tampering (see Figure 2.5 for a simple example):

Figure 2.5: message tampering without integrity mechanisms

When the cipher algorithm uses integrity mechanisms to protect against message

tampering, the data stream to the recipient does not turn into random white noise

as above but just stops. This has the same e�ect as deleting the sent message and

can also easily be detected by a global adversary (see Figure 2.6):

Message tampering can also be used to execute or simplify other attacks:

When executing an n − 1 attack message tampering can be used to stop all

messages of non-cooperating senders. By using message tampering it is no longer

necessary to convince all other senders of a communication infrastructure to coop-

erate with the adversary.

When executing end-to-end correlation attacks, message tampering can be used

to destroy sent messages with already observed correlation properties (content, time,

size) to make sure that the certainty of the end-to-end correlation attack is absolute

(equal correlation properties make the certainty of these attacks only probabilistic).



17

Figure 2.6: message tampering with integrity mechanisms

Certainty The certainty of message tampering without integrity mechanisms is

absolute, as long as untampered plaintext messages have a signi�cant lower entropy

than completely random messages.

The certainty of message tampering with integrity mechanisms is absolute, as

long as G is constant (i.e. no data streams are stopped in normal operation).

Otherwise, the certainty of both attacks is only probabilistic.

Complexity After tampering one message the adversary has to observe all re-

ceived messages. Therefore, if n is the number of received messages in a certain

time frame, the complexities of the attack are:

• space: O(n)

• time: O(n)

Countermeasures Message tampering attacks can be prevented by using cipher

algorithms with integrity mechanisms and only forward messages from the third

party to the recipients when an untampered message has been received from all

senders. Unfortunately, this countermeasure opens up a new attack vector: an

adversary can easily execute a denial-of-service attack by just tampering with a

single message of a single sender or by imposing a sender and not sending any

message.
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2.4 Third party

The most powerful adversary is the (trusted) third party itself. Despite all protec-

tion mechanisms at the periphery, the third party must establish a link between

users and their peers to enable communication in the end. If the third party can

store and correlate all incoming and outgoing messages it can uncover any existing

communication association.

Certainty The certainty of this attack is absolute.

Complexity The third party must store the information which outgoing mes-

sage belongs to which incoming message. Therefore, if n is the number of received

messages in a certain time frame, the complexities of the attack are:

• space: O(n)

• time: O(n)

Countermeasures To protect against the third party itself, the latter must be

split up into a distributed system. For the protection mechanisms to be e�ective, the

individual nodes of the distributed system must not cooperate. The ultimate goal

is to ensure anonymity even for the case when all nodes but one are compromised.

Because the user data must pass through all involved nodes before it reaches the

communication peer, communication via a distributed third party has a relatively

high latency and low bandwidth and, in case of commercial o�erings where each

individual node of the distributed third party charges money for its service, rela-

tively expensive. Additional mechanisms must be established on the user's side to

ensure that every part of the distributed system has access only to the particular

information it needs. A simple mechanism for that purpose is to use layered encryp-

tion (each message is encrypted several times by the user and every node can just

decrypt some parts). This idea was �rst introduced by David Chaum in his seminal

paper [10] describing the fundamental building blocks for anonymity.

One option of distributing the third party is to use ad hoc or peer-to-peer [21, 48]

networks where any node can join and leave the distributed system anytime. This

variant is mostly used by user-driven anonymity services where each user is also
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partially a trusted third party for other users. There are several disadvantages to

this design:

• Latency and bandwidth of the anonymization service are depending on indi-

vidual user connections, which possibly can be very limited.

• Whenever one node leaves the system, it breaks all the communication links

that were routed over this node.

• Volunteers joining the distributed system may be prosecuted for damages done

by other (malicious) users of the system. This happened already in Germany

where the Public Prosecution Service con�scated anonymization servers of

private individuals (e.g. http://www.golem.de/0609/47702.html1).

• It is not possible in an e�cient way to enable all necessary security mechanisms

(e.g. dummy tra�c) between all distributed nodes, making the system weak

against global adversaries.

Another option of third party distribution is to split the third party by organiza-

tional means, e.g. by distributing the service to a �xed set of independent organiza-

tions. A substantial foundation of this method is the self-obligation of the organiza-

tions not to cooperate regarding the de-anonymization of users. The unconditional

keeping of this self-obligation cannot be controlled by the users and therefore can be

doubted. The whole idea of organizational splitting is inconsistent, because all in-

stances have to collaborate on a technical, organizational and even �nancial ground

just to convince users that exactly these instances do not cooperate.

As stated above, the goal of distributed systems is to ensure the anonymity of

the user even against the third party itself. But there are many remaining external

attacks, especially Statistical disclosure (see section 2.3.1), n−1 attacks (see section

2.3.2) and Message tampering (see section 2.3.3). Protection against the third party

only makes sense in the end, if all remaining external attacks are signi�cantly more

di�cult than internal attacks, which is not the case so far. The attacking third

party can just execute an external instead of an internal attack.

In summary, one could say that anonymization over a distributed system is an

expensive and even inconsistent method that does not reach its goal. This conclusion

is one of the motivations of this work.

1last visited: January 2012

http://www.golem.de/0609/47702.html
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Chapter 3

Evaluation of existing solutions

In this chapter the currently available implementations for protecting against di�er-

ent threat models enlisted in chapter 2 are (very shortly) evaluated as presented in

[56].

3.1 Proxy

A proxy protects against remote adversaries (see section 2.1).

Proxies are fairly simple programs and exist in di�erent variations, mainly for

Internet application-layer protocols. There exist a large number of HTTP and

FTP proxies, which are normally placed at the Intranet/Internet border and are

accompanied by NAT (Network Address Translation) gateways. Many proxy imple-

mentations are Open Source Software and can be categorized as secure and stable.

Examples are:

• Web-Proxy Squid (http://www.squid-cache.org1)

• NAT for Linux-Kernel (http://www.netfilter.org2)

Evaluation: Proxies are no solution for anonymous Internet communications because

they do not protect against stronger (local and global) adversaries.

1last visited: January 2012
2last visited: January 2012
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http://www.squid-cache.org
http://www.netfilter.org
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3.2 Encrypting Proxy

An encrypting proxy protects against local adversaries (see section 2.2).

Most proxies o�er the possibility of encrypted connections. In most cases existing

protocols are complemented by the secure sockets layer protocol SSL which takes

care of encryption (and mutual user/proxy authentication). As for proxy implemen-

tations in general, encrypting proxies are secure and stable. Examples include:

• Anonymizer (http://www.anonymizer.com3)

• Metropipe (http://www.metropipe.net4)

• Proxify (http://proxify.com5)

Evaluation: Encrypting proxies are no solution for anonymous Internet communi-

cations because they do not protect against stronger (global) adversaries.

3.3 Mix

The method of using a group of mixes tries to protect against a global adversary

including the anonymity provider itself but mostly fails to reach this goal (see section

2.3). There have been several attempts of implementing a mix solution within the

last years. Only the most prominent attempts are evaluated in the next sections.

3.3.1 Cypherpunk remailers

A �rst implementation of a low-bandwidth, high-latency distributed anonymization

service was realized in the so-called cypherpunk remailers [42]. These remailers o�er

anonymous e-mail communications and newsgroup postings. At the time of writing,

lists of Cypherpunk Remailers can be found here:

• http://www.noreply.org/echolot/rlist2.html6

• http://remailer.paranoici.org/rlist.html7

3last visited: January 2012
4last visited: January 2012
5last visited: January 2012
6last visited: January 2012
7last visited: January 2012

http://www.anonymizer.com
http://www.metropipe.net
http://proxify.com
http://www.noreply.org/echolot/rlist2.html
http://remailer.paranoici.org/rlist.html
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Evaluation: Cypherpunk remailers are no solution for anonymous Internet communi-

cations because they provide only low-bandwidth and high-latency communications

and do not hide the service its users access (e-mail and newsgroups in this case).

3.3.2 Tor (The Onion Router)

Tor is the second-generation Onion Routing [23, 46, 58, 59, 15] system. It addresses

some limitations of the original design but still lacks many security features, making

it vulnerable to relatively weak adversaries [40].

Evaluation: The Tor network is no solution for anonymous Internet communica-

tions because of its security weaknesses.

3.3.3 JAP (Java Anon Proxy)

JAP [5] was a research project at the Technical University of Dresden (http://

anon.inf.tu-dresden.de8, available since September 2001) and uses a mix cascade

(�xed sequence of directly linked mixes). Even there, for performance reasons, some

important security measures are missing (e.g. dummy tra�c). Forced by German

police authorities the JAP project integrated a surveillance function into the mix

implementation without immediately informing its users (see http://www.heise.

de/newsticker/data/uma-18.08.03-001/9). For many users that action was a

betrayal of trust and the most serious set-back for the project. The surveillance

function remained in JAP and can still be activated for any addresses. This way,

JAP no longer complies with the original goal - to protect the users against the mix

operators.

Evaluation: JAP is no solution for anonymous Internet communications because

of its high technical and organizational complexity and non-compliance with its own

goals.

8last visited: January 2012
9last visited: January 2012

http://anon.inf.tu-dresden.de
http://anon.inf.tu-dresden.de
http://www.heise.de/newsticker/data/uma-18.08.03-001/
http://www.heise.de/newsticker/data/uma-18.08.03-001/
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Chapter 4

Design of PGA

The above evaluation of threat models, countermeasures and their implementations

led to this work, called PGA (Pretty Good Anonymity).

The evaluation of the third party adversary threat model done in section 2.4 has

demonstrated that the e�orts needed for a distributed anonymity service provide

only a questionable security gain.

In addition to all theoretical and technical considerations how secure anonymous

architectures can be build, a balance with past experiences and current politics

had to be found. Prof. Dr. Andreas P�tzmann, leading the JAP research project,

disclosed in an interview (see https://www.datenschutzzentrum.de/interviews/

pfitzmann/1) that they where considering to switch o� JAP because child abuses

where prepared via JAP and only the build-in surveillance function (see http://

anon.inf.tu-dresden.de/dataretention_en.html2) let them continue with the

project. Current politics make it very unlikely that an anonymity service without

a data retention module can even be legally operated (see current EU directive on

data retention [16]). All considerations above lead to the decision to design PGA as

a single-node anonymity service, very similar to a single mix instance.

A software developing process is (or more realistically: should) usually put in

place when developing a software product, including activities like planning, im-

plementation, testing, documenting, veri�cation, integration, deployment, training,

support and maintenance. Several models to organize these activities exist, e.g.

the waterfall model [52], spiral model [7], agile development [4] or iterative and

1last visited: January 2012
2last visited: January 2012
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https://www.datenschutzzentrum.de/interviews/pfitzmann/
https://www.datenschutzzentrum.de/interviews/pfitzmann/
http://anon.inf.tu-dresden.de/dataretention_en.html
http://anon.inf.tu-dresden.de/dataretention_en.html
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incremental development model [35].

As a research project, the software development process of PGA was rather simple

and consisted only of the activities of planning, implementation, testing and docu-

mentation. The activities where organized closely to the iterative and incremental

development model.

The syntax speci�ed in this document is described in both prose and an aug-

mented Backus-Naur Form [34]. The US-ASCII coded character set is de�ned by

ANSI X3.4-1986 [1]. The following rules are used throughout this document:

OCTET = <any 8-bit sequence of data>

CR = <US-ASCII CR, carriage return (13)>

LF = <US-ASCII LF, linefeed (10)>

CRLF = CR LF

SP = <US-ASCII SP, space (32)>

DIGIT = <any US-ASCII digit "0".."9">

UPALPHA = <any US-ASCII uppercase letter "A".."Z">

LOALPHA = <any US-ASCII lowercase letter "a".."z">

ALPHA = UPALPHA | LOALPHA

HEX = "A" | "B" | "C" | "D" | "E" | "F" |

"a" | "b" | "c" | "d" | "e" | "f" | DIGIT

4.1 Overview

The PGA architecture is divided into two main components, the local proxy (PGA

Client) and the server component (PGA Server). The PGA Client has to be in-

stalled within the trusted zone of every user, the PGA Server at the provider of

the anonymization service. The PGA Server is divided into a core and a remote

management front end (see Figure 4.1). Fore secure authentication when estab-

lishing connections to the PGA Server, all components have to interact with a CA

(Certi�cate Authority) for certi�cate management.

Two protocols had to be designed and implemented:

The PGA tunnel protocol is the protocol for exchanging data between the PGA

Client and the PGA Server and includes services like logging in, joining or

leaving an anonymity group, opening and closing connections to communica-
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Figure 4.1: PGA overview

tion peers, exchanging status information, etc. More information about this

protocol is given in section 4.6.

The PGA remote management protocol is the protocol for exchanging data

between the PGA Remote Management and the PGA Server and includes

services like starting or stopping the PGA Server, management of anonymity

groups, certi�cates, data volumes, logging, statistics, etc. More information

about this protocol is given in section 4.7.

4.2 Client

The requirements for the PGA Client, de�ned by the author of this work, are as

follows:

Platform independence The PGA Client should be usable on the widest range

of devices that have Internet connectivity (desktops, laptops, tablet comput-

ers, smartphones, . . . ) and should be compatible with the widest range of

operating systems currently in use.

Application independence As many applications as possible must be able to

communicate via PGA. Besides the higher value of the PGA architecture to the

end user, this requirement also improves the security of the PGA architecture
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because in contrast to e.g. cypherpunk remailers, it no longer reveals to an

adversary the services utilized by its users.

Simplicity For end-users the PGA Client should be easy to install and to use.

For reviewers and developers the PGA Client source code must be easy to

understand and evaluate. The basic idea behind this requirement is that the

larger the group of people reviewing the PGA Client source code is, the simpler

it is to establish a reasonable level of trust in the safety of the PGA Client.

Multilevel Security Users must be able to decide if they want to go to the time

and e�ort of full anonymization by joining an anonymity group or if using the

PGA Server as a simple encrypting proxy is enough.

4.2.1 Achieving platform independence

To satisfy the requirement of platform independence, the PGA Client was imple-

mented in the programming language Java [24]. Programs implemented in Java run

on every platform where a Java Virtual Machine [37] is available. At the time of

writing this consists of almost all hardware platforms with Internet connectivity and

their operating systems.

The graphical user interface is completely separated from the core (see Figure

4.2). This way it becomes possible to implement di�erent graphical user interfaces

for devices with di�erent form factors (everything between e.g. desktop systems with

large monitors, smartphones with small screens and embedded systems with only a

one-line seven-segment display).

The graphical user interface is based on the interface HandshakeCompleted-

Listener (which is part of the Java NIO framework, see chapter 5 on page 107) and

the abstract class PgaClientUI (see Figure 4.3).

The interface HandshakeCompletedListener has the following methods:

handshakeCompleted(sslSession:SSLSession) is invoked on registered objects

when an SSL handshake is completed. This method is used in the PGA Client

UI to extract and show information about the cipher suite (protocol, asym-

metric cipher, symmetric cipher, hash function) that was selected as the result

of the SSL handshake process between the PGA Client and the PGA Server

when establishing a tunnel connection.
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Figure 4.2: PGA Client overview

The abstract class PgaClientUI has the following methods:

connectionSucceeded() is invoked when the connection to a PGA Server was suc-

cessfully established.

connectionCanceled() is invoked when the user canceled establishing the connec-

tion to a PGA Server.

connectionFailed(errorMessage:String) is invoked when establishing the con-

nection to a PGA Server failed. The parameter errorMessage contains a

message with a detailed error description.

connectionLost() is invoked when an established connection to a PGA Server

broke down.

setStaticServerState(staticServerState:StaticServerState) is called after

a connection to a PGA Server was established and the PGA Server transferred

its initial static state information (see de�nition of class StaticServerState

below).

setDynamicServerState(dynamicServerState:DynamicServerState) is called ev-

ery time the PGA Server sends a dynamic state update (see de�nition of class

DynamicServerState below).
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joinSucceeded() is called when the PGA Client successfully joined an anonymity

group.

showConfirmDialog(confirmMessage:String):int can be used to show the user

a con�rmation dialog with the message confirmMessage. This method returns

the option that was selected by the user (OK, Cancel, Close, . . . ).

showWarningMessage(warningMessage:String) can be used tho show the user a

warning message.

showErrorMessage(errorMessage:String) can be used to show the user an error

message.

getHelpBroker():HelpBroker returns a help broker that can be used to present a

section of the PGA Client user manual in the user interface.

The class StaticServerState has the following methods:

getVersion():String returns the version of the PGA Server Core. The version

information is used to decide if the selected PGA Server is compatible with

the PGA Client currently in use.

getCurrentTime():long returns the current time of the PGA Server Core, given

in milliseconds since midnight, January 1, 1970 UTC. This time is used to

calculate the time o�set between the selected PGA Server Core and the PGA

Client.

getStartupTime():long returns the startup time of the PGA Server Core, given

in milliseconds since midnight, January 1, 1970 UTC. This time, together with

the calculated time o�set (see above) is used to show the uptime of the selected

PGA Server Core at regular time intervals in the PGA Client user interface.

The class DynamicServerState has the following methods:

getLoad():String returns a textural representation of the load of the PGA Server

Core. The syntax and semantic of the load information depends on the oper-

ation system of the PGA Server Core.

getNumberOfClients():int returns the current number of PGA Clients connected

to the PGA Server Core.
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getAnonymityGroups():List<AnonymityGroup> returns the list of all anonymity

groups the PGA Server Core currently supports.

getTestUserPolicy():TestUserPolicy returns the current policy of the PGA Server

Core regarding anonymous users (see section 4.4.1 on page 63).

getRemainingTestUserDataVolume():long returns the remaining data volume that

is available for anonymous users.

isMonitoring():boolean returns true, if the PGA Server Core is monitoring con-

nections, false otherwise. This is part of the misuse discouragement feature

of the PGA Server Core (see section 4.4.1 on page 64).

Currently, there is only one UI implemented, PgaClientFrame, a Swing [29] based

GUI for usual desktop or laptop screen sizes. It implements all methods of the

interface HandshakeCompletedListener and the abstract class PgaClientUI (for

readability reasons the implementation of methods in PgaClientFrame is not shown

in Figure 4.3). Other user interfaces for other device classes can be implemented in

the same way.

4.2.2 Achieving application independence

Overview

To satisfy the requirement of application independence, already existing applications

should be able to communicate via PGA without any modi�cation. This goal can

be reached by o�ering plug-ins in the PGA Client for di�erent existing applications

and protocols. Future applications that aim at directly supporting PGA must be

supported with an easy to use and generic interface (see Figure 4.2).

Plug-In architecture

The plug-in architecture is based on an abstract class Connector (see Figure 4.4).

It has the following attributes:

name is the descriptive and human-readable name of this Connector.

icon is the icon of this Connector presented to the user in the PGA Client graphical

user interface.
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Figure 4.4: Connector class diagram
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serverPort is the port where this Connector accepts new connections from appli-

cations.

pgaClient is a reference to the PGA Client Core and is mainly used to always get

an up-to-date reference to the tunnel to the currently selected PGA Server.

pgaClientUI is a reference to the graphical user interface currently in use. It is

mainly used to display status and error messages of the Connector at the

graphical user interface.

The abstract class Connector has the following methods:

getName() returns the descriptive and human-readable name of this Connector.

getIcon() returns the icon of this Connector presented to the user in the PGA

Client graphical user interface.

getServerPort() returns the port where this Connector accepts new connections

from applications.

startConnector() starts the Connector so that it accepts connections from appli-

cations at the speci�ed server port.

stopConnector() stops the Connector so that it no longer accepts connections from

applications at the speci�ed server port.

loadPreferences(preferences:Preferences) loads the preferences of this Con-

nector from a given hierarchical collection of preference data3.

savePreferences(preferences:Preferences) saves the preferences of this Con-

nector into a given hierarchical collection of preference data.

getPanel() returns a graphical panel for the graphical user interface currently in

use with controls for con�guring this Connector.

All plug-ins must implement the abstract class Connector. Until now two plug-

ins have been designed and implemented:

3In most cases this will be the preferences collection of the whole PGA Client.
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GenericConnector This plug-in o�ers an easy interface for future applications that

aim at directly supporting PGA. When accepting a TCP [9] connection from

an application, this plug-in uses the following protocol:

1. Addressing

The application transmits the host name and port number of the com-

munication peer in one line, delimited by a line feed:

address = hostname ":" portnumber LF

hostname = <any OCTET except LF and ":">

portnumber = 1*DIGIT

2. Connection establishment

The GenericConnector tries to open an anonymous connection to the

speci�ed location and transmits the status back to the application. The

syntax of this status message is de�ned as follows:

status = success | failure

success = LF

failure = error-message

LF

error-message = <any OCTET except LF>

In other words, when the connection was successfully established, the

GenericConnector sends a single line feed to the application, otherwise

(e.g. when there is no connection to a PGA Server or an external error

like a refused connection on the peer side or a non-existing peer) it sends

a human readable error message that is delimited by a line feed.

3. Data exchange

If the connection was successfully established the data exchange can start.

The data depends solely on the application and the communication peer.

The PGA infrastructure does not parse or modify the data in any way

but forwarding it in a bidirectional tunnel.

4. Connection closing

TCP connections are bidirectional and can be closed asynchronously from
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either side, the application or the communication peer.

WebConnector This plug-in implements a proxy for HTTP [17] and this way enables

most WWW [50] applications to anonymize communication via PGA. The

details of this plug-in are described in section 4.3.

The WebConnector has the following additional methods that are mainly used

for collecting statistics about HTTP requests served with this plug-in:

applicationConnectionEstablished() gets called when an application (e.g. a

web browser) has successfully established a connection to this plug-in.

destinationConnectionEstablished() gets called when a connection to a speci-

�ed destination (e.g. a web server) has been successfully established.

requestProcessed() gets called when a single HTTP request (e.g. HEAD or GET)

was successfully served.

4.2.3 Achieving simplicity

Installation

One of the simplest ways to install Java-based applications currently available is

Java Web Start. A quote from http://www.java.com/en/download/faq/java_

webstart.xml4:

The Java Web Start software allows you to download and run Java ap-

plications from the web. The Java Web Start software:

• Provides an easy, one-click activation of applications

• Guarantees that you are always running the latest version of the

application

• Eliminates complicated installation or upgrade procedures

Because of these properties, the installation of the PGA Client is done via Java Web

Start.

4last visited: January 2012

http://www.java.com/en/download/faq/java_webstart.xml
http://www.java.com/en/download/faq/java_webstart.xml
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Usage

To make the usage of the PGA Client as simple as possible, all necessary opera-

tions are supported by its graphical user interface. Additional features besides all

necessary security mechanisms to be implemented are:

AutoStart is a feature that enables the PGA Client to start automatically when-

ever a user logs into the system and this way relieves the user from the burden

of manually starting the PGA Client at every login. This feature is not only

there for convenience but in addition improves the security of the user be-

cause it lowers the probability of non-anonymous communication by accident

because the user did not start the PGA Client in time.

AutoProxy is a feature that recon�gures common applications automatically so

that these applications communicate via PGA. This requirement resulted from

the observation that seemingly simple tasks like changing the proxy con�gu-

ration of a web browser is too challenging for the average user.

Evaluation

To make source code reviews and evaluations of the PGA Client as simple as possible,

several measures have to be taken:

Source code readability can be ensured by:

• using a meaningful variable naming scheme (e.g. using descriptive names

instead of single letters)

• following established code conventions (see �Code Conventions for the

Java Programming Language� currently published at http://www.oracle.

com/technetwork/java/codeconv-138413.html5)

• ensuring an overall consistency in the source code by not using di�erent

schemes or conventions

Source code documentation must be provided so that the API documentation

of the PGA Client can be generated in a more accessible format (e.g. HTML)

than the source code itself.

5last visited: January 2012

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
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Code reuse of existing and well-known Open Source programming libraries must

be the preferred way of implementing a feature so that the amount of code

to be reviewed is minimized. Closed Source libraries must not be used in

the PGA Client because reviewing or evaluating these libraries is di�cult or

sometimes even impossible.

4.3 HTTP proxy

The HTTP proxy implemented in the WebConnector plug-in must translate between

HTTP and the internal PGA tunnel protocol (see section 4.6). It must parse proxy

requests of HTTP client applications and the corresponding HTTP responses. For

performance reasons it must support persistent proxy connections with HTTP client

applications and manage the creation and shutdown of single connections to HTTP

servers.

The syntax of a generic HTTP message is as follows:

generic-message = start-line

*(message-header CRLF)

CRLF

[ message-body ]

In previous versions of HTTP the normal situation was to establish a TCP con-

nection from the client to the server (or the proxy), send a message and close the

TCP/IP connection as soon as the body of the message was fully transmitted. Prox-

ies could just parse the message header (which is a relatively slow operation ) and

as soon as the message body started, proxies could switch to a very e�cient data

transfer mode where the transmitted data was no longer parsed. The problem of

this modus operandi is the increased computational overhead and latency when

requesting several entities from the same server (e.g. a web page and all its em-

bedded pictures) because several slow operations when opening a TCP connection

(handshake, slow start, etc.) must be executed every time for every single request.

Therefore HTTP/1.1 de�ned persistent connections between the application (e.g.

web browser) and the server or the proxy. This way several requests (in the case

of a proxy-connection even to completely di�erent servers) and responses can be

exchanged via the same TCP/IP connection. The additional di�culty is now to
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decide when a message body has been fully transmitted and the next message header

has to be parsed.

Because of the above reasons the PGA Client HTTP proxy has to parse all re-

quests and responses and establish the requested connections to the target servers

through the PGA architecture. Another reason are the so-called �hop to hop� proto-

col headers of HTTP. These headers are part of HTTP and contain administrative

information meant only for the next hop of a HTTP connection and must be removed

by the hop. Proxies are such next hops.

To be able to parse HTTP requests and responses the syntax and semantic of

HTTP, which is described in detail in RFC 2616 [18] (which is 176 pages long),

has to be fully understood. In the following paragraphs the structure, syntax and

semantic of HTTP proxy requests and responses is shortly analyzed to solve the

question how to translate between HTTP and the PGA tunnel protocol.

4.3.1 Request Parsing

A request is a special HTTP message with the following syntax:

Request = Request-Line

*((general-header |

request-header |

entity-header) CRLF)

CRLF

[ message-body ]

Request line

The request line has the following syntax:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

HTTP/1.1 speci�es a list of methods that can occur in a Request-Line:

Method = OPTIONS | GET | HEAD | POST | PUT | DELETE | TRACE | CONNECT

A short investigation has shown that the methods HEAD, GET (requesting data from

a server), POST (sending data to a server) and CONNECT (establishing a transparent

connection to a server, used for HTTPS via a proxy) are su�cient for supporting
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basic WWW access of current web browsers. Due to time constraints the HTTP

proxy of the PGA Client will only implement these methods. The HTTP proxy will

answer all other requests with the status code 501 (�Not Implemented�).

The Request-URI in a Request-Line is a Uniform Resource Identi�er and iden-

ti�es the resource upon which to apply the request and has the following de�nition:

Request-URI = "*" | absoluteURI | abs_path | authority

The four possible values of a Request-URI are dependent on the nature of the

request.

"*" means that the request does not apply to a particular resource, but to the server

itself, and is only allowed when the method used does not necessarily apply to

a resource.

absoluteURI is required when the request is, like in this case of the PGA Client

HTTP proxy, being made to a proxy. An example Request-Line would be:

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

After receiving such a request the PGA Client HTTP proxy must:

1. extract the address of the HTTP server from the request

2. translate the request into an internal API call of the PGA Client to

establish an anonymous connection to the HTTP server

3. translate the proxy request into a standard HTTP request

4. forward the standard HTTP request and the request body to the HTTP

server

5. parse and forward the response from the HTTP server back to the HTTP

client

6. manage the shutdown of the connection to the HTTP client and HTTP

server

abs_path is a Request-URI that is used to identify a resource on a server. In this

case the absolute path of the URI must be transmitted as the Request-URI

and the network location of the URI (authority) must be transmitted in an
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additional Host header �eld. For example, a client wishing to retrieve the

resource above directly from the origin server (instead of using a proxy) would

create a TCP connection to port 80 of the host www.w3.org and transmit these

lines:

GET /pub/WWW/TheProject.html HTTP/1.1

Host: www.w3.org

followed by the remainder of the Request.

authority is a Request-URI that is only used by the CONNECT method and speci�es

the target system of the SSL tunnel that has to be established by the PGA

Client HTTP proxy.

Headers

A HTTP request can contain several blocks with headers after the Request-Line

(see HTTP request de�nition on page 39).

There exist two categories of HTTP headers:

end-to-end headers are transmitted to the ultimate recipient of a request or re-

sponse

hop-by-hop headers are meaningful only for a single transport-level connection,

and are not passed through by proxies

General Headers

General headers have applicability for both request and response messages. HTTP/1.1

de�nes the following set of general header �elds:

general-header = Cache-Control | Connection | Date | Pragma |

Trailer | Transfer-Encoding | Upgrade |

Via | Warning

The following paragraphs explain how these headers are used by the PGA Client

HTTP Proxy.
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Cache-Control is an end-to-end header that is used to specify directives that must

be obeyed by all caching mechanisms along the request/response chain. This

header is ignored by the PGA Client HTTP proxy, since it is not (yet) a

caching proxy, and must be passed through.

Connection is a hop-by-hop header and allows the sender to specify options that are

desired for that particular transport-level connection. The PGA Client HTTP

proxy must parse this header and remove it from the message. Persistent

connections are the default behavior with HTTP/1.1 but if a

Connection: close

header is received, the PGA Client HTTP proxy must close the transport-level

connection to the application after completing the HTTP response.

Date is an end-to-end header that represents the date and time at which a HTTP

message was originated. The PGA Client HTTP proxy does not need to parse

this header and must pass it through.

Pragma is an end-to-end header that is used to include implementation-speci�c di-

rectives that might apply to any recipient along the request/response chain.

The PGA Client HTTP proxy does not need to parse this header and must

pass it through.

Trailer is a hop-by-hop header and its value indicates that the given set of header

�elds is present in the trailer of a message encoded with chunked transfer-

coding. The PGA Client HTTP proxy must parse this header and remove it

from the message.

Transfer-Encoding is a hop-by-hop header and indicates what (if any) type of

transformation has been applied to the message body in order to safely transfer

it between the sender and the recipient. Because the PGA Client HTTP

proxy does not change the encoding of a message body but just transparently

forwards it, the PGA Client HTTP proxy must pass this header through, even

though it is a hop-by-hop header.

Upgrade is a hop-by-hop header and allows the client to specify what additional

communication protocols it supports and would like to use if the server (in this
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case the PGA Client HTTP proxy) �nds it appropriate to switch protocols.

The PGA Client HTTP proxy ignores this header and must remove it from

the message.

Via is an end-to-end header that must be inserted by the PGA Client HTTP proxy

to indicate the intermediate protocols and recipients between the applications

and the server on requests, and between the server and the applications on

responses. It should contain the HTTP version of the received message and a

�xed pseudonym of the PGA Client HTTP proxy.

Warning is an end-to-end header that is used to carry additional information about

the status or transformation of a message which might not be re�ected in the

message. The PGA Client HTTP proxy does not need to parse this header

and must pass it through.

Request Headers

Request headers can only be applied to HTTP requests. HTTP/1.1 de�nes the

following set of request headers:

request-header = Accept | Accept-Charset | Accept-Encoding |

Accept-Language | Authorization | Expect | From |

Host | If-Match | If-Modified-Since |

If-None-Match | If-Range | If-Unmodified-Since |

Max-Forwards | Proxy-Authorization | Range |

Referer | TE | User-Agent

In addition to the HTTP/1.1 speci�cation, some HTTP agents use the non-standard

header Proxy-Connection (see http://www.http-stats.com/Proxy-Connection6)

or the response-header �eld Keep-Alive

(see http://www.http-stats.com/Keep-Alive7).

Accept is an end-to-end header that is used to specify certain media types which

are acceptable for the response. The PGA Client HTTP proxy does not need

to parse this header and must pass it through.

6last visited: January 2012
7last visited: January 2012

http://www.http-stats.com/Proxy-Connection
http://www.http-stats.com/Keep-Alive
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Accept-Charset is an end-to-end header that is used to indicate what character

sets are acceptable for the response. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

Accept-Encoding is an end-to-end header that is used to indicate what content-

codings are acceptable in the response. The PGA Client HTTP proxy does

not need to parse this header and must pass it through.

Accept-Language is an end-to-end header that is used to indicate what set of natu-

ral languages that are preferred as a response to the request. The PGA Client

HTTP proxy does not need to parse this header and must pass it through.

Authorization is an end-to-end header that is used to indicate that a user agent

wishes to authenticate at a server. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

Expect is an end-to-end header that is used to indicate that particular server be-

haviors are required by the client. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

From is an end-to-end header that, if given, should contain an Internet e-mail ad-

dress for the human user who controls the requesting user agent. Even though

this header is contrary to all anonymization e�orts, the PGA Client HTTP

proxy does not parse or remove this header but passes it through. A user

might have valid reasons to use an anonymization service but still disclose the

user's identity to the server. This design decision is consistent with the non-

goals of the PGA project declared in section 1.2.2 on page 3, i.e. no protocol

normalization.

Host is an end-to-end header that is used to specify the Internet host and port

number of the resource being requested. The PGA Client HTTP proxy will

probably never receive this header in a request, does not need to parse it and

must pass it through.

If-Match is an end-to-end header that is used with a method to make it conditional.

A client that has one or more entities previously obtained from the resource

can verify that one of those entities is current by including a list of their
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associated entity tags in this header. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

If-Modified-Since is an end-to-end header that is used with a method to make

it conditional. If the requested variant has not been modi�ed since the time

speci�ed in this header, an entity will not be returned from the server; instead,

a 304 (not modi�ed) response will be returned without any message-body. The

PGA Client HTTP proxy does not need to parse this header and must pass it

through.

If-None-Match is an end-to-end header that is used with a method to make it

conditional. A client that has one or more entities previously obtained from

the resource can verify that none of those entities is current by including a list

of their associated entity tags in this header. The PGA Client HTTP proxy

does not need to parse this header and must pass it through.

If-Range is an end-to-end header that is used with a method to make it conditional.

If a client has a partial copy of an entity in its cache, and wishes to have an

up-to-date copy of the entire entity in its cache, it could use the Range request-

header with a conditional GET (using either or both of If-Unmodified-Since

and If-Match.) However, if the condition fails because the entity has been

modi�ed, the client would then have to make a second request to obtain the en-

tire current entity-body. The If-Range header allows a client to �short-circuit�

the second request. Informally, its meaning is �if the entity is unchanged, send

me the part(s) that I am missing; otherwise, send me the entire new entity�.

The PGA Client HTTP proxy does not need to parse this header and must

pass it through.

If-Unmodified-Since is an end-to-end header that is used with a method to make

it conditional. If the requested resource has not been modi�ed since the time

speci�ed in this �eld, the server should perform the requested operation as

if the If-Unmodified-Since header were not present. If the requested vari-

ant has been modi�ed since the speci�ed time, the server must not perform

the requested operation, and must return a 412 (Precondition Failed). The

PGA Client HTTP proxy does not need to parse this header and must pass it

through.
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Max-Forwards is an end-to-end header that provides a mechanism with the TRACE

and OPTIONS methods to limit the number of proxies or gateways that can

forward the request to the next inbound server. Because in its current form the

PGA Client HTTP proxy only implements the HEAD, GET and POST methods,

it ignores this header and removes it from the message.

Proxy-Authorization is a hop-by-hop header that allows the client to identify

itself (or its user) to a proxy which requires authentication. Because the PGA

Client HTTP proxy does not have any authorization mechanisms, it ignores

this header.

Range is an end-to-end header that is used in HTTP retrieval requests using con-

ditional or unconditional GET methods to request one or more sub-ranges of

the entity, instead of the entire entity. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

Referer8 is an end-to-end header that allows the client to specify, for the server's

bene�t, the address (URI) of the resource from which the Request-URI was

obtained. Similar to the From header, this header is contrary to anonymization

e�orts. Again, the PGA HTTP proxy does not parse or remove this header

but passes it through.

TE is a hop-by-hop header that indicates what extension transfer-codings a client

is willing to accept in the response and whether or not it is willing to accept

trailer �elds in a chunked transfer-coding. Because the PGA Client HTTP

proxy is not storing or recoding any data, it is passing through this header,

even though passing-through of hop-by-hop headers is not intended by the

HTTP speci�cation.

User-Agent is an end-to-end header that contains information about the user agent

originating the request. Similar to the From and Referer header, this header

is contrary to anonymization e�orts. Again, the PGA HTTP proxy does not

parse or remove this header but passes it through.

Proxy-Connection is a non-standard header and the �correct� behavior when en-

countering this header is not de�ned. If a

8The word �referrer� is misspelled in the RFC as well as in most implementations.
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Proxy-Connection: close

header is received, the PGA Client HTTP proxy closes the transport-level

connection to the application after completing the HTTP response.

Keep-Alive is a non-standard header and the �correct� behavior when encountering

this header is not de�ned. If a

Keep-Alive: Closed

header is received, the PGA Client HTTP proxy closes the transport-level

connection to the application after completing the HTTP response.

Entity Headers

Entity headers de�ne meta-information about the entity body or, if no body is

present, about the resource identi�ed by the request. HTTP/1.1 de�nes the following

set of entity headers:

entity-header = Allow | Content-Encoding | Content-Language |

Content-Length | Content-Location | Content-MD5 |

Content-Range | Content-Type | Expires |

Last-Modified

Allow is an end-to-end header that lists the set of methods supported by the re-

source identi�ed by the Request-URI. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

Content-Encoding is an end-to-end header that is used as a modi�er to the

media-type. When present, its value indicates what additional content cod-

ings have been applied to the entity-body (e.g. gzip), and thus what decoding

mechanisms must be applied in order to obtain the media-type referenced by

the Content-Type header �eld. The PGA Client HTTP proxy does not need

to parse this header and must pass it through.

Content-Language is an end-to-end header that describes the natural language(s)

of the intended audience for the enclosed entity. The PGA Client HTTP proxy

does not need to parse this header and must pass it through.
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Content-Length is an end-to-end header that indicates the size of the entity-body.

The PGA Client HTTP proxy must parse this header to determine how much

data can be forwarded in an e�cient mode, without being parsed (this includes

the whole message body) and when it must switch back to a mode where the

data stream consists of HTTP requests that have to be parsed. In addition to

being parsed, this header must be passed through unmodi�ed.

Content-Location is an end-to-end header that is used to supply the resource

location for the entity enclosed in the message when that entity is accessible

from a location separate from the requested resource's URI. The PGA Client

HTTP proxy does not need to parse this header and must pass it through.

Content-MD5 is an end-to-end header that contains an MD5 digest of the entity-

body for the purpose of providing an end-to-end message integrity check of

the entity-body. The PGA Client HTTP proxy does not need to parse this

header and must pass it through.

Content-Range is an end-to-end header that is sent with a partial entity-body to

specify where in the full entity-body the partial body should be applied. The

PGA Client HTTP proxy does not need to parse this header and must pass it

through.

Content-Type is an end-to-end header that indicates the media type of the entity-

body sent to the recipient. The PGA Client HTTP proxy does not need to

parse this header and must pass it through.

Expires is an end-to-end header that gives the date/time after which the response

is considered stale. The PGA Client HTTP proxy does not need to parse this

header and must pass it through.

Last-Modified is an end-to-end header that indicates the date and time at which

the origin server believes the variant was last modi�ed. The PGA Client HTTP

proxy does not need to parse this header and must pass it through.

4.3.2 Response Parsing

After extracting the address of the target system from an HTTP request, the PGA

Client HTTP proxy translates the request into an internal API call of the PGA Client
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to establish an anonymous connection to the target system, translates the proxy

request into a standard HTTP request, forwards the standard HTTP request and

the request body to the target system. After receiving the request the target system

will respond with a HTTP response message. These HTTP response messages will

be transferred back to the PGA Server which forwards the messages anonymously

back to the PGA Client until they are forwarded via the internal API to the PGA

Client HTTP proxy, where the response messages have to be parsed again.

A response is a special HTTP message with the following syntax:

Response = Status-Line

*((general-header |

response-header|

entity-header) CRLF)

CRLF

[ message-body ]

Status Line

The �rst line of a Response message is the Status-Line:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

It consists of the protocol version followed by a numeric status code and its associated

textual phrase, with each element separated by SP characters. No CR or LF is allowed

except in the �nal CRLF sequence.

Status-Code is a three-digit integer result code of the attempt to understand and

satisfy the request.

Reason-Phrase is intended to give a short textual description of the Status-Code.

The Status-Code is intended for use by automata and the Reason-Phrase is

intended for the human user.

The PGA Client HTTP proxy transparently forwards the Status-Line to the

application.
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Response Headers

The response-headers allow the server to pass additional information about the re-

sponse which cannot be placed in the Status-Line. HTTP/1.1 de�nes the following

set of response headers:

response-header = Accept-Ranges | Age | ETag | Location |

Proxy-Authenticate | Retry-After | Server | Vary |

WWW-Authenticate

Accept-Ranges is an end-to-end header that allows the server to indicate its accep-

tance of range requests for a resource. The PGA Client HTTP proxy does not

need to parse this header and must pass it through.

Age is an end-to-end header that conveys the sender's estimate of the amount of

time since the response was generated at the origin server. The PGA Client

HTTP proxy does not need to parse this header and must pass it through.

ETag is an end-to-end header that provides the current value of the entity tag for

the requested variant. The PGA Client HTTP proxy does not need to parse

this header and must pass it through.

Location is an end-to-end header that is used to redirect the recipient to a location

other than the Request-URI for completion of the request or identi�cation of

a new resource. The PGA Client HTTP proxy does not need to parse this

header and must pass it through.

Proxy-Authenticate is a hop-by-hop header that must be included as part of a 407

(Proxy Authentication Required) response. Because the PGA Client HTTP

proxy, in its current form, never issues proxy authentication requests, it must

ignore this header and remove it from the message.

Retry-After is an end-to-end header that can be used with a 503 (Service Unavail-

able) response to indicate how long the service is expected to be unavailable

to the requesting client. The PGA Client HTTP proxy does not need to parse

this header and must pass it through.

Server is an end-to-end header that contains information about the software used

by the origin server to handle the request. The PGA Client HTTP proxy does

not need to parse this header and must pass it through.



51

Vary is an end-to-end header that can be used to express the request-header �elds

the server used to select among multiple representations of a response subject

to server-driven negotiation. The PGA Client HTTP proxy does not need to

parse this header and must pass it through.

WWW-Authenticate is an end-to-end header that must be included in 401 (Unau-

thorized) response messages. The PGA Client HTTP proxy does not need to

parse this header and must pass it through.

4.3.3 Message parsing

Header summary

The following table summarizes the actions the PGA Client HTTP proxy has to

take for every header when parsing HTTP requests.

Table 4.1: PGA Client HTTP proxy actions with respect

to HTTP message headers

header ignore parse pass through insert

Accept X

Accept-Charset X

Accept-Encoding X

Accept-Language X

Accept-Ranges X

Age X

Allow X

Authorization X

Cache-Control X

Connection X

Content-Encoding X

Continued on next page
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Table 4.1 � continued from previous page

header ignore parse pass through insert

Content-Language X

Content-Length X X

Content-Location X

Content-MD5 X

Content-Range X

Content-Type X

Date X

ETag X

Expect X

Expires X

From X

Host X

If-Match X

If-Modified-Since X

If-None-Match X

If-Range X

If-Unmodified-Since X

Keep-Alive X

Last-Modified X

Location X

Max-Forwards X

Pragma X

Proxy-Authenticate X

Proxy-Authorization X

Proxy-Connection X

Range X

Referer X

Retry-After X

Server X

TE X

Continued on next page
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Table 4.1 � continued from previous page

header ignore parse pass through insert

Trailer X

Transfer-Encoding X

Upgrade X

User-Agent X

Vary X

Via X

Warning X

WWW-Authenticate X

All headers not enlisted in this table are passed through.

State machine

The PGA Client HTTP proxy must switch between the slow header parsing mode

and the fast message body transfer mode. It does so by using the state machine

shown in Figure 4.5 on page 54.

The PGA Client HTTP proxy starts and stays in header parsing mode until a

complete header is parsed. A header is separated from the body with a CRLF (see

HTTP message de�nition in section 4.3). When the header is completely parsed,

the PGA Client HTTP proxy must determine if the message contains a body. This

is only the case when a Content-* header is present. When the message contains a

body, the PGA Client HTTP proxy must look for body size information. This can

either be a Content-Length header or a Transfer-Encoding: chunked header. If

the message contains body size information, the PGA Client HTTP proxy transfers

the message body in a fast transfer mode (no parsing of any kind of data, just

forwarding) and after that switches back to header parsing mode. If the message

does not contain any body size information, the PGA Client HTTP proxy transfers

the message body until the connection is closed and the state machine reaches it

�nal state. (When the connection is closed, the �nal state is always reached. This

was omitted from Figure 4.5 for better readability.)
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Figure 4.5: PGA Client HTTP proxy mode switching state machine
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When the body size information is given with a Content-Length header, the

state machine must forward exactly this number of bytes of body data to reach the

beginning of the next header. When the message body is chunked, things are more

complex. HTTP/1.1 de�nes the structure of a chunked body as follows:

Chunked-Body = *chunk

last-chunk

trailer

CRLF

chunk = chunk-size [ chunk-extension ] CRLF

chunk-data CRLF

chunk-size = 1*HEX

last-chunk = 1*("0") [ chunk-extension ] CRLF

chunk-extension= *( ";" chunk-ext-name [ "=" chunk-ext-val ] )

chunk-ext-name = token

chunk-ext-val = token | quoted-string

chunk-data = chunk-size(OCTET)

trailer = *(entity-header CRLF)

The PGA Client HTTP proxy must parse and forward chunk-sizes and forward

chunk-data until it encounters the last-chunk (a zero-length chunk). After that

it must forward the trailer before switching back to header parsing mode.

4.3.4 Persistent connections

Already established anonymous connections between the PGA Client HTTP proxy

and web servers should be re-used as often as possible to lower the computational

overhead and the latency when requesting several entities from the same web server.

To be able to do so, the PGA Client HTTP proxy puts established connections

into an internal register for every single proxy connection. Every register entry

contains the server of the connection (host name and port), the ID used in the

tunnel register (see section 4.6.3 on page 75) and the state of the upstream and

downstream directions of the connection (see Figure 4.6). If an application issues a

request to a server and the proxy register contains an entry to this server and both

the upstream and downstream direction of the connection are still fully established,



56

Figure 4.6: PGA Client HTTP proxy registers

the PGA Client HTTP proxy re-uses this connection. Otherwise it has to establish a

new anonymous connection and add it to the internal register. Existing connections

of other applications must not be re-used because this could leak sensible information

from one application to another application.

If a web server closes a connection, the PGA Client HTTP proxy will not receive

any more responses from this server via this connection (but the application could

still send data to the web server via this connection). The connection has to be

marked as �downstream closed� in the internal register.

If the application closes a connection, the PGA Client HTTP proxy will not

receive any more requests from the application via this connection (but the web

server could still send data to the application via this connection). The connection

has to be marked as �upstream closed� in the internal register.

If an internal connection is both �downstream closed� and �upstream closed� it

must be removed from the internal register.
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4.4 Server

4.4.1 Core

The requirements for the PGA Server Core, de�ned by the author of this work, are

as follows:

Application independence: The PGA Server Core must not be dependent on

any application. It is su�cient to support tunneling of TCP/IP connections.

Support for applications and protocols to be tunneled must be integrated into

the PGA Client instead. This way the PGA Server Core can stay small,

e�cient, generic and support for additional applications and protocols can be

integrated into PGA Clients without enforcing an upgrade on all PGA Server

Cores.

Headless mode: The PGA Server Core must be able to run without a graphical

user interface. This way it can be installed, run and maintained as a back-

ground process (called �service� or �daemon�) on a server. Being able to run

as a background process makes it much easier to automatically start, stop and

restart the PGA Server Core via init scripts or manage it via service daemons

like �at� [61] or �cron� [62].

Integrated �rewall: Usually, the PGA Server Core should be operated in a de-

militarized zone [38] where at least one �rewall separates the internal network

from the external network. Setting up a demilitarized zone is a non-trivial

task and only supporting this setup would set the entry barrier for people

wanting to o�er an anonymization service unnecessary high. To support also

small and simple installations of the PGA Server Core, it must be possible to

install it in an internal network. To protect the internal network in this setup,

the PGA Server Core must have an integrated �rewall that must be able to

prevent access from the external network to the internal network.

Anonymity group management: Anonymity groups are the essential part of

anonymization in the PGA architecture. The PGA Server Core must be able to

create these groups, add or remove users from anonymity groups (and generate

and �lter the associated dummy tra�c) and also eventually delete anonymity

groups when they are no longer needed.
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User management: The PGA Server Core is transferring large volumes of data

(especially when generating dummy tra�c). This causes transmission costs

that must be distributed among its users. Therefore the PGA Server Core

must be able to manage its users and account and bill the tra�c that every

user generated or caused. On the other hand side it must also be possible to

o�er anonymization as a free service to anonymous users. Therefore the PGA

Server Core must include an additional user management for anonymous users.

Misuse discouragement: The PGA Server Core and its operators act in an area

of con�ict. On one side it must deliver a trustworthy service to its users but on

the other side it must prevent the misuse of exactly this service because it may

lead to legal problems if illegal activities are originating from its infrastructure.

To be able to really prevent misuses, the PGA Server Core must execute a very

detailed analysis of all tra�c before serving it. Because this detailed analysis

is very computational intensive, it would slow down the anonymity service

signi�cantly. In addition to that, such measures would damage the reputation

of anonymity providers because intensive monitoring is exactly the opposite

of what users expect from a trustworthy anonymity provider.

A reasonable middle ground is to discourage misuse, i.e. not to prevent misuse

but to be able to uncover it (after the fact) and react accordingly. Therefore the

PGA Server Core must provide mechanisms to optionally log communication

circumstances. This measure is relatively simple and does not slow down the

service signi�cantly.

Application independence Generic methods for establishing, managing and

closing of anonymous TCP/IP connections have been integrated into the PGA tun-

nel protocol (see section 4.6 on page 67 for more details).

Headless mode Instead of a user interface, a management interface based on

JMX (Java Management Extension) was integrated into the PGA Server core (see

section 4.7 on page 101 for more details).

Integrated �rewall The PGA Server Core keeps a list of internal networks and

prevents access to these networks from all other networks. The management in-

terface of the PGA Server Core provides several methods to manage the internal
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�rewall:

addInternalNetwork(cidrBlock:CIDRBlock) adds a CIDR (Classless Inter-Domain

Routing [47]) block to the list of internal networks

setInternalNetwork(index:int, cidrBlock:CIDRBlock) sets the CIDR block a

speci�ed index in the list of internal networks (this method is used to edit

certain elements of the internal networks list).

moveInternalNetworks(indices:int[], offset:int) moves the speci�ed indices

of the internal networks list by a given o�set (this method is used to reorder

the internal networks list).

removeInternalNetworks(indices:int[]) removes the speci�ed indices from the

list of internal networks.

isLocalAccessBlocked() returns true, if the internal �rewall blocks access to all

local networks (from the PGA Server Core's point of view), otherwise false

setLocalAccessBlocked(localAccessBlocked:boolean) determines, if the inter-

nal �rewall blocks access to all local networks

Anonymity group management Today's common applications use many dif-

ferent protocols with many di�erent bandwidth/delay properties (some examples

are given in Figure 4.7 on page 60). There are protocols that need very little band-

width, like SSH [3] and RSS [53]. SSH needs very short delays, otherwise working

with interactive commands becomes very di�cult. RSS on the other hand can

handle longer delays without di�culty. A similar situation exists considering appli-

cations that need higher bandwidths, VoIP (Voice over Internet Protocol) needs to

have very short delays to ensure the technical quality of the conversation (the ITU-

T Recommendation G.114 [30] addresses delays for voice applications and declares

that a delay of 150 milliseconds and shorter is acceptable and delays longer than 400

milliseconds are unacceptable), for a BitTorrent client, e.g. downloading the DVD

image of a new Linux distribution, the delay between the downloaded packages is

not as essential.

Because one requirement of the PGA Server Core is to be application indepen-

dent, it should o�er di�erent anonymity groups for the di�erent application/protocol

classes explained above.
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Figure 4.7: bandwidth/delay diagram of common protocols
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The anonymity groups that are used in the PGA Server Core are de�ned as shown

in the class diagram in Figure 4.8.

AnonymityGroup

+setName(name:String)

+getName(): String

+getOutboundPacketStream(): PacketStream

+getInboundPacketStream(): PacketStream

PacketStream

+getPackageSize(): long

+getDelay(): long

+getBandwidth(): long

1

2

Figure 4.8: anonymity group class diagram

Every anonymity group has the following methods:

setName(name:String) sets the (descriptive and human-readable) name of this

anonymity group.

getName() returns the name of this anonymity group

getOutboundPacketStream() returns the packet stream from the PGA Client to

the PGA Server Core of this anonymity group

getInboundPacketStream() returns the packet stream from the PGA Server Core

to the PGA Client of this anonymity group

Every package stream has the following methods:

getPackageSize() returns the size of the packages that have to be sent when using

this package stream
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getDelay() returns the delay between sending packages when using this package

stream

getBandwidth() returns the bandwidth of this package stream

Someone has to de�ne the anonymity groups that can be used at a certain PGA

Server Core. There were at least two di�erent approaches to a solution:

User de�ned anonymity groups It is ultimately every single user who decides

if, when and which anonymity group to join. Which anonymity group �ts

best with every user depends on many factors, including the bandwidth avail-

able to the user and the user's usage pattern (mainly used applications and

protocols). From a user's point of view it would therefore seem obvious to

let users create, manage and eventually delete anonymity groups on the PGA

Server Core. In this case, a PGA Server operator will most probability want

to restrict the number and the properties of the o�ered anonymity groups

(maximum/minimum of package size and delay, some operators might even

restrict the names of anonymity groups). Therefore a set of restrictions has to

be managed.

Server de�ned anonymity groups O�ering an anonymity group results in con-

suming of computational resources (calculating timeouts, generating random

numbers, . . . ) and bandwidth (sending and �ltering of dummy tra�c). From

an anonymity provider's point of view it would therefore seem obvious to de�ne

the available anonymity groups by a local and trusted system administrator

and let the users choose between the o�ered anonymity groups.

It is even conceivable to use a mixture of both server and user de�ned anonymity

groups.

User management

Account information When adding an account at a PGA Server Core, a user

must provide some information:

• a pseudonym (mandatory)

• authentication credentials (mandatory)
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• contact information (optional)

• a public key for encrypting communication, e.g. a GPG public key (optional)

The mandatory pseudonym must be a unique ID at the PGA Server Core so

that all accounts (not necessarily all users) can be uniquely identi�ed for all later

purposes.

There are many authentication methods available today, all based on the au-

thentication factors knowledge (e.g. a password), ownership (e.g. a security token),

inheritance (e.g. a biometric identi�er like a �ngerprint) or a combination thereof.

All authentication methods require to deposit some knowledge about the authen-

tication factor (e.g. the password itself, the ID of a security token or a �ngerprint

template) at the authenticating instance, in this case the PGA Server Core.

The optional contact information can be used to e.g. send billing information or

inform about changes in the anonymization service.

The optional public key can be used to ensure the con�dentiality of the electronic

communication with the user.

Billing Several billing models can be supported (e.g. �at rate, pay per used data

volume, . . . ). Payment can be done either via non-anonymous methods (e.g. credit

card, bank transfer, . . . ) or preferably with anonymous ecash payments [11, 12].

Account removal When a user removes an account at a PGA Server Core,

the remaining balance of this account has to be credited (in addition to the actual

account removal).

Anonymous users Because bandwidth and data transfer costs money it can

become very expensive for a PGA Server operator to o�er anonymization as a free

service without imposing any limitation. Therefore it must be possible to de�ne the

following limits for anonymous users at the PGA Server Core:

maximum number of simultaneous anonymous users

maximum individual bandwidth of the tunnel between the PGA Client of an

anonymous user and the PGA Server Core

maximum combined bandwidth as the maximum sum of all individual band-

widths
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maximum data volume that can be transferred by anonymous users. This can

be either of:

• a certain data volume

• a certain data volume in a certain interval

• no limit

Enforcing the maximum combined bandwidth can severely limit the service to

anonymous users because it could lead to situations where anonymous users can no

longer join an anonymity group or transfer any data.

Misuse discouragement The data retention function of the PGA Server Core

records:

• time-stamp

• source IP

• destination host name

• resolved destination IP

• destination port

• success or failure of the connection attempt

There are several security mechanisms in the PGA architecture to make this

function transparent for the users of the anonymity service and also to protect the

anonymity service provider against itself:

User noti�cation: For reasons of trust and transparency, users should be informed

about the fact that the service they are using is recording connection attempts.

Therefore, whenever the anonymity service provider switches the logging fea-

ture on or o�, the PGA Server Core signals this circumstance immediately via

the PGA tunnel protocol (see section 4.6 on page 67) to all users of the service

as part of the dynamic server state (see section 4.2.1 on page 31) which is also

exchanged when a PGA Client connects to a PGA Server Core and regularly

requested by the PGA Client while connected to a PGA Server Core. The

logging state of the PGA Server Core is displayed in the PGA Client user

interface.



65

Encryption: In the PGA security model the anonymity provider is a trustworthy

third party. Therefore it is not necessary to protect the logging information

against the anonymity provider itself. But the anonymity service can be at-

tacked by outsiders, i.e. the server where the logging information is stored can

be stolen, con�scated or cracked. The recorded logging data is very sensitive

personal data. Therefore it should always be stored on an encrypting �le sys-

tem. This protects the data in case of physical theft of the storage media. But

if the anonymity service is compromised at runtime by cracking the system,

the encrypted �le system is usually in an �open� state, i.e. the system processes

can read from and write data to it. This way an adversary could not only dis-

close all future communication circumstances but also all past communication

circumstances stored in the logging data. To protect against this attack, the

logging data itself must be encrypted before storing on the �le system (each

individual log �le or, if using a database, each individual log entry). The

logging data should be encrypted with a public key. An anonymity service

provider could be bribed, blackmailed or forced to provide the decrypted log-

ging information. Therefore, to make it impossible for the anonymity provider

itself to decrypt the logging data, it is recommended to use an external public

key for this task, e.g. the public key of a notary or a judge. This way the

(already encrypted) logging data is also protected in case of software errors or

unintentional con�guration errors by sta� members of the anonymity service.

Filtering: For a variety of reasons, some anonymity providers may not be interested

in recording connection attempts. But those anonymity providers can still be

forced by local authorities to record connections from a certain source address

or to a certain destination address, e.g. to protocol access to websites illegal

in the local jurisdiction. Therefore, the misuse discouragement system should

be able to express �ltering rules where the administrators of the anonymity

service can specify which connection attempts are recorded and which are not.

Retention period: The recorded logs are automatically removed by the PGA

Server Core after a con�gured retention period.

The de�nition of �lters and a retention period are directed to the well established

principle of data avoidance and data economy when dealing with personal data.
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4.4.2 Remote Management

The requirements for the PGA Remote Management component are as follows:

Management protocol implementation: The PGA Remote Management must

implement the PGA Remote Management protocol (see section 4.7) to manage

the PGA Server Core.

Di�erent user interfaces: To increase �exibility with respect to the form factor of

possible administrative terminals (�normal� computers, smartphones, . . . ) and

scenarios (on-site, local network, VPN, . . . ) the PGA Remote Management

component must consist of di�erent user interfaces (standalone application,

web interface, . . . ) to the PGA Server Core.

Because the remaining design decisions regarding the PGA Remote Management

component are very depended on the respective details of the PGA Remote Man-

agement protocol, they are described in section 4.7 (page 101).

4.5 Certi�cate Authority

Authentication and encryption of the tunnels between PGA Clients and PGA Server

Cores is based on SSL [64]. To counter man-in-the-middle attacks, all PGA Clients

and PGA Server Cores need to agree upon a set of trusted third parties that issue

certi�cates for authentication and encryption.

While there are already many existing CAs, commercial and non-commercial,

that could be used for this purpose, a simple CA for PGA has to be created, so that

the PGA architecture becomes independent and self-contained.

The requirements for the PGA Certi�cate Authority are as follows:

CA Initialization: The PGA Certi�cate Authority must be able to initialize itself

with a self-signed certi�cate.

Issuing of certi�cates: The PGA Certi�cate Authority must be able to issue cer-

ti�cates for PGA Server Cores based on certi�cate requests created by PGA

Remote Management components. Requesting and signing certi�cates must

adhere to established standards (certi�cate requests must be in PKCS#10 [41]

and the issued certi�cates must adhere to X.509 [14]).
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Graphical user interface: The PGA Certi�cate Authority must provide a graph-

ical user interface for all its operations and con�guration so that operators of

the PGA Certi�cate Authority must not remember the syntax of commands

but only have to deal with the semantics of requests and certi�cates.

The current design of the PGA CA is very simple and omits several building blocks

of complete CA solutions like Certi�cate Revocation Lists [14] or CA certi�cate

updates. These features can be added in future works.

4.6 Tunnel protocol

The protocol for information exchange through the SSL tunnel between a PGA

Client and a PGA Server must support the following operations:

• User management (account opening, logging on and o�, payments, account

editing and account removal)

• Anonymity group management (joining and leaving an anonymity group, gen-

erating and �ltering of dummy tra�c)

• Connection management (open connections, transferring data, closing connec-

tions)

• Transfer of status information (e.g. uptime and load of the PGA Server Core)

4.6.1 Generic message format

Standard format

The most obvious way of exchanging all this di�erent information is to put it into

di�erent messages. The next step is to decide the syntax and semantic of these mes-

sages. One can use a standardized message format or invent a proprietary one. The

advantage of using a standardized message format (e.g. a stream of XML [8] entities

or HTTP [17] messages with textual header and binary body) is that high qual-

ity generators and parsers already exist and the messages can be parsed by other

programs following the same standard. The disadvantage is that the standard-

ized message formats are more or less generic and use a lot of overhead regarding

computational resources, memory consumption and transmission bandwidth. The
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advantage of using a proprietary message format is that it can be tailored exactly to

the needs of the a�ected programs. The disadvantage is that proprietary generators

and parsers have to be designed and implemented and as a result the messages can

not be read by other programs.

With respect to the PGA architecture, messages are only exchanged between two

programs, the PGA Client and the PGA Server Core. It is not necessary to parse the

information by other programs or edit the messages by a normal user. In addition

to that, the data exchange between a PGA Client and a PGA Server Core should

be as fast and streamlined as possible to guarantee a high performance of the PGA

Server Core. For all these reasons, a proprietary generic message format for the

internal PGA tunnel protocol was designed.

Message framing

The most basic question that arises when designing a message protocol is how to

specify where a message starts and where it ends. The SSL tunnel between a PGA

Client and a PGA Server is based on TCP [9]. TCP is a stream protocol, i.e. it does

not operate on data packages (collection or groups of bytes) but streams of single

bytes. If messages are sent over TCP, their boundaries are not guaranteed. Messages

can be merged, e.g. a sender sends two single messages �The� and �rapist�, but the

receiver receives the single message �Therapist�. Single messages can be split, e.g.

a sender sends �Hello world� in a single message but the receiver receives the two

messages �Hell� and �o world�. The only thing that TCP tries to guarantee is that

the content and the order of bytes of a sent data stream is kept on the receiving

side. The mechanism to ensure message boundaries when serializing/deserializing

them over a data stream is called message framing.

The most common approaches used for message framing are:

Length pre�xing: Every message is pre�xed with the length of the message before

sending both the pre�x followed by the message. Because the length pre�x

itself is also composed of several bytes (to be able to specify large messages),

it is also necessary to de�ne the syntax and semantic of the length pre�x. The

receiving side must �rst read and parse the complete pre�x so that the length

of the following message becomes known. Then the complete message has to

be read before the next pre�x is read and parsed. A denial-of-service attack

at the receiver's side is possible by specifying a very large message size in the
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pre�x. This can be countered by making the length of the pre�x reasonably

small or by specifying a maximum message size.

Delimiters: A chosen combination of bytes is selected as the message boundaries,

the delimiters. The sender of a message must escape every occurrence of

delimiters in the message itself with an escaping function that also has to be

de�ned, e.g. by pre�xing the delimiters with another chosen combination of

bytes or by doubling all occurrences of delimiters. The receiving side must

read the stream of bytes until a delimiter is found. After that the unescaping

function (the inverse of the escaping function) must be applied to all received

data (excluding the delimiter itself) to get the original message. A denial-of-

service attack at the receiver's side is possible by not sending any delimiter.

This attack can only be countered by specifying a maximum message size.

Because, in contrast to delimiters, length pre�xing does not need an escaping and

unescaping function and prevention of denial-of-service attacks is easier, it is used

in the PGA Tunnel Protocol to frame messages. To be able to transmit reasonably

large data packages and still defend against denial-of-service attacks, the pre�x

length is set to a length of two bytes (in the standard, big-endian [13] network

byte order), so that the maximum message length of the PGA Tunnel Protocol is

2(2·8) = 216 = 65535 bytes.

4.6.2 Message syntax and semantic

While message framing alone ensures message boundaries, it does not de�ne the in-

ternal structure of the transmitted messages. Therefore, the syntax and the semantic

of all PGA Tunnel Protocol messages has to be de�ned.

The basic internal message structure is similar to length pre�xing above, but this

time the pre�x does not denote the length of the message but the type of its value.

Therefore it is called type pre�xing. Because the number of di�erent message types

in the PGA Tunnel Protocol is quite manageable, the length of the type pre�x is

set to only one single byte, so that a maximum of 28 = 255 di�erent message types

can be speci�ed.

The following message types are already de�ned in the PGA Tunnel Protocol:

LOCALE This message is sent from the PGA Client to the PGA Server Core and

contains information about the user's locale (language and region). This in-
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formation is needed for supporting localized status information and error mes-

sages so that users actually understand the human-readable messages coming

from the PGA Server Core. The internal structure of this message is a locale

de�nition with the following syntax:

locale = language "_" region

language = 1*ALPHA

region = 1*ALPHA

Examples:

• Swiss German: de_CH

• American English: en_US

STATIC_STATE This message is sent only once from the PGA Server Core to the PGA

Client directly after establishing the tunnel between them and contains the

static status information of the PGA Server Core (for details of the static server

status please see the de�nition of the class StaticServerState() in section

4.2.1 on page 31). The internal format of this message is an XML structure

holding a textual representation of the static server status (see section 6.2 on

page 141).

STATE_REQUEST This message is sent regularly from the PGA Client to the PGA

Server Core to request an update on the dynamic state (see below for details)

of the PGA Server Core. This message consists only of its type pre�x.

DYNAMIC_STATE Whenever a PGA Server Core receives a STATE_REQUEST message

(see above) from a PGA Client, it is supposed to respond with a DYNAMIC_STATE

message (for details of the dynamic server status please see the de�nition of the

class DynamicServerState() in section 4.2.1 on page 31). The PGA Server

Core does not actively send this message but only when requested, because

every PGA Client can have di�erent features or settings with respect to if

and how often the dynamic server state is displayed to its users. The internal

format of this message is an XML structure holding a textual representation

of the dynamic server status (see section 6.2 on page 141).
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OPEN This message is part of the PGA connection handling (see section 4.6.3 on

page 76) and is sent from a PGA Client to a PGA Server Core whenever a

new anonymous connection must be established. It has the following syntax:

OPEN = client-side-ID

address-length

address

payload

client-side-ID = <2OCTET in network byte order>

address-length = <2OCTET in network byte order>

address = hostname ":" portnumber

hostname = <any OCTET except ":">

portnumber = 1*DIGIT

payload = *OCTET

When receiving an OPEN message, a PGA Server Core extracts the client side

connection ID and the target address, tries to establish a TCP connection to

the speci�ed target address. If the connection could be successfully established,

the PGA Server Core sends the payload to the target address, if the connection

could not be successfully established, the PGA Server Core silently discards

the payload.

OPEN_SUCCEEDED This message is part of the PGA connection handling (see section

4.6.3 on page 76) and is sent from the PGA Server Core to the PGA Client

when a connection to a target address speci�ed in an OPEN message (see above)

could be successfully established. It has the following syntax:

OPEN_SUCCEEDED = client-side-ID

server-side-ID

client-side-ID = <2OCTET in network byte order>

server-side-ID = <2OCTET in network byte order>

OPEN_FAILED This message is part of the PGA connection handling (see section

4.6.3 on page 76) and is sent from the PGA Server Core to the PGA Client

when a connection to a target address speci�ed in an OPEN message (see above)

could not be successfully established. It has the following syntax:
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OPEN_FAILED = client-side-ID

error-message

client-side-ID = <2OCTET in network byte order>

error-message = *OCTET

DATA This message is part of the PGA message tunneling protocol (see section 4.6.3

on page 77) and is sent from either the PGA Server Core or the PGA Client

to transparently transfer data that was read from the application or server at

the respective target connection. It has the following syntax:

DATA = connection-ID

payload

connection-ID = <2OCTET in network byte order>

payload = *OCTET

XOFF This message is part of the PGA �ow control mechanism (see section 4.6.4 on

page 88) and is used to stop the peer side from reading data from the target

connection. It has the following syntax:

XOFF = connection-ID

connection-ID = <2OCTET in network byte order>

XON This message is part of the PGA �ow control mechanism (see section 4.6.4 on

page 88) and is used to resume reading data from the target connection at the

peer side. It has the following syntax:

XON = connection-ID

connection-ID = <2OCTET in network byte order>

JOIN This message is sent from the PGA Client to the PGA Server Core to join a

speci�ed anonymity group. It has the following syntax:

JOIN = anonymity-group

anonymity-group = 1*OCTET

JOIN_SUCCEEDED When a PGA Client could successfully join an anonymity group,

the respective PGA Server Core responses with this message to indicate the

success of the join operation. This message consists only of its type pre�x.
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JOIN_FAILED When a PGA Client could not successfully join an anonymity group,

the respective PGA Server Core responses with this message to indicate the

failure of the join operation and the reason of the failure. It has the following

syntax:

JOIN_FAILED = error-message

error-message = 1*OCTET

LEAVE This message is sent from the PGA Client to the PGA Server Core to leave

the currently joined anonymity group. This message consists only of its type

pre�x.

SHUTDOWN This message is part of the PGA connection handling (see section 4.6.3

on page 77) and is sent from either the PGA Client or the PGA Server Core

to shut down one direction of an anonymous connection. It has the following

syntax:

SHUTDOWN = connection-ID

connection-ID = <2OCTET in network byte order>

ERROR This message is part of the PGA connection handling (see section 4.6.3 on

page 77) and is sent from either the PGA Client or the PGA Server Core to

shut down an anonymous connection in case of a local input/output error. It

has the following syntax:

ERROR = connection-ID

connection-ID = <2OCTET in network byte order>

4.6.3 Message tunneling

Anonymous connections in the PGA architecture are data streams that originate

mostly from applications and terminate at a web server. In between there is the

anonymizing architecture, the PGA Client and the PGA Server Core (see Figure

4.9.

The applications and servers do not know about the PGA architecture at all

and have their communication handled by normal TCP streams. Between the PGA
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Figure 4.9: Messages in PGA tunnel
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Client and the PGA Server Core there is one single data stream wherein the dis-

tinguished messages de�ned above are exchanged. This architecture must solve the

following two challenges:

• (De)multiplexing streams with messages

• Flow control

(De)multiplexing streams with messages

Connection register

Figure 4.9 is an oversimpli�cation. In normal situations there are several applica-

tions talking to the PGA Client at the same time, maybe some of those applications

having several connections open simultaneously. At the tunnel side there is normally

quite a number of PGA Clients talking to one single PGA Server Core which itself

is communicating with lots of servers.

This all leads to the situation where there are several streams sharing one resource:

the tunnel between the PGA Client and the PGA Server Core. Because the only

way to communicate through the tunnel is sending some messages, the messages of

one stream have to be �tagged� somehow, so that they can be correlated. To solve

this problem, the PGA architecture uses a separate connection register for every

single tunnel.

There are several ways to implement such a connection register, e.g. an array or

a hash table. Accessing elements of an array is much faster than retrieving values

out of a hash table. Therefore an array is used in the PGA architecture. One

disadvantage of arrays is that they can not be stored as densely as a hash table.

If both connection indices 0 and 60.000 are used, the register array needs to have

allocated memory for at least 60.000 entries. A hash table would only need two

entries in this case.

This characteristic of arrays opens the door for a denial-of-service attack: When

the PGA Client decides on the connection indices it could request a connection with

a very high index and the PGA Server Core must allocate a large array to store the

connection reference. If a compromised PGA Client does this with a large number of

tunnels, the PGA Server Core must allocate a signi�cant amount of memory or even

runs out of memory. Because of this threat the connection indices are not handled

by (untrusted) PGA Clients but the PGA Server Core itself.



76

Opening connections

Every time an application requests a new connection, the PGA Client generates a

temporary but unique ID for this connection and stores the pair of (ID, connection)

somewhere. The ID can be generated randomly or simply be an increasing sequence.

In addition to that, the PGA Client tries to read as much data from the appli-

cation as possible. The temporary ID, the requested target address and the initial

data are the components of the �rst message of a new connection: the OPEN message

sent by the PGA Client to the PGA Server Core (see de�nition of the OPEN message

on page 71).

For example, a web browser sends the following request to the PGA Client Web

Connector:

GET http://www.example.org:8080/example.html HTTP/1.1

The PGA Client Web Connector parses the HTTP request and extracts the target

address www.example.org:8080. Then it translates the HTTP proxy request into

a normal HTTP request:

GET /example.html HTTP/1.1

Host: www.example.org:8080

The PGA Client generates the unique index 4711, stores the pair of 4711 and

this connection somewhere and creates the following OPEN message (| denotes the

message element boundaries):

4711 | 20 | www.example.org:8080 | GET /example.html HTTP/1.1\r\n

Host: www.example.org:8080

When the PGA Server Core receives an OPEN message it �rst extracts and stores

the unique ID. Then it parses the address length as an integer value (20 in the

example above). The length value is used to read in the address part. Then it tries

to connect to the speci�ed target address. If the connection to the target address

failed, the PGA Server Core sends an OPEN_FAILED message (see de�nition on page

71) to the PGA Client. The OPEN_FAILED message must contain the stored unique

ID from the associated OPEN message so that the PGA Client can correlate both

messages. In addition to that it may contain a detailed error message explaining why

the connection failed (e.g. the target name could not be resolved or the connection

was refused by the target).

For example:
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4711 | Unable to connect to remote host: Connection refused

If the connection to the target address succeeds, the PGA Server Core �rst

searches for a free index in its connection register. If there is no free index available

it enlarges the array by �ve entries and uses the next free entry.

Now the PGA Server Core sends an OPEN_SUCCEEDED message (see de�nition on

page 71) to the PGA Client. As with the OPEN_FAILEDmessage, the OPEN_SUCCEEDED

message must also contain the unique ID from the associated OPEN message so that

the PGA Client can correlate both messages. In addition to that it must contain

the index of this new connection in the PGA Server connection register.

For example, when the next free entry in the tunnel register at the PGA Server

Core was 815, the OPEN_SUCCEEDED message would look like this:

4711 | 815

After notifying the PGA Client with the OPEN_SUCCEEDED message that the new

connection was successfully established, the PGA Server Core sends the initial data

(payload) to the target system. Now it becomes obvious that having the initial data

in the OPEN message reduces the latency of the PGA architecture. Otherwise the

PGA Client would have to wait for the OPEN_SUCCEEDED message to arrive from the

PGA Server Core before tunneling the �rst real connection data via DATA messages.

Data exchange

After establishing an anonymous connection as described above, application data

can be transferred. This is done via DATA messages. These messages are always sent

when either the PGA Client has read some data from the application or the PGA

Server Core from the target system. Because there can be DATA packages from many

di�erent connections �owing through one tunnel between a PGA Client and a PGA

Server Core, the DATA messages must be tagged with the connection ID.

When either the PGA Client or the PGA Server Core receives a DATA message it

must �rst extract the connection ID and then retrieve a reference to the correspond-

ing connection from its connection register. Then it must forward the user data to

the connection endpoint (the application on PGA Client side or the target system

on PGA Server Core side).

Closing connections

Shutting down TCP/IP connections is more di�cult than opening them. A TCP/IP
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connection consists of two endpoints and two directions (see Figure 4.10). The

upstream and downstream directions can be closed asymmetrically. That means

that even if one direction of a connection is closed, data can still be transferred into

the other direction.

Figure 4.10: Endpoints and directions in a TCP/IP connection

Because anonymous connections of the PGA architecture are established over

three independent TCP/IP connections (application↔ PGA Client↔ PGA Server

Core ↔ target), all TCP shutdown events have to be passed as messages through

the PGA architecture.

Regular shutdown

Because the following description applies to �Application ↔ PGA Client� as well

as �PGA Server Core ↔ Target� connections, the generic terms �PGA� for both

PGA Client and PGA Server Core and �endpoint� for the application and the target

system is used here.

If PGA receives a TCP FIN9 package from the endpoint it must mark the con-

nection as �write only� and must send a SHUTDOWN message through the tunnel. This

message just contains the associated connection ID. (It is still possible to forward

data to the endpoint. Therefore PGA must not close the connection completely yet.)

When PGA receives a SHUTDOWN message it must mark the connection as �read only�

and send a TCP FIN packet to the endpoint. When a connection is marked both as

�write only� and �read only� it must be closed and removed from the corresponding

index in the connection register.

9a TCP FIN (�nish) package signals that there will be no more data packages coming from the

sender
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Exceptional shutdown

Sometimes it may happen that PGA does not receive a TCP FIN or RST10 package

from an endpoint, e.g. when the endpoint's operation system crashed or the network

between PGA and the endpoint was physically disconnected. PGA will notice this

problem only when trying to write to the endpoint (e.g. transfer some user data or

deliver an error message).

There is an even more di�cult situation that must be handled by the PGA

communication infrastructure: Both endpoints (the application at the PGA Client

side and the target system at the PGA Server Core side) crash simultaneously while

no DATA packages are on their way. Because there are no pending write operations

the PGA communication infrastructure would not detect the crashes and end up

with idle connections that would never be cleaned up. Therefore the TCP �alive�

feature is used: When a connection was idle for a long time (the exact time span

depends on the operating system) a TCP package without any payload is send and

must be acknowledged by the receiver. If the receiver doesn't respond to the �alive�

package the sender must assume that the receiver has crashed or disconnected.

If a network error occurs at the PGA Client side it must send an ERROR message

to the PGA Server Core and remove the connection from the corresponding index in

the connection register. When the PGA Server Core receives an ERROR message it

must close the connection and remove the connection from the corresponding index

in the connection register.

The complete state machine for PGA Client target connections is shown in Figure

4.11.

Network errors at the PGA Server Core side must be handled with more care.

The example shown in Figure 4.12 demonstrates the problem:

• Dx1 is the �rst DATA package of connection x

• OCy is the OPEN message of connection y

• Dx2 is the second DATA package of connection x

If writing Dx1 generates a network error and the error handling would be exactly

as on the PGA Client side, the following problem could arise:

1. the connection register index of connection x is freed

10a TCP RST (reset) package closes a connection
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Figure 4.11: State machine for PGA Client target connections

Figure 4.12: Example of incoming messages at the PGA Server Core
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2. the OPEN message is processed and the register index of connection x is reused

3. Dx2 is written to the endpoint of connection y and thereby leaking information

to a wrong endpoint. This is not only a severe security problem but may also

cause application protocol errors.

To prevent this scenario from happening, additional states, similar to the CLOSE-

WAIT and FIN-WAIT states of the TCP �nite state machine [31] is necessary.

Because the PGA tunneling protocol sits on top of TCP, the solution can be much

simpler than the TCP �nite state machine. Therefore, an additional �pending� state

for PGA Server Core target connections is introduced wherein it has to wait for the

remaining packages of the connection to arrive before termination and reusing the

target register index becomes possible:

Whenever a network error occurs at the PGA Server Core side it must send an

ERROR message to the PGA Client. When there may still be DATA packages coming

(the PGA Server Core connection is fully established or in state �write only�) the

connection must move to the �pending� state. If the PGA Client receives an ERROR

message it must acknowledge this message with a SHUTDOWN message (if not already

sent in the meantime). The PGA server connection must only leave the �pending�

state when receiving a SHUTDOWNmessage or (if a network error occurs simultaneously

on both PGA Client and PGA Server Core side) an ERROR message.

The complete state machine for PGA Server Core target connections is shown in

Figure 4.13.

Model Checking

It is fundamentally impossible to construct a general proof procedure for arbitrary

programs (the unsolvability of the halting problem was proven by Alan Turing in

1936 [63]). However, the correctness of a distributed software system can be �me-

chanically� veri�ed with simple tool-based veri�cation techniques, e.g. a logic model

checker.

Quoting the preface of SPIN [28]:

A logic model checker is designed to use e�cient procedures for charac-

terizing all possible executions, rather than a small subset, as one might

see in trial executions. Since it can explore all behaviors, the model

checker can apply a range of sanity checks to the design model, and it
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Figure 4.13: State machine for PGA Server Core target connections
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can successfully identify non-executable code, or potentially deadlocking

concurrent situations. It can even check for compliance with complex

user-de�ned correctness criteria. Model checkers are unequally in their

ability to locate subtle bugs in system designs, providing far greater

control than the more traditional methods based on human inspection,

testing or random simulation.

The Spin model checker (http://spinroot.com11) was used to verify the de-

sign of the concurrent connection state machines used for PGA Client and PGA

Server Core. So that Spin can simulate and verify the state machine models they

must be build in ProMeLa (Process Meta-Language), an abstract system description

language. The ProMeLa source code is shown in appendix A.1.

Simulation

With the following command:

spin -c <promela_file>

the system modeled within the speci�ed ProMeLa �le is simulated. One possible

run is executed and is printed on screen. A simulation run may vary each time. A

possible run could look like this:

proc 0 = PGA_Client

proc 1 = PGA_Server

q\p 0 1

1 client_to_server!OPEN

1 . client_to_server?OPEN

2 . server_to_client!OPEN\_SUCCEEDED

2 server_to_client?OPEN\_SUCCEEDED

2 . server_to_client!DATA

2 . server_to_client!DATA

2 server_to_client?DATA

2 . server_to_client!DATA

1 client_to_server!DATA

2 . server_to_client!DATA

11last visited: January 2012

http://spinroot.com
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2 . server_to_client!DATA

1 client_to_server!DATA

2 . server_to_client!DATA

2 . server_to_client!DATA

1 . client_to_server?DATA

1 client_to_server!DATA

1 client_to_server!SHUTDOWN

1 client_to_server!ERROR

PGA Client reached TERMINAL state

2 . server_to_client!ERROR

1 . client_to_server?DATA

1 . client_to_server?DATA

1 . client_to_server?SHUTDOWN

PGA Server reached TERMINAL state

-------------

final state:

-------------

2 processes created

Veri�cation

To verify a system model two steps need to be taken. The �rst step tells SPIN to

generate C code from the given system model de�ned within the ProMeLa �le:

spin -a <promela_file>

The second step then compiles the program:

gcc -o pan pan.c

This creates an executable �le called pan. When pan is executed the program

checks if any errors can be found. Generally every possible transition and state

combinations is checked for variable inconsistencies. A successful system would

generate 0 errors and the output would look like this:

(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction
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Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

State-vector 44 byte, depth reached 150, errors: 0

2953 states, stored

4084 states, matched

7037 transitions (= stored+matched)

0 atomic steps

hash conflicts: 7 (resolved)

2.724 memory usage (Mbyte)

unreached in proctype PGA_Client

(0 of 43 states)

unreached in proctype PGA_Server_Core

(0 of 49 states)

The veri�cation of the PGA connection state machines did not �nd any errors, i.e.

deadlocks, unreachable states or time outs.

4.6.4 Flow control

End-to-End �ow control

Motivation

Communication over unreliable media is a di�cult task. Because the PGA tunnel

protocol is built on top of TCP the most di�cult problems (package loss, duplication,

reordering, . . . ) are already solved by TCP's own mechanisms.

One of the problems that TCP solves in a very sophisticated way is �ow control.

Flow control is the process of adjusting the �ow of data from a sender to a receiver

to ensure that the receiver can handle all of the incoming data. This is particularly

important where senders and receivers are unmatched in capacity and processing

power, especially when the sender is capable of sending data much faster than the
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receiver can handle it. TCP uses a sliding window protocol (see section 3.4 of [60])

to solve the �ow control problem.

The PGA tunneling protocol is build on top of TCP. Therefore, the data channel

from the application to the server in �gure 4.9 (on page 74) is reliable. But a new

problem arises because the PGA tunnel protocol works over a chain of the following

three independent TCP links:

• Application ↔ PGA Client

• PGA Client ↔ PGA Server Core

• PGA Server Core ↔ Server

In this situation all reliability features of TCP still apply for the connection from

the application to the server except �ow control. This is very problematic in certain

situations, like in the following example:

The connection from the application to the PGA Client and the connection from

the PGA Client to the PGA Server Core are high bandwidth links (see �gure 4.14,

higher bandwidth is illustrated by thicker lines). The connection between the PGA

Server Core and the server is a low bandwidth connection (illustrated by a thinner

line). If the application sends DATA packages to the server with all its available

bandwidth it would not take very long and the PGA Server Core would not be

able to deliver the packages to the server. The packages must be bu�ered at the

PGA Server Core until the server can receive more data. Without any additional

mechanisms, the application could �ll up the bu�er space of the PGA Server Core

and in this way bringing down the PGA service completely. This situation motivates

an additional layer of �ow control mechanism in the PGA tunneling protocol.

Figure 4.14: Flow control problem with PGA tunneling protocol

Evaluation

There are many known �ow control mechanisms. In this section some common
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mechanisms are introduced and evaluated regarding their applicability for the PGA

tunneling protocol.

For all mechanisms we assume that the tunneling protocol sits on top of a reliable

TCP connection (packages are not lost).

There is a common attack against availability at the PGA Server Core that we

consider for every evaluated �ow control mechanism: The adversary tries to �ll up

as much bu�er space at the PGA Server Core as possible.

Request/Reply

Request/reply �ow control requires each data packet to be acknowledged by the

remote host before the next packet is sent. Sometimes referred to as ping-pong

behavior, request/reply is simple to understand and implement.

The request/reply �ow control mechanism has a major disadvantage: it is not

very e�cient. At any given point in time there can be only one data package on its

way through the tunnel. This wastes a lot of network capacity (the bandwidth· delay
product of the tunnel).

Figure 4.15: Tunnel capacity

In �gure 4.15 b is the bandwidth of the tunnel, d is the delay of the connection,

and c = b· d is the network capacity of the tunnel.

If the request/reply �ow control mechanism is used in the PGA tunneling pro-

tocol, a new REQUEST message would have to be introduced. This message would

have to be send by the PGA components when a write operation was completed

and no bu�ered data is left. If a PGA component receives a DATA package despite

no REQUEST message was sent beforehand, it would be able to assume that the PGA

peer is compromised and may terminate the tunnel connection.

To �ll up as much bu�er space at the PGA Server as possible, the following

attack can be executed: An adversary starts two software components, a sender and

a receiver. The sender uses the PGA infrastructure to connect to the receiver. After
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establishing the connection the receiver stops reading data from the PGA Server,

thereby forcing the PGA Server to bu�er data. The sender may now send one

maximum size DATA package. The maximum size of DATA packages in the current

PGA tunnel protocol is 216 − 4 = 65532 byte. This is a comparatively small value

and poses no real threat to the PGA Server Core availability.

XON/XOFF

In this simple �ow control mechanism, the receiver sends an XOFF message to

the sender when its bu�er is full. The sender then stops sending data. When

the receiver is ready to receive more data, it sends an XON signal. Therefore the

XON/XOFF mechanism very e�ciently uses the available bandwidth. Despite being

a �ow control mechanism it is no congestion avoidance mechanism. XON/XOFF only

becomes e�ective when a congestion already happened.

This leads to a typical stop-and-go behavior of the tra�c when congestion appears

as shown in �gure 4.16.

Figure 4.16: Tra�c pattern in saturated network using XON/XOFF

The messages in the PGA tunneling protocol do not share a common header where

the �ow control messages could be integrated into. Therefore two new message types

for the messages XON and XOFF have to be introduced.

If the PGA Server Core is unable to write a DATA package completely to a server

it must bu�er the remaining data. If this bu�er reaches a certain size limit the

PGA Server Core must send an XOFF message to the PGA Client as a congestion

indication. When receiving an XOFF message, the PGA Client should stop reading

new data from its regarding application. When the PGA Server Core is later able to
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write data from the bu�er to the server so that the bu�er size falls below the size limit

it must send an XON message to the PGA Client. When receiving an XON message the

PGA Client must start again reading new data from its local application. Because

the underlying TCP already has write bu�ers it is perfectly valid to set the normal

bu�er size limit to zero. That means, whenever an incomplete write operation occurs

at a PGA component, an XOFF message must be sent.

An adversary could impose both sender and receiver and stop reading data at

the receiver side. Then the attacker's PGA Client could ignore the XOFF message

(send by the PGA Server Core) and continue sending data, this way �lling up the

PGA Server Core bu�er space. A countermeasure to this attack is possible: After

sending the XOFF message the PGA Server may accept new DATA packages only for

a short period of time. This period must not be much longer longer as the average

RTT (round-trip-time) for the tunnel. There are ways to measure the tunnel RTT if

the PGA Client is not compromised. Because compromised PGA Clients may even

manipulate RTT measurement, the time period must be a constant value that is

somewhat larger than typical Internet RTT's. If, after sending XOFF and accepting

new DATA packages for the RTT period, the PGA Server still receives new DATA

packages it may assume that the PGA Client is compromised and terminate the

tunnel.

Any PGA Client (normal or attacking) with a very high bandwidth connection

to the PGA Server Core could �ll up the available bu�er space during the XOFF time

out period mentioned above. Therefore a second bu�er size limit has to be speci�ed.

When reaching this �emergency� limit the PGA Server must stop reading from the

tunnel completely until the bu�er size falls again under this limit. This would stop

all connections served by the tunnel instead of only the one with a congested peer.

This again would be very irritating for non-attacking PGA Client users.

All mechanisms described above naturally also apply for the opposite direction

(PGA Client → PGA Server Core).

The XON/XOFF �ow control mechanism is very e�cient because there are no com-

putational or bandwidth resources used at all when there is no congestion happening.

When looking at typical bandwidth distributions for PGA tunnels (see �gure 4.17),

it is clear that congestion is rather the exception than the norm in PGA tunnels.

The application and the PGA Client are almost always running on the same

machine, therefore using a local link with a very high bandwidth. In contrast to that
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Figure 4.17: Typical bandwidth distribution for PGA tunnels

the tunnel between PGA Client and PGA Server Core is relatively low bandwidth

because computational intensive encryption is used and the Internet link of one

PGA Server Core is simultaneously shared between all its connected PGA Clients.

The bandwidth is especially low if the PGA Client is a member of a low-bandwidth

anonymity group. The connection between a PGA Server and a usual web server is

mostly a normal bandwidth connection.

In summary, the XON/XOFF �ow control mechanism is very e�cient but in worst

case scenarios congestion control and attack resistance is neither elegant nor simple.

Sliding window

A simpli�ed version of the TCP sliding window �ow control mechanism could be used

for the PGA tunneling protocol. In contrast to the XON/XOFF protocol introduced

above, that only acts after a congestion already happened, the sliding window �ow

control mechanism is inherently a congestion avoidance mechanism.

Every target connection endpoint at the PGA Client and PGA Server Core will

reserve a certain amount of bu�er space (depicted as B1 and B2 in �gure 4.18).

Figure 4.18: Target connection bu�ers

The initial size of B1 and B2 must be announced via BUFFER_SIZE messages when

establishing the tunnel.

When reading the �rst data package from the application, the PGA Client must

not read more data than B2, the bu�er size of the PGA Server Core. When reading

the second data package, the PGA Client must determine again the amount of

data it is allowed to read and forward. For this purpose it must subtract the data
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volume of the �rst data package (that has already been read and forwarded) from

B2. This reading window indicates an allowed number of bytes that the PGA Client

may transmit before receiving further permission. The reading window of the PGA

Client must be enlarged when the PGA Server Core successfully writes data to

the web server. Therefore, the PGA Server Core must somehow communicate the

number of written bytes to the PGA Client. TCP uses a positive acknowledgement

(ACK) �eld in every TCP header. To save bandwidth, this ACK is delayed in many

TCP implementations and �piggybacked� with normal payload packages. This saves

some bandwidth but at the cost of maintaining a timed task that sends the ACK

packages after a time-out when there are no payload packages to send. If normal

packages are being sent while the timed task is waiting, the task has to be canceled.

If this mechanism is used for the PGA tunnel protocol, timed tasks are created and

canceled for every PGA tunnel in a very high frequency. Therefore this mechanism

should only be used when the platform provides a low-overhead, high-performance

timing framework so that the small amount of saved bandwidth is not bought with

many computing resources.

If the number of read and transferred bytes is t and the number of bytes written

at the opposite side and acknowledged is a then the size of the reading window w

can always be determined by the following equation:

w = B2 − t + a (4.1)

If both PGA components adhere to this speci�cation t ≤ a applies always. Inser-

tion in the above equation leads to:

t = B2 + a− w

B2 + a− w ≥ a

B2 ≥ w

(4.2)

This shows that when using the sliding window mechanism, the reading window

on the PGA Client side is never larger than the bu�er B2 on the PGA Server Core

side. Therefore, if the PGA Server Core receives a DATA message that results in an

incomplete write operation and a bu�er size that over�ows B2 it may assume that

the PGA Client is compromised and may terminate the tunnel connection.

One challenge when using the sliding window mechanism is to utilize the available

bandwidth of network connections with a large capacity (bandwidth· delay, see �gure
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4.7). When the size of B2 is too small it may happen that the reading window at the

PGA Client closes without any real congestion at the PGA Server Core happening.

This is always the case when the di�erence between transferred and acknowledged

data is as large as the bu�er on the other side (t− a = B2).

There is a mechanism for dynamic adjustment of sliding window sizes, described

in [19]. Simply speaking, it works by constantly measuring the round-trip-time

and the bandwidth of the connection. These both values can be used to calculate

the needed window size for the current connection. If this value gets close to the

currently used window size it is a sign that the window size is too small and it will

be enlarged.

There are several ways to measure the bandwidth of a connection. In this case,

passively measuring the tunnel throughput without special probe packages is suit-

able. So that the measurement has a high agility (changes are quickly detected) only

the last window of the tra�c, with a limited size, must be taken into consideration.

The algorithm to measure the tunnel bandwidth b can be very simple:

1. store the current time in a variable t0

2. receive messages and add up the received data volume of all messages v until

a certain limit (package count, received data volume or time-out) is reached

3. store the current time in a variable t1

4. b = v
t1−t0

5. repeat

A simple mechanism for measuring the round trip time of a tunnel is to send

special RTT packages that must be instantly acknowledged with an RTT_ACK message

when received. Because round trip time variation is normally low, an algorithm that

backs o� the sampling period should be used, starting with a sampling period s0 up

to a maximal sampling period smax. For the dynamic window size scaling algorithm

the shortest observed round trip time RTTmin should be used.

This way every PGA component could execute the following simple algorithm to

e�ciently measure the round trip time:

1. sampling period s = s0
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2. store the current time in a variable t0

3. send an RTT package

4. upon receipt of an RTT_ACK message, store the current time in a variable t1

5. RTTmin = min(RTTmin, t1 − t0)

6. wait for s = min(2s, smax)

7. goto 2

The round trip time measurement mechanism of TCP also accounts round trip

time variation. It is needed for �ne tuning of retransmission of packets that have

not been acknowledged. Because there are no lost packages in a PGA tunnel, it is

here not necessary to take round trip time variation into consideration.

Whenever the bandwidth b and the minimum round trip time RTTmin is mea-

sured, the necessary window size w can be calculated as follows:

w =
b·RTTmin

2
(4.3)

The following formula may be used to resize the local bu�er size B after every

calculation of w:

B =

B w ≤ B
2

2B w > B
2

(4.4)

This way the local bu�er size doubles, whenever the measured necessary window

size is half as large as the real bu�er size.

If B changes, another BUFFER_SIZE message must be send through the tunnel so

that the other PGA component can enlarge its reading window to fully utilize the

available bandwidth.

Even if the sliding window �ow control mechanism is used, the following attack

can be executed to �ll up as much bu�er space at the PGA Server Core as possi-

ble: An adversary starts two software components, a sender and a receiver. The

sender uses the PGA infrastructure to connect to the receiver. After establishing the

connection, the adversary delays RTT_ACK messages on purpose, so that the PGA

Server Core measures very long round trip times. This way the PGA Server Core

will enlarge its local bu�er size. After receiving a BUFFER_SIZE message with a very

large number the adversary suddenly sends as much data as possible.



94

To fend o� this attack, the PGA Server Core must de�ne a maximum round trip

time RTTmax, that will be used to calculate the window size. If a measured round

trip time is larger than RTTmax, the PGA Server Core may assume that the PGA

peer is compromised and may terminate the tunnel connection.

In summary, the sliding window �ow control mechanism is very sophisticated,

but constantly uses up bandwidth and computing resources.

Conclusion

The request/reply �ow control mechanism is very simple to implement. But its

ine�ciency stands in direct opposition to the design goal of high performance for

the PGA architecture. Therefore this �ow control mechanism is not used.

The XON/XOFF �ow control mechanism is also very simple to implement and has

the advantage that the maximum bandwidth of the peer-to-peer connection can be

used without any additional protocol mechanisms. The drawback is, that some very

rare worst case scenarios are not handled very well.

The simpli�ed sliding window �ow control mechanism does not share the problems

of the worst case scenario in the XON/XOFF �ow control mechanism. But this small

advantage comes at a high price. The protocol is substantially more complex and

constantly uses bandwidth and computing resources.

Consequently, after evaluating the three �ow control mechanisms above, XON/XOFF

is used for the PGA tunneling protocol. This is an optimistic trade-o� in favor of

simplicity and performance to the disadvantage of complexity.

Veri�cation

When using the XON/XOFF �ow control mechanism, every PGA tunnel connection

must keep track of both the local and remote states.

The state machine for local states is shown in �gure 4.19 and has the following

states:

On Data may be read from the target system and forwarded through the tunnel

and data coming from the tunnel may be forwarded to the target system.

O� No more data must be read from the target system. Data coming from the

tunnel may still be forwarded to the target system.
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Figure 4.19: State machine for local XON/XOFF �ow control

The remote states are the states the opposite side of a tunnel is expected to be

in. In addition to the both local states described above the state machine for remote

states shown in �gure 4.20 has one additional state:

Emergency (shown as E in �gure 4.20) No more data must be read from the

tunnel. Data may still be read from the target system and forwarded through

the tunnel.

There are state transitions where no messages are sent or received:

• E → E

A local write operation occurred but the bu�er size is still larger than the

emergency limit.

• E → Off

A local write operation occurred. The bu�er size is now smaller than the the

emergency limit but still larger than the limit for sending the XOFF message.

For creating a ProMeLa model, the local and remote state machines must be

multiplied. Figure 4.21 shows a simpli�ed product of both state machines. The

state labels show the local state in the �rst line and the remote state in the second
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Figure 4.20: State machine for remote XON/XOFF �ow control

Figure 4.21: State machine for complete XON/XOFF �ow control



97

line. For purposes of clarity, the transition details have been omitted but can be

found in the source code of the ProMeLa model in section A.2 on page 197.

With the following command:

spin -c <promela_file>

the system modeled within the speci�ed ProMeLa �le is simulated. In this case the

simulation of the XON/XOFF �ow control is running endlessly as there is no �nal state

in the model to be reached.

The model was veri�ed with Spin:

(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

State-vector 48 byte, depth reached 1575, errors: 0

4224 states, stored

9550 states, matched

13774 transitions (= stored+matched)

0 atomic steps

hash conflicts: 51 (resolved)

2.724 memory usage (Mbyte)

unreached in proctype :init:

(0 of 3 states)

unreached in proctype PGA_Component

line 61, state 62, "-end-"

(1 of 62 states)

Spin did not report any errors, deadlocks or time-outs but some unreachable

states in the processes �init� and �PGA_Component�. This is again because there
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is no �nal state in this model to be reached and is not considered a problem.

Local �ow control

Motivation

Connections to target systems (applications on the PGA Client side or web servers

at the PGA Server Core side) are almost always faster than the tunnel connection

between a PGA Client and a PGA Server Core. Therefore another bu�er in front

of the tunnel at both the PGA Client and the PGA Server Core side is needed (see

�gure 4.22).

Figure 4.22: Tunnel bu�er at a PGA component

Because this bu�er must also be protected against data over�ow, in addition to

a working end-to-end �ow control mechanism, another �ow control mechanism for

local data forwarding is needed.

Design

If the bu�er size reaches a certain threshold size, the PGA Client or PGA Server

Core must stop reading new data from the target connections. If the bu�er size falls

below the threshold, the PGA components must resume reading and forwarding new

data from the target connections.

There are at least two strategies stop and restart the target connections:

1. Stop all target connections at once when the bu�er reaches the threshold size

and continue reading and forwarding new data at all target connections when

the bu�er size falls below the threshold.
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2. Stop single target connections one after the other when they try passing data

through the tunnel and the bu�er threshold size is reached. Store the stopped

target connections into a list. Restart all target connections in this list when

the bu�er size falls below the threshold.

Both strategies have their advantages and disadvantages:

Strategy 1 minimizes bu�er space usage but wastes computing resources by stop-

ping and restarting connections that maybe never had produced any data during

the time the bu�er size was larger than the threshold value.

Strategy 2 minimizes computing resources by only stopping connections that pro-

duced new data during the time the bu�er size was larger than the threshold value

but wastes bu�er space as each of these connections may still add some data to

the bu�er despite already being larger than the threshold value. In addition to

that some memory is used for the list that holds the references to the connections

that have been stopped and must be restarted when the bu�er size falls below the

threshold.

The current PGA implementation uses strategy 1 because of the following reasons:

• The number of target connections at a single tunnel is equivalent to the con-

current connections of one single PGA Client. The intended main usage of

the PGA Client is a local proxy for one single user. The PGA Client could

also be used as an anonymizing proxy for a whole Intranet user group, but

this scenario is probably rare. Therefore the number of target connections is

(most of the time) very small.

• Stopping connections is not a very computationally intensive task.

• The main idea of the local �ow control mechanism is to protect the tunnel

bu�er from over�ows, not to minimize computational resources.

Because the local �ow control mechanism (like the name already suggests) has

no dependencies on the PGA component at the other side of the tunnel, it is per-

fectly valid if di�erent implementations of PGA components use di�erent local �ow

control mechanisms on both sides of a tunnel. Therefore, a full speci�cation of this

mechanism is not necessary.
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4.6.5 Adaptive dummy tra�c generation

The PGA Client has to send a constant data stream padded with dummy tra�c to

the PGA Server Core to protect the user against tra�c analysis attacks. The PGA

Client does not know how much user data every other member of its anonymity

group has to send at a certain point in time. Requesting this information constantly

from every other member before sending a message would cost a lot of bandwidth

and latency. Therefore the PGA Client always �lls up the messages with dummy

tra�c up to its standard size ls (see Figure 4.23).

Figure 4.23: PGA Client dummy tra�c generation

The PGA Server Core also has to send a constant data stream to all PGA Clients

which joined an anonymity group (the package size and delay are depending on every

single anonymity group properties). But, in contrast to the PGA Client, the PGA

Server Core knows exactly how much user data is available when a batch of messages

must be sent to the PGA Clients. This information could be used to save bandwidth

by adapting the message size for every batch:

Before sending a batch of messages for an anonymity group, the PGA Server Core

has to �nd the maximum of available user data for all PGA Clients in this anonymity

group, lmax ≤ ls. It can stop processing, if a PGA Client has the maximum amount

of user data available (the standard message size ls). After �nding the maximum

available user data, the PGA Server Core has to send a message with the size lmax

to all PGA Clients of the anonymity group (see Figure 4.24).

If the number of PGA Clients in an anonymity group is n and the delay between

sending packages is ∆t, the saved bandwidth ∆b(compared to the simple approach

where the PGA Server Core always sends messages with the size ls) is:

∆b = n·(ls−lmax)
∆t

There is an interesting e�ect in this equation: if n gets larger, ∆b does not
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Figure 4.24: Adaptive dummy tra�c generation at PGA Server Core

automatically get larger, because the probability for lmax ≤ ls becomes smaller with

a larger n. Therefore, the exact value of ∆b depends on the tra�c characteristics of

all anonymity group members.

Adaptive dummy tra�c generation is a very simple operation concerning compu-

tational resources that can save a lot of valuable bandwidth (under certain condi-

tions), but unfortunately, it also opens up the possibility of hidden channels: Com-

promised applications could enforce lmax for certain amounts of time and transmit

sensitive information via modulation of these time periods. Interesting to note is

that the larger the saved bandwidth ∆b is, the larger is the available bandwidth

for a hidden channel. Because hidden channels are a severe security risk, adaptive

dummy tra�c generation is not used in the PGA architecture.

4.7 Remote Management protocol

The Remote Management protocol is used for exchanging management information

between the PGA Remote Management and the PGA Server.

The Remote Management protocol must enable the following functions for the

PGA Remote Management:

PGA Server Core status shows if the PGA Server Core is running or not
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Figure 4.25: Remote Management

Number of PGA Clients shows the number of PGA Clients connected to the

PGA Server Core

Remaining data volume shows the remaining data volume that is available for

anonymous users

Anonymity groups information shows a list of all anonymity groups including

information about the upstream and downstream packet stream de�nitions

(message size and delay) and the current size of the anonymity group

Anonymity group con�guration provides means to add, edit, remove and re-

order the anonymity groups of a PGA Server Core

Service start provides means to start the PGA Server Core service (to accept and

serve requests from PGA Clients)

Service stop provides means to stop the PGA Server Core service

Key pair generation provides means to generate a key pair for the PGA Server

Core

Certi�cate Request generation provides means to generate a certi�cate request

for the PGA Server Core that can be send to the PGA Certi�cate Authority
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Certi�cate veri�cation provides means to verify a certi�cate and show the veri-

�cation result

Certi�cate import provides means to import a certi�cate from the PGA Certi�-

cate authority

Certi�cate information shows the selected certi�cate of the PGA Server Core

Service port information shows the selected service port (the port where to ac-

cept and serve requests from PGA Clients) of the PGA Server Core

Service port con�guration provides means to set the service port of the PGA

Server Core

Log level information shows the currently selected log level of the PGA Server

Cores

Log level con�guration provides means to set the log level of the PGA Server

Core

Data retention information shows if the PGA Server Core uses data retention

Data retention con�guration provides means to switch data retention at PGA

Server Core on or o�

Data retention period information shows the data retention period of the PGA

Server Core

Data retention period con�guration provides means to set the PGA Server

Core data retention period

Data retention �ltering information shows if a �lter is used for the PGA Server

Core data retention

Data retention �ltering con�guration provides means to con�gure a �lter for

the PGA Server Core data retention

Data retention encryption information shows if encryption is used for the PGA

Server Core data retention
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Data retention encryption con�guration provides means to con�gure an ID

for PGA Server Core data retention encryption

Data retention rotation information shows the data retention rotation period

of the PGA Server Core

Data retention rotation con�guration provides means to set the PGA Server

Core data retention rotation period

Anonymous users policy information shows the policy (bandwidth, data vol-

ume) for anonymous users at the PGA Server Core

Anonymous users policy con�guration provides means to set the policy for

anonymous users at the PGA Server Core

Firewall information shows the �rewall rules of the PGA Server Core (list of

internal networks)

Firewall con�guration provides means to add, edit, remove and reorder internal

networks of the PGA Server Core

Statistical information shows statistical information about the used bandwidth,

the number of connected PGA Clients, the CPU load and the system memory

usage for di�erent time periods (last hour, day, week, month, year)

The initial version of the Remote Management protocol was using a simple pro-

tocol with length pre�xed message frames, a type header and bodies with XML

elements. The corresponding PGA Remote Management was implemented as a

standalone Swing based application.

Shortly after �nishing the �rst prototype implementation based on this initial

Remote Management protocol version, Java version 5.0 was released with beginning

support for Java Management Extensions (JMX) [44], a technology for managing

and monitoring applications12. JMX was signi�cantly enhanced with Java version

6.013. Because JMX as a standard part of Java o�ers many bene�ts compared to

a proprietary solution, the initial version of the Remote Management protocol was

12http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/, last visited: January 2012
13http://docs.oracle.com/javase/6/docs/technotes/guides/jmx/enhancements.html,

last visited: January 2012

http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/
http://docs.oracle.com/javase/6/docs/technotes/guides/jmx/enhancements.html
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discontinued and it was based on JMX instead. Implementation details can be found

in section 6.5 on page 155.
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Chapter 5

Java NIO Framework

5.1 Motivation

The PGA architecture works with several di�erent TCP connections. These TCP

connection have to have a good performance and they have to be scalable. Otherwise

it would be impossible to create large anonymity groups (one signi�cant property

of good anonymization) with the PGA architecture. In addition to the performance

requirement, the data on all these TCP connections has to be bu�ered, forwarded,

framed, unframed, encrypted, decrypted, converted, . . .

Because this functionality was needed for all components of the PGA architecture,

a reusable framework with all the properties described above was needed. Unfortu-

nately, at the time of implementing the PGA architecture, such a framework was

non-existent and therefore created as a part of this work.

5.2 Introduction

For many years, the performance of CPU's improved according to Moore's law [39]

(see Figure 5.1). Because Moore's law cannot be sustained inde�nitely and tran-

sistors slowly reach the limits of miniaturization, parallelization is used to increase

the performance of computers. Multi-core and many-core processing units are now

becoming the standard in computing architectures. The expected growth in number

of cores per unit is a challenge for software engineers in almost all �elds.

Java network application programmers have two basic choices:

• use the classical I/O API (Streams, blocking I/O)
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• use the NIO API (ByteBu�ers, non-blocking I/O)

The classical I/O API is very easy to use, even for network connections secured

with SSL. Because it uses blocking I/O, the one thread per socket multiplexing strat-

egy must be used to serve several network connections. Even though this API scales

with the number of available cores, the runtime performance of network applications

using this API is very poor.

The NIO API provides mechanisms for non-blocking I/O. With non-blocking I/O

it becomes possible to use readiness selection as the multiplexing strategy for serving

several network connections. On the other hand, programming with the NIO API

is very di�cult. A whole book has been written about it [25]. If attention is paid to

all the necessary NIO details, a programmer must write a lot of so-called boilerplate

code, even for the most simple network application. The complexity is increased

many times if NIO is combined with SSL for secure network connections or support

for high-performance, parallel systems. Many of these challenges and their proposed

solutions are described in [45].

The Java NIO Framework is an extensible programming library that solves many

problems that Java network application programmers face when using the original

NIO library:

• In contrast to the original NIO library the Java NIO Framework has a very

simple API, hiding all unnecessary details.

• Support for securing network connections with SSL is an integral part of the

library instead of providing a separate, add-on engine.

• The I/O processing performance of network applications using the Java NIO

Framework automatically scales with the number of available cores.

Work on the Java NIO Framework was started after Ron Hitchen's presentation

�How to Build a Scalable Multiplexed Server With NIO� at the JavaOne Conference

2006 [26]. Although there have been other frameworks available, e.g. [36, 2, 51,

55], none of them had the envisioned scalability and ease of use. The Java NIO

Framework has been published in August 2007 and is available at

http://nioframework.sourceforge.net1. It is Free Software released under the

GNU Lesser General Public License2 version 3.
1last visited: January 2012
2http://www.gnu.org/licenses/gpl.html, last visited: January 2012

http://nioframework.sourceforge.net
http://www.gnu.org/licenses/gpl.html
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5.3 Multiplexing Strategies

Two multiplexing strategies were mentioned in the introduction, one thread per

socket and readiness selection. In the next sections both strategies are brie�y intro-

duced and analyzed.

5.3.1 One Thread Per Socket

Threads are a mechanism to split a process into several simultaneously running

tasks. Threads di�er from normal processes by sharing memory and other resources.

Therefore they are often called lightweight processes. Switching between threads is

typically faster than switching between processes.

When a server uses the one thread per socket multiplexing strategy it creates one

thread for every client connection. When executing blocking I/O operations the

thread is also blocked until the operation completes its execution (e.g. when trying

to read data from a socket the thread blocks until new data is available to read from

the socket).

This strategy is very simple to implement because every thread just continues

its operation after returning from a blocking operation and all internal states of the

thread are automatically restored. A programmer can implement the thread (more

or less) as if the server handles only one client connection.

The drawback of this multiplexing strategy is that it does not scale well. Each

blocked thread acts as a socket monitor and the thread scheduler is the noti�cation

mechanism. Neither of them was designed for such a purpose.

A remaining problem of this strategy is that a design with massive parallel threads

naturally is prone to typical threading problems, e.g. deadlocks, lifelocks and star-

vation.

5.3.2 Readiness Selection

Readiness selection is a multiplexing strategy that enables a server to handle many

client connections simultaneously with a single thread. An overview of readiness

selection is given in [32] when presenting the reactor design pattern.

The reactor design pattern proposes the software architecture presented in Figure

5.2.
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• The class Handle identi�es resources that are managed by an operating system,

e.g. sockets.

• The class Demultiplexer blocks awaiting events to occur on a set of Handles.

It returns when it is possible to initiate an operation on a Handle without

blocking. The method select() returns which Handles can have operations

invoked on them synchronously without blocking the application process.

• The class Dispatcher de�nes an interface for registering, removing, and dis-

patching EventHandlers. Ultimately, the Demultiplexer is responsible for

waiting until new events occur. When it detects new events, it informs the

Dispatcher to call back application-speci�c event handlers.

• The interface EventHandler speci�es a hook method that abstractly represents

the dispatching operation for service-speci�c events.

• The class ConcreteEventHandler implements the hook method as well as the

methods to process these events in an application-speci�c manner. Applica-

tions register ConcreteEventHandlers with the Dispatcher to process certain

types of events. When these events arrive, the Dispatcher calls back the hook

method of the appropriate ConcreteEventHandler.

Readiness selection scales much better but it is not as easy to implement as the

one thread per socket strategy.

5.4 Java NIO Framework Design

Because the Java NIO Framework should be scalable to handle thousands of network

connections simultaneously, the decision was made to use readiness selection as the

multiplexing strategy, which is much more appropriate for high-performance I/O

than the one thread per socket strategy.

5.4.1 Mapping the Reactor Design Pattern

If the reactor design pattern presented above had been used for the Java NIO Frame-

work without modi�cation, every application-speci�c ConcreteEventHandler would

still have to take care of many NIO speci�c details. These include bu�ers, queues,
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incomplete write operations, encryption of data streams and much more. To provide

a simple API to Java network application programmers, the Java NIO Framework

was complemented with several additional helper classes and interfaces that will be

introduced in the following sections.

The concepts and techniques used to design and implement a safe and scalable

framework that e�ectively exploits multiple processors are presented in [43].

A simpli�ed model of the Java NIO Framework core is shown in Figure 5.3.

The gray UML elements (Runnable, Thread, Selector, SelectionKey and

Executor) are part of the Java Development Kit (JDK). The interface Runnable

and the class Thread were part of JDK from the very beginning, Selector and

SelectionKey have been added to the JDK with the NIO package in JDK v1.4 and

the interface Executor was added with the concurrency package

(java.util.concurrent.*) in JDK v1.5. The white UML elements

(ChannelHandler, AbstractChannelHandler, HandlerAdapter and Dispatcher)

are the essential core classes of the Java NIO Framework.

The Dispatcher is a Thread that runs in an endless loop, processes registrations

of ChannelHandlers with a channel (a nexus for I/O operations that represents

an open connection to an entity such as a network socket) and uses an Executor

to o�oad the execution of selected HandlerAdapters (see Figure 5.4 for the corre-

sponding sequence diagram). The Executor interface hides the mechanics of how

each task will be executed, including details of thread use, scheduling, etc. This

abstraction is necessary because the Java NIO Framework may be used on a wide

range of systems, from low-cost embedded devices up to high-performance multi-core

servers.

The abstract class Selector determines which registered channels are ready.

The abstract class SelectionKey associates a channel with a Selector, tells

the Selector which events to monitor for the channel and holds a reference to an

arbitrary object, called �attachment�. In the current architecture the attachment is

a HandlerAdapter.

The EventHandler from the reactor design pattern is split up into several com-

ponents. The �rst component is the class HandlerAdapter. When it is executed, it

manages all the operations on a channel (connect, read, write, close) and its queues,

interacts with the Dispatcher and SelectionKey classes and, most importantly,

hides and encapsulates most NIO details from higher level classes and interfaces
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Figure 5.3: Simpli�ed Java NIO Framework Core
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Figure 5.4: Sequence diagram of Dispatcher main loop
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(see Figure 5.5 for the corresponding sequence diagram).

The second EventHandler component in the Java NIO Framework is the inter-

face ChannelHandler. It de�nes the methods that any application-speci�c channel

handler class has to implement so that it can be used in the Java NIO framework.

These include:

public void channelRegistered(

HandlerAdapter handlerAdapter)

This method gets called when a channel was registered at the Dispatcher. It is

mostly used on server type applications to send a welcome message to clients that

just connected.

public ChannelReader getChannelReader()

This method returns the ChannelReader that will be used by the HandlerAdapter,

if there is data to be read from the channel.

public ChannelWriter getChannelWriter()

This method returns the ChannelWriter that will be used by the HandlerAdapter,

if there is data to be written to the channel.

public void inputClosed()

This method gets called by the HandlerAdapter, if no more data can be read from

the ChannelReader.

public void channelException(Exception exception)

The HandlerAdapter calls this method, if an exception occurred while reading from

or writing to the channel.

The abstract class AbstractChannelHandler provides a simple base for imple-

menting all the application speci�c ChannelHandlers (not shown in Figure 5.3).

It uses the standard Java NIO Framework ChannelReader, ChannelWriter and

HandlerAdapter and already implements the methods

channelRegistered(HandlerAdapter handlerAdapter), getChannelReader() and



117

Figure 5.5: Sequence diagram of HandlerAdapter execution
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getChannelWriter(). Most application speci�c ChannelHandlers will probably ex-

tend AbstractChannelHandler but application developers also have the freedom to

provide a completely di�erent implementation of the ChannelHandler interface.

The ConcreteEventHandler of the reactor design pattern is represented by these

application speci�c ChannelHandlers.

Table 5.1 shows the mappings from the reactor design pattern to the Java NIO

Framework.

Table 5.1: Mappings from reactor design pattern to the Java NIO Framework

Reactor Design Pattern Java NIO Framework

Dispatcher Dispatcher

Demultiplexer Selector

Handle SelectionKey

EventHandler

HandlerAdapter

ChannelHandler

AbstractChannelHandler

Executor

ConcreteEventHandler n.a.

5.4.2 Example

The following simple example shows how the core elements of the Java NIO Frame-

work interact:

A client system is using the Java NIO Framework to read some data from a server

system. The client application has a class ClientChannelHandler which extends

the abstract class AbstractChannelHandler. The following operational sequence is

necessary:

1. The client system connects to the server system with the classic I/O mecha-

nisms, e.g. with the java.net.Socket class and gets the Channel �channel�

from the socket.

2. The client creates an instance �handler� of ClientChannelHandler and calls

Dispatcher.registerChannel(channel, handler)
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3. The Dispatcher registers the channel at the Selector, which creates a

SelectionKey. A new HandlerAdapter is created and attached to the

SelectionKey. The HandlerAdapter asks the handler for its ChannelReader

and ChannelWriter. The last step is to call

handler.channelRegistered(handlerAdapter)

so that the client application may execute initial actions, e.g. send some initial

data to the server.

4. The server application sends some data to the client application.

5. Selector returns from select() because there is readable data on the channel.

6. The Dispatcher gets the list of selected keys via Selector.selectedKeys()

and gets the HandlerAdapter of every selected SelectionKey via

SelectionKey.attachment(). The method cacheOps() of every returned

HandlerAdapter is called to cache the current operations of interest (connect,

read, write, . . . ) and clear all operations of interest from the SelectionKey

so that the channel does not get selected anymore from the Selector un-

til the HandlerAdapter is done with handling the current selection. The

HandlerAdapter execution is o�oaded from the Dispatcher thread by call-

ing Executor.execute(handlerAdapter).

7. Depending on many factors (the execution strategy of the client application,

the system load, etc.) the HandlerAdapter will be executed after some time. It

reads data from the channel by calling ChannelReader.read() and processes

this new data according to the purpose of the application (e.g. output to

console, forward to another application, echo back to the server, etc.). Most

application speci�c ChannelHandlers will provide this funcionality by creating

a customized hierarchy of Java NIO Framework forwarders and transformers

(see section 5.4.4).

5.4.3 Parallelization

Some parts of the Java NIO Framework are parallelized by default, other parts can

be customized to be parallelized.
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Execution

The execution of all HandlerAdapters is o�-loaded from the Dispatcher thread to

an Executor. Because I/O operations are typically short-lived asynchronous tasks,

the default Executor of the Java NIO Framework uses a thread pool that creates

new threads as needed, but will reuse previously constructed threads when they are

available. Threads that have not been used for a while are terminated and removed

from the pool. Therefore, if the Executor remains idle for long enough, it will not

consume any resources.

Not every I/O operation meets the typical criteria, e.g. SSL operations are com-

paratively long-lived. If the actual requirements (e.g. a certain thread usage or

scheduling) are not met by the default Java NIO Framework Executor, it can be

customized with the method Dispatcher.setExecutor(). Because this method is

thread-safe, the Executor can even be hot-swapped at runtime.

Selection

There is only one Dispatcher running per default in the Java NIO Framework,

waiting until new events occur on channels represented by SelectionKeys. If the

Dispatcher would ever become the bottleneck of the framework it could simply be

parallelized by starting several Dispatcher instances.

Load-balancing could be done by distributing channel registrations between the

parallel Dispatcher instances. Some of the most simple scheduling algorithms that

could be applied are round-robin distribution or random scheduling.

If connection lifetimes have a high degree of variation, both algorithms could

lead to a very unequal distribution of channels to Dispatchers. To prevent this

scenario, an active channel counter could be integrated into every Dispatcher and

a lowest-channel-counter-�rst scheduling algorithm could be used.

If connections have a high degree of �activity� variation, i.e. on some channels

there is always something to read or write and other channels are mostly idle, the

scheduling algorithm should be based on a select()-counter in the Dispatcher.

Accepting

Another thread, the Acceptor, is running on server type applications. It is listening

on a server socket for incoming connection requests from clients over the network.
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Every time a request comes in, the Acceptor creates a new channel and appropriate

handler, and registers them both at the Dispatcher of the server type application

(or Dispatchers, if selection was parallelized like mentioned in Section 5.4.3).

Currently the Java NIO Framework does not support parallelization of Acceptors.

5.4.4 I/O Processing

When application data units (objects, messages, etc.) have to be transmitted over

a TCP network connection, they have to be transformed into a serialized represen-

tation of bytes.

There are many ways to represent application data and there are also many ways

to serialize data into a byte stream. Therefore, there are countless transformations

between application space and network space imaginable.

The �rst approach to this problem in the Java NIO Framework was to provide

an extensible hierarchy of classes, where every class dealt with a certain operation

(e.g. bu�ering, string serialization, SSL encryption). This architecture turned out

to be very simple and e�cient (only one lock per class). The downside of this

approach was that every combination of operations required its own implementing

class. Changing the order or composition of operations was very di�cult and much

too in�exible for a generic framework.

The second and current approach to message processing is object composition,

where a set of Forwarder classes have been implemented and each class o�ers just

a certain forwarding operation. A special subclass, Transformer, is used for all

operations that actually transform data when processing.

An application programmer can put these Forwarders and Transformers to-

gether into a hierarchy of almost arbitrary order. Almost no programming e�ort

is required besides assembling the needed classes of the processing hierarchy in the

desired order.

The current approach, to favor object composition over class inheritance, has

also been discussed in detail (and was recommended) in the seminal book �Design

Patterns: Elements of Reusable Object-Oriented Software�[22].

A diagrammatic example of the I/O processing architecture is shown in Figure

5.6:

The shapes Tx are the transformation classes. When writing to a channel, the

ChannelHandler hands the application level data units to one of the input transfor-
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Figure 5.6: I/O processing example
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mation classes T1, T2, T3 or T4 (depending on the type of input it just accepted).

Every transformation class transforms the data and hands it over to its next trans-

former until it reaches the ChannelWriter, which writes the �nal byte stream to

the channel and handles many channel speci�c problems, e.g. incomplete write op-

erations.

When reading from a channel, the CannelReader handles the channel speci�c

problems, e.g. connection closing and read bu�er reallocations. After reading a byte

stream from the Channel, the CannelReader passes the data to T5, which transforms

the data. The ChannelHandler can get the application level messages from T6.

There are four basic I/O models for the transformation classes Tx. In ascending

order of complexity they are:

• 1:1 (one type of input, one type of output)

• 1:N (one type of input, di�erent types of output)

• N:1 (di�erent types of input, one kind of output)

• N:M (di�erent types of input, di�erent types of output)

Every model is valid insofar as one can establish a fully functional transforma-

tion hierarchy with any of these I/O models. While the 1:1 model would be the

most simple one, transformation classes of the N:M model would have the highest

�exibility. The interesting thing to note here is that with respect to �exibility every

transformation class of the more complex models can be replaced by chaining several

transformation classes of the 1:1 model. While trying to implement prototypes for

all models above it became clear that the most simple API was provided by using

Java Generics3 (also known as �parameterized types� in [22]) and the 1:1 model.

Another advantage of the 1:1 model is the encouragement of code reuse, because

every transformation should be implemented in a separate class.

The elegance and simplicity comes at the small price of an almost immeasurable

performance loss. Currently, Java Generics are implemented by type erasure: generic

type information is present only at compile time, after which it is erased by the

compiler. The compiler automatically inserts cast operations into the byte code at

necessary places which may cause a tiny performance loss. Using the 1:1 model

3http://docs.oracle.com/javase/1.5.0/docs/guide/language/generics.html, last vis-

ited: January 2012

http://docs.oracle.com/javase/1.5.0/docs/guide/language/generics.html
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results in slightly longer transformation chains, more involved objects and more

locking and unlocking when passing data through a transformation hierarchy.

5.4.5 Synchronization of Parallel I/O

The �rst version of the Java NIO Framework was running with just one single thread.

This had two very positive consequences:

• no thread synchronization issues (deadlocks, lifelocks, starvation, . . . )

• no locking mechanism necessary

Both properties led to a very simple architecture with a very high performance

on single processor systems. But at the same time a new trend was becoming the

norm: multiple cores.

It was clear that full utilization of a multi-core system was impossible with a

single-threaded framework. Therefore the Java NIO Framework was redesigned to

its current variant.

The current version o�oads the execution of HandlerAdapters to an Executor.

This way it is possible to have several HandlerAdapters run simultaneously, using

all available cores in a high-performance system. Unfortunately, this approach leads

again to all known multithreading issues.

While o�ering a scalable framework it must also be ensured that data integrity

is always guaranteed. While it is no problem when one thread reads from a channel

while another thread is writing to the channel simultaneously, it must never happen

that two threads are reading from or writing to the same channel at the same time.

Both situations would lead to data corruption.

Clear, correct, robust and reusable techniques for synchronization of parallel

threads in Java that can be used in the Java NIO framework are presented in [6].

Serialization of Read Operations

If a channel has new readable data, the call to Selector.select() returns and the

Dispatcher calls HandlerAdapter.cacheOps() before o�loading the execution of

the HandlerAdapter to the Executor.

When the method HandlerAdapter.cacheOps() is called, it caches all current

operation interests (read, write, . . . ) and removes all operation interests from the
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SelectionKey. This way the channel does not get selected by the Selector anymore

and all read operations on the channel are serialized.

When the HandlerAdapter gets executed by the Executor after some time, it

restores the cached interest operations at the SelectionKey at the very end of its

execution (sometimes also a di�erent interest set, depending of the events that hap-

pened while the HandlerAdapter was executed). The channel will then be monitored

and selected by the Selector again.

If reading from a channel does not happen intentionally outside the Java NIO

Framework, all read operations on all channels are serialized.

Serialization of Write Operations

There are three situations when write operations at a channel may happen:

• A ChannelHandler reads some data from its channel and immediately pro-

duces and writes a response to the channel (e.g. a HTTP response after reading

a HTTP request).

• The HandlerAdapter is executed and tries to drain a ChannelWriter that

was �lled because of a previous incomplete write operation.

• Another thread writes directly to a channel (e.g. into a speci�c SSL tunnel of

a VPN application).

To serialize all these write operations, all ChannelWriter implementations must

use a lock when writing data to the channel.

Because changing the set of operation interest (necessary e.g. when an incom-

plete write operation occurs) must be handled di�erently depending on whether the

HandlerAdapter has already cached them or not, the HandlerAdapter must use

another lock to protect all changes to the set of operation interests and its cache.

5.5 Forwarders and Transformers

The Java NIO Framework provides many useful Forwarders and Transformers

to make the implementation of application speci�c ChannelHandlers as simple as

possible.
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5.5.1 Atomic Forwarders

Atomic Forwarders are the basic building blocks of the Java NIO Framework I/O

processing. They do not consist of other Forwarders. Up to now, the following

atomic Forwarders have been implemented:

ByteBu�erToArrayTransformer

Input : ByteBuffer4

Output: ByteBuffer[]

The ByteBufferToArrayTransformer transforms a ByteBuffer into an array of

ByteBuffers. The returned array contains only one single entry: the ByteBuffer

provided as input. This way it is possible to use a ByteBuffer as input of a

Forwarder that only accepts arrays of ByteBuffers.

ByteBu�erArraySequenceForwarder

Input : ByteBuffer[]

Output: ByteBuffer

The ByteBufferArraySequenceForwarder forwards an array of ByteBuffers

as a sequence of ByteBuffers. This way it is possible to convert an array of

ByteBuffers so that it can be used as the input of a Forwarder that only accepts

single ByteBuffers.

StringToByteBu�erTransformer

Input : String

Output: ByteBuffer

The StringToByteBufferTransformer transforms a given String into a

ByteBuffer. The transformation is controlled by a given charset

(java.nio.charset.Charset). This is needed e.g. when transforming application

messages into byte streams that can be transmitted over networks.

4http://docs.oracle.com/javase/6/docs/api/java/nio/ByteBuffer.html, last visited:

January 2012

http://docs.oracle.com/javase/6/docs/api/java/nio/ByteBuffer.html
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ByteBu�erToStringTransformer

Input : String

Output: ByteBuffer

The ByteBufferToStringTransformer transforms a given ByteBuffer into a

String. The transformation is controlled by a given charset

(java.nio.charset.Charset). This is needed e.g. when transforming network byte

streams back into application messages.

SplitStringForwarder

Input : String

Output: String

The SplitStringForwarder splits a String with a given delimiter into a se-

quence of Strings. This way it is possible to separate several adjacent messages

from each other.

Bu�erForwarder

Input : ByteBuffer[]

Output: ByteBuffer

The BufferForwarder bu�ers input data by copying and can forward chunks of

bu�ered data with a given or a maximum size. This way it can be used as a com-

ponent for tra�c shaping or processing dummy tra�c. Several input ByteBuffers

are copied into a single output ByteBuffer.

Bu�erArrayForwarder

Input : ByteBuffer[]

Output: ByteBuffer[]

The BufferArrayForwarder works similar to BufferForwarder above but bu�ers

input data by reference and forwards data with a di�erent output type (the input

ByteBuffers are not copied and merged).

Pre�xTransformer

Input : ByteBuffer[]

Output: ByteBuffer[]
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The PrefixTransformer pre�xes an array of ByteBuffers with another ByteBuffer.

This is useful whenever data has to be marked with di�erent types (e.g. to di�eren-

tiate between data and dummy messages).

ChannelReader

Input : Void

Output: ByteBuffer

The ChannelReader is a special Forwarder that handles all necessary details

(read bu�er allocation, counters, read errors, . . . ) when reading data from a read-

able byte channel5. It passes the read data to the next Forwarder as a series of

ByteBuffers. Because it is not possible to write any data to a ReadableByteChannel,

the ChannelReader does not implement the forward() method.

ChannelWriter

Input : ByteBuffer

Output: Void

The ChannelWriter is a special Forwarder that handles all necessary details

(incomplete write operations, counters, write errors, . . . ) when writing data to a

writable byte channel6. It writes all input data to the channel. Because it is not

possible to read any data from a WritableByteChannel, the ChannelWriter does

not implement the setNextForwarder() method.

FramingInputForwarder

Input : ByteBuffer

Output: ByteBuffer

The FramingInputForwarder unframes length pre�xed messages by evaluating

and removing a length header. Input is stored as long as a message is not completely

available. Completely unframed messages are forwarded as a series of ByteBuffers.

The size of the length header must be speci�ed (in byte) and determines the maxi-

mum frame size (28∗length − 1 byte).

5http://docs.oracle.com/javase/6/docs/api/java/nio/channels/

ReadableByteChannel.html, last visited: January 2012
6http://docs.oracle.com/javase/6/docs/api/java/nio/channels/

WritableByteChannel.html, last visited: January 2012

http://docs.oracle.com/javase/6/docs/api/java/nio/channels/ReadableByteChannel.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/ReadableByteChannel.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/WritableByteChannel.html
http://docs.oracle.com/javase/6/docs/api/java/nio/channels/WritableByteChannel.html
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AbstractHttpProxyRequestForwarder

Input : ByteBuffer

Output: ByteBuffer

The AbstractHttpProxyRequestForwarder provides a basic implementation of

parsing a byte stream containing HTTP proxy requests (see 4.3.1 on page 39) by

evaluating and converting HTTP proxy request headers into normal HTTP request

headers, forwarding HTTP body data and establishing HTTPS tunnels, if necessary.

Details about opening connections, data forwarding and dealing with HTTP syntax

errors have to be implemented in application speci�c subclasses.

AbstractHttpProxyResponseForwarder

Input : ByteBuffer

Output: ByteBuffer

The AbstractHttpProxyResponseForwarder provides a basic implementation

of parsing a byte stream containing HTTP responses (see 4.3.2 on page 48) by

evaluating HTTP response headers and forwarding HTTP body data. Details about

data forwarding and closing non-persistent connections have to be implemented in

application speci�c subclasses.

SSLOutputForwarder

Input : ByteBuffer[]

Output: ByteBuffer

The SSLOutputForwarder uses javax.net.ssl.SSLEngine7 to encrypt outbound

(plaintext) data. While it encapsulates the details of the SSL handshake protocol,

interested listeners can be noti�ed about handshake protocol events. It also takes

care about bu�ering plaintext and ciphertext as necessary. Again, interested listen-

ers can be noti�ed about changes in these bu�er sizes.

SSLInputForwarder

Input : ByteBuffer

Output: ByteBuffer

7http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLEngine.html, last vis-

ited: January 2012

http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLEngine.html
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The SSLInputForwarder uses SSLEngine to decrypt inbound (ciphertext) data.

It encapsulates the details of the SSL handshake protocol and also takes care about

bu�ering plaintext and ciphertext as necessary.

More details about SSL support in the Java NIO Framework is given in section

5.6 on page 135.

5.5.2 Composite Forwarders

Composite Forwarders are build by combining and extending atomic Forwarders

(see section 5.5.1 on page 126). They are used for more complex and high-level oper-

ations in the Java NIO Framework. Up to now, the following composite Forwarders

have been implemented:

FramingOutputTransformer

Input : ByteBuffer[]

Output: ByteBuffer[]

The FramingOutputTransformer frames input messages by pre�xing them with

a header containing the length of the input message (see Figure 5.7). The

FramingOutputTransformer computes the length header and uses an internal

PrefixTransformer (see page 127) for the pre�xing operation. The size of the

length header must be speci�ed (in byte) and determines the maximum frame size

(28∗length − 1 byte). More details about message framing with length pre�xes have

already been given in section 4.6.1 on page 68.

Figure 5.7: Composition of FramingOutputTransformer
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DummyTra�cOutputForwarder

Input : ByteBuffer[]

Output: ByteBuffer[]

The DummyTrafficOutputForwarder can be used to generate dummy tra�c when

there is no other meaningful data available.

Enabling and disabling of dummy tra�c

For many applications, generating dummy tra�c is an optional and temporary fea-

ture. Therefore there must be a way to enable and disable it. There are basically

two strategies to implement this:

• transformation hierarchy changes

• activation and deactivation of the dummy tra�c Forwarders

Transformation hierarchy changes

When dummy tra�c is enabled, an additional Forwarder (that generates dummy

tra�c) is integrated into the transformation hierarchy of the sender and an addi-

tional Forwarder (that �lters dummy tra�c) is integrated into the transformation

hierarchy of the receiver. When dummy tra�c is disabled, the additional Forwarders

have to be removed from the transformation hierarchy.

On the positive side this strategy has less overhead (shorter transformation hier-

archy, less locking, less header data) when dummy tra�c is disabled.

On the negative side, adding and removing the Forwarders has to be done at

the same time, otherwise the data stream between sender and receiver would get

corrupted. This requires an out-of-bound synchronization mechanism that has to

deal with many complicated details, e.g. �ushing bu�ered data of the transformation

hierarchies before changes.

Activation and Deactivation

The Forwarders to generate and �lter dummy tra�c are always present in the

transformation hierarchy of an application. The Forwarder to generate dummy

tra�c can be activated (DATA and DUMMY messages are sent) and deactivated (only

DATA messages are sent).



132

On the negative side this strategy has more overhead (longer transformation

hierarchy, more locking, more header data) when dummy tra�c is disabled.

On the positive side this strategy is very simple.

Because the additional overhead of an inactive dummy tra�c generator is very

small (one locking operation and one additional header byte) and inbound commands

for synchronized transformation hierarchy changing seem to be quite complicated

and error-prone, the method of activation and deactivation is used in the Java NIO

Framework.

Internal design

When activated, the DummyTrafficOutputForwarder uses a BufferForwarder to

store all incoming data until a data package has to be sent (see Figure 5.8).

When a data package of a certain size has to be sent, the DummyTrafficOutput-

Forwarder is usually noti�ed by a TrafficShaperCoordinator (which is also part

of the Java NIO Framework). As the name already suggests, the TrafficShaper-

Coordinator can coordinate a collection of TrafficShapers (an interface of the

Java NIO Framework, implemented by DummyTrafficOutputForwarder and other

classes). The TrafficShaperCoordinator is using an internal ScheduledExecutor-

Service8 for periodically executing its task. The delay between task executions can

be set either via a constructor parameter or via the function setDelay(int delay).

When executed, the TrafficShaperCoordinator is signaling all TrafficShapers

in its collection that they must send a data package of a given size. The size of

the data package can be set either via a constructor parameter or via the function

setPackageSize(int packageSize).

When the DummyTrafficOutputForwarder is noti�ed by the TrafficShaper-

Coordinator to forward a data package of a certain size, it:

1. con�gures the PrefixForwarder to use a DATA header

2. forwards data from the BufferForwarder as long as there is bu�ered data

available and the size of the data package is not reached yet

3. con�gures the PrefixForwarder to use a DUMMY headers

8http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/

ScheduledExecutorService.html, last visited: January 2012

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ScheduledExecutorService.html
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4. creates meaningless data and forwards it to the

ByteBufferToArrayTransformer as long as the size of the data package is

not reached yet

Figure 5.8: Active DummyTra�cOutputForwarder

The internal FramingOutputTransformer is used to frame the DATA and DUMMY

messages.

After forwarding data to the next Forwarder, the internal BufferArrayForwarder

might still contain framed data, because messages might become larger than the data

package size (see Figure 5.9). This can happen, for example, when the message must

be �lled up with DUMMY packages but only one byte is free. Even a DUMMY package

is at least two bytes long (one byte for the package type, one byte for the package

length).

Figure 5.9: Message overlap caused by DUMMY message

Another reason for the internal BufferArrayForwarder to still contain framed
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data after sending a data package is that the next Forwarder might not have con-

sumed all forwarded data. Therefore, the amount of data stored in the internal

BufferArrayForwarder must always be taken into consideration by the

DummyTrafficOutputForwarder when sending a data package of a given size.

When deactivated, the DummyTrafficOutputForwarder con�gures the

PrefixForwarder to use a DATA header and no longer uses the BufferForwarder

to store any data but tries to forward all data directly (see Figure 5.10). Because

the FramingOutputTransformer (see page 130) has a maximum message size, a

scattering process has to be put in front, so that large input messages are divided

into a series of smaller messages.

Figure 5.10: Inactive DummyTra�cOutputForwarder

DummyTra�cInputForwarder

Input : ByteBuffer

Output: ByteBuffer

The DummyTrafficInputForwarder removes dummy messages from a data stream

and can optionally bu�er data to prevent timing correlation between incoming and

outgoing data packages.

It uses an internal FramingInputForwarder to unframe all incoming messages

(see Figure 5.11). After unframing a message, the DummyTrafficInputForwarder

checks the message type. Only the content of DATA messages (without the message

type pre�x) will be bu�ered or forwarded to the next forwarder, DUMMY messages

are silently discarded. When bu�ering data, the DummyTrafficInputForwarder
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stores all data in a BufferForwarder until it gets a signal from another instance

(e.g. a TrafficShaperCoordinator) to send a message with a certain size. An

additional ByteBufferToArrayForwarder is necessary for type conversion between

the FramingInputForwarder and the BufferForwarder.

Figure 5.11: DummyTra�cInputForwarder

5.6 SSL

NIO was introduced in Java 1.4 but there was no supported way to combine it with

SSL. The only supported way to establish SSL connections was to use the old block-

ing, stream-based classes javax.net.ssl.SSLSocket9 and SSLServerSocket10. This

issue was not resolved until the release of Java 5 where SSLEngine11, a non-blocking

and transport independent SSL implementation, was added. The SSLEngine pro-

vides applications with mechanisms for integrity, authentication and con�dentiality

and handles most details of the SSL handshake process. Data moves through the

SSLEngine by wrapping and unwrapping Java ByteBuffers (see Figure 5.12).

The Java NIO Framework contains the package ch.unifr.nio.framework.ssl

with additional helper classes, designed and implemented to make the creation of

9http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLSocket.html, last vis-

ited: January 2012
10http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLServerSocket.html,

last visited: January 2012
11http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLEngine.html, last vis-

ited: January 2012

http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLSocket.html
http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLServerSocket.html
http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/SSLEngine.html
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Figure 5.12: SSLEngine

applications with SSL support as easy as possible:

• AbstractSSLChannelHandler

provides a base implementation for all application speci�c ChannelHandlers

that need to use SSL connections. It already implements all the details when

using an SSLInputForwarder and SSLOutputForwarder (see section 5.5.1 on

page 129), like SSLEngine preparation and setting up all required cross refer-

ences.

• HandshakeCompletedListener

is a customized version of HandshakeCompletedListener12 that works with

SSLEngine instead of SSLSocket. Why such a basic interface was missing

when SSLEngine was introduced in Java 1.5 (and is still missing in Java 6)

remains unknown.

• HandshakeNotifier

is a class that noti�es registered (customized) HandshakeCompletedListeners

about SSL handshake events of an SSLEngine.

• SSLTools

is a tool class with many SSL related functions, e.g. SSL initialization and

certi�cate checking.

12http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/

HandshakeCompletedListener.html, last visited: January 2012

http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/HandshakeCompletedListener.html
http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/HandshakeCompletedListener.html
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5.7 Prevention of redundant copy operations

When using a complex hierarchy of forwarders and transformers data is bu�ered

at di�erent places in that hierarchy. When forwarding data through this hierarchy

it happens very often that only a part of the bu�ered data has to be forwarded.

The classical and simple approach to this problem is to create safety copies of the

individual parts (see Figure 5.13). Unfortunately, this approach lowers the I/O

performance of the whole hierarchy and uses unnecessary amounts of RAM.

  

input

Frame
1

Type
(DATA)

Frame
2 input

2
Type

(DATA)

partial copy partial copy

input
1

Figure 5.13: Bu�er splitting with partial data copies

For storing data in its forwarders and transformers, the Java NIO Framework uses

Java ByteBuffers. These ByteBuffers have an interesting feature: They can be du-

plicated without copying data around in memory. Instead, the content of duplicated

bu�ers will be shared but the context information (position, limit, capacity, ...) can

be set independently. By creating ByteBuffer duplicates and setting their positions

and limits in subsequent order, data packages can be broken up into smaller parts

and forwarded through a hierarchy of forwarders and transformers without creating

unnecessary partial copies (see Fig 5.14).

5.8 Usage

Every application using the Java NIO Framework must start the core of the frame-

work, the Dispatcher:

Dispatcher dispatcher = new Dispatcher();

dispatcher.start();



138

  

content

Frame
1

Type
(DATA)

Frame
2

duplicate 2
of input

Type
(DATA)

duplicate 1
of input

position limit position limit

input

position limit

Figure 5.14: Bu�er splitting with bu�er duplication and content sharing

In addition to starting the Dispatcher, every application must also implement at

least one ChannelHandler. The Java NIO Framework provides the abstract class

AbstractChannelHandler that already implements the basic functionality. In-

stead of implementing the complete ChannelHandler interface one can just extend

AbstractChannelHandler. For the Java NIO Framework to manage a certain chan-

nel, it must be registered at the Dispatcher, together with its handler:

dispatcher.registerChannel(channel, handler);

The Dispatcher also supports non-blocking socket connection operations. For this

approach to work, the application must implement the interface

ClientSocketChannelHandler and call:

dispatcher.registerClientSocketChannelHandler(

host, port, handler);

This method has a variant with a timeout parameter, so that unsuccessful connection

attempts can be stopped before the rather long standard TCP timeout.

All server-type applications (i.e. applications that accept socket connections)

should extend the interface AbstractAcceptor.

Complete examples of client and server type applications using the Java NIO

Framework are given online at
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http://nioframework.sourceforge.net/?q=node/813.

5.9 Conclusions

A framework for secure high-performance Java network applications that builds

upon the NIO library was created. The framework combines the ease of use of

classical I/O operations with the performance gain of NIO, hiding the inconvenient

aspects of NIO from the developer. Developing the Java NIO framework was mo-

tivated by research on the PGA architecture, that requires high-performance net-

work operations over secure channels. The Java NIO framework provided a tremen-

dous performance increase, making the PGA architecture meet the requirements for

anonymity servers in productive environments.

13last visited: January 2012

http://nioframework.sourceforge.net/?q=node/8
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Chapter 6

Implementation

6.1 Overview

Most components of the PGA architecture are written in Java (except external

components like OpenSSL in the PGA CA or some external binaries that are called

in the Autostart feature of the PGA client). All graphical user interfaces have

been written in Swing, using the Swing GUI Builder1 (formerly known as Project

Matisse).

6.2 Tunneling

6.2.1 I/O processing

Both the PGA Client and the PGA Server Core use a complex hierarchy of Forwarders

for sending protocol messages, transfer application data, generate dummy tra�c and

provide integrity, authentication and con�dentiality for the tunnel between them (see

Figure 6.1).

For receiving data from the tunnel both the PGA Client and the PGA Server

Core use the chain of Forwarders shown in Figure 6.2:

• The ChannelReader is used to read the data stream from the tunnel.

• The SSLInputForwarder is used for SSL handshaking, authentication and

decrypting the received data.

1http://netbeans.org/features/java/swing.html, last visited: January 2012
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Figure 6.1: PGA tunnel sending hierarchy

• The DummyTrafficInputForwarder is used to �lter DUMMY messages and for-

ward DATA messages.

• The FramingInputTransformer is used to unframe the received message frames.

• The PgaClientForwarder/PgaServerForwarder is not part of the Java NIO

Framework but an application speci�c Forwarder of the PGA Client or PGA

Server Core that processes all received messages according to their type.

Figure 6.2: PGA tunnel receiving hierarchy

6.2.2 Dummy tra�c coordination

On the PGA Client side, only one TrafficShaperCoordinator is needed and it must

only handle one TrafficShaper, the DummyTrafficOutputForwarder of the tunnel

to the PGA Server Core. In contrast to that, one TrafficShaperCoordinator is
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needed for every established anonymity group on the PGA Server Core side (see

Figure 6.3).

Figure 6.3: PGA Server Core dummy tra�c coordination

6.2.3 Message representation

Most tunneling protocol messages only consist of simple information (target address,

. . . ). But some messages contain a lot of detailed, structured information, e.g.

the DYNAMIC_STATE message (see 4.6.2 on page 70). For these types of messages,

the Java objects containing the necessary information are converted to an XML

representation with the help of the JavaBeans XMLEncoder2.

The JavaBeans XMLDecoder3 is used for parsing the XML representations back to

Java objects. One advantage of using the JavaBeans XMLEncoder and XMLDecoder

2http://docs.oracle.com/javase/6/docs/api/java/beans/XMLEncoder.html, last visited:

January 2012
3http://docs.oracle.com/javase/6/docs/api/java/beans/XMLDecoder.html, last visited:

January 2012

http://docs.oracle.com/javase/6/docs/api/java/beans/XMLEncoder.html
http://docs.oracle.com/javase/6/docs/api/java/beans/XMLDecoder.html
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is that the XML representation is not bound to the Java Virtual Machine (as it

would have been when using the binary object representations created by

ObjectOutputStream4 and parsed by ObjectInputStream5) but can easily be cre-

ated and parsed by other implementations in di�erent programming languages.

6.2.4 Protection against bandwidth attacks

If the negotiated encryption mechanisms are visible in the SSL handshake, then

it may well be that the characteristics of the mechanism (e.g. block size) are also

known. This way it may be possible to guess the clear text bandwidth by observing

the cipher text bandwidth. It may happen that di�erent members of an anonymity

group use di�erent SSL parameters (asymmetric cipher, symmetric cipher and hash

function). If all members of this anonymity group would use the same cipher text

bandwidth it could happen that, because of the di�erent SSL parameters, that they

actually use di�erent clear text bandwidths because some parameters generate more

overhead than others. This would divide the anonymity group as shown in the

following example:

There are two groups of members in an anonymity group. The �rst group uses

SSL parameters that result in a plain text bandwidth bp1, the second group uses SSL

parameters that result in a plain text bandwidth bp2.The bandwidths are di�erent

so that bp1 < bp2. The common cipher text bandwidth of the anonymity group is bc

(see Figure 6.4).

If an adversary observes a plain text data stream at the PGA Server Core with

the bandwidth bp2 it is immediately clear that this data stream must originate from

a member of the second group. (If an adversary observes a plain text data stream

with the bandwidth bp1, no conclusion can be made because the data stream could

originate from any member of the anonymity group. It is always possible to not use

the full available plain text bandwidth.)

To prevent this kind of attack, all members of an anonymity group must use the

same maximum plain text bandwidth (see Figure 6.5). An attacker can not use the

di�erent cipher text bandwidths to execute the attack described above.

4http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html, last

visited: January 2012
5http://docs.oracle.com/javase/6/docs/api/java/io/ObjectInputStream.html, last

visited: January 2012

http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectInputStream.html
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Figure 6.4: Plaintext bandwidth attack

Figure 6.5: Plaintext bandwidth attack prevented
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6.3 Target I/O handling

Both the PGA Client and the PGA Server Core read from and write data to con-

nection targets. At the PGA Client side these connection targets are usually local

applications, at the PGA Server Core side they are usually web servers. Both

PGA Client and PGA Server Core use application speci�c Java NIO Framework

ChannelHandlers to implement this functionality (see Figure 6.6).

Figure 6.6: PGA target handling

The class hierarchy of Java NIO Framework ChannelHandlers used in PGA for

target I/O handling is shown in Figure 6.7.

The abstract class PgaTargetChannelHandler implements the XON/XOFF �ow

control (see section 4.6.4 on page 88) and handling of bu�er size changes.

The class PgaServerTargetChannelHandler implements the state machine for

PGA Server Core target connections shown in Figure 4.13 on page 82, executes the

target I/O operations and implements the necessary error handling.

The abstract class PgaClientTargetChannelHandler implements the state ma-
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AbstractChannelHandler

PgaTargetChannelHandler
Flow control

Buffer size handling

PgaServerTargetChannelHandler
Server connection state handling

Error handling

Target I/O

PgaClientTargetChannelHandler
Client connection state handling

Error handling

GenericChannelHandler
Generic PGA Protocol <-> PGA Tunnel Protocol

Target I/O

WebChannelHandler
Translation of HTTP to PGA Tunnel Protocol

Target I/O

Figure 6.7: Class hierarchy of PGA target channel handlers

chine for PGA Client target connections shown in Figure 4.11 on page 80 and im-

plements the necessary error handling.

The class GenericChannelHandler implements the protocol translation between

the generic PGA application protocol (see section 4.2.2 on 35) and the PGA Tunnel

protocol (see section 4.6 on page 67).

The class WebChannelHandler implements the protocol translation between HTTP

and the PGA Tunnel protocol. For this task it uses internally the Java NIO Frame-

work Forwarders AbstractHttpProxyRequestForwarder and AbstractHttpProxy-

ResponseForwarder (see section 5.5.1 on page 129).

6.4 Server

The PGA Server Core is implemented in Java, using the Java NIO Framework (see

chapter 5 on page 107 for details) for secure and scalable I/O operations.

6.4.1 Address resolution

When the Java NIO Framework Dispatcher thread runs, it executes the Handler-

Adapters of all Channels via an Executor. This way, serving the Channels can be
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done in parallel and be scalable. In contrast to this, reading, parsing, bu�ering and

forwarding the data of a single Channel through its transformation chain is done by

one single execution thread. This results in the following implementation details:

The PGA Server Core creates application independent TCP connections by �rst

parsing the address information of an OPEN message in a Java NIO Framework

execution thread. Most of the time, the address information is unresolved, i.e. it

consists of an unresolved host name instead of a resolved IP address and a port

number. Resolving a host name to its IP address is a blocking operation that can

take a very long time. When the host name would be resolved in the execution thread

itself, the PGA Server would stop processing the next messages of the regarding

PGA Client, which severely degrades the performance of the anonymous connection

as shown by the following example:

1. The PGA Client sends two OPEN messages in a row, one to serverA:80 and

the next one to serverB:8080.

2. The PGA Server Core parses the �rst OPEN message and blocks a long time

while trying to determine the IP address for the host name serverA.

3. The connection to serverB does not get established until the IP address of

serverA is �nally resolved (or failed to resolve).

To avoid this scenario, the PGA Server Core stops processing an OPEN message in

the Java NIO Framework execution thread after extracting the address information

and passes the host name, port, pending connection ID, initial connection data

and the currently used ChannelHandler to an Executor. The worker thread of

this Executor is resolving (or failing to resolve) the host name and (if resolving

was successful) continuing with opening the target connection and bu�ering and

forwarding the initial connection data.

6.4.2 CPU load detection

The CPU load of the PGA Server Core gets transmitted in DynamicServerState

messages from the PGA Server Core to the PGA Client and is presented in the

graphical user interface of the PGA Client (see 4.2.1 on page 31).

Until now, this information is only available when the PGA Server Core is running

on a Linux operating system. The PGA Server Core parses the information that is
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available in the Linux Kernel statistics �le /proc/stat. Details about the syntax

and semantic of this �le are described in the Linux Kernel documentation6.

CPU load detection for other operating systems (where this information is not

available in easily accessible �les) can be added by using the Java Native Interface7.

6.4.3 Remote �le browsing

When selecting key stores and certi�cates on the PGA Server Core machine via

the PGA Remote Management, the user must be able to browse the �le system of

the PGA Server Core machine. This was implemented with the Java Management

Extension.

On the PGA Server Core side, the interface JMXFileSystemViewMBean was cre-

ated. It speci�es all methods that are necessary for browsing �les with a standard

Swing �le chooser. This interface was implemented by the class JMXFileSystemView.

On the PGA Remote Management side, the class JMXFsView that extends

javax.swing.filechooser.FileSystemView and calls JMXFileSystemViewMBean

for all �le chooser operations was implemented. Because the standard Swing �le

chooser works with the class java.io.File, the additional class JMXFile that ex-

tends java.io.File and also calls JMXFileSystemViewMBean for all �le chooser

operations was implemented.

When selecting key stores and certi�cates from the graphical user interface of

the PGA Remote Management, the Swing �le chooser is created with the �le sys-

tem viewer JMXFsView. This way, all �le chooser operations are executed via Java

Management Extension on the PGA Server Core.

6.4.4 Anonymity group management

For simplicity reasons, the PGA Server Core currently only implements server de-

�ned anonymity groups (see 4.4.1 on page 59). User de�ned anonymity groups can

be implemented by future works.

6http://kernel.org/doc/Documentation/filesystems/proc.txt, last visited: January

2012
7http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html, last vis-

ited: January 2012

http://kernel.org/doc/Documentation/filesystems/proc.txt
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html
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6.4.5 User management

The ChannelReaders and ChannelWriters of the Java NIO Framework provide an

interface for PropertyChangeListeners. They are noti�ed whenever data is read

or written. This interface is used on the PGA Server Core side for accounting the

tra�c created and consumed by anonymous users.

A simple token bucket algorithm is used for shaping the bandwidth for anonymous

users.

Due to time constraints a complete user management was not implemented in the

PGA Server Core. This can be completed by future works. For simplicity reasons

it is recommended to use a database that provides an embedded JDBC driver, e.g.

Apache Derby8.

6.4.6 Tra�c accounting

When sending and receiving data via the PGA architecture, di�erent types of data

is used, generated, forwarded and �ltered out. When sending, there can be two

di�erent data sources:

Data

the real payload data from applications that use the PGA architecture

Protocol

PGA protocol overhead, e.g. state update requests or responses.

All Forwarders of the message sending I/O hierarchy (see Figure 6.8) generate

some types of data:

• The PrefixTransformer generates protocol information (e.g. the message

type or connection ID).

• The FramingOutputTransformer generates protocol information (the framing

length header).

• The DummyTrafficOutputForwarder generates protocol information (the in-

ternal type pre�x and framing length header) and dummy tra�c.

8http://db.apache.org/derby/, last visited: January 2012

http://db.apache.org/derby/
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• The SSLOutputForwarder generates communications overhead because of SSL

(handshake data, SSL protocol information, cipher block padding, ...).

Figure 6.8: Message sending data types

PGA users and administrators should be able to check the functioning of the

Forwarders of the PGA tunnel I/O hierarchy. A simple and e�ective instrument

is to provide a visual feedback in terms of a bandwidth-time graph for all di�erent

types of data.

The I/O hierarchy of the PGA architecture is very complex and contains many

components that bu�er data or generate additional data. Therefore the question

arises, where in the architecture the di�erent types of data should be measured and

shown to the user so that they show a coherent picture of the inner workings of the

I/O hierarchy.

When measuring the di�erent data types at the entry point of the I/O transforma-

tion hierarchy, it is easy to di�erentiate between payload data and protocol data but

the more interesting operations (dummy tra�c and encryption) would be left out.

Another interesting measuring point would be where the user has the adversary's

view. Because the goal of the PGA architecture is to protect against an adversary in

the network, this would be the exiting point of the ChannelWriter. Unfortunately,

at this point in the architecture, only encrypted data is visible. There is another in-

teresting measuring point: the transition from the DummyTrafficOutputForwarder

to the SSLOutputForwarder. At this point it is still possible to di�erentiate between

data and dummy tra�c. Because bu�ering data in the SSLOutputForwarder and

the ChannelWriter only happens in very rare situations, it is possible to measure

at the same time the bandwidth of the SSL tra�c and still have a coherent picture

of the overall situation of the di�erent data type bandwidths at this point in the

architecture. Unfortunately, it is not possible any more at this measuring point to

di�erentiate between payload data and protocol data because they have been merged
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in the BufferForwarder of the DummyTrafficOutputForwarder (see section 5.5.2

on page 131 for more details).

Because there is no measuring point in the architecture that gives a complete

and coherent picture of all di�erent data types, bandwidth measuring is done by

introducing atomic counters9 at every Forwarder in the I/O hierarchy. Atomic

counters are single variables that support thread-safe but lock-free updating and

reading, i.e. they can be accessed in a multi-threaded architecture, as the Java NIO

Framework provides, without the need for additional synchronization mechanisms

and therefore have a much better performance than classical counting mechanisms.

In summary, the current approach of measuring all data types on every Forwarder

all the time can only represent an approximation of the real situation.

6.4.7 Misuse discouragement

The PGA Server can be con�gured to monitor connection attempts and produce

logging �les. This feature can only be activated by PGA Server administrators.

Filtering rules can be expressed with regular expressions. There are two types of

rules:

Domain rules: In the domain rules the administrator can specify patterns for con-

nection attempts to certain domains. The rules have to be speci�ed with the

following pattern:

<source IP> → <destination domain:port>

IP rules: In the IP rules the administrator can specify patterns for connection

attempts to certain IP addresses. The rules have to be speci�ed with the

following pattern:

<source IP> → <destination IP:port>

It is necessary to have both domain and IP rules because of the dynamic nature

of DNS. A web server with a single IP could be accessed via many di�erent host

names, on the other hand side a host name can by dynamically resolved to many

di�erent IP addresses.
9http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/

AtomicLong.html, last visited: January 2012

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicLong.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicLong.html
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All rules are processed with the logical OR operation, i.e. if any rule matches

the current connection attempt, the matching operation stops and the connection

attempt is recorded.

In the PGA architecture the PGA Server Core must resolve the destination host

names given by any PGA Clients to their IP address. Therefore the information

needed for the �lter rules above is always present. In the PGA architecture it is

nowhere necessary to get the host names of the source IP addresses. The PGA

anonymity service works even when the IP address of a machine running the PGA

Client can not be mapped to a host name (called �reverse name lookup�). Because

the PGA server never needs to execute a reverse name lookup, it is impossible to

specify source domains in the �ltering rules. If the need arises in the future to

express �ltering rules based on source domains, it should be noted that this process

slows down the misuse discouragement architecture because log entries can not be

written instantly but need to wait until the reverse name lookup �nishes. Reverse

name lookup can be arbitrary long before it succeeds or runs into a timeout. So

that all the log entries are still in order when written to disk or into a database, a

FIFO logging queue would be necessary where all the log records are inserted into

the tail and only entries where the reverse name lookup �nished are removed from

the head of the queue and written to a persistent data storage.

The connection attempts are recorded into a set of rotating log �les that are

compressed and encrypted with a given public GPG10 key when the log �les rotate.

This mechanism is very simple but leaves a short window of vulnerability (the last

log �le is always open for writing, uncompressed and unencrypted).

Users of the PGA anonymity architecture are informed if a PGA Server Core

monitors connections or not via the dynamic server status update information that

is presented in the PGA Client (see section 4.2.1 on page 31).

6.4.8 Testing

While implementing the target connection state machines for both the PGA Client

and the PGA Server Core, several mechanisms for unit testing, integration testing

and system testing have been applied. The current implementation uses the testing

10GNU Privacy Guard, see http://gnupg.org, last visited: January 2012

http://gnupg.org
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frameworks JUnit11 and Jemmy12.

For integration testing a complete PGA scenario (with client applications and web

servers) is needed. Therefore some dummy programs have been written to simulate

the peripheral software components (see Figure 6.9).

Figure 6.9: Integration testing scenario for the PGA tunnel state machine

For simple functional tests, the dummy application must send some random data.

This data must then be intercepted at the dummy server side and checked that every

byte sent at the dummy application was also received by the dummy server.

The connection shutdown procedures can be tested by �rst establishing a data

connection and then shutting down the sockets of the dummy components. After

some time-out it must be veri�ed if the expected changes took place on the respective

peer side socket.

In addition to checking the peripheral dummy components the internal state

changes of the PGA components (e.g. clearing of the target register index) must be

also veri�ed. If the PGA components are written in object oriented style the state

holding items are most probably hidden by information hiding and encapsulation

measures. One solution would be to break up the encapsulation and provide access

methods to internal states just for the purpose of testing. For the current PGA

implementation this was unnecessary because it is written in Java and the Java

platform provides a re�ection mechanism [20] that enables access to encapsulated

�elds while running tests. This way the strong encapsulation of the PGA components

does not have to be softened.

One part of the error handling of the PGA state machines can be veri�ed by just

closing the socket of a dummy component while data is transferred.

The part that handles unplugged network cables or crashed operation systems

is exceptionally more di�cult to test. It is not enough to terminate the dummy

applications. The �problem� is that today's operating systems always correctly close

11http://www.junit.org, last visited: January 2012
12http://jemmy.java.net/, last visited: January 2012

http://www.junit.org
http://jemmy.java.net/
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the sockets of terminated applications. Therefore it is probably impossible to run

such tests with all components on one single machine. The solution that is used for

the current implementation is to use several virtual machines that are terminated

during the tests. The generic and open source machine emulator and virtualizer

QEMU13 was used for these tests (see Figure 6.10).

Figure 6.10: Advanced integration testing scenario for the PGA tunnel state machine

Both virtual machines are almost identical. The only di�erence is the application

that automatically starts at the end of the operation system boot sequence. To

minimize the e�orts for maintaining the virtual machines only one machine should

be e�ectively maintained and the other one should be a clone of the �rst. Every

time the machine is cloned (e.g. after updating the dummy components or other

signi�cant changes) only the start-up sequence of the clone has to be modi�ed. In

QEMU, a clone of a virtual machine is created with the following command (if the

original machine is called �original.img� and the clone should be called �clone.img�):

qemu-img create -b original.img -f qcow2 clone.img

Both virtual machines can be started in parallel and virtually crashed (or �virtu-

ally switched o��) when running the tests. To protect the �le system of both virtual

machines, they should be started in a so-called �snapshot mode�, i.e. changes to the

�le system are volatile - the �le system in the guest operating systems during the

tests can not be damaged.

6.5 Remote Management

The �rst implementation of the PGA Remote Management was a standalone Swing

based application using a simple custom protocol. This version was canceled after

the emergence of the standard Java Management Extension.

13http://wiki.qemu.org, last visited: January 2012

http://wiki.qemu.org


156

The second implementation was based on JConsole14. JConsole provides a plug-

in API that de�nes the com.sun.tools.jconsole.JConsolePlugin abstract class

that can be extended to build a custom plug-in. After working on a PGA Remote

Management plug-in for JConsole, I noticed some shortcomings of JConsole and

(as JConsole is an Open Source project) �xed these shortcomings and provided

the patches to the JConsole developers. The response was very positive but at

the same time I was noti�ed that JConsole was expired and would be replaced by

Java VisualVM15, a solution based on the integrated development environment and

application platform NetBeans16.

The statistics graphs of the PGA Remote Management are implemented with the

help of JRobin17, a Java port of RRDTool18, a data logging and graphing system

for time series data.

A basic HTML adaptor for JMX is provided in the JMX Reference implementa-

tion19. The library jmxtools.jar provides the class

com.sun.jdmk.comm.HtmlAdaptorServer that can be registered at a standard MBeans

server. The API of HtmlAdaptorServer provides the function setPort(int port)

which can be used to specify the port of the adaptors integrated webserver. This

way it is possible to remotely manage the PGA Server Core from a simple web

browser as shown in �gure 6.11 where the management front end is a small screen

Nokia N90020 smartphone.

6.6 Client

6.6.1 Autostart

The autostart feature depends on the login procedure of every supported desktop

environment on every supported operating system. In addition to that, starting

14http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.

html, last visited: January 2012
15http://visualvm.java.net, last visited: January 2012
16http://netbeans.org, last visited: January 2012
17http://sourceforge.net/projects/jrobin/, last visited: January 2012
18http://oss.oetiker.ch/rrdtool/, last visited: January 2012
19http://www.oracle.com/technetwork/java/javase/tech/download-jsp-141676.html,

last visited: January 2012
20http://en.wikipedia.org/wiki/Nokia_N900, last visited: January 2012

http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html
http://visualvm.java.net
http://netbeans.org
http://sourceforge.net/projects/jrobin/
http://oss.oetiker.ch/rrdtool/
http://www.oracle.com/technetwork/java/javase/tech/download-jsp-141676.html
http://en.wikipedia.org/wiki/Nokia_N900
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Figure 6.11: Remote Management via HTML Adaptor

up the PGA Client depends on how it was started (executable JAR �le, Java Web

Start, application bundle, . . . ). Because of the complexity and usefulness of the

autostart feature, a generic, re-usable tool class ch.unifr.pga.tools.AutoStarter

was implemented.

The constructor of ch.unifr.pga.tools.AutoStarter is implemented as

AutoStarter(String jnlpFileName, String osxDockName,

String osxScriptsDirName, String osxLaunchAgentsFileName,

String options)

jnlpFileName is the name of the Java Network Launching Protocol21 �le

osxDockName is the name of the application in the Mac OS X dock

osxScriptsDirName is the name of the Mac OS X directory for application speci�c

scripts

osxLaunchAgentsFileName is the name of the Mac OS X launch agents �le

21http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/

syntax.html, last visited: January 2012

http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
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options are the optional application command line options (not the command line

options for the Java Virtual Machine)

Startup command

When the application was started via Java Web Start, the corresponding command

is:

javaws [-open <command line options>] <JNLP URL>

command line options is the placeholder for the optional application command

line options

JNLP URL is the placeholder for the mandatory JNLP URL (with the syntax

<JNLP codebase>/<jnlpFileName>.jnlp)

When the application was started by running its executable JAR �le, the corre-

sponding command di�ers for every supported desktop environment. On Linux, the

command is:

java -jar <JAR file path> [command line options]

where <JAR file path> is the placeholder for the mandatory path to the applica-

tions executable JAR �le.

On Mac OS X it is possible to create a Mac OS X application bundle from an

executable JAR �le, e.g. with JarBundler22. When the application was started by

running its executable JAR �le, the command is:

java [-Xdock:name=<name>] -jar <JAR file path> [command line options]

where name is the placeholder for the optional name of the application in the Mac

OS X dock. When the application was started from an application bundle, the

command is:

exec <JAR file path>/.app/Contents/MacOS/JavaApplicationStub

[command line options]

22http://www.informagen.com/JarBundler/, last visited: January 2012

http://www.informagen.com/JarBundler/
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Autostart con�guration

The means to automatically start a command when logging in di�ers for every

desktop environment. The API of ch.unifr.pga.tools.AutoStarter provides the

following methods to enable or disable the autostart feature on all supported oper-

ating systems:

enableAutoStart(String windowsRunTreeKey,

String linuxIconSource, String linuxIconFileName,

String linuxDesktopFileTemplate, String linuxDesktopFileName)

disableAutoStart(String windowsRunTreeKey,

String linuxIconFileName, String linuxDesktopFileName)

Linux

To enable the autostart feature on Linux, the last four parameters of enableAutoStart()

are used:

linuxIconSource is the String to specify the location of the application icon with

the method Class.getResourceAsStream(String name). This way the ap-

plication icon can be contained in the executable JAR �le.

linuxIconFileName is the path of the �le where to store the application icon. For

the PGA Client, the following path is used:

~/.java/.userPrefs/ch/unifr/pga/client/PgaClient/pga_client.png

linuxDesktopFileTemplate is a template for a �le following the freedesktop.org23

Desktop Entry Speci�cation24. The template for the PGA Client is:

[Desktop Entry]

Type=Application

Name=PGA Client

Name[de]=PGA-Client

Icon={0}

Exec={1}

23http://www.freedesktop.org, last visited: January 2012
24http://standards.freedesktop.org/desktop-entry-spec/latest/, last visited: January

2012

http://www.freedesktop.org
http://standards.freedesktop.org/desktop-entry-spec/latest/
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linuxDesktopFileName is the base name of the desktop �le to create (without the

.desktop su�x)

Enabling autostart on Linux works in three steps:

1. the icon is copied to the speci�ed destination �le

2. the desktop �le template is �lled ({0} is replaced by the path to the application

icon and {1} is replaced by the necessary startup command, depending on how

the PGA Client was started

3. following the freedesktop.org Desktop Application Autostart Speci�cation25

the �lled desktop �le is copied into the standard autostart directory

~/.config/autostart/<linuxDesktopFileName>.desktop.

To disable the autostart feature on Linux, the last two parameters of disableAutoStart()

are used to remove both the icon and the desktop �le previously produced by the

function enableAutoStart().

Mac OS X

To enable the autostart feature on Mac OS X, the variables provided in the AutoStarter

constructor are used:

1. A simple shell script

~/Library/Scripts/Applications/<osxScriptsDirName>/autostart.sh

with the content

#!/bin/sh

<startup command>

is created and made executable.

25http://standards.freedesktop.org/autostart-spec/autostart-spec-latest.html,

last visited: January 2012

http://standards.freedesktop.org/autostart-spec/autostart-spec-latest.html
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2. The property list �le26

~/Library/LaunchAgents/<osxLaunchAgentsFileName>.plist

is created with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Label</key>

<string>autostart</string>

<key>ProgramArguments</key>

<array>

<string><scriptFile></string>

</array>

<key>RunAtLoad</key>

<true/>

</dict>

</plist>

where <scriptFile> is replaced with the path to the simple shell script created

in step (1).

To disable the autostart feature on Mac OS X, the directory

~/Library/Scripts/Applications/<osxScriptsDirName> and the �le

~/Library/LaunchAgents/<osxLaunchAgentsFileName>.plist are removed.

Windows

To enable the autostart feature on Windows, the parameter windowsRunTreeKey of

enableAutoStart() is used to add the startup command to the Windows registry

node HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Adding an entry to the Windows registry is done by

26http://developer.apple.com/library/mac/#documentation/Darwin/Reference/

ManPages/man5/plist.5.html, last visited: January 2012

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man5/plist.5.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man5/plist.5.html
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1. creating a temporary, UTF-16 encoded �le with the content:

Windows Registry Editor Version 5.00

[<node>]

"<key>"=<value>

2. executing the command:

cmd.exe /c regedit /s <path of temporary file>

To disable the autostart feature on Windows, the windowsRunTreeKey is removed

from the Windows registry.

Removing an entry from the Windows registry is done by

1. creating a temporary, UTF-16 encoded �le with the content:

Windows Registry Editor Version 5.00

[<node>]

"<key>"=-

2. executing the command:

cmd.exe /c regedit /s <path of temporary file>

6.6.2 Automatic Proxy recon�guration

The goal of automatic proxy recon�guration is to recon�gure common applications

automatically so that these applications communicate via the PGA Client when it

starts and without the PGA Client when it quits. At the time of this writing the

only application fully supported by the PGA Client is web browsing. Therefore, the

focus of the implementation of this feature was to automatically recon�gure common

web browsers on several supported operating systems.
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Firefox

Firefox27 is a free web browser by the Mozilla Corporation28. It is available for a

wide range of operating systems. The automatic proxy recon�guration for Firefox

was implemented for Linux and Windows.

Linux

Recon�guring Firefox on Linux is done by changing the Firefox con�guration �le

~/.mozilla/firefox/*/prefs.js.

Before changing the Firefox con�guration �le, the PGA Client checks if there is

an instance of Firefox already running. This is done by running the command

ps -U <userName>

where <userName> is a placeholder for the mandatory name of the current user, and

checking the output for processes named firefox-bin. When running instances of

Firefox are found, the user is presented a message asking if the PGA Client may

restart Firefox. If the user agreed to restart Firefox, all of its instances are quit with

the command

killall -9 firefox-bin

If no instance of Firefox is running, the Firefox con�guration �le is changed.

When starting the PGA Client, the original con�guration �le values are saved for

later use and the following changes are made:

• network.proxy.type is set to 1, the value for manual proxy con�guration.

• network.proxy.http and network.proxy.ssl are set to "localhost" be-

cause this is where the PGA Client Web Connector is running.

• network.proxy.http_port and network.proxy.ssl_port are set to the ser-

vice port of the PGA Client Web Connector.

When stopping the PGA Client, the original con�guration �le values are restored

in the con�guration �le.

27http://www.firefox.com, last visited: January 2012
28http://www.mozilla.com, last visited: January 2012

http://www.firefox.com
http://www.mozilla.com
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Windows

On Windows, the destination of the Firefox con�guration �le must be queried from

the Windows registry. The key AppData in the registry tree

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell

Folders contains the path to the application data directory of the current user.

Within this directory, the Firefox con�guration �le is found in

Mozilla\Firefox\Profiles\*\prefs.js

Changes to the Firefox con�guration �le are done the same way as on Linux.

Checking, if an instance of Firefox is running, is done on Windows by running

the command tasklist and checking the output for a process named firefox.exe.

Quitting all running instances of Firefox on Windows is done via the command

taskkill /F /IM firefox.exe

where /F is the command switch to force quitting the application and /IM is the com-

mand switch where to specify the image name of the process to quit (firefox.exe

in this case).

KDE

KDE29 is a graphical desktop for several operating systems, including Linux and

Windows. It supports central proxy con�guration. Recon�guring the KDE proxy

con�guration is done by changing the KIO30 con�guration �le

~/.kde/share/config/kioslaverc.

When starting the PGA Client, the original con�guration �le values are saved for

later use and the following changes are made:

• ProxyType is set to 1, the value for manual proxy con�guration.

• httpProxy and httpsProxy are set to http://localhost:<port>, where <port>

is the placeholder for the mandatory service port of the PGA Client Web Con-

nector.

KDE applications do not have to be restarted to reparse their proxy con�gura-

tion. The proxy con�guration in KDE 3 can be changed on-the-�y via DCOP31 by

29http://www.kde.org, last visited: January 2012
30http://en.wikipedia.org/wiki/KIO, last visited: January 2012
31Desktop COmmunications Protocol, see http://techbase.kde.org/Development/

Architecture/DCOP, last visited: January 2012

http://www.kde.org
http://en.wikipedia.org/wiki/KIO
http://techbase.kde.org/Development/Architecture/DCOP
http://techbase.kde.org/Development/Architecture/DCOP
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executing the command

dcop <program> KIO::Scheduler reparseSlaveConfiguration http

where <program> is the placeholder for the mandatory name of the program that

should reparse its I/O slave HTTP con�guration. Unfortunately, the mandatory

<program> parameter made it necessary to maintain a list of known KDE applica-

tions. Whenever the proxy con�guration should be automatically changed, every

application in this list had to be checked, if it was currently running and only then

the dcop call would be executed. This was very complex and error-prone.

In KDE 4, DCOP was deprecated and replaced by DBUS32. The proxy con�gu-

ration in KDE 4 can be changed on-the-�y by executing the command

dbus-send --type=signal /KIO/Scheduler \

org.kde.KIO.Scheduler.reparseSlaveConfiguration string:""

This is much simpler than in KDE 3 because the proxy con�guration of all KDE

programs is automatically changed and no application list has to be maintained.

When stopping the PGA Client, the original con�guration �le values are restored

in the con�guration �le.

Internet Explorer

The Internet Explorer33 is a web browser that is only available for Microsoft Win-

dows operating systems.

Recon�guring the proxy settings of Internet Explorer is done by changing the

registry tree

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings.

When starting the PGA Client, the original registry key values are saved for later

use and the following changes are made:

• the key ProxyEnable is set to dword:00000001

• the key ProxyServer is set to

"http=localhost:<port>;https=localhost:<port>", where <port> is the

placeholder for the mandatory service port of the PGA Client Web Connector.

32http://www.freedesktop.org/wiki/Software/dbus, last visited: January 2012
33http://windows.microsoft.com/en-US/internet-explorer/products/ie/home, last vis-

ited: January 2012

http://www.freedesktop.org/wiki/Software/dbus
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home
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Identically to Firefox, Internet Explorer also needs to be restarted after applying

the changes to the proxy settings.

When stopping the PGA Client, the original proxy con�guration values are re-

stored in the Windows registry.

6.6.3 Bandwidth charts

The bandwidth charts in the PGA Client are implemented using the free chart

library JFreeChart34.

6.7 Certi�cate Authority

The core functions of the PGA Certi�cate Authority use OpenSSL [65] to create

private keys and certi�cates.

A graphical user interface for the PGA CA was implemented in Java, using the

Swing toolkit. The graphical user interface is used for providing a user-friendly

interface to the OpenSSL toolkit. It provides graphical elements to specify the

necessary parameters for OpenSSL, executes some sanity checks and shows feedback

about the called OpenSSL functions.

6.7.1 Initialization

When initializing a certi�cate authority, a self-signed certi�cate must be created.

The default storage facility for cryptographic keys and certi�cates in Java Appli-

cations are so-called keystores35.

The PGA CA uses the following parameters for creating such a self-signed cer-

ti�cate:

E-mail address is the address that is used as the distinguished name of the PGA

CA.

Private key is the path to the �le where the private key, generated during the

initialization, should be stored.

34http://www.jfree.org/jfreechart/, last visited: January 2012
35http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#

KeyStore, last visited: January 2012

http://www.jfree.org/jfreechart/
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#KeyStore
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#KeyStore
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CA Certi�cate is the path to the �le where the self-signed certi�cate of the CA,

based on the private key, should be stored.

Truststore is the path to the key store �le, where the self-signed certi�cate should

be stored. This �le can be used later when packaging all other PGA compo-

nents to safely distribute the self-signed CA certi�cate.

Validity is the number of days the self-signed certi�cate is valid.

After checking that all parameters above are speci�ed and valid, the PGA CA

GUI calls OpenSSL to generate the self-signed certi�cate with several commands.

The private key is generated with the following command:

openssl genrsa -out <privateKey> 1024

The parameter genrsa tells OpenSSL to generate an RSA [49] private key, the

parameter -out <privateKey> tells OpenSSL to store the private key in the speci-

�ed �le (<privateKey> is the placeholder for the private key path speci�ed by the

user in the PGA CA GUI) and the parameter 1024 tells OpenSSL the size of the

private key to generate in bits (the default value is only 512).

When the private key was successfully created, it is used to generate a certi�cate

signing request. For that purpose a temporary OpenSSL con�guration �le with

the following contents is created (<email> is the placeholder for the e-mail address

speci�ed by the user in the PGA CA GUI):

[ req ]

distinguished_name = req_distinguished_name

prompt = no

[ req_distinguished_name ]

emailAddress = <email>

This con�g �le speci�es that the given e-mail address is used as the distinguished

name for the certi�cate request and it disables prompting the user at the command

line (because in case of the PGA CA the command prompt is not visible to the

user).

The certi�cate signing request is generated with the following command:
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openssl req -new -config <configFileName>

-key <privateKey> -out <requestFileName>

The parameter req tells OpenSSL to use its PKCS#10 [41] certi�cate request

and certi�cate generating utility. The parameter -new tells OpenSSL to generate

a new certi�cate request. The parameter -config <configFileName> speci�es an

alternative con�guration �le to override OpenSSL con�guration values speci�ed oth-

erwise during compile time or in environment variables (<configFileName> is the

placeholder for the temporary OpenSSL con�guration �le created above). The pa-

rameter -key <privateKey> tells OpenSSL to use the private key in the speci�ed

�le for the certi�cate request (<privateKey> is again the placeholder for the pri-

vate key path speci�ed by the user in the PGA CA GUI). The parameter -out

<requestFileName> tells OpenSSL to write the certi�cate request into the speci�ed

�le. For this purpose, the PGA CA uses another temporary �le.

The private key and the certi�cate request are both used to create the self-signed

certi�cate. This is generated with the following command:

openssl x509 -req -days <days> -in <requestFileName>

-signkey <privateKey> -out <certificateFileName>

The parameter x509 tells OpenSSL to use its certi�cate display and signing util-

ity. The parameter -req tells OpenSSL that it must handle a certi�cate request.

The parameter -days <days> speci�es the validity of the CA certi�cate to be gen-

erated (<days> is the placeholder for the CA certi�cate validity speci�ed by the

user in the PGA CA GUI). The parameter -in <requestFileName> speci�es the

name of the �le to read the certi�cate request from (the temporary �le used to

create the certi�cate request above is just re-used here). The parameter -signkey

<privateKey> supplies the private key used for self-signing the certi�cate (again,

<privateKey> is the placeholder for the private key path speci�ed by the user in

the PGA CA GUI). The parameter -out <certificateFileName> tells OpenSSL

to write the self-signed certi�cate into the speci�ed �le (<certificateFileName>

is the placeholder for the CA certi�cate path speci�ed by the user in the PGA CA

GUI).

Finally, the Java security API (especially java.security.KeyStore,

java.security.cert.CertificateFactory, java.security.cert.Certificate and
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javax.net.ssl.TrustManagerFactory) is used to store the self-signed certi�cate

in the truststore speci�ed by the user in the PGA CA GUI.

Some details of the CA certi�cate (issuer, subject and validity) are presented to

the user in the graphical interface.

6.7.2 Certi�cate request handling

The PGA CA uses the following parameters for handling a certi�cate request:

Private key is the path to the �le where the PGA CA private key is stored.

CA Certi�cate is the path to the �le where the PGA CA self-signed certi�cate is

stored.

Certi�cate request is the path to the �le where the certi�cate request is stored.

Certi�cate is the path to the �le where the issued certi�cate should be stored.

Validity is the number of days the issued certi�cate is valid.

After checking that all parameters above are speci�ed and valid, the PGA CA

GUI calls OpenSSL to process the certi�cate request with the following command:

openssl x509 -req -CAcreateserial -CA <certificateFileName>

-CAkey <privateKey> -days <days>

-in <requestFileName> -out <certificateFileName>

The parameter x509 tells OpenSSL to use its certi�cate display and signing util-

ity. The parameter -req tells OpenSSL that it must handle a certi�cate request.

The parameter -CAcreateserial tells OpenSSL to create the CA serial number

�le if it does not exist. The parameter -CA <certificateFileName> speci�es the

certi�cate to be used for signing (<certificateFileName> is the placeholder for

the CA certi�cate path speci�ed by the user in the PGA CA GUI)). The parameter

-CAkey <privateKey> speci�es the CA private key to sign a certi�cate with (again,

<privateKey> is the placeholder for the private key path speci�ed by the user in

the PGA CA GUI). The parameter -days <days> speci�es the validity of the is-

sued certi�cate to be generated (<days> is the placeholder for the certi�cate validity

speci�ed by the user in the PGA CA GUI). The parameter -in <requestFileName>
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speci�es the name of the �le to read the certi�cate request from. The parameter

-out <certificateFileName> tells OpenSSL to write the issued certi�cate into the

speci�ed �le (<certificateFileName> is the placeholder for the issued certi�cate

path speci�ed by the user in the PGA CA GUI).

Identically to the CA certi�cate above, some details of the issued certi�cate (is-

suer, subject and validity) are presented to the user in the graphical interface.

6.7.3 Miscellaneous

The Java preferences system (esp. java.util.prefs.Preferences) is used to save

all settings of the PGA CA GUI when the application exits. It is also used to restore

all settings when the application is started.



Chapter 7

Usage

All PGA components are Java applications. Therefore they need an operating sys-

tems with an installed Java Virtual Machine.

7.1 Certi�cate Authority

The PGA CA is packaged as an executable JAR �le (pga_ca.jar). On most systems

it is su�cient to (double-)click the JAR �le in a �le browser or on the desktop to

start the PGA CA. If this does not work or is not the preferred way to start the

PGA CA, it can also be started via the command line with the following syntax:

java -jar pga_ca.jar

7.1.1 Initialization

The very �rst step when setting up a PGA infrastructure is to create the self-signed

certi�cate. The graphical user interface of the PGA CA (see �gure 7.1 on page 172)

provides all elements to specify the necessary parameters for creating a self-signed

certi�cate (for details see section 6.7.1 on page 166).

The validity of the generated self-signed CA certi�cate is shown in the certi�cate

selection panel.

7.1.2 Certi�cate request handling

The graphical user interface of the PGA CA (see �gure 7.2 on page 173) provides

all elements to specify the necessary parameters for creating a self-signed certi�cate
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Figure 7.1: PGA CA initialization

(for details see section 6.7.2 on page 169). When a PGA Server operator sends a

certi�cate signing request (via e-mail or other means), the PGA CA operator must

select the request �le, con�gure the �le name of the issued certi�cate (probably

based on the name of the currently handled PGA Server), con�gure the validity of

the certi�cate and trigger the certi�cate creation process.

The validity of the issued certi�cate is shown in the certi�cate selection panel.

7.2 Server Core

The PGA Server Core is packaged as an executable JAR �le (pga_server_core.jar).

The PGA Server Core does not have a graphical user interface. Therefore the rec-

ommended way to start it is via the command line in a terminal. The PGA Server

Core is remotely monitored and managed via JMX. This can require many di�erent

security options to ensure that unauthorized persons can not control or monitor the

PGA Server Core. These options are described in detail in the JMX Documenta-
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Figure 7.2: PGA CA request handling

tion1.

The most simple con�guration to start the PGA Server Core is with JMX without

any authentication:

java -Djava.rmi.server.hostname=<hostname>

-Dcom.sun.management.jmxremote.port=<port>

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

-jar pga_server_core.jar <--start>

The placeholder <hostname> must be replaced by the host name of the PGA

Server Core, the placeholder <port> must be replaced by the port that should be

used for the PGA Remote Management. In this con�guration it is recommended to

block access to this host and port for unauthorized persons by other means (e.g. by

a �rewall).

1http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html,

last visited: January 2012

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html


174

Usually, the the anonymization service of the PGA Server Core is started by an

operator of the graphical PGA Remote Management component. The parameter

--start of the PGA Server Core application is optional and, if given, speci�es

that the anonymization service of the PGA Server Core should be started instantly

instead. This is useful when the PGA Server Core is already fully con�gured and/or

is started unattended (e.g. by system startup scripts).

7.3 Remote Management

The PGA Remote Management is packaged as a NetBeans module

(ch-unifr-pga-vvmplugin.nbm). This module needs to be installed in the Java

VisualVM. This is done by starting the Java VisualVM, opening the menu item

Tools → Plugins (see �g. 7.3), selecting the tab Downloaded, pressing the button

Add Plugins... and selecting and opening the �le ch-unifr-pga-vvmplugin.nbm

(see �g. 7.4).

Figure 7.3: Java VisualVM Plugins

The Java Visual VM Plugins window displays the details about the PGA Remote

Management module (version, author, date, source and description (see �g. 7.5).

After checking the details, the Install button has to be pressed to start the Plugin

Installer. The Plugin Installer �rst presents the list of all plugins to be installed (see

�g. 7.6). After pressing the Next button, the license agreement of the PGA Remote

Management will be displayed (see �g. 7.7). After accepting the terms of the license

agreement the installation can be started by pressing the Install button.
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Figure 7.4: PGA Remote Management module selection

After installing the PGA Remote Management NetBeans module, the Java Vir-

tualVM is able to manage all details of a PGA Server Core. When the PGA Server

Core is running on the same host as the PGA Remote Management, the PGA Server

Core appears in the Java VisualVM as a local process (see �g. 7.8).

When the PGA Server Core is running on a di�erent host than the PGA Remote

Management, a JMX connection must be added to the Java VisualVM by calling

the menu item File → Add JMX Connection... (see �g. 7.9). The host name or

IP address and the port of the remote application have to be speci�ed, optional pa-

rameters are a display name for this JMX connection and, if con�gured, a username

and password. The PGA Server Core then appears in the applications tree of the

Java VisualVM under Remote → <hostname> → <display name> (see �g. 7.10).

The status area of the PGA Remote Management (see �g. 7.8) shows if the

anonymization service is running or not, the number of currently connected PGA

Clients, the remaining data volume for anonymous users and the currently con�gured

list of anonymity groups. In addition to that it provides two buttons to start or stop

the anonymization service.
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Figure 7.5: Added PGA Remote Management

Figure 7.6: PGA Remote Management installation (1)
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Figure 7.7: PGA Remote Management installation (2)

Figure 7.8: local PGA Server management
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Figure 7.9: JMX connection with Java VisualVM

Figure 7.10: remote PGA Server management
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In the basic con�guration area of the PGA Remote Management (see �g. 7.11)

the selected certi�cate �le of the PGA Server Core, the anonymization service port,

logging level, connection monitoring, log �le rotation, monitoring �ltering rules,

encryption ID and the retention period are displayed and can be con�gured.

Figure 7.11: PGA Remote Management: Basic con�guration

In the certi�cate con�guration dialog (see �g. 7.12) a key pair for the PGA Server

Core and a certi�cate request, e.g. for the PGA CA, can be generated and the issued

certi�cate can be imported.

In the logging level con�guration dialog (see �g. 7.13), the logging level for the

PGA Server Core can be con�gured by pushing a slider to a certain level. An

additional text �eld provides detailed information about each selected logging level.

In the monitoring �lter dialog (see �g. 7.14), the regular expressions for �ltering

with target domains or IP addresses can be con�gured and tested.

In the user management area of the PGA Remote Management (see �g. 7.15)

the available data volume and bandwidth for anonymous users and the available

anonymity groups can be con�gured.
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Figure 7.12: PGA Remote Management: Certi�cate con�guration

Figure 7.13: PGA Remote Management: Logging level con�guration
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Figure 7.14: PGA Remote Management: Monitoring �lter con�guration

Figure 7.15: PGA Remote Management: User management
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In the �rewall area of the PGA Remote Management (see �g. 7.16) the list of

internal networks can be con�gured and the set of �rewall rules is displayed.

Figure 7.16: PGA Remote Management: Firewall

In the statistics area of the PGA Remote Management (see �g. 7.17) the statistics

of used bandwidth, the number of PGA Clients, the CPU load and the Java VM

memory can be shown and updated for the last hour, day, week, month and year.

7.4 Client

The PGA Client is packaged as an executable JAR �le (pga_client.jar). On

most systems it is su�cient to (double-)click the JAR �le in a �le browser or on

the desktop to start the PGA Client. If this does not work or is not the preferred

way to start the PGA Client, it can also be started via the command line with the

following syntax:

java -jar pga_client.jar
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Figure 7.17: PGA Remote Management: Statistics
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When the PGA Client is started on a system for the very �rst time, a welcome

dialog is opened (see �g. 7.18). There one can select if the PGA Client should start

automatically when logging in or if it must be started manually. Automatically

starting the PGA Client is recommended because this guarantees anonymization

without gaps and starting the PGA Client can not be accidentally forgotten. The

second setting in the welcome dialog is if the PGA Client should automatically

connect to the last used PGA Server when starting up. Because most users will

probably use one certain preferred PGA Server most of the time, this is a convenience

setting for saving PGA Client users some mouse clicks at start-up.

Figure 7.18: PGA Client: Welcome dialog

After closing the welcome dialog the PGA Client shows the server selection panel

(see �g. 7.19). There users can choose their preferred PGA Server to connect to.

Selection can be done by either choosing from the combo box or by typing in the

PGA Server address in the form:

<hostname>|<IP><:port>

A hostname or an IP address is mandatory. The port information is optional. If

omitted, the default PGA Server port (16374) is used.

If the PGA Client is connected to a PGA Server, some details about the PGA

Server (hostname or IP, monitoring status) is presented in the PGA Client main
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Figure 7.19: PGA Client: Server Selection

window (see �g. 7.19). More details about the connection to the selected PGA

Server can be shown by clicking on the button Details. In this stage the user

can join an anonymity group by pressing the button Switch to High Security

Mode, open the manual about this subject by pressing the button Why is this

important? and disconnect from the selected PGA Server by pressing the button

Disconnect from <PGA Server> at the bottom of the main PGA Client window.

The details window (see �g. 7.21) shows on the left hand side graphs with the

tra�c history of the upstream and downstream tra�c of the currently established

tunnel to the selected PGA Server with details about data, dummy tra�c and the

overhead created by the used ciphers. On the right hand side it shows details about

the selected PGA Server (system load, uptime, number of connected PGA Clients,

reserved and remaining data volume for anonymous users, bandwidth for anonymous

users, tunnel protocol, asymmetric cipher, symmetric cipher and the hash function).

When joining an anonymity group, the PGA Client �rst displays a list of known

anonymity groups as speci�ed by the operators of the selected PGA Server (see

�g. 7.22). The properties of all anonymity groups are shown: package size and
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Figure 7.20: PGA Client: Connected

Figure 7.21: PGA Client: Details
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sending frequency of both inbound and outbound streams and the current size of

the anonymity group.

Figure 7.22: PGA Client: Anonymity groups list

After successfully joining an anonymity group, the PGA Client main window

displays the currently selected anonymity group and provides a button to leave the

anonymity group (see �g. 7.23).

On the left hand side of the PGA Client main window is a menu list with sev-

eral menu items (PGA Server, Connectors and Statistics). When selecting the

Connectors menu entry, the available PGA Client connector plugins are shown and

can be con�gured in separate tabs. Currently, there are two connector plugins im-

plemented: Generic and Web Browser. In the Generic connector plug-in tab one

can con�gure the service port of the plug-in and start and stop the service (see �g.

7.24).

In the Web Browser connector plug-in tab (see �g. 7.25) one can open the relevant

part of the PGA Client manual by pressing the Direct Help... button. The service

port of the plug-in can be con�gured and the service can be started and stopped.

At the bottom of the plug-in tab some statistics about web browser connections and

HTTP requests are displayed.
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Figure 7.23: PGA Client: Joined an anonymity group

Figure 7.24: PGA Client: Generic connector
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Figure 7.25: PGA Client: Web Browser connector

When selecting the Statistics entry in the PGA Client window main menu (see

�g. 7.26), some details about the upstream, downstream and total tra�c generated

and consumed by the PGA Client are displayed.

The settings dialog of the PGA Client can be opened by selecting the menu

item File → Settings.... It has a menu list at the left hand sides that provides

access to three di�erent settings areas: Start, Ciphers and Logging Level. When

selecting the Start menu entry (see �g. 7.27), the start-up behavior of the PGA

Client can be con�gured (see page 184 for details).

When selecting the Ciphers menu entry (see �g. 7.28), the ciphers which are

used to establish the tunnel to the PGA Server can be con�gured. Either the

default ciphers can be used (all supported ciphers) or the enabled ciphers can be

manually selected from the list of supported ciphers.

When selecting the Logging Level menu entry (see �g. 7.29), the logging level

for the PGA Client can be con�gured by pushing a slider to a certain level. An

additional text �eld provides detailed information about each selected logging level.
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Figure 7.26: PGA Client: Statistics

Figure 7.27: PGA Client: Start settings
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Figure 7.28: PGA Client: Cipher settings

Figure 7.29: PGA Client: Logging level settings
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Chapter 8

Conclusion

The lack of a simple and secure implementation of anonymization via anonymity

groups was the motivation of this work. The goal of this thesis was to design and

implement such an architecture that provides �exible, high-bandwidth and low-

latency anonymous Internet communication that provides a high level of security

against global adversaries with a low level of complexity.

In order to do that, �rst of all, the already existing solutions have been evaluated.

The security mechanisms that protect against a global attacker (message collection,

reordering and transcoding) have been reused. The evaluation has shown that mech-

anisms of existing solutions that try to also protect against the anonymity provider

itself (distribution of the anonymity provider) are not very e�ective as there are

still many sophisticated and successful attacks against such mechanisms. Therefore,

these complex mechanisms have been left out in favor of high-performance and low

complexity.

To create large anonymity groups (one signi�cant property of good anonymiza-

tion) it became necessary in the course of implementing the architecture of this

thesis, to design and implement a scalable, �exible and easy-to-use framework for

high-performance, low-latency and secure I/O processing: the Java NIO Framework.

This framework implements readiness selection in Java with a good utilization of

multi-core and many-core processing units. The Java NIO Framework has been pub-

lished as Free Software released under the GNU Lesser General Public License. It

has been presented on ICSOFT 2008, the 3th International Conference on Software

and Data Technologies [57], was reviewed by other universities and is now in use

not only for the architecture of this thesis but also in computing clusters with more

193
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than 1000 nodes.

Several software components for the anonymization architecture have been de-

signed and implemented:

• an easy-to-use, platform and application independent client

• a high-performance, scalable, secure and remotely manageable server

• an easy-to-use remote management solution for the server component

• a simple certi�cate authority to provide authentication for the anonymization

architecture

• several new protocols to provide e�cient and application independent anonymiza-

tion of already existing Internet communication

There are several aspects of the solution provided in this thesis that can be

improved by future works:

• The current design of the certi�cate authority is very simple and omits several

building blocks of complete certi�cate solutions like Certi�cate Revocation

Lists or CA certi�cate updates.

• The current implementation of the server component lacks user management

and user de�ned anonymity groups.

• The �ltering rules of the logging component can currently not be based on

source domains.

• The HTTP proxy of the client component currently only supports a subset of

HTTP.

• Only telnet and HTTP are the currently supported protocols. Other protocols

could be implemented at a later stage.



Appendix A

ProMeLa models

A.1 Message tunneling

01 mtype = {OPEN, OPEN_FAILED, OPEN_SUCCEEDED, DATA, SHUTDOWN, ERROR};

02

03 chan server_to_client = [10] of {mtype};

04 chan client_to_server = [10] of {mtype};

05

06 active proctype PGA_Client()

07 {

08 INITIAL: client_to_server!OPEN;

09 WAITING: if

10 :: server_to_client?OPEN_FAILED -> goto TERMINAL

11 :: server_to_client?OPEN_SUCCEEDED

12 fi;

13

14 ESTABLISHED: do

15 :: client_to_server!DATA

16 :: client_to_server!SHUTDOWN -> goto WRITE_ONLY

17 :: client_to_server!ERROR -> goto TERMINAL

18 :: server_to_client?DATA

19 :: server_to_client?SHUTDOWN -> goto READ_ONLY

20 :: server_to_client?ERROR ->

21 client_to_server!SHUTDOWN; goto TERMINAL
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22 od;

23

24 READ_ONLY: do

25 :: client_to_server!DATA

26 :: client_to_server!SHUTDOWN -> goto TERMINAL

27 :: client_to_server!ERROR -> goto TERMINAL

28 :: server_to_client?ERROR ->

29 client_to_server!SHUTDOWN; goto TERMINAL

30 od;

31

32 WRITE_ONLY: do

33 :: client_to_server!ERROR -> goto TERMINAL

34 :: server_to_client?DATA

35 :: server_to_client?SHUTDOWN -> goto TERMINAL

36 :: server_to_client?ERROR -> goto TERMINAL

37 od;

38

39 TERMINAL: printf("PGA Client reached TERMINAL state \n")

40 }

41

42

43 active proctype PGA_Server_Core()

44 {

45 INITIAL: client_to_server?OPEN;

46 WAITING: if

47 :: server_to_client!OPEN_FAILED -> goto TERMINAL

48 :: server_to_client!OPEN_SUCCEEDED

49 fi;

50

51 ESTABLISHED: do

52 :: server_to_client!DATA

53 :: server_to_client!SHUTDOWN -> goto WRITE_ONLY

54 :: server_to_client!ERROR -> goto PENDING

55 :: client_to_server?DATA



197

56 :: client_to_server?SHUTDOWN -> goto READ_ONLY

57 :: client_to_server?ERROR -> goto TERMINAL

58 od;

59

60 READ_ONLY: do

61 :: server_to_client!DATA

62 :: server_to_client!SHUTDOWN -> goto TERMINAL

63 :: server_to_client!ERROR -> goto TERMINAL

64 :: client_to_server?ERROR -> goto TERMINAL

65 od;

66

67 WRITE_ONLY: do

68 :: server_to_client!ERROR -> goto PENDING

69 :: client_to_server?DATA

70 :: client_to_server?SHUTDOWN -> goto TERMINAL

71 :: client_to_server?ERROR -> goto TERMINAL

72 od;

73

74 PENDING: do

75 :: client_to_server?DATA

76 :: client_to_server?SHUTDOWN -> goto TERMINAL

77 :: client_to_server?ERROR -> goto TERMINAL

78 od;

79

80 TERMINAL: printf("PGA Server reached TERMINAL state \n")

81 }

A.2 XON/XOFF �ow control

1 mtype = {DATA, XON, XOFF}

2

3 init {

4 chan server_to_client = [3] of {mtype};

5 chan client_to_server = [3] of {mtype};
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6 run PGA_Component(server_to_client, client_to_server);

7 run PGA_Component(client_to_server, server_to_client);

8 }

9

10 proctype PGA_Component(chan readChannel; chan writeChannel) {

11 ON_ON: do

12 :: writeChannel!DATA

13 :: readChannel?DATA ->

14 if

15 :: writeChannel!XOFF -> goto ON_OFF

16 :: skip

17 fi

18 :: readChannel?XOFF -> goto OFF_ON

19 od;

20

21 ON_OFF: do

22 :: writeChannel!DATA

23 :: writeChannel!XON -> goto ON_ON

24 :: readChannel?DATA ->

25 if

26 :: goto ON_E

27 :: skip

28 fi

29 :: readChannel?XOFF -> goto OFF_OFF

30 od;

31

32 ON_E: do

33 :: writeChannel!DATA

34 :: goto ON_OFF

35 :: writeChannel!XON -> goto ON_ON

36 od;

37

38 OFF_ON: do

39 :: readChannel?DATA ->
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40 if

41 :: writeChannel!XOFF -> goto OFF_OFF

42 :: skip

43 fi

44 :: readChannel?XON -> goto ON_ON

45 od;

46

47 OFF_OFF: do

48 :: writeChannel!XON -> goto OFF_ON

49 :: readChannel?DATA ->

50 if

51 :: goto OFF_E

52 :: skip

53 fi

54 :: readChannel?XON -> goto ON_OFF

55 od;

56

57 OFF_E: do

58 :: goto OFF_OFF

59 :: writeChannel!XON -> goto OFF_ON

60 od;

61 }
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