
Stadium: A Distributed Metadata-Private
Messaging System

Nirvan Tyagi

Cornell University

Yossi Gilad

Boston University

MIT CSAIL

Derek Leung

MIT CSAIL

Matei Zaharia

Stanford University

Nickolai Zeldovich

MIT CSAIL

ABSTRACT
Private communication over the Internet remains a challeng-

ing problem. Even if messages are encrypted, it is hard to

deliver them without revealing metadata about which pairs

of users are communicating. Scalable anonymity systems,

such as Tor, are susceptible to traffic analysis attacks that

leak metadata. In contrast, the largest-scale systems with

metadata privacy require passing all messages through a

small number of providers, requiring a high operational cost

for each provider and limiting their deployability in practice.

This paper presents Stadium, a point-to-point messaging

system that provides metadata and data privacy while scal-

ing its work efficiently across hundreds of low-cost providers
operated by different organizations. Much like Vuvuzela,

the current largest-scale metadata-private system, Stadium

achieves its provable guarantees through differential privacy

and the addition of noisy cover traffic. The key challenge in

Stadium is limiting the information revealed from the many

observable traffic links of a highly distributed system, with-

out requiring an overwhelming amount of noise. To solve

this challenge, Stadium introduces techniques for distributed

noise generation and differentially private routing as well as

a verifiable parallel mixnet design where the servers collabo-

ratively check that others follow the protocol. We show that

Stadium can scale to support 4× more users than Vuvuzela

using servers that cost an order of magnitude less to operate

than Vuvuzela nodes.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

ACM ISBN 978-1-4503-5085-3/17/10.

https://doi.org/10.1145/3132747.3132783

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity
and untraceability; Privacy-preserving protocols; Dis-
tributed systems security;

KEYWORDS
anonymous communication, differential privacy, mixnet, ver-

ifiable shuffle

1 INTRODUCTION
The continued prominence of anonymous whistleblowing

and private communication in world affairs means that these

issues, and the systems that enable them, have become an

integral part of society. As a result, there is substantial inter-

est in systems that offer strong privacy guarantees—often

against a global adversary with the ability to monitor and

inject network traffic, such as an ISP or nation-state.

Services such as WhatsApp, Signal, and Telegram have de-

ployed end-to-end encryption solutions to popular reception

from the public. Even so, encryption is only the first step

in protecting users’ communications. Although encryption

hides communication content, it does not hide metadata be-
cause adversaries can still learn who is communicating with

whom and at what times. Metadata reveals a great deal of

information; in fact, NSA officials have stated that “if you

have enough metadata, you don’t really need content” [39].

In recent years, researchers havemade significant progress

in designing systems with provable protection against meta-

data leakage [1, 12, 14, 15, 45]. Despite the variation in solu-

tions, these past systems share a similar deployment strategy

and trust scheme that limits their scalability (with a few no-

table exceptions [1, 32], see §11). Specifically, in most of these

systems, a small set of providers carries out the anonymity

protocol, and users must trust that at least one provider in
the set is honest (i.e. “the anytrust assumption”).

This strategy limits the number of users these systems

can support in two main ways. First, because each individ-

ual provider is responsible for ensuring global privacy, each

provider’s workload increases proportionally with the total

423

https://doi.org/10.1145/3132747.3132783

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

number of users of the system (e.g., mixing messages sent by

all users). For example, Vuvuzela [45] reported exchanging

68,000 messages per second with 3 providers at a bandwidth

cost of 1.3 Gbps per provider, which would cost each provider

around $1,000 per month [36]. Second, users must trust one

of the system’s few participating providers. As the number

of users grows, it becomes hard to find a small set of organi-

zations for which the anytrust assumption holds for all users.

Relaxing this assumption by adding more providers quickly

degrades performance by raising costs that are at least linear

in the number of providers [14, 45]. In summary, these sys-

tems are restricted by a combination of a small number of

providers and a large operating cost per provider. We refer

to these systems as scaling vertically, in that providers must

run more infrastructure to support more users.

In contrast, the Tor network [18] is an example of an

anonymity system that scales horizontally. Tor consists of
thousands of commodity servers run by volunteer providers.

Instead of trusting any single provider, users trust that some

fraction of participating providers are honest. The total load

of all users on the system is distributed evenly across the

providers. Thus, the system scales to support more users with

the addition of new providers. However, Tor is vulnerable to

traffic analysis and injection attacks that can deanonymize

users and leak metadata [2, 7, 21, 30, 46].

This paper presents Stadium, a point-to-point messaging

system that uses a horizontally scaling deployment strat-

egy and provides provable privacy guarantees. We show

that Stadium scales to support up to 4× more users than

previous systems with provable guarantees, using servers

whose operating costs are an order of magnitude smaller

than the equivalent Vuvuzela deployment. For example, at

a latency of 2 minutes, we find Stadium can support more

than 20 million simultaneous users with 100 providers, while

Vuvuzela [45], the current largest-scale metadata-private

system, is limited to 5 million. Additionally, Stadium’s ca-

pacity scales near-linearly with the number of participating

providers, i.e., adding a provider additively increases the total

number of users that can be supported.

Like Vuvuzela, Stadium uses differential privacy to bound

the metadata leakage of the system over time. Informally,

differential privacy can be thought of as “plausible deni-

ability.” By observing the system, an adversary may gain

some small amount of statistical information in learning

the communication patterns of users (e.g. is Alice talking

to Bob?). Differential privacy bounds the information the

adversary can gain from these observations: the adversary’s

observations are almost equally likely to be caused by Alice

talking to Charlie, or Alice not talking to anyone. To provide

differential privacy, Stadium adds noise to the adversary’s

observations in the form of decoy message traffic.

Stadiummixes user messages and noise messages together

using a mixnet architecture, which takes as input a set of

messages and outputs a random permutation of those mes-

sages [8]. Furthermore, Stadium requires its mixnet to scale

horizontally. Messages must be distributed among providers

and mixed in parallel so that each provider only handles a

fraction of messages. Secure and efficient parallel mixing is

challenging due to the observable links between distributed

mixing servers; advanced traffic analysis techniques can be

used to trace messages [6].

We provide a differential privacy analysis of Stadium’s

mixnet routing to bound the information leaked through

traffic analysis. To meet the requirements of the differential

privacy model, we augment Stadium’s parallel mixnet with a

number of novel verifiable processing techniques, allowing

providers to verify that other providers are correctly relaying

and mixing messages. Providers are organized into small

groups calledmixchains, andmessages are distributed among

mixchains and mixed in parallel. The mixing and verification

workload of a provider is confined to the fraction of messages

that flow through itsmixchain. As long as there exists a single

honest provider in each mixchain, Stadium achieves global
verification and mixing.

Stadium’s scalability does comewith one significant caveat.

In order to achieve comparable privacy to previous systems,

Stadium requires both more noise and a higher computation

cost due to verifiable processing, which often translates into a

higher latency (several minutes vs. 30–60 seconds). Nonethe-

less, Stadium’s total bandwidth cost, which constitutes the

dominant monetary cost for providers, is within a factor of

1 to 3 of Vuvuzela, and Stadium can divide this cost across
hundreds of small providers. Therefore, we believe that Sta-

dium is a compelling new design point for metadata-private

messaging for two reasons: it can be deployed incremen-

tally using smaller providers, and it does not require a single

centralized anytrust set as in previous systems.

To summarize, our contributions are:

• The design for a horizontally scaling metadata-private

messaging system that can distribute work efficiently

across hundreds of servers.

• A novel verifiable parallel mixnet design that allows

participating providers to efficiently verify the correct-

ness of the mix, including techniques such as hybrid

verifiable shuffling, verifiable distribution, and intra-

mixchain verification.

• Aprivacy analysis of Stadium, including techniques for

designing distributed, differentially private systems,

such as the Poisson noise mechanism, routing network

analysis, and collaborative noise generation across mu-

tually untrusted servers.

424

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

• An implementation and experimental evaluation of

Stadium over a 100 server deployment on Amazon

EC2.

2 GOALS
In this section we present Stadium’s key design goals: provid-

ing private point-to-point messaging in the face of powerful

adversaries while scaling to tens of millions of users.

2.1 Threat Model
Stadium assumes an adversary that controls some fraction

of its providers’ servers. Adversary-controlled servers and

users may deviate in any way from Stadium’s protocol. We

allow the adversary to monitor, block, delay, or inject traffic

on any network link at all communication rounds. Servers

are arranged in mixchains, where each chain consists of

servers that belong to different providers which are unlikely

to collude; we assume that at least one server in every chain

follows the protocol.

In terms of availability, Stadium is not resistant to wide-

scale denial of service (DoS) attacks. This is unavoidable

given our assumption that adversaries can block traffic, which

allows them to disconnect servers and users from the net-

work. However, Stadium guarantees that any DoS attack will

not risk its users’ privacy.

Cryptographic assumptions and PKI. Stadium relies on

standard cryptographic assumptions. We assume secure pub-

lic and symmetric key encryption, key-exchange mecha-

nisms, signature schemes, and hash functions under the

random oracle model [4]. We further assume a public key

infrastructure, i.e., Stadium servers’ public keys are known

to its users, and that two communicating users hold a shared

key. One recent scalable system, Alpenhorn [34], provides a

service that allows two users to privately coordinate a shared

secret.

2.2 Privacy
Stadium has a similar privacy goal to Vuvuzela [45]. It aims

to prevent adversaries from distinguishing between com-

munication patterns of its users, even if the users exchange

many messages. We use the following definition from the

differential privacy literature to analyze Stadium’s privacy

guarantees [20]:

Definition 2.1. A randomized mechanismM is (ϵ,δ)-
differentially private if for any two adjacent inputs D and D ′

and for all sets of outputs S , Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D ′) ∈
S] + δ .

The inputs to the Stadium mechanism (D and D ′) are
the set of users’ communication actions in each round. We

consider two inputs adjacent if they differ only by one user’s,

Figure 1: Stadium overview. Users send messages for
a communication round. Stadium’s servers work to-
gether to shuffle the messages, verifying each other
for correctness. Shuffled messages are exchanged at
dead-drops and reversed through the system to the re-
cipient user.

say Alice’s, actions. One of the inputs represents Alice’s real

actions in a particular round (e.g., Alice sends a message to

Bob), while adjacent inputs represent hypothetical “cover

stories” (e.g., Alice is not talking to anyone). Real or not, the

differential privacy definition requires that all these stories

appear almost as plausible. In the above definition, ϵ and δ
bound the information that an adversary might learn about

Alice’s communication in each round. We design Stadium

to provide differential privacy such that ϵ and δ are small

enough to keep all other cover stories plausible even after

Alice sends hundreds of thousands of messages.

2.3 Scalability
Our scalability goal is to support tens of millions of simulta-

neous users on Stadium, which is comparable to the number

of Tor users. The scalability goal necessitates that the user

message load is distributed across servers and represents a

departure from previous metadata-private systems.

3 COMMUNICATION OVERVIEW
Communication through Stadium takes place in rounds. Ev-

ery fixed interval, a new round begins to process a set of

messages Stadium accumulated from its users. To provide

differential privacy of user communication patterns, Stadium

servers generate noise messages (i.e., cover traffic) which

are also input to the system when the round begins. All

messages are shuffled by Stadium’s distributed servers to

unlink them from their sender. Stadium borrows a dead-
drop communication strategy from Vuvuzela [45] amenable

to provable differential privacy. Dead-drops are virtual loca-

tions, hosted on the system’s servers, that are associated with

the anonymous conversations taking place. Message destina-

tion dead-drops are revealed after the messages are shuffled.

When exactly two messages reach the same dead-drop in

a communication round, the server hosting that dead-drop

425

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

exchanges their contents. Finally, messages are sent back

through Stadium, where servers invert the shuffle and return

messages such that two messages exchanged at a dead-drop

reach their intended recipients. To ensure that observing a

user’s communication line does not leak whether they com-

municate, users send exactly one message every round, and

thus, receive exactly one message every round. If the user

does not communicate, a dummy message is sent which will

route back to the sender. An overview of Stadium’s design

is illustrated in Figure 1. In order to start communication,

Alice and Bob use a separate dialing protocol [34], assumed

as a precursor to our system (§2.1), which allows them to co-

ordinate a dead-drop for every round as well as a symmetric

key to encrypt the content of their communication.

4 PARALLEL MIXING CHALLENGES
A key challenge to Stadium’s design is in mixing messages se-

curely and efficiently. Traditional sequential mixnets, where

each server mixes all messages, fail to perform at Stadium’s

targeted scale. Instead, Stadium requires a parallel mixing

scheme, where each server processes only a fraction of the

input messages, yet the messages are still mixed globally. To

achieve this, most previous parallel mixing schemes [17, 19,

26, 38] use the same general pattern. Each server accepts a

small fraction of messages, mixes those messages, then splits

the messages among other servers. This process is repeated

for some number of cycles. Although at the beginning, mes-

sages are clearly partitioned by their starting server, they

are mixed globally over many cycles of splitting and mixing.

The primary difference between previous parallel mixing

schemes is in the chosen mixing topology. The mixing topol-

ogy specifies the links between servers at each depth, i.e.,

where servers collect messages from and where they distrib-

ute messages to after shuffling. Different mixing topologies

trade off between depth (number of mixing servers a mes-

sage passes through), switch size (number of incoming and

outgoing connections for each server), and, as we discuss

next, quality of mix.

Resistance to traffic analysis. It has been shown that most

previous parallel mixing schemes are susceptible to advanced

traffic analysis attacks [6]. These attacks use uneven distribu-

tions between servers to probabilistically model likely paths

for messages, depicted in Figure 2. Even if distributions are

forced to be uniform, e.g. by padding with dummy messages,

uneven distributions can be inferred if the adversary knows

the input-output relation of somemessages. Essentially, these

attacks are able to trace back messages with some significant

probability, even after many cycles of mixing.

There are a few exceptions resistant to traffic analysis;

notably, the iterated butterfly topology [16] and the square

topology [28] both have theoretical results for achieving

Figure 2: Adversary gains probabilistic information
about Alice’s message path by observing an uneven
distribution of messages out of a server.

near-random permutations. However these results come at

the expense of relatively large depth, which is not suitable

to Stadium’s low latency messaging application. Instead, Sta-

dium opts for a shallow, but vulnerable, topology. Informa-

tion leakage in routing is identified and quantified with a

differential privacy analysis (§7,8). Note that noise messages

in Stadium serve two purposes: (1) protecting dead-drop

access patterns, and (2) protecting routing traffic patterns.

Deciding how to inject noise messages into the system

poses another challenge. If each server, in turn, adds and

shuffles in the total required amount of noise messages (as in

Vuvuzela [45]), the total processing cost of the system grows

quadratically in the depth of the network; each server must

process the messages added by all servers before it. Although

Stadium aims for a shallow topology, the network is still too

deep to accommodate the quadratic processing costs (~10-25

compared to Vuvuzela’s depth 3). Instead, Stadium servers

collaborate to inject noise messages across the system in one

large step prior to mixing. With this strategy, servers are not

mixing in their own noise messages, leaving the opportunity

for malicious servers to discard noise messages before they

are mixed with user messages. To ensure that noise stays in

the system and the differential privacy guarantees are valid,

Stadium uses several cryptographic techniques for verifiable

processing of messages (§6) allowing honest servers to verify

the actions of others. To optimize the relatively expensive ver-

ification workload put on honest servers, Stadium introduces

a hybrid verifiable shuffling scheme to bootstrap verifiable

processing of large messages onto verifiable processing of

small authentication keys (§5.1).

In summary, Stadium reasons about the information leak-

age of parallel mixing through a differential privacy analysis.

Verifiable processing is used to ensure noise messages are

properly mixed with user messages, and thus, the differential

privacy guarantees are upheld.

426

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

5 DESIGN
This section presents the Stadium protocol in a chronological

view of a single communication round. Figure 3 breaks down

a round into 7 processing phases.

Collecting messages. In phases 1-2, messages are created

and submitted to the system. The message encapsulation

protocol is described in the next section (§5.1). Users each

submit one message, possibly a dummy message if not com-

municating; servers submit a randomized number of noise

messages. Stadium servers collect messages and use veri-

fiable processing to ensure only “proper” messages are ac-

cepted. The verifiable processing of message input (§6.1)

verifies submitted messages were created by the submitter

(i.e., preventing replay/malleability attacks) and verifies all

server-generated noise messages are included.

Mixing messages. Phases 3-5 make up Stadium’s parallel

mixnet. Stadium employs a 2-layer mixing topology consist-

ing of an input mixing layer (phase 3), all-to-all distribution

(phase 4), and an outputmixing layer (phase 5). Since Stadium

assumes a fraction of its servers to be adversary-controlled,

the input and output mixing layers are not composed of sin-

gle servers, but rather of small groups of servers organized

into mixchains. Verifiable processing of the mixnet (mixing

§6.2 and distribution §6.3) allows an honest server to verify

messages that pass through its mixchain are uncorrupted

and properly mixed. Thus, proper execution of the mixnet

relies on the assumption that every mixchain contains at

least one honest server; we revisit the plausibility of this

assumption in §10.3.

A message’s path through the mixnet consists of an in-
put mixchain and an output mixchain. In the input chain,

messages are mixed with all other messages that entered

the system through the same chain. Messages exiting the

input chain are distributed among output chains, where they

are again mixed—this time with messages arriving across all

input chains.

Exchanging messages. The messages of an output chain

are exchanged (phase 6) at the dead-drops hosted by that

same output chain as described in §3. Note that this means,

two communicating users must route their messages to the

same output chain in order for them to be exchanged - a

restriction imposed by our privacy analysis. Messages then

travel back through the mixnet to their recipient users, each

mixchain reversing the permutation applied in the forward

direction (phase 7). The last two phases (6-7) are not verified;

messages output from the mixnet are already anonymized.

Adversaries can deny service to users by not exchanging or

corrupting messages, but the user’s intended communication

pattern remains hidden.

5.1 Message Encapsulation
Users set the path of their message through Stadium by desig-

nating an input chain, an output chain, and a dead-drop. Each

mixchain has a public key, jointly established by the servers

included in that chain (see Algorithm 2). Users encapsulate

their message using the public keys of their selected path,

using Algorithm 3. Encapsulated messages contain both the

underlying message content that Alice wishes to exchange,

as well as message routing metadata (e.g., the output chain

selection and dead-drop id). Routing metadata needs to be

properly protected for two main reasons. (1) Revealing user

message routing metadata can expose user communication

patterns. (2) Routing noise messages along their intended

paths is necessary for the differential privacy guarantees

to hold. Stadium uses verifiable processing to protect the

integrity of routing metadata and uses threshold decryption

to ensure routing metadata is revealed only when the mixing

protocol is honestly followed.

Hybrid verifiable shuffling. Providing efficient verifiable

processing for routing metadata remains a challenge. In par-

ticular, zero-knowledge shuffle proofs work on group ele-

ments (i.e., public-key encryption). Zero-knowledge shuffle

proofs allowmixing servers to prove the output messages are

a permutation of the input messages without revealing any

knowledge about the permutation itself (preventing message

corruption). Onion encrypting the metadata over multiple

chains requires working in a large group size, making compu-

tation inefficient. This holds true even for the 2-layer onion

encryption needed for Stadium’s shallow mixing topology.

Instead, Stadium handles messages in two pieces, authen-
tication and content. The authentication piece is small (32

bytes) and is verifiably processed. It provides authentication

information required to verify the integrity of the content

piece.

Hybrid verifiable shuffling bootstraps verifiable shuffling

of large messages onto zero-knowledge shuffle proofs of

small authentication keys (extended from [33]). To form the

content piece, we append a message authentication code

(Encrypt-then-MAC) to the message content and then onion

encrypt with the mixchain servers’ public keys. To form the

authentication piece, the authentication key used to produce

the MAC is encrypted with the mixchain’s public key. The

authentication pieces are permuted by each server verifi-

ably using zero-knowledge proofs. At the same time, each

server applies the same permutation to the content pieces,

stripping a layer of the hybrid encryption at each step. At

the end of the mixchain, the authentication key is revealed

and used to verify the correct permutations were applied to

the content by checking the MAC. The message encapsula-

tion is described in Algorithm 3 and the shuffling protocol is

427

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

Algorithm 1: Stadium Communication Protocol

1. Noise generation: Servers generate noise
messages. (Algorithm 4, §7)

2. Message input: Servers and users input messages

to system. (Algorithm 5, §6.1)

3. Mixing I: Messages are mixed within input chain.

(Algorithm 6, §6.2)

4. Distribution: Messages are distributed across

output chains (Algorithm 7, §6.3)

5. Mixing II: Messages are mixed within output chain

with messages from all input chains. (Algorithm 6,

§6.2)

6. Dead-drop exchange: Messages are exchanged at

dead-drops of output chain. (Algorithm 8)

7. Message return: Messages are reversed through

mixnet to users, denoted by dashed arrows.

(Algorithm 8)

Figure 3: Stadium’s communication protocol through 7 processing phases.

described in Algorithm 6. Although Stadium only uses the

technique for 2 mixing layers, it extends efficiently to more.

In Stadium, the purpose of hybrid verifiable shuffling is

to verifiably hold the routing metadata (both output chain

selection and dead-drop id) within the content piece. Even

though the integrity of the underlying communication mes-

sage is also protected through hybrid verifiable shuffling, this

is a non-goal as it is still susceptible to corruption during

message exchange and return.

6 VERIFIABLE PROCESSING
Verifiable processing serves two main purposes in Stadium.

The first is to prevent adversaries from directly learning

user communication metadata, e.g. through revealing output

chain selection or dead-drop id before properly mixing. The

second is to prevent adversaries from partially learning user

communication metadata through system-wide traffic anal-

ysis. This is accomplished by ensuring noise messages are

sent along their intended routes, upholding the guarantees

given by the differential privacy analysis.

In this section, we describe the three components that

make up the verifiable processing pipeline (phases 2-5 in

Figure 3): (1) Message input – tracking messages that en-

ter the system, (2) Mixing – tracking messages as they are

passed through a mixchain, and (3) Distribution – tracking

messages as they are passed between mixchains. For each

component, we list a set of properties that it aims to verify.

We argue that the component successfully verifies the in-

tended properties, and if a breach is detected, it is handled

safely without exposure of user communication metadata.

Complete security arguments can be found in our technical

report [44].

Intra-mixchain verification. The message processing and

verification workloads of a server are restricted to the scope

of its mixchain (with the exception of a few inexpensive

operations in the verifiable distribution phase). Thus, the

workload of a server scales with the fraction of messages

that flow through its mixchain. Designing mixchains to op-

erate as self-verifying entities is a crucial component to Sta-

dium’s horizontal scalability. For mixchains to self-verify

themselves, each mixchain must contain at least one honest

server. We evaluate the plausibility of such a configuration

in §10.3.

428

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

Algorithm 2: Key Generation

1. Communication partners share symmetric key: Alice and Bob hold

shared symmetric key. kAB ←$KGen(1n)
2. Servers’ public keys: Each server si generates a public, private key pair.

(pksi , sksi) ←$KGen(1n) of the form (дx , x) for ElGamal encryption.

3. Mixchains’ public keys: Each mixchain,mci =
{
si

1
, . . . , si

ℓ

}
, has public,

private key pair derived from the member servers’ key pairs. The private key

is held in shares for threshold decryption.

(pkmci
, skmci) ← (

∏
s∈mci pks,

∑
s∈mci sks)

Algorithm 3:Message Encapsulation

(authinput , cinput) = Encapsulate(i, x, d,m)
1. Select message path: A message path is designated by input chain i , output

chain x , and dead-drop id d . For Alice talking to Bob,

m = Enc(kAB, plaintext).
2. Encrypt message for output chain: Encrypt the dead-drop id and message.

(authoutput , coutput) = HybridShuffleEnc(mcx , d ∥ m)
3. Encrypt message for input chain: Append output chain content and auth

with output chain selection and encrypt. (authinput , cinput) =
HybridShuffleEnc(mci , x ∥ authoutput ∥ coutput)

(auth, c) = HybridShuffleEnc(mc,m)
1. Encrypt authentication piece: Generate random group element,

a ← Gen(). Hash group element (with round nonce) to acquire

authentication key, kauth = H(a ∥ nonceround). Encrypt the group
element with mixchain’s public key, auth← Enc(pkmc, a).

2a. Add MAC to message: Generate symmetric key, km ← KGen(1n). Hybrid
encrypt the symmetric key with the mixchain’s public key,

c← Enc(km,m) ∥ Enc(pkmc, km). Add MAC to the encrypted message,

c← c ∥ MAC(c).
2b. Onion encrypt content piece: For every server s ∈ mc.r everse():

Generate symmetric key ks ← KGen(1n), and onion encrypt

c← Enc(pks, ks) ∥ Enc(ks, c). (For communicating partners,

ks ← KGen(1n, kAB))

Algorithm 5:Message Input

For submitting messages to mixchain i :
1. Encapsulate message: (authinput , cinput) = Encapsulate(i, x, d,m)
2. Create proof of knowledge: proofknow = NIZKknow (authinput , a),

where a is group element used to create authentication key from Algorithm 3.

3. Submit to input chain: Send (authinput , cinput) to first server inmci .
Send proofknow to every server s ∈ mci .
(For servers submitting noise messages): Group all noise messages submitted

tomci , N = (m(1) ∥ . . . ∥ m(A
i
∗+B

i,∗
∗)). Send hash of auths to every server

s ∈ mci : H(Nauth).

For input chains:

1. Collect candidate batch: First server in chain collects batch and orders with

noise from servers 1 . . .m first, then users,

B = [N(1) ∥ . . . ∥ N(m) ∥ m(u1) ∥ . . . ∥ m(un)]
2a. Verify proofs of knowledge: Every server in mixchain verifies received

proofs. Removes messages with duplicate proofs. If user proof fails, remove. If

noise proof fails, halt. ∀ auth(i) ∈ Bauth : Vfknow (auth
(i), proof(i)know).

2b. Verify noise messages included: Every server in mixchain verifies with

received hashes. ∀ N(i)auth ∈ Bauth : check H(N(i)auth) against received hash.

Algorithm 4: Noise Generation
1. Generate single access noise: ∀ combinations of input chain i and output

chain x , sample Ai
x ∼ Pois(λ1). Generate A

i
x messages sampling a random

dead-drop id, dr , for each one: Encapsulate(i, x, dr , 0).

2. Generate double access noise: ∀ combinations of input chain pairs i, j and
output chain x , sample B

i, j
x ∼ Pois(λ2). Generate B

i, j
x pairs of messages

sampling a random dead-drop id, dr , for each pair: Encapsulate(i, x, dr , 0),

Encapsulate(j, x, dr , 0).

Algorithm 6: Hybrid Verifiable Shuffle

π (m(1), . . . ,m(n)) = HybridShuffle((auth, c)(1), . . . , (auth, c)(n))
1. Permute messages: Each server, in turn, permutes the message batch, B ,

and passes the permuted to batch to the next server in the mixchain.

1a. Permute authentication pieces with proof: Re-randomize every message

using ElGamal malleability, multiplying by encryption of 1, (дr , дr ·pkmc),

Brauth ← Bauth . Sample random permutation π and permute Brauth . Pass
B′ = π (Brauth) to next server. Send proof of permutation to every server in

mixchain, proofshuf = NIZKshuf (Bauth, B′auth, π).
1b. Permute content pieces: For each c = (c[0], c[1]) ∈ Bc , denoting parsing

the concatenation from Algorithm 3, peel off onion layer to create cr ∈ Brc :
ks ← Dec(sks, c[0]), cr ← Dec(ks, c[1]). Pass B′ = π (Brc) to next server.

2. Verify authentication shuffle proofs: Each server in mixchain verifies the

permutation of every other server s ∈ mc, Vfshuf (Bauth, B
′(s)
auth, proof

(s)
shuf).

3. Threshold decrypt authentication keys: After all servers mix and all

shuffle proofs verify, servers verifiably generate shares and threshold decrypt

authentication keys, [a(i)] = VfThreshDec(B′auth), [k
(i)
auth] ← [H(a

(i))].

4. Verify content with authentication keys: CheckMAC for every c(i) ∈ B′c
using k(i)auth .

4a. Trace message back if MAC fails: Each server s, in reverse order, reveal the

relation for failed message in πs , provides verifiable decryption of ks used for

onion encryption. If all proofs succeed, remove message. Else, identify erring

server and halt.

4b. Threshold decrypt content: Once all MACs verify or failed MACs are

removed, servers verifiably threshold decrypt content,

[k(i)m] = VfThreshDec(B′c[0]), [m
(i)] ← Dec(km, B′c[1]).

Algorithm 7: Verifiable Distribution
For input chain:

1. Group messages by output chain selection: ∀ output chain i ∈ 1 . . .m,

each server in input chain groups messages destined formci deterministically

to form b (i)out . Last server in input chain sends b (i)out to first server ofmci .

2. Send hashes to output chains: Each server in input chain sends H(b (i)auth) to
every server inmci ∀ output chain i ∈ 1 . . .m.

For output chains:

1. Collect candidate batch: First server in chain collects b (i)in from each input

mixchain and orders, B = [b (1)in ∥ . . . ∥ b (m)in].

2a. Verify messages from input chains included: Every server in mixchain

verifies with received hashes. ∀ b (i)auth ∈ Bauth : check H(b (i)auth) against
received hashes.

Algorithm 8:Message Exchange and Return

1. Dead-drop exchange: Given array of messages [m(i)] and corresponding

array of dead-drops [d (i)], exchange array indices of messagesm(i),m(j) if
d (i) = d (j) .

2. Return messages through mixnet: Reverse mixing, in reverse order,

mixchain servers apply inverse permutation π −1
and randomize with ks from

Algorithm 6, [m(i)] ← [Enc(ks,m(π (i)))]. Reverse distribution by sending

messages back to input mixchains based on indices of message batch. Return

messages to users similarly.

Figure 4: Stadium’s communication round subprotocols.

429

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

6.1 Message Input
Two types of messages are included in a message batch to

enter a mixchain, noise and user messages. The properties

that are verified in the message input protocol are as follows:

• The submitting party knows the routing metadata of

the submitted message (output chain selection and

dead-drop id).

• All server-submitted noise messages, for which the

above property holds true, enter the mixchain.

Note that we allow user messages to be discarded, but honest

noise messages must be incorporated.

To achieve the first property, Stadium requires each sub-

mitting party to attach a non-interactive zero-knowledge

proof that it knows the plaintext of the message authen-

tication piece (i.e., the authentication key) [22, 40]. Given

our hybrid encapsulation technique, it is sufficient to ver-

ify knowledge of the authentication key as a proxy for the

routing metadata the key is used to authenticate. The au-

thentication key is also bound to the round number using a

hash (Algorithm 3), so as to prevent replays.

In addition to attaching a proof, servers take an extra step

in submitting noise messages to achieve the second property.

Servers hash the set of noise messages it wishes to submit to

a mixchain and send the hash to each server in the mixchain.

The protocol by which servers decide how many messages

to send to each mixchain is presented in the next section

(§7).

The first server in the mixchain collects all received user

and noise messages into a candidate message batch and sends

the batch to all servers in the mixchain. Chain servers use the

proofs of knowledge and noise hashes to verify the properties

are upheld and remove duplicates. The full protocol is given

in Algorithm 5.

6.2 Mixing
In themixing phases (phases 3 and 5 in Figure 3), the accepted

message batch is passed through the mixchain and permuted

by each server in turn using the hybrid verifiable shuffling

protocol (Algorithm 6). The following properties are verified:

• The output message batch (decrypted content) is a

permutation of the input message batch (encrypted

content), i.e., message integrity is preserved.

• The permutation is random and unknown to any ad-

versary.

An honest server in the mixchain performs two important

tasks to achieve the above properties. First, it shuffles mes-

sages using a random permutation unknown to adversaries.

Second, it verifies that all other servers apply some valid per-

mutation (i.e., do not drop or tamper with messages). For a

length ℓmixchain, each server generates one zero knowledge

proof and verifies ℓ − 1 proofs.

The authentication piece is permuted and verified with

a zero-knowledge shuffle proof [3]. The content piece is

permuted with the same permutation and verified at the end

of the mixchain using authentication keys.

Verifying hybrid content. If the zero-knowledge shuffle

proofs of the authentication pieces are all verified, mixchain

servers create and combine verifiable decryption shares to

threshold decrypt the authentication keys. Verifiable decryp-

tion consists of attaching a zero-knowledge proof [11] of

the validity of the decryption share. The authentication key

is used to verify the permutations applied to the content

pieces by checking the message authentication code (MAC).

Only then, do mixchain servers perform a second round

of verifiable threshold decryption to extract the underlying

content.

There are two possible reasons for content authentication

failure: a malicious user sent an invalid message, or a mali-

cious server modified the content. It should not be possible

for a malicious user to be able to perform a DoS, so the round

cannot simply be halted upon detecting a failure. Instead,

servers reveal decryption proofs tracing back the path of the

faulty message content piece. If all proofs succeed, the faulty

message originated from a malicious user; it is dropped and

the round is completed through threshold decryption. Oth-

erwise, a malicious server will be identified and the round is

halted before communication metadata is revealed.

6.3 Distribution
In the distribution phase (phase 4 in Figure 3), output chains

collect messages from the input chains according to the re-

vealed output chain selection. The collected messages are

combined to form a newmessage batch for the secondmixing

phase. The following property is verified:

• Every message enters its selected output mixchain.

The verifiable distribution protocol is an extended version

of noise distribution in the message input protocol, where

hash checks were used to verify all noise messages were

incorporated into the message batch. It provides a way for

an honest server in an input chain to communicate the set of

messages intended for an output chain and an honest server

within the output chain to verify that the set of messages is

included in the message batch.

Each server in the input chain hashes the set of messages

intended for an output chain and sends the hash to every

member server of that output chain. If every server in the

input chain acts honestly, the calculated hashes will be equiv-

alent. The first server of the output chain collects messages

received across all the input chains into a candidate message

430

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

Observable Variable Hidden by noise
variables

Hiding noise distribution
(m servers aggregate)

IOix : inter-chain messages Ai
x and ∀j : B

i, j
x Pois(mλ1 +m2λ2)

Ax : single-access count ∀i : Ai
x Pois(m2λ1)

Bx : double-access count ∀i, j : B
i, j
x Pois(m3λ2)

Table 1: Observable variables and noise.

batch. Servers on the output chain verify the candidate mes-

sage batch using the received hashes. Again, it is sufficient

for the input chains to hash only the authentication pieces

as a proxy for the dead-drop id metadata contained within

the content piece. The full protocol is given in Algorithm 7.

Inter-mixchain verification. As the total number of mix-

chains grows, the number of hashes a server sends increases,

increasing the network costs to set up a connection with each

server. This represents a small, but non-constant, processing

cost for mixchains. Note however, the total hashing cost re-

mains the same, since the underlying input (message batch)

is the same size; it is simply broken into smaller divisions

for hashing.

7 DIFFERENTIALLY PRIVATE ROUTING
In this section we identify the observable variables that Sta-

dium exposes and describe how servers generate cover traffic

to obscure these variables. Table 1 summarizes the observ-

able variables and noise covering them.

7.1 Observable Variables
Adversaries may monitor the communication between all

of Stadium’s servers and users. Since Stadium uses verifi-

able processing (§6) to ensure that all messages that enter

a mixchain also exit that chain, no intra-chain links leak

information about user communication. The remaining are

the following inter-chain links: (1) from the user to the input

chain, (2) from the input chain to output chain, and (3) from

the output chain to the dead-drop. (When messages travel

on the return path, they are already anonymized.)

To mitigate the information leaked by link (1), between the

user to the input chain, users send a message at every round

regardless of whether the user is active in a conversation.

Therefore, observing users sending messages does not leak

any information about their conversations. Stadium does not

attempt to obscure the fact that a user uses the system, it

only hides its users’ communication patterns. We now focus

on the remaining two types of links and identify three types

of observable variables Stadium exposes to an adversary

monitoring these links (see Table 1).

7.1.1 Inter-Chain Message Distribution. The traffic vol-

ume emitted from the input chain does not directly reveal

the user’s communication patterns, but attackers observing

the distribution of messages to output chains may still ex-

ploit this information to infer a particular message’s output

chain choice, as shown in Figure 2. By inferring a message’s

output chain the adversary reduces the anonymity set (Alice

can only communicate with others on her output chain). We

define the following set of observable variables to reason

about this leak of information:

Input-output chain traffic volumes, IOi
x . The amount of

traffic emitted from input chain i to output chain x . There
arem2

such variables.

7.1.2 Dead-Drop Access Counts. Adversaries that have
compromised a server on an output chain can observe the

dead-drops of all messages sent to that chain. In particular,

an adversary can identify which messages are exchanged at a

dead-drop, indicating their users are employed in a conversa-

tion, and which messages reach a dead-drop alone, indicating

their users are idle. We define the following types of observ-

able variables to reason about this leak of information:

Single access counts, Ax . The number of dead-drops that

receive exactly one message where that message was output

from chain x . There arem single access variables.

Double access counts, Bx . The number of dead-drops that

receive two messages output from chain x . There are m
double access variables.

7.2 Noise Generation
In order to obscure the observable variables that Stadium

exposes to attackers, servers inject noise messages to the

system at the beginning of the round. So as not to flood the

system with noise messages, noise generation responsibili-

ties are split between (honest) servers, which add noise in

one collaborative step at the beginning of each round. Veri-

fiable processing (§6) ensures that no malicious server can

remove noise later.

We define the following two categories of random vari-

ables. The single-access noise variable Ai
x is the number of

messages that travel through input chain i and output chain

x and reach a random dead-drop (such that the chance that

it is used by any other message is negligible). The double-

access variable B
i, j
x is the number of pairs of noise messages

that reach the same dead-drop from output chain x , where
one message in the pair travels through input chain i , and
the other travels through input chain j.

Stadium uses the Poisson distribution for noise generation,

Ai
x ∼ Pois(λ1) and B

i, j
x ∼ Pois(λ2). The Poisson distribution

is well suited to Stadium for two main reasons. First, the

additive property
1
of Poisson distributions makes it easy

to reason about the collaborative noise distribution from

1
If x ∼ Pois(λ1) and y ∼ Pois(λ2), then x + y ∼ Pois(λ1 + λ2).

431

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

summing independent samples generated by Stadium servers.

Second, since Poisson distributions are discrete and non-

negative, we do not need to handle rounding, especially for

distributions with mean near zero, which occurs often when

noise generation is distributed across many servers. In §8

the parameters λ1, λ2 are selected such that the aggregate

noise (generated by all servers) provides Stadium’s privacy

guarantees.

The servers draw each of these variables independently

and generate noise messages accordingly. For example, gen-

erating a noise message forAi
x consists of creating a dummy

plaintext and routing it to a random dead-drop through input

chain i and output chain x . The noise message will route

back to the server and will be dropped. Table 1 summarizes

the noise variables hiding each observable variable.

8 PRIVACY ANALYSIS
In this section we give a sketch of the analysis for Stadium’s

privacy guarantees. A complete analysis is given in our ex-

tended technical report [44]. Recall our differential privacy

goal (defined in Section 2) to keep any adjacent communica-

tion instances almost equally likely, where adjacency means

that one user changes its traffic pattern by selecting a differ-

ent output chain and/or dead-drop. This definition allows

a user Alice, who is talking to Bob, to claim that she is not

talking with anyone (sending a message to a dead-drop not

shared with another user). Similarly, it allows Alice, who is

idle, to claim she is talking to someone. Formally, Stadium is

described as a mechanismM(D), where each element in the

input database D describes the path of one user message by

the tuple (i,o,d): i is the user’s selection of input chain, o is
her output chain and d is the destination dead drop. (Note

that i is directly observable to the adversary monitoring

users, while Stadium obscures o and d .) The output of the
Stadium mechanism M is a vector of observable variables

IOi
x ,Ax ,Bx defined in § 7.

Two inputs to Stadium, D and D ′, are adjacent if one user
changes their path selection (i,o,d) ∈ D to (i,o′,d ′) ∈ D ′. We

show that the Stadium is (ϵ,δ)-differentially private, mean-

ing for all adjacent instances D,D ′ and set of observable

variables S :

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D ′) ∈ S] + δ

Stadium servers inject Poisson distributed noise messages

to cover observable variables (§ 7 and Table 1). Our first

theorem gives the differential privacy guarantees of the Pois-

son mechanism. Denote Pois(λ;k) as the probability mass

function of Pois(λ) at k , λ
k e−λ
k !

.

Theorem 8.1. A mechanism which adds Pois(λ) noise to
output X is (ϵ,δ)-differentially private with respect to changes

of 1 in X with ϵ = ln(1 + c
√
λ

λ) and δ =
e−λ (eλ)λ+c

√
λ

(λ+c
√
λ)λ+c

√
λ
. (Where

c > 0 allows trading higher ϵ for lower δ .)

We first analyze the information leaked through the input-

output chain distribution (IO i
x), then use that to analyze the

information leaked through the output chain to dead-drop

access counts (Ax ,Bx). In the analysis, we consider an m-

mixchain Stadium configuration.

8.1 Input Chain to Output Chain
The adversary can observe the traffic volumes from Alice’s

input chain i to all output chains, IO i
∗, and gain statistical

information about which output chain Alice is more likely to

have used, see Figure 2. The purpose of the input chains is to

hide each user’s selection of output chain. Intuitively, since

the traffic links IO i
∗ are noised, it should be almost equally

likely for Alice to have travelled to output chain o or output
chain o′.
We can capture this intuition formally by considering

how the noise variables, Ai
o ,B

i,∗
o ,A

i
o′,B

i,∗
o′ , that cover IO

i
o

and IO i
o′ change when Alice goes to chain o versus when

Alice goes to chain o′. For fixed observations of IO i
o , IO

i
o′ ,

Alice switching chains corresponds to an increase of 1 and

a decrease of 1 in the corresponding noise variables. Recall

from the Poisson additive property, the noise covering each

IO i
x is distributed according to Pois(mλ1 +m

2λ2). We can

then apply Thm 8.1 to IO i
o , IO

i
o′ and compose to get bounds

ϵ̄, ¯δ for how much information the adversary learns about

Alice’s output chain:

Pr[Alice → o] ≤ e ϵ̄ · Pr[Alice → o′] + ¯δ

8.2 Output Chain to Dead-drop
Output chains mix user messages with noise to obscure dead-

drop access patterns. If an adversary knows Alice’s output

chain o, the dead-drop access patterns can reveal some infor-

mation on the existence (or nonexistence) of Alice’s commu-

nication.

Consider the two adjacent instances Alice talking to Bob

and Alice not talking to anyone. Further, consider the simpli-

fication where it is known Bob goes to output chain o. Then,
if Alice and Bob are talking, their messages would contribute

to Bo . If instead, Alice was not talking to anyone, Bob’s mes-

sage would now contribute to Ao and Alice’s message would

contribute to Ao′ for some random choice of o′. Observing
the same values in these two cases corresponds to an in-

crease of 1 in the noise covering Bo and a decrease of 1 in

the noise covering Ao and Ao′ . Naively, these three variables

can be composed using Thm 8.1, but a tighter bound can

be found by taking advantage of the randomness of Alice’s

choice o′. Variables Ao and Bo will change by one, but there

is not some single variable Ao′ that the adversary knows

432

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

changes. Instead, it is only known that 1 variable out of the

m in ®A = (A1, . . . ,Am) changes, and that variable is chosen

at random. Furthermore, by removing the simplification that

Bob’s output chain o is known, we get randomness over Ao
and Bo as well.

We formalize this intuition in a generalization of the Pois-

son mechanism in Thm 8.1, which we call the multidimen-
sional Poisson mechanism. This theorem captures a

√
m-

factor of privacy savings when the change occurs in a ran-

dom choice ofm variables.

Theorem 8.2. A mechanism which adds Pois(λ) noise to
each variable in output ®X , where | ®X | =m, is (ϵ,δ)-differentially
private with respect to a uniform random change of 1 in ®X with
ϵ = ln(1+ c

√
mλ

mλ) and δ =
e−mλ (emλ)r

r r . (Where r =mλ+c
√
mλ

and c > 0 is a parameter that allows trading higher ϵ for lower
δ .)

Unfortunately, this theorem cannot be directly applied

since in our case, the variables that change are not uniformly

random; the adversary has some small advantage, as shown

in §8.1. We can consider a variation of the multidimensional

Poisson mechanism where one random variable Xi ∈ ®X
changes by 1, and the probability that Xi changes is pi . In
this case, we show that the worst-case ϵ,δ bounds are given

when maxi (pi) is maximized. This result intuitively makes

sense, as a high maxi (pi) means that the adversary has high

probability of knowing where the change will occur. In other

words, the amount of information leaked is related to the

entropy of the probability change vector ®p; lower entropy
means more information leaked.

Lemma 8.3. Given a probability vector ®p, such that
∑m

i=1
pi =

1 and ∀pi ,pi ≥ pmin =
1−pmax

m−1
for some probability pmax >

1

m .
Let ®v = v1, . . . ,vm be values where vj = max{vi }. Then it
holds that,

∑m
i=1

pi · vi ≤ pmax · vj +
∑

i,j pmin · vi .

Recall from §8.1, we showed the following constraint on

the probability of the adversary learning Alice’s output chain.

For every pair of output chains o,o′ where po is the prob-

ability Alice goes to output chain o, po ≤ e ϵ̄ · po′ + ¯δ . Ad-
ditionally,

∑
i pi = 1. With these constraints, we show that

pmax = e ϵ̄ 1− ¯δ
e ϵ̄+m−1

+ ¯δ and ∀ pi , pmax, pi = pmin =
1− ¯δ

e ϵ̄+m−1
.

Finally, we can use these “worst-case” uneven distribution

probabilities to reduce the problem to a multidimensional

Poisson mechanism ofm − 1 pmin probabilities and 1 Poisson

mechanism for thepmax probability. RecallAo ,Bo are covered
by the sum of noise variables A∗o and B

∗,∗
o that distribute

according to Pois(m2λ1) and Pois(m3λ2) respectively. Apply-

ing Thm 8.1 and Thm 8.2 to ®A, ®B using Lemma 8.3 leads to

the ϵ,δ differential privacy guarantees for a single round of

Stadium communication. Full details of the above analysis

can be found in our extended technical report [44].

8.2.1 Conversation over multiple rounds. Stadium allows

users to interactively communicate over multiple communi-

cation rounds. Adversaries may constantly monitor the sys-

tem to learn information about users across multiple rounds,

possibly perturbing the system each round (e.g., knocking

Alice offline) based on observations in earlier ones. This sce-

nario is known as adaptive composition in the differential

privacy literature [20]. The composition of k rounds is also

differentially private:

Theorem 8.4. Consider an algorithmM providing ϵ,δ dif-
ferential privacy, then M provides ϵ ′,δ ′ differential privacy
after k rounds with parameters: ϵ ′ = ϵ

√
2kln(1/d)+kϵ(eϵ −1)

and δ ′ = kδ + d , for any d > 0 trading higher ϵ for lower δ .

Proof. Direct from Theorem 3.20 in [20]. □

8.3 Noise Volumes in Practice
We apply the analysis above to find the best noise distribution

(i.e., the parameters λ1, λ2) for deployments ofm = 25 - 1000

servers. Given a strict limit for δ , we search the parameters

to minimize eϵ .
Figure 5 plots the number of noise messages required per

round for users to communicate through 10
4
rounds with

target δ = 10
−4

tolerating f = 25% compromised servers.

The time it takes to process noise messages represents a

lower bound on message latency for a particular Stadium

configuration. We therefore find that Stadium’s latency is

particularly sensitive to its privacy parameters for configu-

rations with relatively few servers (that require significantly

more noise messages). For larger server configurations, the

noise workload per mixchain falls since it is split across the

greater number of mixchains. Stadium operates most effi-

ciently when the configuration is set such that the number

of noise messages per mixchain is dwarfed by the number

of user messages.

9 IMPLEMENTATION
We implement a prototype of Stadium to evaluate its perfor-

mance and feasibility of deployment. Our system’s control

and networking logic is implemented in Go, while the un-

derlying verifiable processing protocols (described in §6)

are implemented in C++. In particular, our C++ code imple-

ments Bayer and Groth’s verifiable shuffling protocol [3] ex-

tended for non-interactive proofs via the Fiat-Shamir Heuris-

tic and instantiated over Bernstein’s Curve25519 elliptic

curve group [5]. The shuffle depends on libNTL [41] for

arithmetic. We use standard Go RPCs for networking.

Our implementation uses OpenMP and the Go runtime to

parallelize our verifiable computation process. Most opera-

tions process each message in a batch independently (§6) and

are therefore trivially parallelizable. Moreover, we pipeline

433

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

20 40 60 80 100 120 140 160 180

noise (thousands of messages per server)

0

5

10

15

20

e
²

25 servers

50 servers

100 servers

200 servers

400 servers

800 servers

Figure 5: Number of noise messages required per
server per communication round to achieve Stadium
privacy guarantees with δ = 10

−4 for 10
4 communica-

tion rounds.

steps in the verifiable computation to increase performance

gains from parallelization.

We deploy and evaluate our prototype on Amazon EC2

servers. We randomly assign servers to chains, excluding

straggler servers which are under heavy load. We place each

server at a different index on ℓ different mixchains (where ℓ
is the chain length) so that we maximize server utilization.

This allows us to build anm-mixchain Stadium configuration

withm servers.

Our prototype does not support client message input; in-

stead, we simulate this by having each server generate some

share of the client messages. The implementation also does

not include verifiable decryption and currently lacks fault

tolerance.

10 EVALUATION
We wish to answer four key questions about Stadium:

• Horizontal scaling: How does Stadium’s latency change

when more users and servers are added?

• Security guarantees: How does changing Stadium’s

ϵ and chain length parameters affect its performance?

• Operational cost: What resources does a deployment

of Stadium require?

• State of the art: How does Stadium compare with

Vuvuzela, and what is our design’s scaling overhead?

In evaluating Stadium, Table 2 shows that our prototype

efficiently supports tens of millions of users given secure

system parameters at low cost to individual server operators.

Servers Users Latency
(seconds)

Bandwidth
per server

Chain
length eϵ , δ

100 6.3 million 43.6 ± 0.187 18 Mb/s 3 10, 0.0001

100 46 million 238 ± 0.466 88 Mb/s 3 10, 0.0001

100 46 million 504 ± 2.55 142 Mb/s 6 10, 0.0001

100 46 million 876 ± 2.32 173 Mb/s 9 10, 0.0001

Table 2: A summary of our prototype’s performance
characteristics.

10.1 Experiments
We benchmark Stadium on 100 Amazon c4.8xlarge EC2

virtual machines running Linux 4.4, each of which have 36

virtual CPU cores, 60 GB of memory, and 10 Gbps band-

width. We measure the end-to-end message latency with a

coordinator server, which configures the server chains and

coordinates execution of a round. Individual servers also in-

strument Stadium’s network utilization using the collectl
tool, and these statistics are aggregated at the coordinator.

Messages are short (136 bytes long) to simulate that of a

minimal chat application.

For each setting of our independent variables, we run at

least three trials. The maximum difference in latency be-

tween all machines across any pair of trials is within 4% of

the average; the error bars are imperceptible on our plots.

We perform two experiments to quantify the performance

characteristics of Stadium. Our first experiment measures

the effect of chain length on system latency. We vary chain

lengths from 3 to 9 for three different settings of the system’s

load per server for 100 servers. We discuss these effects in

section 10.3.

Our second experiment synthesizes workloads of up to

50 million messages and then distributes these uniformly

between configurations of 25, 50, 75, and 100 servers, con-

figured with chain lengths of 3, 6, and 9. Setting eϵ = 10, we

subtract out noisemessages corresponding to themean of our

distribution to obtain goodput values for these parameters

(Figure 6). We investigate other values of ϵ in section 10.3.

Limitations. Due to time and cost constraints, we did not

evaluate our system against larger configurations of servers

(e.g., 500 servers). Because Stadium’s latency appears to scale

linearly up to 100 servers, we extrapolate its latency to larger

deployments by proportionally reducing the per-server mes-

sage load and interpolating as if these load-balancing trends

continued past 100 servers. For instance, to obtain a projected

latency of a 200-server deployment for a given load, we halve

the per-server goodput, adjust noise loads, and then linearly

interpolate over the 100-server configuration to obtain the

desired latency. We contend in the following section that

these assumptions are reasonable.

We were unable to fully complete experiments for smaller

deployments of servers as individual servers lack sufficient

434

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

0 10 20 30 40 50
0

200

400

600

800

1000

ro
u
n
d
 l
a
te

n
cy

 (
s)

chain length=3

m=25

m=50

m=75

m=100

0 10 20 30 40 50

millions of users

chain length=6

0 10 20 30 40 50

chain length=9

Figure 6: Stadiummessage latency as a function of the
number of connected users given m ∈ {25, 50, 75, 100}

servers. For comparison, we plot Vuvuzela’s best pro-
jected performance as a dashed line for chain length
ℓ = 3. At a chain length of 3 and a latency of 200s, our
deployment supports 3.6× the users Vuvuzela does at
1/15th the per-server operating cost.

memory for our implementation to support very large mes-

sage batch sizes. We note that small numbers of servers are

not practical for deploying Stadium.

10.2 Horizontal scaling
The end-to-end latency of Stadium grows in proportion to

the number of total messages, and it shrinks in proportion

to the number of total servers.

First, we can observe in Figure 6 that for a fixed number

of total servers, the round latency increases near-linearly

with respect to the total number of user messages, with a

small quadratic term. For example, with a chain length of

6 and 50 servers, Stadium supports 16 million users at a

latency of 380s. From here, increasing the number of users

by 2.25× increases latency by 2.36×. With additional user

messages, each mixchain receives a proportionally larger

message batch to process, e.g., decrypting and verifiably

shuffling these messages. Furthermore, we observe a small

quadratic term which results from the message distribution

phase, where each pair of mixchainsmust communicate. Also

recall that the number of noise messages remains constant

with respect to the number of users and represents an initial

start-up latency that is better amortized over more users.

Figure 7 shows how round latency decreases with the

number of Stadium servers. The initial points in this figure,

between 50 and 100 servers, are based on our measurements

(in Figure 6). To illustrate how Stadium would scale with

more servers we extrapolate from our measurements based

on observed trends. For instance, our measurements show

that Stadium can achieve a latency of 400s with 100 servers

with a chain length of 6; doubling the deployment size to 200

50 100 200 300 400 500

number of servers

0

100

200

300

400

500

600

700

800

ro
u
n
d
 l
a
te

n
cy

 (
s) Vuvuzela, `=3

30 million users, e²=3

`=3

`=6

`=9

Figure 7: Stadiummessage latency as a function of the
number of servers. We plot Stadium’s projected per-
formance past 100 servers with dashed lines (§10.1).
With 500 servers, Stadium can support 30 million
users with just under two minutes of latency and a
chain length of 9; Vuvuzela’s rounds require more
than nine minutes.

servers halves round latency to under 200s. This follows since

for some fixed number of messages, a proportional increase

in the number of servers allows Stadium to divide the real

and noise messages equally among all servers (ignoring the

small quadratic cost frommessage distribution). Additionally,

increasing the number of total servers decreases the noise

required per server (§8).

Even at relatively small scales, Stadium outperforms Vu-

vuzela in terms of latency and throughput. For example, for

a chain length of 3, Vuvuzela can only support 10 million

users in 200s; Stadium (with 100 servers) supports 3× as

many users in the same amount of time. As we increase the

total number of servers in the system, we expect that these

relationships will continue to hold because our per-server

noise message and user message loads will both decrease.

10.3 Security guarantees
Chain length. The length of Stadium’s mixchains repre-

sents a security-performance trade-off. Stadium’s verifiable

processing (§6) strategy, which ensures the differential pri-

vacy guarantees are upheld, hinges on the property that

every mixchain contains at least one honest verifying server.

A longer chain length increases the likelihood that this prop-

erty holds, but pays in performance since more servers need

to handle each message.

If auxiliary information is known about the participating

servers and trust assumptions of users, it may be possible

to arrange servers via some policy. However, in absence of

such a policy, we can randomly assign servers to mixchains

435

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

3 6 9 12 14

chain length

10-5

10-4

10-3

10-2

10-1

p
ro

b
a
b
ili

ty
 o

f
co

m
p
ro

m
is

e
d
 c

h
a
in

(100; 1=4)

(500; 1=4)

(1000; 1=4)

(100; 1=10)

(100; 1=5)

(100; 1=2)

Figure 8: Probability of compromised mixchain exist-
ing with random server assignment given the fraction
of compromised servers f , chain length ℓ, and number
of mixchainsm. (Labels in the legend denote a setting
of the parameters (m, f).)

3 4 5 6 7 8 9

chain length

0

100

200

300

400

500

600

700

800

900

ro
u
n
d
 l
a
te

n
cy

 (
s)

100K msgs/server

300K msgs/server

500K msgs/server

Figure 9: Chain length and message latency (m=100
servers).

and analyze the probability of one honest server per chain

given some assumed upper bound fraction of compromised

servers f . The probability for a specific chain to be assigned

all compromised servers (with replacement) is f ℓ where ℓ
is the chain length. We can bound the probability of some

chain being composed of all compromised servers with the

union bound,m · f ℓ wherem is the number of chains. This

probability falls exponentially with chain length, and grows

only linearly in the number of chains, as shown in Figure 8.

To evaluate the effects of chain length on performance,

we perform an additional benchmark varying chain length

from 3 to 9 for m = 100 servers. We test three different

per-server loads: 100, 300, and 500 thousand messages per

server. The choice of chain length has a significant effect on

Stadium’s latency. Indeed, Figure 9 illustrates a quadratic

100 200 300 400 500

number of servers

0.4

0.8

1.2

1.6

2.0

² Vuvuzela, `=3

4.6M users, 120s latency

100 200 300 400 500

number of servers

Vuvuzela, `=3

11.4M users, 300s latency

`=3

`=6

`=9

Figure 10: Stadium’s privacy bound ϵ as a function of
the number of servers. Adding more servers to Sta-
dium allows it to surpass Vuvuzela in performance
for both low- andmedium-latency targets. (We choose
goodput and latency settings which match Vuvuzela’s
for a clear comparison.)

relationship between the number of servers in a chain and

round latency. This is expected since verifiable processing

requires each server to verify a proof for every other server in

the mixchain. Additionally since we pipeline servers across

chains, this corresponds to a quadratic processing cost. As

a result, our design is sensitive to the trust assumptions

underpinning choices of chain length.

Differential privacy guarantees. We examine Stadium’s

privacy guarantees by evaluating changes in ϵ (bound on

information revealed about communication metadata) given

a fixed δ = 10
−4

(failure probability with no privacy guaran-

tees).

Since Stadium’s latency scales down in proportion to the

number of servers, we analyze our ϵ guarantees by fixing a

target system goodput and latency while varying the number

of servers. Observe in Figure 10 that whether we target a

medium or high volume of users, our ϵ-bounds converge
quickly towards a high level of privacy. For instance, with a

chain length of 6, Stadium supports 4.6 million users at 120

seconds of latency with eϵ = 18.4 with 50 users, eϵ = 5.3
with 75 users, and eϵ = 3.5 with 100 users. Extrapolating

to 500 servers, we can achieve a small value of eϵ = 1.5,
providing a high amount of plausible deniability for Alice.

10.4 Deployment cost
Communication is the dominant factor in the cost of main-

taining a server. Deploying Stadium on 100 servers with

chain length of 6 requires a server to send data at about

142 Mbps (see Table 4) We achieve low per-machine band-

width costs without significant per-user bandwidth costs:

436

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

Chain length Bandwidth total (Mb/s) Bandwidth per user (b/s)

3 (Stadium) 8767 189

6 (Stadium) 14246 308

9 (Stadium) 17329 374

3 (Vz.) 3984 87

6 (Vz.) 7968 173

Table 3:Total and per-user bandwidth costs of Stadium
(deployed on m = 100 servers for 46M users) and Vu-
vuzela per-round.We do not pay a significant per-user
bandwidth overhead (less than 5×) over Vuvuzela.

Chain
length

Round
latency (s)

Communication
(GB)

Bandwidth
(Mb/s)

Bandwidth
vs. Vuvuzela

3 238 2.607 88 6.60%

6 504 8.978 142 10.72%

9 876 18.976 173 13.05%

Table 4: Communication and bandwidth costs of one
server for one round of communication (m = 100, 46M
users). Notice that our bandwidth costs are 7 − 15×

lower than those of Vuvuzela (at a chain length of 3).

the marginal cost of adding another user is small and in-

sensitive to the choice of chain length. Table 3 shows that

our bandwidth costs are likewise low; it costs 142 Mbps to

operate Stadium with a chain length of 6. Note that we can

arbitrarily drive down this cost by throttling rounds at the

cost of latency.

Every round, a clientmust send themessage itself wrapped

in 2ℓ layers of onion encryption (32 bytes of overhead each)

in addition to the output chain metadata (32 bytes) and a

proof that themessagewaswell-formed (32 bytes). If message

size is S bytes and round latency isT seconds, then a client’s

bandwidth cost C is

C =
S + 64l + 64

T
Setting a chain length of ℓ = 6, S = 136 bytes and T = 503

seconds, clients need to send at the rate of 1.16bps. This

cost scales linearly with an increasing message size or chain

length.

To illustrate the feasibility of deploying Stadium, consider

that of the top 300 relays in the Tor network, each offers

more than 140 Mbps of bandwidth (see [43]). Using these

measurements, we can estimate howmuch it costs to deploy a

server: if bandwidth costs $0.63/month per unit of Mbps [36],

then it should cost a Stadium operator about $110 a month

to run a server for one month, given a chain length of 9.

10.5 Comparison with Vuvuzela
Like Vuvuzela, Stadium allows an operator to set the security

parameters ϵ and chain length; with these two variables

set, one can fix either a latency or a throughput parameter

to obtain the other. Clients then submit messages into the

system and receive them at fixed intervals.

Unlike Vuvuzela, an operator can add servers to Stadium,

which represents a fifth variable and a fourth degree of free-

dom. The trust assumptions of Stadium are then slightly

different from those of Vuvuzela. Vuvuzela requires users to

greatly trust a few points of failure, while Stadium distributes

its computation across a high number of less trustworthy

servers.

Due to these differences, we conservatively pick the per-

formance characteristics of Vuvuzela set at ℓ = 3 for the sake

of comparison. Our evaluation shows that at 100 servers

and chain lengths of 3, 6, and 9, Stadium is competitive with

Vuvuzela in terms of latency and privacy at large scales. In

addition, whether we desire low latency, high throughput,

strong security, or all of these characteristics, we can in-

crementally add servers to reach that point. Furthermore,

Vuvuzela’s requirement of 1.3 Gbps of bandwidth limits de-

ployment to large organizations (no Tor relay provides more

than 1 Gbps of bandwidth [43]) while a modest requirement

of 142 Mbps allows individuals to scale out Stadium.

11 RELATEDWORK
Anonymous communication systems. The study of on-

line anonymous communication dates back to Chaum’s work

on mixnets [8] and DC-nets [9]. Systems based on these

primitives [10, 17, 24, 25, 27, 31] share similar design princi-

ples of layering encryption, then batching, permuting, and

forwarding messages. Similar to the layering encryption of

mixnets, onion routing [42] allows for specific subsets of

mixservers to be selected, amenable to peer-to-peer and dis-

tributed systems. Systems based on these principles achieve

high throughput due to the relatively inexpensive cost of

their operations. Tor [18], the most popular anonymity sys-

tem in use, is an overlay network of onion routers. Tor sup-

ports its millions of users with a horizontally scaling design,

where capacity can be bolstered through the addition of

volunteer providers – a shared design goal with Stadium.

Recent systems have focused on protecting against strong,

active adversarieswith the ability tomonitor and inject traffic

at a global scale. The scalability of many of these systems are

limited by vertically scaling designs, where providers must

run more powerful infrastructure to support more users. Ri-

poste [14] for point-to-point communication and Talek [12]

for publish-subscribe are based on the cryptographic tech-

nique of private information retrieval (PIR). Dissent [15, 47]

is an anonymous messaging system based on DC-nets. These

systems are restricted from horizontal scalability by com-

putationally expensive PIR techniques and communication

intensive broadcast requirements.

437

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

Vuvuzela [45], the current largest-scale system that pro-

tects against strong adversaries, is a mixnet-based private

messaging system that achieves high throughput, in part,

by relaxing the provable privacy guarantees from crypto-

graphic indistinguishability to differential privacy. Stadium

is also mixnet-based and uses a similar differential privacy

definition, but is designed to scale horizontally with added

providers, support a higher throughput, and cut operating

costs of providers.

More recently, there have been a few systems that aim

for the same goals of provable privacy against strong ad-

versaries and horizontal-scalability as Stadium. Pung [1]

uses PIR techniques for private messaging. Although Pung

is horizontally scalable, it does not aim to achieve the same

levels of throughput as Stadium. Instead, Pung focuses on

the threat model of all untrusted providers. In contrast, Sta-

dium’s privacy is dependent on some providers faithfully

executing the protocol and verifying others. Atom [32] is

an anonymous publishing system that uses verifiable pro-

cessing techniques very similar to Stadium’s. However, with

differing applications and privacy goals, Stadium and Atom

reach different mixnet design points. In particular, Atom uses

a random permutation network to achieve strong anonymity

sets, while Stadium relaxes anonymity with differential pri-

vacy to reason about information leakage of a shallow two-

layer network, greatly reducing latency at the cost of perfect

mixing. Lastly, Loopix [37] is an asynchronous messaging

system based on onion routing that achieves some provable

properties through random Poisson delays.

Mixnets. Stadium builds on two classic threads of mixnet re-

search, parallel mixing and verifiablemixing. Parallel mixnets

[17, 19, 26, 38] were suggested as a way to horizontally scale

traditional sequential mixnets. Stadium adopts ideas from

this literature and provides a differential privacy analysis to

bound the information leakage of message routing within

the mixnet from traffic analysis [6].

Verifiable shuffles make up the majority of Stadium’s mes-

sage processing. Verifiable shuffles were originally proposed

to allow globally verifiable e-voting [3, 13, 23, 35], another

privacy related scenario; but they have typically been con-

sidered prohibitively expensive for low-latency applications

such as messaging. However, with recent cryptographic ad-

vances [3] in shuffle efficiency and, more importantly, paral-

lelization, Stadium shows that they are nearing practicality.

Finally, Stadium combines efficiently engineered verifiable

shuffles, hybrid verifiable shuffling, and an intra-mixchain

verification strategy to allow verification workloads of the

complete mixnet to scale.

We explored the use of randomized partial checking (RPC)

[29] as a more robust verification alternative to zero knowl-

edge proofs. RPC allows a small probability that an adversary

will directly learn the path of a message through an hon-

est server. Even though this probability is small, it grows

too much for our privacy budget over many servers and

many rounds. Other techniques using dummy/trap messages,

which allow a small probability for an adversary to replace a

message, may bemore amenable to our privacy analysis [32].

12 CONCLUSION
Stadium is a point-to-point messaging system that provides

metadata and data privacy while scaling its work efficiently

across hundreds of low-cost providers operated by different

organizations. In contrast to previous strong anonymity sys-

tems, Stadium can be deployed incrementally using small

providers and does not require a small centralized anytrust

set. We show that Stadium can scale to support 4× more

users than previous systems using servers that cost an order

of magnitude less to operate.

ACKNOWLEDGMENTS
Thanks to Justin Martinez and Pratheek Nagaraj for helping

us implement and evaluate Stadium, and to David Lazar

and Jelle van den Hooff for their feedback on the design of

Stadium and on this paper. We would also like to thank our

reviewers and our shepherd Michael Walfish. This work was

supported by NSF awards CNS-1413920 and CNS-1414119,

and by Google.

REFERENCES
[1] Sebastian Angel and Srinath T. V. Setty. 2016. Unobservable Communi-

cation over Fully Untrusted Infrastructure. In 12th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016. 551–569. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/angel

[2] Kevin S. Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and

Douglas C. Sicker. 2007. Low-resource routing attacks against Tor.

In Proceedings of the 2007 ACM Workshop on Privacy in the Electronic
Society, WPES 2007, Alexandria, VA, USA, October 29, 2007. 11–20. https:
//doi.org/10.1145/1314333.1314336

[3] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge

Argument for Correctness of a Shuffle. In EUROCRYPT (Lecture Notes
in Computer Science), Vol. 7237. Springer, 263–280. http://dx.doi.org/
10.1007/978-3-642-29011-4

[4] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical:

A Paradigm for Designing Efficient Protocols. In ACM Conference on
Computer and Communications Security, Dorothy E. Denning, Ray-

mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.).

ACM, 62–73. http://dl.acm.org/citation.cfm?id=168588

[5] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed
Records. Springer Berlin Heidelberg, Berlin, Heidelberg, 207–228.

https://doi.org/10.1007/11745853_14

[6] Nikita Borisov. 2005. An Analysis of Parallel Mixing with Attacker-

Controlled Inputs. In Privacy Enhancing Technologies (Lecture Notes
in Computer Science), George Danezis and David M. Martin Jr (Eds.),

Vol. 3856. Springer, 12–25. http://dx.doi.org/10.1007/11767831_2

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012.

Touching from a distance: website fingerprinting attacks and defenses.

438

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://doi.org/10.1145/1314333.1314336
https://doi.org/10.1145/1314333.1314336
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dx.doi.org/10.1007/978-3-642-29011-4
http://dl.acm.org/citation.cfm?id=168588
https://doi.org/10.1007/11745853_14
http://dx.doi.org/10.1007/11767831_2

Stadium: A Distributed Metadata-Private Messaging System SOSP ’17, October 28, 2017, Shanghai, China

In the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012. 605–616. https://doi.
org/10.1145/2382196.2382260

[8] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses,

and Digital Pseudonyms. Commun. ACM 24, 2 (1981), 84–88. https:

//doi.org/10.1145/358549.358563

[9] David Chaum. 1988. The Dining Cryptographers Problem: Uncondi-

tional Sender and Recipient Untraceability. J. Cryptology 1, 1 (1988),

65–75. https://doi.org/10.1007/BF00206326

[10] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri de

Ruiter, and Alan T. Sherman. 2016. cMix: Anonymization by High-

Performance Scalable Mixing. IACR Cryptology ePrint Archive 2016
(2016), 8. http://eprint.iacr.org/2016/008

[11] David Chaum and Torben Pryds Pedersen. 1992. Wallet Databases with

Observers (ExtendedAbstract). InAdvances in Cryptology—CRYPTO ’92
(Lecture Notes in Computer Science), Ernest F. Brickell (Ed.), Vol. 740.
Springer-Verlag, 1993, 89–105.

[12] Raymond Cheng, William Scott, Bryan Parno, Arvind Krishnamurthy,

and Thomas Anderson. 2016. Talek: a Private Publish-Subscribe Protocol.
Technical Report. University of Washington.

[13] Michael E. Clarkson, Stephen Chong, and Andrew C. Myers. 2007.

Civitas: A Secure Remote Voting System. In Frontiers of Electronic
Voting, 29.07. - 03.08.2007. http://drops.dagstuhl.de/opus/volltexte/

2008/1296

[14] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte:

An Anonymous Messaging System Handling Millions of Users. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. 321–338. https://doi.org/10.1109/SP.2015.27

[15] Henry Corrigan-Gibbs and Bryan Ford. 2010. Dissent: accountable

anonymous group messaging. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS 2010, Chicago, Illi-
nois, USA, October 4-8, 2010. 340–350. https://doi.org/10.1145/1866307.
1866346

[16] Artur Czumaj and Berthold Vöcking. 2014. Thorp Shuffling, Butter-

flies, and Non-Markovian Couplings. In Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I. 344–355.

[17] George Danezis, Roger Dingledine, and Nick Mathewson. 2003.

Mixminion: Design of a Type III Anonymous Remailer Protocol. In 2003
IEEE Symposium on Security and Privacy (S&P 2003), 11-14 May 2003,
Berkeley, CA, USA. 2–15. https://doi.org/10.1109/SECPRI.2003.1199323

[18] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor:

The Second-Generation Onion Router. In Proceedings of the 13th
USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA.
303–320. http://www.usenix.org/publications/library/proceedings/

sec04/tech/dingledine.html

[19] Roger Dingledine, Vitaly Shmatikov, and Paul F. Syverson. 2004. Syn-

chronous Batching: From Cascades to Free Routes. In Privacy En-
hancing Technologies, 4th International Workshop, PET 2004, Toronto,
Canada, May 26-28, 2004, Revised Selected Papers. 186–206. https:

//doi.org/10.1007/11423409_12

[20] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations

of Differential Privacy. Foundations and Trends in Theoretical Computer
Science 9, 3-4 (2014), 211–407. http://dx.doi.org/10.1561/0400000042

[21] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimp-

ton. 2012. Peek-a-Boo, I Still See You: Why Efficient Traffic Anal-

ysis Countermeasures Fail. In IEEE Symposium on Security and Pri-
vacy, SP 2012, 21-23 May 2012, San Francisco, California, USA. 332–346.
https://doi.org/10.1109/SP.2012.28

[22] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical

Solutions to Identification and Signature Problems. In CRYPTO (Lecture
Notes in Computer Science), AndrewM.Odlyzko (Ed.), Vol. 263. Springer,

186–194. http://dx.doi.org/10.1007/3-540-47721-7_12

[23] Jun Furukawa and Kazue Sako. 2001. An Efficient Scheme for Proving a

Shuffle. In Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 19-
23, 2001, Proceedings. 368–387. https://doi.org/10.1007/3-540-44647-8_
22

[24] Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz. 2016. Two

Cents for Strong Anonymity: The Anonymous Post-office Protocol.

IACR Cryptology ePrint Archive 2016 (2016), 489. http://eprint.iacr.org/
2016/489

[25] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. 2003. Herbi-
vore: A Scalable and Efficient Protocol for Anonymous Communication.
Technical Report. Cornell University.

[26] Philippe Golle and Ari Juels. 2004. Parallel mixing. In Proceedings of
the 11th ACM Conference on Computer and Communications Security,
CCS 2004, Washington, DC, USA, October 25-29, 2004. 220–226. https:
//doi.org/10.1145/1030083.1030113

[27] Ceki Gülcü and Gene Tsudik. 1996. Mixing Email with Babel. In 1996
Symposium on Network and Distributed System Security, (S)NDSS ’96,
San Diego, CA, February 22-23, 1996. 2–16. https://doi.org/10.1109/

NDSS.1996.492350

[28] Johan Håstad. 2006. The square lattice shuffle. Random Struct. Algo-
rithms 29, 4 (2006), 466–474.

[29] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. 2002. Making Mix

Nets Robust for Electronic Voting by Randomized Partial Checking. In

Proceedings of the 11th USENIX Security Symposium, San Francisco, CA,
USA, August 5-9, 2002. 339–353. http://www.usenix.org/publications/

library/proceedings/sec02/jakobsson.html

[30] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul F.

Syverson. 2013. Users get routed: traffic correlation on Tor by real-

istic adversaries. In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013.
337–348. https://doi.org/10.1145/2508859.2516651

[31] Dogan Kesdogan, Jan Egner, and Roland Büschkes. 1998. Stop-and-

Go-MIXes Providing Probabilistic Anonymity in an Open System. In

Information Hiding, Second International Workshop, Portland, Oregon,
USA, April 14-17, 1998, Proceedings. 83–98. https://doi.org/10.1007/

3-540-49380-8_7

[32] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan

Ford. 2017. Atom: Horizontally scaling strong anonymity. In Sympo-
sium on Operating Systems Principles.

[33] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016.

Riffle: An Efficient Communication System With Strong Anonymity.

PoPETs 2016, 2 (2016), 115–134. http://www.degruyter.com/view/j/

popets.2015.2016.issue-2/popets-2016-0008/popets-2016-0008.xml

[34] David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping

Secure Communication without Leaking Metadata. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016. 571–586. https://www.

usenix.org/conference/osdi16/technical-sessions/presentation/lazar

[35] C. Andrew Neff. 2001. A verifiable secret shuffle and its application

to e-voting. In CCS 2001, Proceedings of the 8th ACM Conference on
Computer and Communications Security, Philadelphia, Pennsylvania,
USA, November 6-8, 2001. 116–125. https://doi.org/10.1145/501983.

502000

[36] W. Norton. 2010. Internet Transit Prices - Historical and Pro-
jected. Technical Report. http://drpeering.net/white-papers/

Internet-Transit-Pricing-Historical-And-Projected.php

[37] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and

George Danezis. 2017. The Loopix Anonymity System. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017. 1199–1216. https://www.usenix.org/conference/

439

https://doi.org/10.1145/2382196.2382260
https://doi.org/10.1145/2382196.2382260
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/BF00206326
http://eprint.iacr.org/2016/008
http://drops.dagstuhl.de/opus/volltexte/2008/1296
http://drops.dagstuhl.de/opus/volltexte/2008/1296
https://doi.org/10.1109/SP.2015.27
https://doi.org/10.1145/1866307.1866346
https://doi.org/10.1145/1866307.1866346
https://doi.org/10.1109/SECPRI.2003.1199323
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1007/11423409_12
https://doi.org/10.1007/11423409_12
http://dx.doi.org/10.1561/0400000042
https://doi.org/10.1109/SP.2012.28
http://dx.doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-44647-8_22
http://eprint.iacr.org/2016/489
http://eprint.iacr.org/2016/489
https://doi.org/10.1145/1030083.1030113
https://doi.org/10.1145/1030083.1030113
https://doi.org/10.1109/NDSS.1996.492350
https://doi.org/10.1109/NDSS.1996.492350
http://www.usenix.org/publications/library/proceedings/sec02/jakobsson.html
http://www.usenix.org/publications/library/proceedings/sec02/jakobsson.html
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1007/3-540-49380-8_7
https://doi.org/10.1007/3-540-49380-8_7
http://www.degruyter.com/view/j/popets.2015.2016.issue-2/popets-2016-0008/popets-2016-0008.xml
http://www.degruyter.com/view/j/popets.2015.2016.issue-2/popets-2016-0008/popets-2016-0008.xml
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lazar
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lazar
https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/501983.502000
http://drpeering.net/white-papers/Internet-Transit-Pricing-Historical-And-Projected.php
http://drpeering.net/white-papers/Internet-Transit-Pricing-Historical-And-Projected.php
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska

SOSP ’17, October 28, 2017, Shanghai, China Tyagi et al.

usenixsecurity17/technical-sessions/presentation/piotrowska

[38] Charles Rackoff and Daniel R. Simon. 1993. Cryptographic Defense

Against Traffic Analysis. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing (STOC ’93). ACM, New York,

NY, USA, 672–681. https://doi.org/10.1145/167088.167260

[39] Alan Rusbridger. 2013. The Snowden Leaks and the Public. The

New-York Review of Book. (Nov. 2013).

[40] Claus-Peter Schnorr. 1989. Efficient Identification and Signatures

for Smart Cards. In Advances in Cryptology - CRYPTO ’89, 9th An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings. 239–252. https://doi.org/10.1007/
0-387-34805-0_22

[41] Victor Shoup. 2016. NTL: A Library for doing Number Theory. http:

//www.shoup.net/ntl/. (2016).

[42] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. 1997.

Anonymous Connections and Onion Routing. In 1997 IEEE Symposium
on Security and Privacy, May 4-7, 1997, Oakland, CA, USA. 44–54. https:
//doi.org/10.1109/SECPRI.1997.601314

[43] The Tor Project. 2016. Tor Metrics: Advertised Relay Band-

width. https://metrics.torproject.org/advbwdist-perc.html?start=

2016-03-15&end=2016-09-15&p=97. (May 2016).

[44] Nirvan Tyagi, Yossi Gilad, Matei Zaharia, and Nickolai Zeldovich. 2016.

Stadium: A Distributed Metadata-Private Messaging System. IACR
Cryptology ePrint Archive 2016 (2016), 943. http://eprint.iacr.org/2016/
943

[45] Jelle van denHooff, David Lazar,Matei Zaharia, andNickolai Zeldovich.

2015. Vuvuzela: scalable private messaging resistant to traffic analysis.

In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 4-7, 2015. 137–152. https://doi.
org/10.1145/2815400.2815417

[46] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting

on Tor. In Proceedings of the 12th annual ACM Workshop on Privacy in
the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013.
201–212. https://doi.org/10.1145/2517840.2517851

[47] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron

Johnson. 2012. Dissent in Numbers: Making Strong Anonymity Scale.

In 10th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. 179–
182. https://www.usenix.org/conference/osdi12/technical-sessions/

presentation/wolinsky

440

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://doi.org/10.1145/167088.167260
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://doi.org/10.1109/SECPRI.1997.601314
https://doi.org/10.1109/SECPRI.1997.601314
https://metrics.torproject.org/advbwdist-perc.html?start=2016-03-15&end=2016-09-15&p=97
https://metrics.torproject.org/advbwdist-perc.html?start=2016-03-15&end=2016-09-15&p=97
http://eprint.iacr.org/2016/943
http://eprint.iacr.org/2016/943
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2517840.2517851
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wolinsky
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wolinsky

	Abstract
	1 Introduction
	2 Goals
	2.1 Threat Model
	2.2 Privacy
	2.3 Scalability

	3 Communication Overview
	4 Parallel Mixing Challenges
	5 Design
	5.1 Message Encapsulation

	6 Verifiable Processing
	6.1 Message Input
	6.2 Mixing
	6.3 Distribution

	7 Differentially Private Routing
	7.1 Observable Variables
	7.2 Noise Generation

	8 Privacy Analysis
	8.1 Input Chain to Output Chain
	8.2 Output Chain to Dead-drop
	8.3 Noise Volumes in Practice

	9 Implementation
	10 Evaluation
	10.1 Experiments
	10.2 Horizontal scaling
	10.3 Security guarantees
	10.4 Deployment cost
	10.5 Comparison with Vuvuzela

	11 Related Work
	12 Conclusion
	Acknowledgments
	References

