
Practical Client Puzzle from Repeated Squaring

A.J.P. Jeckmans

August 24, 2009

Acknowledgements

My gratitude goes out to dr. Q. Tang, my thesis supervisor, for his support
and guidance throughout my master thesis. Thanks also go out to prof. dr.
P.H. Hartel for giving his advice on writing this thesis. Special thanks to
my family for their continued support. More thanks go out to my friends
and flatmates for their support.

1

Abstract

Cryptographic puzzles have been proposed by Merkle [15] to relay secret
information between parties over an insecure channel. Client puzzles, a
type of cryptographic puzzle, have been proposed by Juels and Brainard [8]
to defend a server against denial of service attacks. However there is no
general framework for client puzzle schemes. In this thesis we present a
general client puzzle framework.

Since their introduction various types of client puzzles have been devel-
oped. One such client puzzle is based on the time-lock secret release scheme
created by Rivest et al. [17]. The time-lock secret release scheme uses re-
peated squaring to hide information. Repeated squaring offers a determinis-
tic puzzle that is not parallelizable by multiple computers. The drawback of
the repeated squaring puzzle scheme is that it is computationally expensive
and requires the server to keep state information.

In order to develop a generally practical client puzzle scheme the re-
peated squaring puzzle scheme has been modified. The computational com-
plexity is improved by introducing batch verification. The scheme is also
made stateless by altering the way puzzles are created. Analyses show that
the result is a client puzzle scheme with more advantages.

2

Contents

1 Introduction 5
1.1 Motivation . 6
1.2 Organization . 6

2 Preliminaries 7
2.1 Standard Notation . 7
2.2 Cryptographic Primitives . 7

2.2.1 Hash Functions . 7
2.2.2 Encryption . 8
2.2.3 Discrete Logarithm . 8
2.2.4 RSA . 9

2.3 Client Puzzle Scheme Framework 9
2.4 Client Puzzle Evaluation Criteria 10
2.5 Conclusion . 12

3 Existing Client Puzzle Schemes 13
3.1 CPU-bound Puzzles . 13

3.1.1 Hash-based Puzzle . 14
3.1.2 Discrete Logarithm-based Puzzle 18
3.1.3 Repeated Squaring Puzzle 19
3.1.4 Subset Sum-based Puzzle 20
3.1.5 Conclusion . 21

3.2 Memory-bound Puzzles . 22
3.2.1 Function Look-up Puzzle 22
3.2.2 Pattern-based Puzzle 24
3.2.3 Conclusion . 25

3.3 Comparison of Existing Schemes 26

3

4 Our Proposals 30
4.1 Modifying Repeated Squaring 30

4.1.1 Modified Repeated Squaring #1 31
4.1.2 Modified Repeated Squaring #2 38
4.1.3 Combined Modified Repeated Squaring 39

4.2 Conclusion . 40

5 Applications of the Proposed Puzzle Scheme 42
5.1 Web Server Scenario . 42

5.1.1 Analysis . 44
5.1.2 Comparison . 46

5.2 E-mail Server Scenario . 49
5.2.1 Analysis . 50
5.2.2 Comparison . 51

5.3 Conclusion . 51

6 Conclusion 52

A Mathematica Programs 55
A.1 Triggered Sequential Checking 55
A.2 Divide and Conquer Checking 56
A.3 Random Checking . 58

4

Chapter 1

Introduction

Cryptographic puzzles are puzzles used to hide some secret which can only
be uncovered after some computational effort has been made. They are first
introduced by Merkle [15]. Cryptographic puzzles form the basis for client
puzzles.

Client puzzles defend a server against DoS (Denial of Service) and DDoS
(Distributed DoS) attacks. First proposed by Juels and Brainard [8], the
client puzzle aimed at removing the limitations left by the solutions against
DoS attacks at that time (connection time-out, random connection dropping
and syncookies). Since then variations to this client puzzle and new types
of client puzzles have been developed. The basic concept remains the same
however. By asking the client to perform a simple calculation the server
establishes that the client is willing to invest in the connection. This way
the client has to use its own resources before the server has to commit its
valuable resources to the connection.

There are two main classes of client puzzles. The larger class is that
of the CPU-bound puzzle. To solve the puzzle an amount of CPU cycles
have to be used by the client. Because of the great disparity in CPU power
between various computers, a second class of memory-bound puzzles has
been proposed. In this class a number of memory look-ups have to be done
in order to solve the puzzle. In various types of client hardware there are
smaller differences in memory speed than in processor speed. The solving
speed is therefore less dependent on the clients hardware.

Next to these two classes other physical aspects of client hardware could
also be used. For example the physical location of a device could serve as
input for the puzzle [13].

5

1.1 Motivation

Most client puzzle schemes tailor to a specific goal, managing well on one
requirement, but leaving others lacking. A generic scheme, which scores
well on all fronts, could help speed up the widespread adoptation of client
puzzles. While a perfect scheme might not present itself in the near future,
or even exist, an attempt in this direction can be made. With the goal to
meet or come close to as much of the evaluation criteria (Section 2.4), we
will present a new client puzzle scheme.

1.2 Organization

The following chapter will present the basic information needed in the rest of
the paper. The notations used and the cryptographic primitives are outlined.
A general framework for client puzzle schemes is proposed and a standard
set of requirements is also given. Chapter 3 will outline existing client puzzle
schemes, with an analysis against the set of requirements. The client puzzle
schemes will also be compared to each other.

The proposal for an altered client puzzle scheme will be detailed in Chap-
ter 4, which takes the repeated squaring puzzle scheme [17] and improves it
in the areas in which it is lacking. Next, Chapter 5 will present two appli-
cations in which the client puzzle scheme can solve a problem and outlines
this further. The final chapter concludes and provides recommendations for
future work.

6

Chapter 2

Preliminaries

This chapter outlines the basic elements used throughout the rest of this
paper. First we introduce some notation, followed by the cryptographic
primitives that are used. These aid in understanding the various client
puzzle schemes that are presented in this paper. Second we propose a general
framework for client puzzle schemes. It is a format to display a client puzzle
scheme, which provides a handle to compare different schemes. The final
element of this chapter will show the requirements that are imposed on the
client puzzle schemes. The requirements are used to test and compare client
puzzle schemes.

2.1 Standard Notation

In this thesis the following notations are used, based on the notations of [14]:
Exclusive-OR is denoted by ⊕, (x, y, z) is the concatenation of the values x,
y & z in that order. An integer interval is shown as [a, b]. ?= represents an
equality that has to be fulfilled or, depending on the context, is an equality
test generating a 1 if true and a 0 otherwise.

2.2 Cryptographic Primitives

Below are the important cryptographic primitives used in this thesis [14].

2.2.1 Hash Functions

A cryptographic hash function, usually referred to as a hash function, is an
efficient one-way operation mapping a variable length bitstring input to a

7

fixed length bitstring output, called a hash value. A keyed hash function is
represented by hK(x), where K is the specific key used. K can be omitted
when the hash function is not keyed. A typical cryptographic hash function
has the following properties:

• When the same input is given to the hash function two times, the
same output is given in both cases. A cryptographic hash function is
a deterministic function.

• Given a hash value z it is computationally infeasible to find an input
value x such that h(x) = z. This is known as preimage resistance.

• Given a value x it is computationally infeasible to find a value x′ 6= x
such that h(x) = h(x′). This is known as second preimage resistance.

• It is computationally infeasible to find two distinct values x and y such
that h(x) = h(y). This is known as collision resistance.

2.2.2 Encryption

Symmetric encryption and decryption are represented by EK(x) and DK(x)
respectively, where K is the symmetric key. Encryption followed by decryp-
tion with the same key yields the initial value, DK(EK(x)) = x. Asymmetric
or public key encryption is represented by PKpub

(y) for encryption using the
public key Kpub of an entity and SKpriv(y) for decryption using the private
key Kpriv. The public Kpub and private Kpriv key form a key pair. Conse-
quently public key encryption followed by private key decryption, using the
same key pair, yields the initial value: SKpriv(PKpub

(y)) = y. The encryption
and decryption functions have the following properties:

• Without knowing the key K it is computationally infeasible to decrypt
a message using symmetric encryption.

• Without knowing the key Kpriv it is computationally infeasible to do
private key decryption.

2.2.3 Discrete Logarithm

The discrete logarithm problem is useful in public key cryptographic sys-
tems. Given a prime p, gx = h mod p has a single solution for h, where
h 6= 0. Furthermore given g, h, and p it is computationally infeasible to com-
pute x. Another interesting feature is the fact that (gx)y = (gy)x mod p.
The order of the group attained by gx mod p is denoted by φ(p) = p − 1.

8

Any calculations done using the same generator g in mod p can also be
rewritten and done without the generator in mod φ(p). For example, z in
gx∗y = gz mod p can be calculated as x ∗ y = z mod φ(p).

2.2.4 RSA

RSA is based on a slightly different property. Instead of a prime, as with
discrete logarithm, the group is based on a non prime n that is constructed
out of two primes p and q, n = p ∗ q. Informally, the security of this system
depends on the fact that it is computationally infeasible to calculate the
group order φ(n) = (p − 1)(q − 1) given only n. Entities that do not know
φ(n) have to do all calculations on this group the normal way. Entities
that do know φ(n), the entity that created the group for example, can do
certain calculations more efficiently. By first reducing the exponent formula
to a single value, only one exponentiation will be needed. For example,
by knowing φ(n), given x, y, z, the calculation (gx ∗ gy)z mod n can be
simplified by first calculating w = (x+y)∗z mod φ(n) and then calculating
gw mod n.

2.3 Client Puzzle Scheme Framework

Here we propose a new general framework that can be used to describe any
specific client puzzle scheme.

Generally, a client puzzle system involves two entities: a server S and a
client C. The server S possesses the identifier idS and the client C possesses
the identifier idC . The identifiers of the server and the client are assumed
to be public. This framework implies there is a protocol to pass messages
between the server and the client. A client puzzle system consists of four
(probabilistic) algorithms (Setup,PuzzleGen,PuzzleSol,PuzzleVer).

• Setup(`): Run by the server S, this algorithm takes a security param-
eter ` as input, and outputs the public system parameter params and
a private key mk. The public system parameter params is implicitly
part of the input to any of the following algorithms. For reasons of
simplicity, this system parameter is omitted in the descriptions.

• PuzzleGen(mk, req): Run by the server S, this algorithm takes the
private key mk and additional request information req received from
the client C as input. It outputs a puzzle puz and some additional
information info the server requires for verification. The puzzle puz
is sent to the client C.

9

• PuzzleSol(puz): Run by the client C, this algorithm takes a puzzle puz
as input. It outputs a puzzle solution sol, which is consequently sent
to the server.

• PuzzleVer(info,mk, sol): Run by the server S, this algorithm takes
the puzzle information info, the private key mk and a puzzle solution
sol as input. This algorithm outputs 1 if sol is correct or 0 otherwise.

2.4 Client Puzzle Evaluation Criteria

The evaluation criteria covers a set of four aspects, most of which have sub-
aspects. Some evaluation criteria are more important in certain settings,
depending on the environment. The aspects are:

• Computational complexity: The amount of work that the server has
to do to carry out the client puzzle scheme. The server needs to
create and verify puzzles. This process is represented by PuzzleGen
and PuzzleVer. Computational work done for each puzzle should be as
low as possible. With regard to the computational work we consider
the following two specific sub-aspects:

– Initial computation: Initial computation only has to occur at ini-
tialization of the client puzzle scheme and possibly upon changing
the puzzle environment. Represented by Setup in the framework.
This is different from puzzle construction and verification, which
has to occur for each single puzzle.

– Parallel computation resistance: The degree in which the client
puzzle scheme provides resistance against parallelization. Par-
allelization significantly improves the solving speed for multiple
clients.

• Hardness granularity: The steps with which the puzzle difficulty can
be set. A fine-grained control over the puzzle difficulty is desirable,
scaling the difficulty along with the threat level. We also consider the
following specific sub-aspect.

– Deterministic nature: The way a puzzle can be solved is either
deterministic or probabilistic. A deterministic scheme will require
the same amount of computations from the client each time. A

10

probabilistic scheme requires an amount of computations on av-
erage, but the actual work done by the client is likely to be either
more or less.

• Storage space: The amount of storage required by the server to store
data that is used in the puzzle scheme. This can be data that is always
present when the scheme is active, for example the results of the initial
computation, or data that is stored during or after the client solves a
puzzle. In the framework this data is represented by params, mk and
info. Memory usage should be as low as possible. With respect to the
storage requirement we consider the following specific sub-aspects.

– Long-term storage: The data that needs to be stored for the client
puzzle scheme to create new puzzles. This information is stored
in params and mk in the framework.

– Short-term storage: The additional data that needs to be stored
for each instance of the puzzle. A puzzle scheme that requires
short-term storage is stateful. This information is stored in info
in the framework. Note that multiple instances of info may exist
at the same time.

• Communication complexity: The communication complexity is the
amount of bandwidth that is needed to transfer the puzzle and the
corresponding solution between the client and the server. In the frame-
work req, puz and sol have to be transmitted between the client and
the server. A lower communication complexity means a lower overhead
for the client puzzle protocol.

For some client puzzle environments certain criteria are more important
than others. For example, a server that has little CPU power will require a
client puzzle scheme that has a low computational complexity, having low
generation and verification costs. Similarly a server that expects a high
number of puzzle requests in a short amount of time will also require this.
The same can be said for storage space. When a server is likely to be attacked
by an adversary with access to multiple computers resistance against parallel
computation is very important. Low communication complexity is very
important in networks that are lossy and require frequent re-transmissions,
or in networks that have low bandwidth.

11

2.5 Conclusion

In this chapter basic notations and cryptographic primitives have been sum-
marized. Also we have proposed a new framework for client puzzle schemes
and outlined a set of evaluation criteria. The client puzzle framework can
be used to describe client puzzle schemes in a structured way and provide a
handle when comparing schemes. The set of criteria contains four aspects,
which also contain four sub-aspects. These aspects are used to rate client
puzzle schemes and compare them.

12

Chapter 3

Existing Client Puzzle
Schemes

In this chapter the existing client puzzle schemes are explained, evaluated
and compared. Some puzzle schemes are grouped together, because they dif-
fer only slightly. A few client puzzle schemes have been omitted on the basis
that they are only suited in an restrictive environment or application. For
example, Martinovic et al. [13] created a client puzzle using wireless com-
munication and location information, which only works with mobile wireless
devices.

In the literature client puzzle schemes are divided into two main classes.
CPU-bound puzzles make up the first class. Puzzles of this type require
the client to perform a number of computations. The second class consists
of puzzles that are bound by memory. In this class instead performing a
number of computations, the client is asked to search through information
in the memory.

3.1 CPU-bound Puzzles

CPU-bound client puzzles are puzzles based on an amount of computational
effort the client has to do in order to solve the puzzle. The more difficult the
puzzle, the more computation is required from the client. Described below
are the client puzzle schemes that are bound by CPU, they are categorized by
the techniques employed. This categorization is partly based on the overview
of client puzzle schemes made by Tritilanunt et al. [18] and supplemented
with more schemes and additional grouping.

13

3.1.1 Hash-based Puzzle

Description Several client puzzle schemes have been created in which
the client is asked to reverse a cryptographic hash function. Because hash
functions are one-way functions, brute forcing the reverse is computationally
hard. To counter this Juels and Brainard [8] provide a part of the reverse
as the puzzle and let the client look for the remaining ` bits.

• Setup(`): mk is a server secret, h() is the chosen hash function and
params = {`, h()}.

• PuzzleGen(mk, req): req contains the request message M . Let t be
the current time. This information is hashed together with the server
secret to form the basis of the puzzle, x = h(mk, t,M). The first
` bits, the prefix, of x are replaced by 0 to form x′. The output is
puz = {x′, h(x), t,M} and info = ∅.

• PuzzleSol(puz): The prefix of x′ is replaced with another bit string to
form a candidate solution z. When ignoring the prefix of z and x, z
is equal to x. This candidate solution is checked using h(z) ?= h(x).
When the right value is found, this algorithm outputs the solution
sol = {z, t,M}.

• PuzzleVer(info,mk, sol): first check that t is a recent timestamp. If
this is not the case, the solution is rejected. Otherwise it is checked
with z ?= h(mk, t,M).

Aura et al. [2] propose another approach in which nonces and the client
identifier as well as a variable of set length act as an input for the hash
function. This proposed scheme is outlined below. The goal of the puzzle is
to let the result have at least ` leading zero bits.

• Setup(`): h() is the chosen hash function and params = {`, h()} and
mk = ∅.

• PuzzleGen(mk, req): puz is a server nonce and info = puz.

• PuzzleSol(puz): n is a client nonce and y is a random candidate solu-
tion. If the first ` bits of h(idC , n, puz, y) are 0 the candidate solution
is accepted. This algorithm then outputs sol = {n, y}.

• PuzzleVer(info,mk, sol): the solution is accepted when the first ` bits
of h(idC , puz, n, y) are 0.

14

Analysis The approach by Juels and Brainard requires two hash opera-
tions, one at puzzle construction and one at verification. Initial computation
is limited to choosing a random bitstring. This random bitstring is the only
value that has to be stored by the server. This scheme is stateless, because
the server secret is the same for each puzzle. All other relevant information
for verification, t and M , is sent to the client. The client then relays this
information back to the server when a solution is submitted. The overhead
caused by this scheme is size dependent on the chosen hash function. Two
hash values, a timestamp and the original request message have to be trans-
mitted to send the puzzle. To send the solution one hash value, a timestamp
and the original request message are transmitted. The length of a hash value
is, for example, 128 bits for MD5 and 160 bits for SHA-1. A timestamp is
32 bits and the original request message is a few bytes depending on the
protocol.

The approach from Aura et al. is computationally faster requiring only
one hash operation at puzzle verification. There is no initial computation,
though the server nonce created at puzzle generation time can also be cal-
culated at initial computation and can be used for multiple puzzles. Storage
requirement is low, as only the identifier of the client, a corresponding nonce
and the server nonce have to be stored. This is to prevent replay attacks.
The puzzle is stateful, for each puzzle a server nonce has to be stored. It
can be made stateless by using a general server nonce. However again two
nonces and the client identifier has to be stored to prevent replays. Over-
head is minimal: Two nonces and a random bitstring. Aura et al. suggest
a minimal 64 bits entropy for the server nonce and a minimal entropy of 24
bits for the client nonce. The nonces could also be used towards achieving
other security goals. The size of y is assumed to be around 64 bits.

What both approaches have in common is that both can be computed
in parallel by multiple clients working together. Increasing the number of
clients working on the solution will decrease, by the same factor, the esti-
mated time in which the solution will be found. Communication overhead
between clients and synchronization issues are not taken into account here.
Both solutions also lack in hardness granularity. A puzzle with security pa-
rameter ` + 1 has twice the difficulty of a puzzle with security parameter
`. The resulting hardness granularity is exponential in `. Lei et al. [11]
suggest a bit more fine grained solution in which the last four bits of the
` leading bits don’t have to be zero, but only below a certain threshold.
This increases the control over the puzzle difficulty, but is still growing at
an exponential rate. These puzzle schemes are probabilistic in nature and a
successful solution could be created in one single hash operation.

15

Parallel Hash Puzzle

Description Along with their original scheme of a single hash puzzle,
which is the first scheme in this section, Juels and Brainard [8] already
opt to have multiple hash-based puzzles in parallel to get a better puzzle
hardness granularity. Because this scheme is identical to the original, except
for the fact that several puzzles have to be solved in parallel, specific details
have been omitted.

Analysis The number of computations done by the client and server, as
well as the overhead generated by the scheme, is multiplied by the number
of puzzles that have to be solved in parallel. The advantage of this scheme
is that there is a finer-grained control over the hardness granularity. By
changing the number of puzzles the client has to solve, the difficulty changes
in linear fashion. The resulting difficulty is the number of puzzles times the
difficulty of a single puzzle.

Hinted Hash Puzzle

Description Feng et al. [5] propose another alternative solution to im-
prove puzzle granularity. When providing the client with a puzzle, the server
should also provide the client with a hint to the range the solution is in. The
client then only needs to search within this range for the puzzle solution.

• Setup(`): mk is a server secret, h() is the chosen hash function and
params = {`, h()}.

• PuzzleGen(mk, req): req contains the request message M . Let t be
the current time. This information is hashed together with the server
secret to form the basis of the puzzle, x = h(mk, t,M). A random
number r is chosen in the range [0, `], this random number together
with x is used to form the range of possible solutions [x− r, x− r+ `].
The output is puz = {x− r, h(x), t,M} and info = ∅.

• PuzzleSol(puz): A candidate z is chosen from [x − r, x − r + `]. This
candidate solution is checked using h(z) ?= h(x). When the right value
is found, this algorithm outputs the solution sol = {z, t,M}.

• PuzzleVer(info,mk, sol): first check that t is a recent timestamp. If
this is not the case, the solution is rejected. Otherwise it is checked
with z ?= h(mk, t,M).

16

Analysis When compared to the scheme of Juels and Brainard, this scheme
has one main difference. The hardness granularity has become linear over `,
due to the range that has to be searched. Instead of having to search the en-
tire possible hash space only a segment of size ` has to be searched. Control
over ` is linear and so the hardness granularity is also linear over `. This
grants a fine-grained control over the puzzle difficulty. It is however still
probabilistic in nature. When a puzzle is constructed instead of replacing `
bits, one random number has to be chosen and one subtraction needs to be
done. This change in puzzle construction has little impact on computational
complexity. In puzzle transmission the hash value for x′ has changed into
a range, however since ` is known to the client only the first value of the
range has to be transmitted. The other aspects remain unchanged.

Chained Hash Puzzle

Description Groza and Petrica [7] present a way to chain cryptographic
puzzles, more specifically hash puzzles.

• Setup(`): the number of puzzles in the chain is n, h() is the chosen
hash function. params = {`, n, h()} and mk = ∅.

• PuzzleGen(mk, req): For each puzzle in the chain a random starting
point is chosen. These starting points are xi, 1 ≤ i ≤ n. The first
puzzle is created by hashing the starting point twice, y1 = h(h(x1)).
Subsequent puzzles are created differently. They are based on the
puzzle before it as well as on its own solution. This is done using
yi = h(h(xi ⊕ h(xi−1))), 2 ≤ i ≤ n. The last ` bits of all starting
points are changed into 0, creating x′i, 1 ≤ i ≤ n out of xi, 1 ≤ i ≤ n.
The output is puz = {x′i, yi}, 1 ≤ i ≤ n and info = {xi}, 1 ≤ i ≤ n.

• PuzzleSol(puz): The puzzles have to be solved in order, first a can-
didate z1 for x′1 is created by replacing the last ` bits by another bit
string. The candidate is checked with y1

?= h(h(z1)). When the first
puzzle is solved, a candidate zi, 2 ≤ i ≤ n for the next puzzle is created.
The new candidate is checked using yi

?= h(h(zi⊕h(zi−1))), 2 ≤ i ≤ n.
This process is repeated until all puzzles are solved. The solution will
be given by sol = {zi}, 1 ≤ i ≤ n.

• PuzzleVer(info,mk, sol): For each solution zi
?= xi, 1 ≤ i ≤ n is

checked.

17

Analysis In order to create the first puzzle, two hash operations are
needed. All other puzzles require three hash operations. Next to that a
bit string of length ` has to be replaced for each puzzle and n− 1 exclusive-
OR operations are needed, but this is cheap. To verify, a comparison is
needed for each puzzle in the chain. There is no initial computation. Be-
cause the puzzles are linked in a chain, there is some resistance to parallel
processing [18]. Each step in the chain depends on the solution of the previ-
ous step, however clients can still work together to speed up each individual
step. Hardness granularity for this scheme follows the same line as for par-
allel hash puzzles. The difficulty per puzzle can be altered in an exponential
way. The length of the chain n alters the overall difficulty linearly, with a
step size equal to the individual puzzle difficulty which is exponential over
`. Again this is a probabilistic scheme. This stateful scheme requires a hash
value to be stored for each of the puzzles in the chain. For each client the
hash values of one entire chain need to be stored, this takes n hash values
worth of storage space. With large chains or many clients the server has a
great chance to experience resource exhaustion. The overhead of this scheme
is linked to the length n of the chain. Three hash values have to be sent
back and forth for each puzzle in the chain, 3n. When n is large, bandwidth
exhaustion can become an issue.

3.1.2 Discrete Logarithm-based Puzzle

Description Another one-way function on which a puzzle can be based is
a function based on the discrete logarithm problem. By combining this with
a hint based scheme, Waters et al. [19] have created a client puzzle solution.
The version described here is a simplified version without a central puzzle
distributing authority. The principle however remains the same.

• Setup(`): select a random prime q. It also selects a generator g from
the range [2, q − 1]. params = {`, g, q} and mk = ∅.

• PuzzleGen(mk, req): take a random number r between 0 and q−1. x is
then randomly chosen over the range [r, r+` mod q−1]. puz = {r, gx}
and info = x.

• PuzzleSol(puz): take a candidate solution z from [r, r+ ` mod q− 1].
Test this candidate with gx ?= gz mod q. sol = z.

• PuzzleVer(info,mk, sol): sol ?= info.

18

Analysis This scheme is computationally expensive due to the modular
exponentiation during puzzle creation. All other calculations in the scheme,
including the setup, are cheap. There is no defense against parallel compu-
tation as clients are given a range in which to search. Due to this search
range the hardness granularity of the scheme is linear over ` and gives it
fine-grained control, however in a probabilistic way. Little storage space is
needed, there are a few parameters and for each new puzzle one value has
to be stored. This makes the scheme stateful. Communication complexity
is minimal as only two values need to be sent to transmit the puzzle and
only one to send the solution. One such value is assumed to be around 64
bits, depending on q. Gao et al. [6] suggest an alternative approach in which
several puzzles and solutions are pre-computed during the start up phase.
The pre-computed puzzles, when a new puzzle is needed, are slightly altered
by a a variable linked to the time to keep puzzles fresh. This results in a
lower cost for puzzle creation. The drawback is that more memory is needed
and more initial calculations have to be done.

3.1.3 Repeated Squaring Puzzle

Description Rivest et al. [17], in their pursuit to send information into
the future, created a way to hide information that can only be retrieved
after a fixed amount of computations. This secret release scheme, called a
time-lock, could be used as a client puzzle. The time-lock puzzle ensures
that the client puts the right amount of effort into it. Based on the principles
of RSA, the client is asked to do an amount of squarings modulo n.

• Setup(`): params = ` and mk = ∅.

• PuzzleGen(mk, req): this algorithm selects two random large primes
p, q and creates n = p ∗ q out of this. Then it chooses a generator g
out of the range [2, n − 1] and outputs the puzzle puz = {n, g} and
info = {g, p, q}.

• PuzzleSol(puz): sol = g2`
mod n.

• PuzzleVer(info,mk, sol): sol ?= g2` mod φ(n) mod n.

Repeated squaring is considerably faster than factoring n and guarantees
that the client will do the squaring.

19

Analysis The highest computational cost of this scheme is in the veri-
fication where two modular exponentiations are calculated, which is very
expensive. However puzzle creation is cheap, two large primes p, q need to
be chosen and multiplied and a generator g has to be found. Initial com-
putation is non existent. This scheme also does not allow parallelization
by clients as each computational step in the solving process depends on the
previous one. Hardness granularity is good; changing the difficulty of the
puzzle requires the client to respectively do a greater or a lesser amount of
modular squarings. Control is linear and client solve time can be determined
beforehand if the modular squaring speed of the client is known. This is due
to the fixed number of calculations that have to be done. This fixed amount
of calculations also makes this a deterministic client puzzle scheme. Two
large primes p, q and a generator g need to be stored for each client puz-
zle. This scheme is therefore stateful. During the communication between
server and client a large number n, corresponding generator g and solution
of equal length are passed between them. The exact size of the values p, q, n
and g are undefined, but should be large enough to make the factoring of n
computationally infeasible, which is at least 1024 bits.

3.1.4 Subset Sum-based Puzzle

Description In the pursuit of creating a non-parallelizable client puzzle
Tritilanunt et al. [18] coined the idea of using the subset sum problem as a
client puzzle. The subset sum problem, which is detailed in [14], is as follows.
Consider a set of positive integers ai, 1 ≤ i ≤ n and another positive integer
s. Determine if there exists a subset of ai, 1 ≤ i ≤ n that sums up to s. The
currently fastest algorithm to solve this problem, the LLL algorithm [12],
is non-parallelizable. Brute-forcing possible combinations is parallelizable,
but far less efficient.

• Setup(`): this algorithm takes n ≥ ` as the number of items in the
possible weight set and calculates wi, 1 ≤ i ≤ n, a set of random
weights. This is done by taking the first item w1 as a random number
and each subsequent item as a hash, using hash function h(), of the
previous, wi = h(wi−1), 2 ≤ i ≤ n. The server then selects a server
secret sk at random from Zn. The output is params = {`, w1, h()}
and mk = {sk, wi}, 1 ≤ i ≤ n.

• PuzzleGen(mk, req): req contains a nonce sent by the client, NC . The
server generates a fresh nonce NS . This is used along with the client
and servers identity and the server secret to generate a solution to

20

the problem. The ` least significant bits of h(idC , NC , idS , NS , sk) are
stored in info. infoi, 1 ≤ i ≤ ` represents the i-th bit of info. Out of
this solution the total weight of the subset is calculated to construct
the puzzle, puz =

∑`
i=1(infoi ∗ wi).

• PuzzleSol(puz): first the client computes the weight set, wi = h(wi−1), 2 ≤
i ≤ `. Using the LLL algorithm the client solves the subset sum
problem received from the server, this generates a solution sol. Be-
fore transmitting the solution it is checked against the puzzle, puz ?=∑`

i=1 soli ∗ wi.

• PuzzleVer(info,mk, sol): sol ?= info.

Analysis Computational complexity of this scheme is low. To create and
verify a puzzle only one hash operation and some basic arithmetic is needed.
The initial computation requires more computations to be done as n−1 hash
operations are needed to create a set of weights. The LLL algorithm used
by the client is non-parallelizable. Parallelization is possible, but only by
using the brute force method which is considerably slower. Because the
LLL algorithm has a polynomial complexity over the size ` of the weight
set and the weight set itself wi, 1 ≤ i ≤ `, the granularity of the puzzle is
also polynomial over them [18]. Using the LLL algorithm also makes this a
deterministic scheme. The granularity of brute forcing is exponential over `.
The storage space needed for this scheme is the space needed by the set of
weights, n hash values, and a server secret. The state of each puzzle must
also be stored, this takes ` bits. Communication overhead is minimal: the
server only needs to send the first item in the weights set to transmit the
entire set, which is a single hash value. To send the puzzle the server needs
a few more bits than a hash value to send the total weight. Sending the
solution only requires ` bits.

3.1.5 Conclusion

Much research has been done towards hash-based client puzzles [2, 5, 7, 8].
Most drawbacks in the original scheme by Juels and Brainard [8] can be
countered. Hardness granularity can be improved by giving the client a
range to search in. The scheme can be made stateless by sending the required
information to the client along with the puzzle and have the client send this
information back with the solution. Protection against parallel computation
by clients has only been partly found in the form of a hash chain. There is
however no fix yet for the probabilistic nature of hash reversal. The discrete

21

logarithm puzzle scheme [19] has the same properties with respect to the
requirements, but is also having the downside of being more costly for the
server than a hash-based scheme.

Repeated squaring [17] shows promise by having an inherent resistance
against parallel computation. It is also deterministic in nature, giving an-
other advantage. The drawbacks of this scheme are the high computational
cost, requiring modular exponentiations, and high storage requirements, the
server needs to store RSA modulus. The subset sum puzzle scheme [18]
defends against parallel computation by offering a solving algorithm, the
LLL algorithm, that is non-parallelizable and faster than brute-forcing for
a solution. The subset sum-based puzzle scheme is computationally cheap.
The LLL algorithm used in solving the puzzle is a deterministic algorithm.
However the hardness granularity of the subset sum puzzle scheme and the
LLL algorithm are both polynomial in nature. Both also share the drawback
of being stateful.

3.2 Memory-bound Puzzles

Client puzzles that are based on memory use have been created because
there is less disparity in memory speeds than in processing power. These
types of puzzles should be better for an environment in which hardware with
a large speed range is employed. The client has to pre-compute a database of
information, which can later be used to solve the puzzle. The client is asked
to perform several searches in this database. Because this database is very
large, memory handling has to occur. For all these puzzles it is possible to
break them using computations only, but this is considerably slower. Below
are the client puzzle schemes bound by memory.

3.2.1 Function Look-up Puzzle

Description Memory can be used to speed up certain actions. For exam-
ple, a look-up table can be used to speed up reversing a one-way function.
Based on this idea Abadi et al. [1] created a puzzle scheme.

• Setup(`): select a one-way many-to-one function f(), with input and
output having bit length n, and with f−1() representing the inverse.
Outputs params = {`, f()} and mk = ∅.

• PuzzleGen(mk, req): the first puzzle element x0 is a random bitstring
with length n. All elements after that are calculated with xi =

22

Figure 3.1: Function look-up tree structure

f(xi−1) ⊕ (i − 1), 1 ≤ i ≤ `. A checksum s is computed by con-
catenating all elements and then applying a checksum function, s =
checksum(x0, x1, . . . , x`−1, x`). This algorithm outputs puz = {x`, s}
and info = x0.

• PuzzleSol(puz): it is assumed that the client has pre-computed a look-
up table for inverting the function f() and is using this table to solve
the puzzle. The client calculates all elements from x′` = x` back to x′0
using the look-up table and x′i = f−1(x′i+1 ⊕ i), 0 ≤ i ≤ ` − 1. The
checksum of the elements in x′i, 0 ≤ i ≤ ` is checked against s and if
this matches sol = x′0 is output.

• PuzzleVer(info,mk, sol): info ?= sol.

For the function f() Abadi et al. suggest a random function, but this could
for instance also be a hash function or a table look-up function. Because
the function f() is a many-to-one function, the client will have to backtrack
through multiple paths to find the correct solution. Due to this branching
the search space will be a tree, rather than a chain. An example for this can
be found in Figure 3.1.

Analysis The computational complexity of the server is dependent on the
chosen function f(). Creating a puzzle requires ` applications of the f()
and a cheap checksum function. Initial computation consists of selecting
a function from a collection of functions. Multiple clients can help solve
the puzzle by taking different paths in the tree. Because the tree branches,
while being narrow at the base, doubling the number of clients does not
automatically halve the solving time. Parallel computation of the solution
by the client loses effectiveness as the number of clients increases. The

23

granularity of this scheme is dependent on the chosen function f() and the
depth of the tree `. When there are many collisions for f−1(xi), 1 ≤ i ≤ `,
there are many branches that have to be searched. When ` is larger more
applications of f−1() have to be made to get to the solution. The hardness
granularity is therefore polynomial over `, with f−1() determining the order.
This is a probabilistic scheme, because there is a tree that has to be searched
and wise choices in the branch reduce running time. This stateful scheme
requires only one value to be stored per puzzle with size n bits. Besides this
it is likely that the server has a collection of possible functions stored. The
communication overhead of this puzzle is small as only two values with size
n bits and one checksum value need to be transmitted.

3.2.2 Pattern-based Puzzle

Description Doshi et al. [4] suggest a scheme based on solving the sliding
tile problem. In this problem there are several tiles on a grid which have to
be set to a certain position and one empty space to slide to. The client has
to find a specific, possibly not optimal, path from a starting state to a goal
state. Because the path is not required to be optimal, existing computational
algorithms for finding the shortest path can not always be used to find the
solution. Using pattern databases the computation time can be reduced by
trading in memory. For this scheme to work, the grid has to be large enough,
so that it can not be stored in cache. There is a further need for random
access in the memory, this forces the client to swap out memory pages. To
achieve this multiple puzzles have to be solved simultaneous. Because the
puzzles are in a different state a different part of the memory needs to be
addressed.

• Setup(`): this algorithm generates a set G with possible goal states of
the puzzle and a secret server key sk used as a key for hashing. The
security parameter ` is split up in two factors, `1 the number of puzzles
to solve, and `2 the number of moves per puzzle. Then the algorithm
outputs params = {`1, `2} and mk = {G, sk}.

• PuzzleGen(mk, req): the server chooses `1 goal states G′ from the set
G for the client to solve. The server will apply moves to the goal states
in the reverse order in which the client will solve them, starting at the
goal states and ending at the starting states. Then simultaneous for all
goal states G′ a random move is applied and a checksum si, `2 ≥ i ≥ 1
is computed over the reverse of these moves. Concatenate these reverse
moves to the front of the collection of all moves M . This results in a

24

new set of states on which the next step is applied, this application of
moves is then repeated for a total of `2 times. The result of these steps
is the set of starting states S. Finally using the collection of moves
M and the current time t a verification value v is computed using
v = hsk(t,M). This algorithm then outputs puz = {G′, S, si, v, t}, 1 ≤
i ≤ `2 and info = ∅.

• PuzzleSol(puz): for all starting states in S apply a move and check the
checksum si, 1 ≤ i ≤ `2. When the checksum matches concatenate the
moves to the collection of all moves M ′. This is continued until all goal
states G′ are reached in paths of the same length with all checksums
matching. At this point M ′ should be identical to M . The solution is
then output sol = {v, t,M ′}.

• PuzzleVer(info,mk, sol): v ?= hsk(t,M ′).

Analysis Creating a puzzle is expensive as `1 ∗ `2 moves have to be ap-
plied, `2 checksums have to be calculated and one hash operation is needed.
Verifying a puzzle only requires one hash operation. There is not much ini-
tial computation needed, the server only has to create a set of goal states.
In the puzzle the moves of the solution are based on the previous moves and
the client is forced to solve the puzzle one layer at a time. This way the
client has to constantly use other parts of the memory database. There is
a bit of resistance against parallelization. By working together on the same
layer, or by brute forcing the checksum in advance, it is possible for clients
to work together. Hardness granularity for this scheme is polynomial over
`1 and `2. Increasing one will result in an increase with a step size equal to
the other. Again this is a scheme that is probabilistic in nature. The only
storage needed by the server is a set of goal states along with the server key.
There is no additional information stored after a puzzle has been created as
a verification ticket is sent to the client along with the puzzle. This makes
the scheme stateless. Communication overhead is large: to send the puzzle
two sets of states have to be transmitted, along with `2 checksums, one hash
value and one timestamp. To send a solution one hash value, one timestamp
and `1 ∗ `2 moves have to be transmitted. A move can be represented using
2 bits, but a high number of moves can significantly enlarge the total size.

3.2.3 Conclusion

The memory bound puzzle schemes [1, 4] are probabilistic in nature and
either have a high computational complexity or overhead. There is a small

25

amount of protection against parallel computation.
A common problem shared by memory bound schemes is that the size

of the memory that is available to the client alters the speed at which the
client can solve the puzzle. If the memory database used by the client is
smaller than the available memory the client is not forced to load new pieces
of the database into the memory. Loading database pieces into the memory
slows down the client in solving the puzzle. Similarly when all items that
need to be looked up are clustered together, there is no need to load other
pieces of the database into the memory.

Because no valid assumption can be made about the size of the mem-
ory that is available to the client, or the way that the client has build
the database, the server can not force the client to load new pieces of the
database into the memory and slow it down. Some clients might have to
load new pieces often and be slowed, creating a difference in speed between
these clients and clients that do not need to load new pieces.

3.3 Comparison of Existing Schemes

Table 3.1 shows a performance overview of the existing client puzzle schemes,
the notation for this table can be found in Table 3.2. Computational com-
plexity is split into puzzle creation and puzzle verification. Initial computa-
tion, puzzle creation and puzzle verification are expressed in computational
operations, low cost operations are omitted. Parallel computation resis-
tance represents the opportunity for clients to do parallel computation, this
is marked with yes, some or no, with yes being better. Hardness granularity
is represented by either linear, polynomial or exponential, with linear being
better and exponential being worse. Deterministic is marked with either yes
or no, with yes being better. The size needed for storage and transmitting
puzzles and solutions is expressed in the size of the security parameter k,
the size of a hash values h and the size of an RSA number r. The values
` and n represent the puzzle difficulty and number of puzzles respectively.
The values s and t represent the upper bound for ` and n.

We have the following observations:

• Very few schemes use initial computation. Some schemes use the initial
computation to select some values, but only the subset sum-based
scheme does some complex calculations in this period. Gao et al. [6]
have suggested a method in which puzzles are pre-computed in this
phase and later modified to add uniqueness to the puzzles, this results

26

Client Puzzle Scheme IC PC PV PR HG
Hash-based #1 − 2H H no exponential
Hash-based #2 − − H no exponential
Parallel Hash − 2n ∗H n ∗H no polynomial
Hinted Hash − 2H H no linear

Chained Hash − 2n ∗H − some polynomial
Discrete Logarithm − E − no linear
Repeated Squaring − M 2E yes linear

Subset Sum (s− 1)H H + ` ∗M − yes polynomial
Function Look-up − (`− 1)F + C − some polynomial

Pattern-based − ` ∗ C +H H some polynomial
Client Puzzle Scheme DN LS SS CC

Hash-based #1 no k − 3h+ 2k + 2k2

Hash-based #2 no − 3k 3k
Parallel Hash no k − 3n ∗ h+ 2k + 2k2

Hinted Hash no k − 3h+ 2k + 2k2

Chained Hash no k n ∗ h 3n ∗ h
Discrete Logarithm no k k 3k
Repeated Squaring yes − 3r 3r

Subset Sum yes s ∗ h+ k h 3h
Function Look-up no − k 3k

Pattern-based no (t+ 1)k − h+ (2n+ `+ 1)k

Table 3.1: Performance of Existing Client Puzzle Schemes

Header Operation
IC Initial Computation H Hash Function
PC Puzzle Creation M (Modular) Multiplication
PV Puzzle Verification E Modular Exponentiation
PR Parallel Computation Resistance C Checksum Function
HG Hardness Granularity F One-way Many-to-One Function
DN Deterministic Nature Size
LS Long-term Storage k Security Parameter
SS Short-term Storage h Hash Value
CC Communication Cost r Modulus of RSA

Value
` Puzzle Difficulty s Maximum Puzzle Difficulty
n Number of Puzzles t Maximum Number of Puzles

Table 3.2: Notation for Table 3.1

27

in an increase of storage space that is needed in order to store these
pre-computed puzzles.

• Most schemes fail to provide resistance against parallelization. While
the chaining of puzzles offers some resistance against parallelization,
each step of the chain is still vulnerable to parallelization if the puzzle
on which it is based is vulnerable to parallelization.

• Most schemes are not deterministic in nature. Schemes that are prob-
abilistic in nature have a natural vulnerability to parallelization.

• A scheme can be made stateless by sending the information required
to recompute the solution, except for the server secret, to the client.
The client can then send this information back to the server along
with the solution and the server is able to verify it. This adds to the
communication cost. On the other hand storing this information on
the server reduces communication cost.

• When the solution is also computed during puzzle creation, storing it
instead of having to recompute it reduces the cost for puzzle verifica-
tion. The drawback is that this information has to be stored for each
puzzle resulting in a stateful client puzzle scheme.

• Most client puzzle schemes can be given linear hardness granularity
by sending the client a search space in which to find the answer. The
hardness then becomes linear over this search space. The drawback
of this is that the scheme becomes probabilistic in nature and loses
any resistance against parallelization if it had any to begin with. This
has been done with the hinted hash puzzle scheme, which is based on
hash-based scheme #1. The cost of the puzzle scheme remained the
same. Also because hash-based scheme #1 was already probabilistic in
nature and had no resistance against parallelization this did not change
either. In the evaluation only the hardness granularity changed and
did so from exponential to linear.

• By increasing the number of puzzles a client has to solve the hard-
ness granularity of the puzzle scheme is improved. The drawback of
this is that more puzzles have to be created and verified. This gives
a cost increase in puzzle construction and/or puzzle verification. It
could also result in more data that has to be stored for each client.
Communication cost will always increase as more puzzles will have to

28

be send to the client and more solutions will have to be received from
the client.

By having a deterministic nature and resistance against parallel compu-
tation the repeated squaring and the subset sum-based scheme show promise
to have high evaluation marks with regard to the criteria as detailed in Sec-
tion 2.4. The main differences between the two is that the subset sum puzzle
scheme already has a personalized client puzzle, linking the puzzle to the
client using the clients identifier. There is also the use of a master key during
puzzle creation in the subset sum puzzle scheme, linking the puzzle to the
server. The repeated squaring puzzle scheme does not have these linking
elements, giving this puzzle scheme more options for alterations.

29

Chapter 4

Our Proposals

This chapter will outline our proposal for an improved client puzzle scheme.
The aim of this new scheme is to be generic, practical and to meet the
criteria as detailed in Section 2.4. Repeated squaring [17] was chosen for the
basis of this new scheme, because it has inherent resistance against parallel
computation and a deterministic nature. Furthermore repeated squaring
gives the opportunity to be modified.

The original repeated squaring scheme is repeated below.

• Setup(`): params = ` and mk = ∅.

• PuzzleGen(mk, req): this algorithm selects two random large primes
p, q and creates n = p ∗ q out of this. Then it chooses a generator g
out of the range [2, n − 1] and outputs the puzzle puz = {n, g} and
info = {g, p, q}.

• PuzzleSol(puz): sol = g2`
mod n.

• PuzzleVer(info,mk, sol): sol ?= g2` mod φ(n) mod n.

4.1 Modifying Repeated Squaring

There are a few drawbacks with the repeated squaring scheme that need to
be addressed.

• The cost of verifying a puzzle is high.

• The protocol is stateful.

30

Here one method is proposed to reduce computational cost and one to re-
move statefulness. These methods are then combined into one client puzzle
scheme.

4.1.1 Modified Repeated Squaring #1

To reduce the computational cost of the repeated squaring puzzle scheme,
multiple solutions can be verified in one pass. It is assumed that m clients
have submitted solutions and all associated puzzles have the same difficulty
k and group size n. Because the difficulty of all puzzles is the same, the
exponent 2k mod φ(n) only has to be calculated once. The fact that this
exponent is the same for all puzzles can be used to verify multiple solutions
quicker. Multiple puzzle generators can be multiplied and then exponenti-
ated in one pass, this value can consequently be verified by multiplying the
corresponding solutions.

(
m∏
i=1

gi)2
k mod φ(n) mod n ?=

m∏
i=1

soli mod n (4.1)

Instead of m modular exponentiations, 2(m − 1) modular multiplications
and one modular exponentiation are needed.

When calculating the modular exponentiation using the binary expo-
nentiation algorithm it requires a number of modular multiplications, this
depends on the exponent. Given the binary representation of an exponent,
in our case 2k mod φ(n), the number of modular multiplications needed can
be calculated by adding the Hamming weight of the exponent h and the bit
length of the exponent l and then subtracting two, h + l − 2. For example
110100110001 (3,377) will result in 16 modular multiplications, 6 + 12 − 2.
This number of modular multiplications needed for one modular exponenti-
ation will be represented by c.

Sequential verification requires m∗c modular multiplications, batch ver-
ification requires 2(m − 1) + c modular multiplications. When comparing
these two approaches, 2(m − 1) + c < m ∗ c, the result is that with m > 1
batch verification is cheaper as long as c > 2. As long as 2k mod φ(n) does
not equal 0, 1, 2, 3, or 4 batch verification is cheaper than verifying every
item sequentially.

This yields the following scheme

• Setup(`): the server selects two random large primes p, q and creates
n = p∗q out of this. The server also selects a difficulty for the puzzles,

31

k. The algorithm then outputs mk = 2k mod φ(n) and params =
{k, n}.

• PuzzleGen(mk, req): the server chooses a generator g out of the range
[2, n−1]. It then outputs the puzzle and information puz = info = g.

• PuzzleSol(puz): sol = g2k
mod n.

• PuzzleVer(info,mk, sol): sol ?= g2k mod φ(n) mod n.

• BatchVer(infoi,mk, soli(1 ≤ i ≤ m)): assume that the server has
stored m solutions to check along with the additional information,
infoi, soli, 1 ≤ i ≤ m. These solutions are then verified with batch
verification using Equation 4.1.

The drawback of batch verification is that when one solution is incorrect
the entire batch will fail and additional computations are needed to find
the solutions responsible. For our analysis it is assumed that there are
w errors at random somewhere in the batch and that w is much smaller
than m, w << m. We show four approaches to find the false solutions
within the batch (sequential checking, triggered sequential checking, divide
and conquer checking, random checking), these are detailed below. Because
the errors are at random places in the batch triggered sequential checking,
divide and conquer checking and random checking can not give an exact
complexity value. In these cases the complexity value is given in best, worst
and average case scenario.

The average case scenario is under the assumption that the errors are
distributed uniformly over the batch. All complexity values are expressed
in the number of modular multiplications.

1. Sequential Checking: The most straightforward way to check for
errors is to check each item individually, using normal verification.
There are m solutions in the batch and checking one solution requires
c modular multiplications. The complexity will be the same in any
scenario and checking for errors requires m∗c modular multiplications.

2. Triggered Sequential Checking: This approach is a variation to
sequential checking. All solutions are checked one by one until an error
is found and then the remaining items are re-checked for other errors.
The process that this method follows is:

32

Figure 4.1: Scenarios triggered sequential checking

Step 1: Check the first unchecked solution in the batch. If this solu-
tion is incorrect proceed to step 2. If this solution is correct do
step 1 again.

Step 2: Check all remaining unchecked solutions using batch verifica-
tion. If this batch contains errors go to step 1. If this batch does
not contain an error, all errors have been found and the check is
finished.

Figure 4.1 shows the scenarios for this method. The X represents an
incorrect solution and the O represents a correct solution. The lines
above the batch represent batch verifications, the line below the batch
represents the solutions that are checked sequentially.

• The best case scenario when using this method is all w errors
at the beginning of the batch. When all errors are found this
gives the biggest batch of correct solutions to check in one pass.
All errors are checked sequentially requiring w ∗ c modular mul-
tiplications. After each error a batch verification needs to be
done, the complexity for this is 2(m − y − 1) + c, with y rang-
ing from 1 to w. The complexity for the best case scenario is
2w ∗ c+ 2w(m− 1)− (w2 + w).

• Worst case scenario is w− 1 errors at the beginning of the batch
and the last at the end. Because the last solution is incorrect
each element of this batch will have to be checked using sequen-
tial checking. The other errors at the beginning of the batch
create the largest possible batches that have to be checked using
batch verification. Checking each element of the batch sequen-
tially requires m ∗ c modular multiplications. The w− 1 errors at
the start are each followed by a batch verification. The complex-
ity for such a batch verification is 2(m−y−1)+c, with y ranging
from 1 to w− 1. Combining this gives a worst case complexity of

33

m ∗ c+ (w − 1)c+ 2(w − 1)(m− 1)− (w2 − w).

• The average case complexity can be found by averaging all pos-
sible complexity values. The set G contains all possible error
distributions with batch size m and with w errors. Gi represents
the ith element of this set and the number of elements in G is
denoted by n =

(
m
w

)
. Ci denotes the cost of triggered sequential

checking for set element Gi. The average case complexity can
then be calculated with: (

∑n
i=1Ci)/n.

Ci can be computed by entering Gi into the step process above.
Each application of step 1 requires c modular multiplications.
Each application of step 2 takes 2(u− 1) + c, with u the number
of unchecked solutions remaining at that point.
Appendix A.1 contains a mathematica program to simulate one
instance and calculate the complexity of this instance. The sim-
ulation requires the size of the batch m and the number of errors
w as input and will be used to determine the average case com-
plexity by averaging 1,000 runs. An overview of the program is
also given in text.

3. Divide and Conquer Checking(x): This approach is to split the
batch into x smaller batches of equal size. The errors will be found
using a tree search method. The process is as follows:

Step 1: If m = 1 an error is found. Otherwise split to batch in which
errors need to be found into x smaller batches. For each of these
x smaller batches do step 2.

Step 2: Check this batch using batch verification. If this batch con-
tains an error proceed to step 1. If this batch contains no errors,
this sub-batch is cleared.

Figure 4.2 shows the scenarios for divide and conquer checking(3).
Again, an X represents an incorrect solution and an O a correct so-
lution. The tree above the batch shows which nodes of that tree the
checking method has to verify.

The complexity of this method is the sum of the complexity of batch
verification in all nodes that have to be checked.

• In the best case the tree is narrow and the number of nodes that
have to be checked is small. At each layer in the search tree the
number of nodes that have to be checked depends on the number

34

Figure 4.2: Scenarios divide and conquer checking

of errors w and the depth in the tree i. This is represented by
dw ∗ xi−y−1e ∗ x. In this formula, y is the height of the search
tree and y = dlogxme. The cost of batch verification for a node
at depth i is given by 2(bm ∗ x−ie − 1) + c. By multiplying
the cost of batch verification a node with the number of nodes
that have to be checked for each layer in the search tree the
total complexity is calculated. The complexity for the best case
scenario is

∑y
i=1((2(bm ∗ x−ie − 1) + c) ∗ (dw ∗ xi−y−1e ∗ x)).

• In the worst case the errors are distributed and the tree is wide.
This gives a different formula for the number of nodes at a given
depth i, min(w∗x, xi). The complexity for the worst case scenario
then becomes

∑y
i=1((2(bm ∗ x−ie − 1) + c) ∗min(w ∗ x, xi)).

• The average case complexity can be found by averaging all pos-
sible complexity values. The set G contains all possible error
distributions with batch size m and with w errors. Gi represents
the ith element of this set and the number of elements in G is de-
noted by n =

(
m
w

)
. C(x)i denotes the cost of divide and conquer

checking(x) for set element Gi. The average case complexity can
then be calculated with: (

∑n
i=1C(x)i)/n.

C(x)i can be computed by drawing the search tree for Gi, with
each node having x branches. At each node that is visited, cal-
culate the cost for batch verifying that node, 2(u− 1) + c, with u
the number of solutions at that node. By adding the cost for all
nodes, except the root node, the total cost C(x)i is calculated.

35

Figure 4.3: Scenarios random checking

Appendix A.2 contains a mathematica program to simulate an
application of this checking scheme. It calculates a possible com-
plexity for a batch size of m, splitting in x smaller batches and
containing w errors. This program will be used to determine the
average case complexity by averaging 1,000 runs. This appendix
also gives an overview of the program in text.

4. Random Checking: This approach is to select sub-batches of ran-
dom size r and test these sub-batches for errors. The process is as
follows:

Step 1: If m = 1 an error is found. Otherwise select a random integer
r between 1 and m−1. Test the first r elements of the batch using
batch verification. If the sub-batch contains an error proceed to
step 2. If the sub-batch contains no error proceed to step 3.

Step 2: Check the remaining items using batch verification. If there is
an error in the remaining items do step 1 for both the sub-batch
and the remaining items. If there is no error in the remaining
items do step 1 only for the sub-batch and clear the remaining
items.

Step 3: Clear the sub-batch and do step 1 for the remaining items.

Figure 4.3 shows the scenarios for random checking. The line below
the batches in the best and worst case scenario shows the assumed
initial splitting.

• In the best case all correct solutions and no erroneous solutions
are contained in the first sub-batch, leaving all errors in the re-
maining items. It takes 2(m−w−1)+cmodular multiplications to
clear the first sub-batch. To check the remaining errors, splitting
the batch in half each time results in the fewest computations.
Checking only the errors takes 2((dlog2we−1)w−2dlog2 we+2) +
max(2(w − 1), 1)c modular multiplications. The resulting best

36

case scenario complexity is 2(m + (dlog2we − 2)w − 2dlog2 we +
1) + max(2w − 1, 2)c.

• In the worst case scenario a sub-batch of size one is selected every
time, r = 1 in each instance, and this checking method behaves as
triggered sequential checking. The worst case scenario is thus the
same as the worst case scenario for triggered sequential checking,
with w−1 errors at the start of the batch and one at the end. The
complexity is the same, m∗c+(w−1)c+2(w−1)(m−1)−(w2−w).

• The average case complexity can be found by averaging all pos-
sible complexity values. The set G contains all possible error
distributions with batch size m and with w errors. Gi represents
the ith element of this set and the number of elements in G is
denoted by n =

(
m
w

)
. Because error checking is probabilistic and

not deterministic the cost for checking a set element Gi is not
fixed.
The number of ways the sub-batches can be randomly chosen can
be represented by a full binary tree and bound by the number of
possible trees with m leaves. The set H contains all possible
full binary trees with m leaves. Hj represents the jth tree in
this set and the number of trees in this set s is the Catalan
number [3] of m−1, namely s = (2m−2)!/(m!∗(m−1)!). Let Ci,j
denote the cost of checking set element Gi using the binary tree
Hj . The average case complexity can then be calculated with:
(
∑n

i=1(
∑s

j=1Ci,j)/s)/n.
Ci,j is computed by redrawing Hj .

(a) Each leaf node of Hj has value 1, all other nodes have a value
equal to the number of leaf nodes that can be reached from
it. One exception to this is the root node which has no value.

(b) For each node that can only reach leaf nodes with correct
solutions, make this node a leaf node, but keep the value of
the node the same, and discard the nodes below it.

(c) In each case that a leaf node with only correct solutions is
the left node, remove the value of the right node.

(d) The cost for a node is 2(u − 1) + c, with u the value of the
node. Nodes with no value do not have a cost. Add all these
costs together to get the cost Ci,j .

Figure 4.4 gives a small example for the steps to take.

37

Figure 4.4: Redraw random checking tree

Appendix A.3 contains the mathematica program that simulates
error finding and outputs the corresponding computational com-
plexity. The program is also outlined in text. This simulation
requires the size of the batch m and the number of errors w as
input and will be used to determine average case complexity by
averaging 1,000 runs.

The names for the error finding methods will be shortened in the rest of the
paper. Sequential checking will be shortened to Seq, triggered sequential
checking to Trig Seq, divide and conquer checking(x) to D&C(x) and random
checking to Rand.

When the errors are found the server can take steps to counter a possible
attack. For example, ban the client that submitted the false solution.

4.1.2 Modified Repeated Squaring #2

When p and q are fixed, the only variable in the puzzle is the generator g.
Instead of having the server generate a g we can have the client generate
its own g based on a function and some public parameter controlled by the
server. The server should then only check if this generator is freshly created.
Furthermore this generator is to be bound to the client. The function for
creating a generator becomes g = h(sp, idC), with sp a public parameter
chosen by the server with length ` bits and idC the clients identifier.

This results in the following client puzzle scheme.

• Setup(`): the server generates a new public parameter sp with length
` bits using a (pseudo)random number generator. It then selects two
random large primes p, q and creates n = p ∗ q out of this. The server
also selects a difficulty for the puzzles, k. The algorithm then outputs
mk = 2k mod φ(n) and params = {k, sp, n}.

• PuzzleGen(mk, req): puz = ∅ and info = ∅.

• PuzzleSol(puz): g = h(sp, idC), sol = g2k
mod n.

38

• PuzzleVer(info,mk, sol): g = h(sp, idC), sol
?= g2k mod φ(n) mod n.

The additional requirements for the server for this modified scheme are the
public parameter sp and an additional hash computation. The public pa-
rameter has to be stored by the server, adding storage cost, and transmitted
to the clients adding communication overhead. It also has to be changed
on a regular basis. Because the client computes the generator instead of
receiving it from the server, this lowers the communication overhead as g
does not have to be transmitted. If the public parameter sp is smaller than
g there is less communication overhead compared to the original repeated
squaring scheme by Rivest et al. [17]. The hash operation to retrieve the
generator is cheap in comparison to the modular arithmetic that is needed
to check the solution.

4.1.3 Combined Modified Repeated Squaring

The two schemes can be combined to form a single scheme. This scheme
then has the benefits of both. Batch verification provides a lower verification
cost and the new puzzle generation mechanism lowers short-term storage
requirement. Because in both separate schemes the parameters p, q and n
are fixed during the setup phase, Setup(`), there is no clash when combining
the two. The client puzzle scheme is then as described below:

• Setup(`): the server generates a new public parameter sp with length
` bits using a (pseudo)random number generator. It then selects two
random large primes p, q and creates n = p ∗ q out of this. The server
also selects a difficulty for the puzzles, k. The algorithm then outputs
mk = 2k mod φ(n) and params = {k, sp, n}.

• PuzzleGen(mk, req): puz = ∅ and info = ∅.

• PuzzleSol(puz): g = h(sp, idC), sol = g2k
mod n.

• PuzzleVer(info,mk, sol): this algorithm computes the generator, g =
h(sp, idC). The solution is then verified, sol ?= g2k mod φ(n) mod n.

• BatchVer(info,mk, soli(1 ≤ i ≤ m)): assume that the server has
stored m solutions to check, soli, 1 ≤ i ≤ m. Compute the corre-
sponding generators gi = h(sp, idCi), 1 ≤ i ≤ m. These solutions are
then verified with batch verification using Equation 4.1.

39

This combined scheme has high evaluation marks on the criteria as detailed
in Section 2.4. In this model, no computations are required for the server
to do puzzle generation. Puzzle verification costs one hash operation per
solution along with the cost for batch verification, 2(m− 1) + c if there are
no errors. Several values need to be pre-computed during setup, p, q, n,
φ(n) and 2k mod φ(n) as well as the public parameter sp. The difficulty of
the puzzle can be controlled linearly and is deterministic in nature. There
are a few variables that the server needs to store in long-term storage: n,
2k mod φ(n), sp and possibly p and q. No additional information has to
be stored in short-term storage. The communication complexity consists of
the transmission of the parameters n, k, sp and the solution sol.

4.2 Conclusion

In this chapter we have proposed three modified versions of the repeated
squaring client puzzle scheme. Two modified versions to combat the draw-
backs of the original version of the repeated squaring puzzle scheme and one
modified version to combine them both. This combined scheme removes the
drawbacks the initial scheme has by adding batch verification and altering
the way the puzzles are generated. Computational complexity of repeated
squaring has been reduced and the scheme is no longer stateful.

However, there is a potential security concern with our proposals. An
adversary can combine generators gi (1 ≤ i ≤ w) into h =

∏w
i=1 gi, and

compute a corresponding solution sol = h2`
mod n. Then the adversary

can randomly split sol into w sub-solutions soli (1 ≤ i ≤ w) and send them
to the server. Clearly, as long as soli (1 ≤ i ≤ w) are in the same batch,
the verification will pass given that there is no error in other solutions. In
reality, this attack could be mitigated by various means. We briefly mention
the following two as examples.

• The server can dynamically set the batch size in according to the
total number of received puzzle solutions. In addition, the server can
randomly mix the solutions before splitting them into batches. By
doing this, the probability that all w sub-solutions soli (1 ≤ i ≤ w)
fall into the same batch will be kept low.

• Instead of directly multiplying the solutions as in Equation 4.1, the
server can assign a random weight wi (an integer) to each solution soli,

40

then the verification will be as follows.

(
m∏
i=1

gwi
i)2

k mod φ(n) mod n ?=
m∏
i=1

solwi
i mod n (4.2)

We will not formally investigate countermeasures against this attack in
this thesis, and leave it as an interesting research question in the future.

In the next chapter the combined modified repeated squaring scheme
will be applied to two application scenarios.

41

Chapter 5

Applications of the Proposed
Puzzle Scheme

In this chapter the combined modified repeated squaring puzzle scheme will
be applied to two example scenarios, a web server scenario and an e-mail
server scenario. After the application of the scheme an analysis will be
given to the performance. Then this performance will be compared to an
application of a subset sum-based puzzle scheme. The subset sum-based
puzzle scheme is chosen as a comparison scheme, because it has similar
properties with regard to the criteria as described in Section 2.4 and is a
potential candidate for an all-round client puzzle scheme.

In the web server scenario the combined modified repeated squaring puz-
zle scheme will be applied to a web server to protect this web server against
DDoS attacks. In the e-mail server scenario the scheme is used to reduce
the flow of spam e-mails sent to an e-mail server by spammers. The web
server scenario requires the data to be transmitted real-time, while the e-
mail server scenario can work with larger delays.

5.1 Web Server Scenario

Consider a company owning a webserver Sweb with the only functionality
of hosting a website to convey company information to the outside world.
Connecting to Sweb are a large number of clients Cj . A typical client requests
several webpages and disconnects after that. These clients range in hardware
from simple PDA’s to high end PC’s.

However a large number of the clients Cj are malicious and under control
of an adversary. The goal of this adversary is to hurt the business practice

42

of the company. To this end the adversary launches a DDoS attack on the
webserver Sweb with the purpose of denying legitimate clients access to the
website.

In this scenario the following requirements and assumptions are made.

1. The users wanting to view the website should only perceive minimal
delay. An acceptable delay time is about two seconds [16].

2. Delays that are not caused by the client puzzle scheme are not taken
into account. These delays are for example transmission times and
server webpage fetching. This is beyond the scope of this theoretical
framework.

3. Depending on how popular the website is and the time of day, the
number of client visits per second differs. The following values will be
used.

• 1,000 connections per second.

• 10,000 connections per second.

• 50,000 connections per second.

4. The speed at which a client can perform one squaring, or one mod-
ular multiplication, depends on the hardware used. To be able to
show some performance statistics the speed values for the clients are
assumed values. A high end PC will be able to do 50,000 modular
multiplications per second while a PDA can do 5,000 modular multi-
plications per second. The server Sweb will be assumed to be able to
do 150,000 modular multiplications per second.

5. The complexity of the modular exponentiation, which is c, is primar-
ily dependent on the value of 2k mod φ(n). This is a random value
between 1 and φ(n). The current recommended RSA bitlength for n is
1,024, but this is shifting towards 2,048 [9]. The modular exponentia-
tion complexity c will be between 1 and 2,044 modular multiplications,
averaging at 1,022 modular multiplications. This average will be used
as a value for c, the number of modular multiplications for one modular
exponentiation.

To stop the adversary from reaching his goal the company adopts a client
puzzle scheme at Sweb. The server Sweb will use the combined modified
repeated squaring puzzle scheme and all clients Cj are assumed to be able
to handle the client side of this scheme. The server Sweb is set to verify a

43

batch size sequential batched
1,000 6.81s 0.02s
10,000 68.13s 0.14s
50,000 340.67s 0.67s

Table 5.1: Repeated squaring verification speeds

batch each second, this leaves a maximum of one second for the client to
solve the puzzle in order to have an acceptable delay time. When a client
Ci submits a false solution, this client Cj is banned for a random amount of
time.

The variables p and q have been generated by Sweb and are assumed
static. This also implies a static value for n. The public parameter sp is
a short lived value that changes frequently. Based on the modular multi-
plication speed of the clients, the difficulty parameter k is chosen so that
the slowest client can solve the puzzle in one second, this means a value of
k = 5,000. Changing the difficulty parameter k will invalidate all solutions
up to that point and re-computation is needed to get the new value for
2k mod φ(n). Should the difficulty of the puzzle need to be changed, this
can be done together with a change in the public parameter sp which will
also invalidate all solutions. Frequently changing k will result in additional
computations that could significantly slow the server down. Because the
server verifies a batch each second the number of connections per second
corresponds to the batch size m.

For the adversary, there is a trade-off between the work he can make the
server do and the number of clients that are not blocked by the server and
able to continue the attack.

5.1.1 Analysis

Table 5.1 shows the difference in verification speed between sequential verifi-
cation and batch verification. The difference between sequential verification
and batch verification is substantial in each case.

The performance of the combined modified repeated squaring scheme is
different when there are incorrect solutions in the batch. Figure 5.1 shows
the verification speeds for a batch of size 1,000 with 5 errors distributed at
random in the batch. The error finding methods Seq and Trig Seq both need
more than a second to find the errors. The methods Rand and D&C(x) keep
below a second. In the second graph of Figure 5.1, it is visible that D&C(4)

44

Figure 5.1: Comparison of error checking methods for a batch size of 1,000
and 5 errors

45

is the fastest in finding the errors, taking 0.42 seconds on average.
Figure 5.2 shows the results when the batch size is increased to 10,000,

the number of errors remains the same. In the worst case each method takes
more than a second to complete. D&C(5) is the fastest method, taking 0.83
seconds on average.

Figure 5.3 shows the results when the batch size is increased even further
to 50,000, the number of errors again remains the same. It can be seen
that the difference between Seq and Trig Seq when compared to Rand and
D&C(x) is very large. None of the methods are faster than a second in
the best case scenario. Of the methods D&C(10) is the fastest, taking 1.73
seconds on average to complete.

In all cases the D&C(x) method is the fastest in finding the errors.
However in the best parameter for this method is not always the same. The
only element that was varied over the cases was the number of elements in
the batch. This number should be the decisive factor when determining the
parameter for the D&C(x) method. The number of errors in the batch could
be an input as well, but this can not be determined beforehand.

5.1.2 Comparison

We compare these numbers to a web server equipped with the alternative,
a subset sum-based puzzle scheme. A subset sum-based puzzle scheme only
requires a comparison to verify a solution, however creating a puzzle does
require computational effort. To create a puzzle one hash operation, ` mul-
tiplications and ` − 1 additions are needed. Each verification for combined
modified repeated squaring also requires one hash operation, these oper-
ations have the same complexity and can be left out of the scope of this
comparison. Because addition is a computationally cheap operation, the
additions are also left out of the comparison. We assume that the complex-
ity for the modular multiplication used in the combined modified repeated
squaring scheme is double the complexity of the multiplications in the subset
sum-based scheme.

Tritilanunt et al. [18] suggest a value for ` to be between 60 and 100.
For this comparison we will take the lower bound of 60. As can be seen in
Table 3 of [18] with the right density this gives us the same solving speed
for the clients. So creating one puzzle requires 60 multiplications.

To match the verification speed of combined modified repeated squaring,
10,000 verifications in 0.14s, the server needs to be able to do 600,000 mul-
tiplications in 0.14s. This translates to a requirement of around 4,280,000
multiplications per second. The server will need to be about 14 times faster

46

Figure 5.2: Comparison of error checking methods for a batch size of 10,000
and 5 errors

47

Figure 5.3: Comparison of error checking methods for a batch size of 50,000
and 5 errors

48

to adopt the subset sum-based scheme instead of the combined modified
repeated squaring scheme.

When there are errors in the batch the performance of combined modified
repeated squaring drops to about 0.83s. A server would need around 723,000
multiplications per second to match performance. In this case the server
will need to be about 2-3 times faster to adopt the subset sum-based puzzle
scheme.

In summary the combined modified repeated squaring scheme is signifi-
cantly faster than the subset sum-based puzzle scheme.

5.2 E-mail Server Scenario

Consider another company owning an e-mail server. Everyone is allowed to
send e-mails using this server Smail. There is a large number of clients Cj
connecting to Smail in order to send e-mails. Again, these clients range in
hardware from simple PDA’s to high end PC’s. Smail also has a connection
to another mail server M in order to forward the mail received from the
clients.

A spammer A is trying to abuse Smail by sending a lot of spam e-mails.
His goal is to send as many e-mails as possible. These e-mails take up
bandwidth and computer resources that the company otherwise could have
used for better purposes.

In this scenario the following requirements and assumptions are made.

1. A different protection mechanism exists between Smail and the other
mail server M. Smail is free to send an unlimited amount of e-mails
to M. M trusts Smail to only send legitimate e-mails to M.

2. The speed at which a client can perform one squaring, or one mod-
ular multiplication, depends on the hardware used. To be able to
show some performance statistics the speed values for the clients are
assumed values. A high end PC will be able to do 50,000 modular
multiplications per second while a PDA can do 5,000 modular multi-
plications per second. The server Smail will be assumed to be able to
do 150,000 modular multiplications per second.

3. The complexity of the modular exponentiation, which is c, is primar-
ily dependent on the value of 2k mod φ(n). This is a random value
between 1 and φ(n). The current recommended RSA bitlength for n is
1,024, but this is shifting towards 2,048 [9]. The modular exponentia-
tion complexity c will be between 1 and 2,044 modular multiplications,

49

averaging at 1,022 modular multiplications. This average will be used
as a value for c, the number of modular multiplications for one modular
exponentiation.

To reduce the flow of spam to the mail server Smail the company wants to
adopt a client puzzle scheme as a payment mechanism for sending e-mails.
In order for a client Cj to pay for sending an e-mail some computational
work has to be done. This computational work is in the form of a combined
modified repeated squaring puzzle that has to be solved and attached to
the e-mail. There is a slight difference in that the generator g used in this
scheme is now based on the contents of the e-mail mailC and the recipient
of the e-mail rcptC instead of the clients identifier idC . This results in the
following method for creating a generator: g = h(sp,mailC , rcptC). If an
incorrect solution is attached to an e-mail, this e-mail is rejected and sent
back to the sender.

Because Smail does not have to handle request in real-time, but can
permit a delay, the parameters for this scheme compared to the web server
scenario are different. The parameters p, q, n and φ(n) remain static. But
the public parameter sp is changed less often than in the web server scenario.
The difficulty parameter k is chosen so that a high end client can solve the
puzzle in 2 minutes. 2 minutes equals 120 seconds so the value for k will
be 120 * 50,000 = 6,000,000. A PDA will take 6,000,000 / 5,000 = 1200
seconds, which is 20 minutes. The e-mails received by Smail are stored in a
batch and the batch will be verified every 15 minutes.

5.2.1 Analysis

As it takes a high end client 2 minutes to solve a puzzle, the maximum
number of e-mails this client can send is 30 per hour and thus 720 per day.
In order to be able to send 10 e-mails per hour and 240 per day the client
will need to be able to do 16,667 modular multiplications per second. With a
PDA it is possible to send 3 e-mails per hour and 72 per day. According to a
study by Laurie and Clayton [10] this is enough to accommodate most users.
Their figures show that 90% of the legitimate e-mail users send 50 e-mails a
day or 12 per active hour. A limit of 240 e-mails a day would inconvenience
less than 2%. Laurie and Clayton further state that spammers should be
limited below 1,750 e-mails a day to make it uneconomical. The limit for
this scheme is 720 a day and is well below that.

When the mail server Smail verifies a batch and finds that one of the e-
mails does not have a valid puzzle solution, it can use the same error finding

50

method as in the web server scenario. There is however no party in this
scenario that would benefit from sending false solutions to the mail server.
The goal of the clients Cj and of the spammer A is to send e-mails, not to
prevent others from sending e-mails.

5.2.2 Comparison

With a combined modified repeated squaring scheme the client can create
and solve a puzzle before contacting the e-mail server. In order to send an
e-mail using an e-mail server which has a subset sum-based puzzle scheme,
the client first has to contact the e-mail server and exchange nonces. The
server then generates a puzzle, stores the solution and sends the puzzle to
the client. The client can then solve the puzzle.

However, the puzzle difficulty is set so that the estimated time to solve a
puzzle is a couple of minutes. During this time the connection to the e-mail
server with the subset sum-based puzzle scheme has to be kept open and
the server has to store the solution. This requires the server to allocate its
resources into a temporarily unused connection.

The combined modified repeated squaring scheme does not suffer from
this drawback. The result is that an e-mail server with a subset sum-based
puzzle scheme will need to set aside additional resources, next to storing the
e-mail, for every puzzle, when compared to the combined modified repeated
squaring scheme.

5.3 Conclusion

In both application scenarios, the combined modified repeated squaring puz-
zle scheme accomplishes the goal set out in that scenario. Under our assump-
tions the web server is protected against a large number of webpage requests
from a client. Also clients are limited in the number of e-mails they can send,
but not to an amount which would be impractical.

In both scenarios, the combined modified repeated squaring puzzle scheme
requires less resources from the server than the subset sum-based puzzle
scheme, while giving the same result.

51

Chapter 6

Conclusion

The goal of this thesis was to create a new client puzzle scheme that has high
scores on the evaluation criteria. These desired criteria scores, described in
Section 2.4, are low computational complexity, linear hardness granularity,
low storage requirements and low communication complexity. Current client
puzzle solutions score high on some criteria, but score low on others.

In the combined modified repeated squaring puzzle scheme the original
repeated squaring puzzle scheme has been improved by adding batch verifi-
cation and a public parameter so clients can create their own puzzles. The
result is a client puzzle scheme that has low computational complexity. It
is also non-parallelizable, preventing adversaries from working together to
rapidly create solutions. The difficulty of the puzzles is scalable in a lin-
ear and deterministic way. The storage space required is low and no state
information has to be kept.

However combined modified repeated squaring is not perfect, it is not
always better than other schemes when only looking at one evaluation cri-
teria. When looking at all evaluation criteria combined modified repeated
squaring is the best so far.

The scheme has been applied in two scenarios, the performances were
evaluated theoretically. The next step in the process is to create a prototype
and do additional testing. This will allow for some fine-tuning of the scheme
and determine its practical use.

52

Bibliography

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,
memory-bound functions. ACM Transactions on Internet Technology,
pages 299–327, 2005.

[2] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication with
client puzzles. In Security Protocols, 8th International Workshop, pages
170–177, 2000.

[3] D. M. Campbell. The computation of catalan numbers. Mathematics
Magazine, 57(4):195–208, 1984.

[4] S. Doshi, F. Monrose, and A. D. Rubin. Efficient memory bound puzzles
using pattern databases. In Applied Cryptography and Network Secu-
rity, 4th International Conference, ACNS 2006, pages 98–113, 2006.

[5] W. Feng, E. C. Kaiser, and A. Luu. The design and implementation of
network puzzles. In INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, pages 2372–2382,
2005.

[6] Y. Gao, W. Susilo, Y. Mu, and J. Seberry. Efficient trapdoor based
client puzzle against DoS attacks. Book Chapter in Network Security,
2006.

[7] B. Groza and D. Petrica. On chained cryptographic puzzles. 3rd
Romanian-Hungarian Joint Symposium on Applied Computational In-
telligence, pages 182–191, 2006.

[8] A. Juels and J. G. Brainard. Client puzzles: A cryptographic counter-
measure against connection depletion attacks. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS 1999, pages
151–165, 1999.

53

[9] B. Kaliski. TWIRL and RSA key size. Technical report, RSA Labora-
tories, 2003.

[10] B. Laurie and R. Clayton. Proof-of-work proves not to work. In WEIS
04, 2004.

[11] Y. Lei, S. Pierre, and A. Quintero. Client puzzles based on quasi partial
collisions against DoS attacks in UMTS. Vehicular Technology Confer-
ence, 2006. VTC-2006 Fall. 2006 IEEE 64th, pages 1–5, 2006.

[12] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovsz. Factoring polynomials
with rational coefficients. Mathematische Annalen 261, pages 515–534,
1982.

[13] I. Martinovic, F. A. Zdarsky, M. Wilhelm, C. Wegmann, and J. B.
Schmitt. Wireless client puzzles in IEEE 802.11 networks: Security
by wireless. In Proceedings of the First ACM Conference on Wireless
Network Security, pages 36–45, 2008.

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[15] R. C. Merkle. Secure communications over insecure channels. Commu-
nications of the ACM, pages 294–299, 1978.

[16] F.H. Nah. A study on tolerable waiting time: How long are web users
willing to wait? Behaviour & IT, 23(3):153–163, 2004.

[17] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles
and timed-release crypto. Technical Report MIT/LCS/TR-684, Mas-
sachusetts Institute of Technology, 1996.

[18] S. Tritilanunt, C. Boyd, E. Foo, and J. M. González Nieto. Toward
non-parallelizable client puzzles. In Cryptology and Network Security,
6th International Conference, CANS 2007, pages 247–264, 2007.

[19] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client
puzzle outsourcing techniques for DoS resistance. In Proceedings of
the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pages 246–256, 2004.

54

Appendix A

Mathematica Programs

A.1 Triggered Sequential Checking

TrigComplexity[m_, w_] :=
Module[{e},
e = Sort[Array[Random[Integer, {1, m}] &, w]];
(* Determine error positions *)
(m - First[e] + w + 1)*c + 2 (Total[e] - 2*w)
(* Compute complexity *)
]

Explanation of the Program

This program takes the batch size and the number of errors as input.
First the error locations are determined at random and ordered accord-

ing to their location. The numbers representing the error location show
the number of items that still need to be checked, just before the error is
sequentially checked.

The complexity is then calculated using the error positions. The error
that is last determines the number of elements that need to be checked
sequentially. The total of the error locations determines the amount of
elements that are checked using batch verification.

The output is the complexity of triggered sequential checking the batch.

55

A.2 Divide and Conquer Checking

SplitComplexity[m_, x_, w_] :=
Module[{n, y, z, i, b, r},
n = m; (* Items remaining *)
y = w; (* Errors remaining *)
z = 0; (* Complexity variable *)
If[m < x, (* if less elements than splits just do them *)
z = m*c,
For[i = 0, i < x, i++, (* For each split determine the
number of errors *)
b = Ceiling[n/(x - i)]; (* Split batch size *)
n = n - b;
r = Random[Integer, {Max[0, y - n], Min[y, b]}];
z = z + If[r == 0, (* If no errors, finish, else split *)

2 (b - 1) + c,
y = y - r;
If[b == 1, (* If batch has size 1, finish *)
c,
2 (b - 1) + c + SplitComplexity[b, x, r]
]
]

];
];
z
]

56

Explanation of the Program

The input for this program is a batch size, the number of batches to split
into and the number of errors that are located in the batch.

The number of items and the number of errors that are in the batch are
stored in local variables. These local variables are updated as the batch is
split into sub-batches to keep up with the remaining number of items and
remaining number of errors. Another variable is created and set to zero
to store the checking complexity. If there are less items in the batch than
the number of sub-batches to split into, the entire batch is checked using
sequential checking. If this is not the case a loop is entered to split the
batch.

In this loop the size of a single sub-batch is determined, this is done
for each sub-batch as their size may differ. The remaining number of items
is divided by the remaining number of sub-batches. The number of items
in the sub-batch is subtracted from the total number of items remaining.
Then the number of errors in this sub-batch is randomly determined. When
there are more errors remaining than there are number of items in the sub-
batches that still have to be checked, the difference between these two is the
minimum amount of errors. If this is not the case the minimum amount of
errors is 0. The maximum amount of errors possible in the sub-batch is the
least of either the remaining number of errors or the size of the sub-batch.

If there are no errors in the sub-batch, then the complexity of batch
verifying the sub-batch is added to the checking complexity variable. If
there are errors in the sub-batch than the number of errors in this sub-
batch is subtracted from the remaining number of errors. If there is only
one item in the sub-batch the complexity of verifying this item is added to
the checking complexity variable. If there are more items in the sub-batch
the cost of batch verifying this sub-batch is added to the checking complexity
variable as well as the result of recursively invoking this program. The new
variables for the program are the size of the sub-batch, the same amount to
split into and the number of errors in the sub-batch. After this the loop is
continued for a new sub-batch.

The end of the program returns the checking complexity variable of this
run.

57

A.3 Random Checking

RandomComplexity[m_, w_] :=
Module[{r, y, a, b, i},
If[m == 1, (* If the batch size is 1, we are done,
else carry on *)
0,
r = Random[Integer, {1, m - 1}]; (* Select a batch of
solutions with random size *)
y = 0; (* Will become the number of errors in the selected
batch *)
a = r;
b = m;
For[i = 1, i <= w, i++, (* For each possible error determine
if it is in the selected batch *)
If[a >= Random[Integer, {1, b}],
a = a - 1;
y = y + 1,
False
];
b = b - 1
];
2 (r - 1) + c +
If[y == 0,(* If no error in the selected batch, continue with
remaining items, else carry on with the selected batch and
also check all remaining items *)
If[m - r == 1,(* If only one item remaining, do it and be done *)
c,
RandomComplexity[m - r, w]],
RandomComplexity[r, y] + 2 (m - r - 1) + c +
If[w - y == 0, (* If no errors in the remaining items,
no additional calculations needed, else check the remaining
items as well *)
0,
RandomComplexity[m - r, w - y]
]

]
]
]

58

Explanation of the Program

This program takes the batch size and the number of errors as input.
When the batch size is 1, then this program assumes the relevant calcu-

lations have already been done and terminates. Else it is assumed that there
is at least one error in the batch and it takes a proper sub batch of this. A
local variable is set to 0, which will represent the number of errors in the
selected sub batch. Two local variables are allocated to aid in determining
the number of errors in the sub batch. One variable contains the number of
items in the sub batch that do not contain an error, the other contains the
number of items in total that do not contain an error. It is then checked if
an error is in the sub batch or not. If it is in the sub batch, the variable
for number of errors in the sub batch is increased and the number of items
without errors in the sub batch is decreased. If it is not in the sub batch,
both variables remain unchanged. In both cases the number of items with-
out error in total is decreased. This is done for each error and results in a
number of errors that is contained in the sub batch.

If there are no errors in the sub batch, then there must be errors in the
rest of the batch. The complexity for this is the complexity of checking the
sub batch together with a recursive run of the program with input variables
the number of items remaining and the same number of errors. One excep-
tion to this is when there is only one item remaining in the batch. In that
case this item is simply checked without invoking this program again.

If there are errors in the sub batch, there can either be more or no errors
remaining in the rest of the batch. If there are no errors in the rest of the
batch the complexity of this is batch verifying the sub batch, batch verifying
the rest of the batch and invoking this program again with a batch size equal
to the sub batch and an amount of errors equal to that in the sub batch. If
there are errors in the rest of the batch the complexity is the same with the
addition of a run of the program with a number of items equal to the rest
of the batch and the number of errors that are in these items.

The output is the complexity of random checking the batch.

59

