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Abstract

This paper presents Riposte, a new system for anonymous
broadcast messaging. Riposte is the first such system,
to our knowledge, that simultaneously protects against
traffic-analysis attacks, prevents anonymous denial-of-
service by malicious clients, and scales to million-user
anonymity sets. To achieve these properties, Riposte
makes novel use of techniques used in systems for private
information retrieval and secure multi-party computation.
For latency-tolerant workloads with many more readers
than writers (e.g. Twitter, Wikileaks), we demonstrate that
a three-server Riposte cluster can build an anonymity set
of 2,895,216 users in 32 hours.

1 Introduction

In a world of ubiquitous network surveillance [7, 40,
41, 45, 67], prospective whistleblowers face a daunting
task. Consider, for example, a government employee who
wants to anonymously leak evidence of waste, fraud, or
incompetence to the public. The whistleblower could
email an investigative reporter directly, but post hoc anal-
ysis of email server logs could easily reveal the tip-
ster’s identity. The whistleblower could contact a re-
porter via Tor [33] or another low-latency anonymizing
proxy [37, 59, 64, 76], but this would leave the leaker
vulnerable to traffic-analysis attacks [4, 65, 66]. The
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whistleblower could instead use an anonymous messaging
system that protects against traffic analysis attacks [18,
44, 82], but these systems typically only support rela-
tively small anonymity sets (tens of thousands of users,
at most). Protecting whistleblowers in the digital age re-
quires anonymous messaging systems that provide strong
security guarantees, but that also scale to very large net-
work sizes.

In this paper, we present a new system that attempts to
make traffic-analysis-resistant anonymous broadcast mes-
saging practical at Internet scale. Our system, called Ri-
poste, allows a large number of clients to anonymously
post messages to a shared “bulletin board,” maintained
by a small set of minimally trusted servers. (As few as
three non-colluding servers are sufficient). Whistleblow-
ers could use Riposte as a platform for anonymously pub-
lishing Tweet- or email-length messages and could com-
bine it with standard public-key encryption to build point-
to-point private messaging channels.

While there is an extensive literature on anonymity sys-
tems [28,34], Riposte offers a combination of security and
scalability properties unachievable with current designs.
To the best of our knowledge, Riposte is the only anony-
mous messaging system that simultaneously:

1. protects against traffic analysis attacks,

2. prevents malicious clients from anonymously exe-

cuting denial-of-service attacks, and

3. scales to anonymity set sizes of millions of users, for

certain latency-tolerant applications.
We achieve these three properties in Riposte by adapt-
ing three different techniques from the cryptography and
privacy literature. First, we defeat traffic-analysis attacks
and protect against malicious servers by using a protocol,
inspired by client/server DC-nets [18, 82], in which ev-
ery participating client sends a fixed-length secret-shared
message to the system’s servers in every time epoch. Sec-
ond, we achieve efficient disruption resistance by using a
secure multi-party protocol to quickly detect and exclude
malformed client requests [35,47, 83]. Third, we achieve


http://arxiv.org/abs/1503.06115v6

scalability by leveraging a specific technique developed in
the context of private information retrieval (PIR) to min-
imize the number of bits each client must upload to each
server in every time epoch. The tool we use is called a
distributed point function [21,43]. The novel synthesis
of these techniques leads to a system that is efficient (in
terms of bandwidth and computation) and practical, even
for large anonymity sets.

Our particular use of private information retrieval (PIR)
protocols is unusual: PIR systems [22] allow a client to
efficiently read a row from a database, maintained collec-
tively at a set of servers, without revealing to the servers
which row it is reading. Riposte achieves scalable anony-
mous messaging by running a private information re-
trieval protocol in reverse: with reverse PIR, a Riposte
client can efficiently write into a database maintained at
the set of servers without revealing to the servers which
row it has written [72].

As we discuss later on, a large Riposte deployment
could form the basis for an anonymous Twitter service.
Users would “tweet” by using Riposte to anonymously
write into a database containing all clients’ tweets for a
particular time period. In addition, by having read-only
users submit “empty” writes to the system, the effective
anonymity set can be much larger than the number of writ-
ers, with little impact on system performance.

Messaging in Riposte proceeds in regular time epochs
(e.g., each time epoch could be one hour long). To post
a message, the client generates a write request, crypto-
graphically splits it into many shares, and sends one share
to each of the Riposte servers. A coalition of servers
smaller than a certain threshold cannot learn anything
about the client’s message or write location given its sub-
set of the shares.

The Riposte servers collect write requests until the end
of the time epoch, at which time they publish the aggrega-
tion of the write requests they received during the epoch.
From this information, anyone can recover the set of posts
uploaded during the epoch, but the system reveals no in-
formation about who posted which message. The identity
of the entire set of clients who posted during the interval is
known, but no one can link a client to a post. (Thus, each
time epoch must be long enough to ensure that a large
number of honest clients are able to participate in each
epoch.)

In this paper, we describe two Riposte variants, which
offer slightly different security properties. The first vari-
ant scales to very large network sizes (millions of clients)
but requires three servers such that no two of these servers
collude. The second variant is more computationally ex-
pensive, but provides security even when all but one of the

s > 1 servers are malicious. Both variants maintain their
security properties when network links are actively adver-
sarial, when all but two of the clients are actively mali-
cious, and when the servers are actively malicious (subject
to the non-collusion requirement above).

The three-server variant uses a computationally inex-
pensive multi-party protocol to detect and exclude mal-
formed client requests. (Figure 1 depicts this protocol at
a high-level.) The s-server variant uses client-produced
zero-knowledge proofs to guarantee the well-formedness
of client requests.

Unlike Tor [33] and other low-latency anonymity sys-
tems [44, 54,59, 76], Riposte protects against active traf-
fic analysis attacks by a global network adversary. Prior
systems have offered traffic-analysis-resistance only at the
cost of scalability:

e Mix-net-based systems [19] require large zero-

knowledge proofs of correctness to provide privacy
in the face of active attacks by malicious servers [2,
5,38,51,70].

e DC-nets-based systems require clients to transfer
data linear in the size of the anonymity set [18, 82]
and rely on expensive zero-knowledge proofs to pro-
tect against malicious clients [26, 50].

We discuss these systems and other prior work in Sec-
tion 7.

Experiments. To demonstrate the practicality of Ri-
poste for anonymous broadcast messaging (i.e., anony-
mous whistleblowing or microblogging), we implemented
and evaluated the complete three-server variant of the sys-
tem. When the servers maintain a database table large
enough to fit 65,536 160-byte Tweets, the system can pro-
cess 32.8 client write requests per second. In Section 6.3,
we discuss how to use a table of this size as the basis
for very large anonymity sets in read-heavy applications.
When using a larger 377 MB database table (over 2.3 mil-
lion 160-byte Tweets), a Riposte cluster can process 1.4
client write requests per second.

Writing into a 377 MB table requires each client to
upload less than 1 MB of data to the servers. In con-
trast, a two-server DC-net-based system would require
each client to upload more than 750 MB of data. More
generally, to process a Riposte client request for a table of
size L, clients and servers perform only O(y/L) bytes of
data transfer.

The servers’ AES-NI encryption throughput limits the
rate at which Riposte can process client requests at large
table sizes. Thus, the system’s capacity to handle client
write request scales with the number of available CPU
cores. A large Riposte deployment could shard the
database table across k machines to achieve a near-k-fold
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(a) A client submits one share of
its write request to each of the two
database servers. If the database
has length L, each share has length

O(VL).

write request.

B Audit server

(b) The database servers generate
blinded “audit request” messages
derived from their shares of the

(c) The audit server uses the
audit request messages to val-
idate the client’s request and
returns an “OK” or “Invalid”
bit to the database servers.

(d) The servers apply the write
request to their local database
state. The XOR of the servers’
states contains the clients mes-
sage at the given row.

Figure 1: The process of handling a single client write request. The servers run this process once per client in each

time epoch.

speedup.

We tested the system with anonymity set sizes of up
to 2,895,216 clients, with a read-heavy latency-tolerant
microblogging workload. To our knowledge, this is the
largest anonymity set ever constructed in a system defend-
ing against traffic analysis attacks. Prior DC-net-based
systems scaled to 5,120 clients [82] and prior verifiable-
shuffle-based systems scaled to 100,000 clients [S]. In
contrast, Riposte scales to millions of clients for certain
applications.

Contributions. This paper contributes:

e two new bandwidth-efficient and traffic-analysis-
resistant anonymous messaging protocols, obtained
by running private information retrieval protocols “in
reverse” (Sections 3 and 4),

e a fast method for excluding malformed client re-
quests (Section 5),

e a method to recover from transmission collisions in
DC-net-style anonymity systems,

e cxperimental evaluation of these protocols with
anonymity set sizes of up to 2,895,216 users (Sec-
tion 6).

In Section 2, we introduce our goals, threat model, and
security definitions. Section 3 presents the high-level sys-
tem architecture. Section 4 and Section 5 detail our tech-
niques for achieving bandwidth efficiency and disruption
resistance in Riposte. We evaluate the performance of the
system in Section 6, survey related work in Section 7, and
conclude in Section 8.

2 Goals and Problem Statement

In this section, we summarize the high-level goals of the
Riposte system and present our threat model and security
definitions.

2.1 System Goals

Riposte implements an anonymous bulletin board using
a primitive we call a write-private database scheme. Ri-
poste enables clients to write into a shared database, col-
lectively maintained at a small set of servers, without re-
vealing to the servers the location or contents of the write.
Conceptually, the database table is just a long fixed-length
bitstring divided into fixed-length rows.

To write into the database, a client generates a write re-
quest. The write request encodes the message to be writ-
ten and the row index at which the client wants to write.
(A single client write request modifies a single database
row at a time.) Using cryptographic techniques, the client
splits its write request into a number of shares and the
client sends one share to each of the servers. By construc-
tion of the shares, no coalition of servers smaller than a
particular pre-specified threshold can learn the contents of
a single client’s write request. While the cluster of servers
must remain online for the duration of a protocol run, a
client need only stay online for long enough to upload its
write request to the servers. As soon as the servers receive
a write request, they can apply it to to their local state.

The Riposte cluster divides time into a series of epochs.
During each time epoch, servers collect many write re-
quests from clients. When the servers agree that the epoch
has ended, they combine their shares of the database to re-
veal the clients’ plaintext messages. A particular client’s
anonymity set consists of all of the honest clients who
submitted write requests to the servers during the time
epoch. Thus, if 50,000 distinct honest clients submitted
write requests during a particular time epoch, each honest
client is perfectly anonymous amongst this set of 50,000
clients.

The epoch could be measured in time (e.g., 4 hours), in
a number of write requests (e.g., accumulate 10,000 write
requests before ending the epoch), or by some more com-
plicated condition (e.g., wait for a write request signed



from each of these 150 users identified by a pre-defined
list of public keys). The definition of what constitutes an
epoch is crucial for security, since a client’s anonymity
set is only as large as the number of honest clients who
submit write requests in the same epoch [78].

When using Riposte as a platform for anonymous mi-
croblogging, the rows would be long enough to fit a
Tweet (140 bytes) and the number of rows would be
some multiple of the number of anticipated users. To
anonymously Tweet, a client would use the write-private
database scheme to write its message into a random row
of the database. After many clients have written to
the database, the servers can reveal the clients’ plain-
text Tweets. The write-privacy of the database scheme
prevents eavesdroppers, malicious clients, and coalitions
of malicious servers (smaller than a particular threshold)
from learning which client posted which message.

2.2 Threat Model

Clients in our system are completely untrusted: they may
submit maliciously formed write requests to the system
and may collude with servers or with arbitrarily many
other clients to try to break the security properties of the
system.

Servers in our system are trusted for availability. The
failure—whether malicious or benign—of any one server
renders the database state unrecoverable but does not
compromise the anonymity of the clients. To protect
against benign failures, server maintainers could imple-
ment a single “logical” Riposte server with a cluster of
many physical servers running a standard state-machine-
replication protocol [60, 71].

For each of the cryptographic instantiations of Riposte,
there is a threshold parameter ¢ that defines the number of
malicious servers that the system can tolerate while still
maintaining its security properties. We make no assump-
tions about the behavior of malicious servers—they can
misbehave by publishing their secret keys, by colluding
with coalitions of up to ¢ malicious servers and arbitrar-
ily many clients, or by mounting any other sort of attack
against the system.

The threshold  depends on the particular cryptographic
primitives in use. For our most secure scheme, all but one
of the servers can collude without compromising client
privacy (¢t = |Servers| — 1). For our most efficient scheme,
no two servers can collude (r = 1).

2.3 Security Goals

The Riposte system implements a write-private and
disruption-resistant database scheme. We describe the

correctness and security properties for such a scheme
here.

Definition 1 (Correctness). The scheme is correct if, when
all servers execute the protocol faithfully, the plaintext
state of the database revealed at the end of a protocol run
is equal to the result of applying each valid client write
requests to an empty database (i.e., a database of all ze-
r0s).

Since we rely on all servers for availability, correctness
need only hold when all servers run the protocol correctly.

To be useful as an anonymous bulletin board, the
database scheme must be write-private and disruption re-
sistant. We define these security properties here.

(s,¢)-Write Privacy. Intuitively, the system provides
(s,1)-write-privacy if an adversary’s advantage at guess-
ing which honest client wrote into a particular row of the
database is negligibly better than random guessing, even
when the adversary controls all but two clients and up to
t out of s servers (where 7 is a parameter of the scheme).
We define this property in terms of a privacy game, given
in full in Appendix A.

Definition 2 ((s,7)-Write Privacy). We say that the proto-
col provides (s,t)-write privacy if the adversary’s advan-
tage in the security game of Appendix A is negligible in
the (implicit) security parameter.

Riposte provides a very robust sort of privacy: the ad-
versary can select the messages that the honest clients will
send and can send maliciously formed messages that de-
pend on the honest clients” messages. Even then, the ad-
versary still cannot guess which client uploaded which
message.

Disruption resistance. The system is disruption resistant
if an adversary who controls n clients can write into at
most n database rows during a single time epoch. A sys-
tem that lacks disruption resistance might be susceptible
to denial-of-service attacks: a malicious client could cor-
rupt every row in the database with a single write request.
Even worse, the write privacy of the system might prevent
the servers from learning which client was the disruptor.
Preventing such attacks is a major focus of prior anony-
mous messaging schemes [18, 44, 50, 80, 82]. Under our
threat model, we trust all servers for availability of the
system (though not for privacy). Thus, our definition of
disruption resistance concerns itself only with clients at-
tempting to disrupt the system—we do not try to prevent
servers from corrupting the database state.



We formally define disruption resistance using the fol-
lowing game, played between a challenger and an adver-
sary. In this game, the challenger plays the role of all of
the servers and the adversary plays the role of all clients.

1. The adversary sends n write requests to the chal-
lenger (where n is less than or equal to the number
of rows in the database).

2. The challenger runs the protocol for a single time
epoch, playing the role of the servers. The challenger
then combines the servers’ database shares to reveal
the plaintext output.

The adversary wins the game if the plaintext output
contains more than n non-zero rows.

Definition 3 (Disruption Resistance). We say that the pro-
tocol is disruption resistant if the probability that the ad-
versary wins the game above is negligible in the (implicit)
security parameter.

2.4 Intersection Attacks

Riposte makes it infeasible for an adversary to determine
which client posted which message within a particular
time epoch. If an adversary can observe traffic patterns
across many epochs, as the set of online clients changes,
the adversary can make statistical inferences about which
client is sending which stream of messages [30,57, 61].
These “intersection” or “statistical disclosure” attacks af-
fect many anonymity systems and defending against them
is an important, albeit orthogonal, problem [61,81]. Even
S0, intersection attacks typically become more difficult to
mount as the size of the anonymity set increases, so Ri-
poste’s support for very large anonymity sets makes it less
vulnerable to these attacks than are many prior systems.

3 System Architecture

As described in the prior section, a Riposte deployment
consists of a small number of servers, who maintain the
database state, and a large number of clients. To write
into the database, a client splits its write request using se-
cret sharing techniques and sends a single share to each
of the servers. Each server updates its database state us-
ing the client’s share. After collecting write requests from
many clients, the servers combine their shares to reveal
the plaintexts represented by the write requests. The secu-
rity requirement is that no coalition of ¢ servers can learn
which client wrote into which row of the database.

3.1 A First-Attempt Construction:
Toy Protocol

As a starting point, we sketch a simple “straw man”
construction that demonstrates the techniques behind our
scheme. This first-attempt protocol shares some design
features with anonymous communication schemes based
on client/server DC-nets [18, 82].

In the simple scheme, we have two servers, A and B,
and each server stores an L-bit bitstring, initialized to
all zeros. We assume for now that the servers do not
collude—i.e., that one of the two servers is honest. The
bitstrings represent shares of the database state and each
“row” of the database is a single bit.

Consider a client who wants to write a “1” into row /¢
of the database. To do so, the client generates a random
L-bit bitstring r. The client sends r to server A and r P e/
to server B, where ¢, is an L-bit vector of zeros with a one
at index ¢ and @ denotes bitwise XOR. Upon receiving
the write request from the client, each server XORs the
received string into its share of the database.

After processing n write requests, the database state at
server A will be:

dy=ri®---Dry
and the database at server B will be:

dB:(eél@"'@eén)@(rl@“'@”n)
:(EzIGB-HEBEz,,)EBdA

At the end of the time epoch, the servers can reveal
the plaintext database by combining their local states
dy and dp.

The construction generalizes to fields larger than [».
For example, each “row” of the database could be a k-bit
bitstring instead of a single bit. To prevent impersonation,
network-tampering, and replay attacks, we use authenti-
cated and encrypted channels with per-message nonces
bound to the time epoch identifier.

This protocol satisfies the write-privacy property as
long as the two servers do not collude (assuming that the
clients and servers deploy the replay attack defenses men-
tioned above). Indeed, server A can information theoreti-
cally simulate its view of a run of the protocol given only
er, -~ Dey, as input. A similar argument shows that the
protocol is write-private with respect to server B as well.

This first-attempt protocol has two major limitations.
The first limitation is that it is not bandwidth-efficient. If
millions of clients want to use the system in each time
epoch, then the database must be at least millions of bits
in length. To flip a single bit in the database then, each



client must send millions of bits to each database, in the
form of a write request.

The second limitation is that it is not disruption resis-
tant: a malicious client can corrupt the entire database
with a single malformed request. To do so, the malicious
client picks random L-bit bitstrings r and 7/, sends r to
server A, and sends 7’ (instead of » @ e/) to server B. Thus,
a single malicious client can efficiently and anonymously
deny service to all honest clients.

Improving bandwidth efficiency and adding disruption
resistance are the two core contributions of this work, and
we return to them in Sections 4 and 5.

3.2 Collisions

Putting aside the issues of bandwidth efficiency and dis-
ruption resistance for the moment, we now discuss the is-
sue of colliding writes to the shared database. If clients
write into random locations in the database, there is some
chance that one client’s write request will overwrite a pre-
vious client’s message. If client A writes message m4 into
location ¢, client B might later write message mp into the
same location /. In this case, row ¢ will contain my & mp,
and the contents of row ¢ will be unrecoverable.

To address this issue, we set the size of the database ta-
ble to be large enough to accommodate the expected num-
ber of write requests for a given “success rate.” For exam-
ple, the servers can choose a table size that is large enough
to accommodate 2! write requests such that 95% of write
requests will not be involved in a collision (in expecta-
tion). Under these parameters, 5% of the write requests
will fail and those clients will have to resubmit their write
requests in a future time epoch.

We can determine the appropriate table size by solving
a simple “balls and bins” problem. If we throw m balls
independently and uniformly at random into n bins, how
many bins contain exactly one ball? Here, the m balls
represent the write requests and the n bins represent the
rows of the database.

Let B;; be the probability that ball 7 falls into bin j. For

alliand j, Pr[B;j] = 1/n. Let 051) be the event that exactly
one ball falls into bin i. Then

Pr [OEI)} = % (1 _ %)M

Expanding using the binomial theorem and ignoring low
order terms we obtain

o] = 2= (3) 3 (5)

where the approximation ignores terms of order (m/n)*
and o(1/n). Then n- Pr[OEl) | is the expected number of

bins with exactly one ball which is the expected number
of messages successfully received. Dividing this quantity
by m gives the expected success rate so that:

1 2
E[SuccessRate] = i Pr[OEl)] VS P (ﬂ)
m n 2\n
So, if we want an expected success rate of 95% then we
need n =~ 19.5m. For example, with m = 20 writers, we
would use a table of size n ~ 20,000.

Handling collisions. We can shrink the table size n by
coding the writes so that we can recover from collisions.
We show how to handle two-way collisions. That is,
when at most two clients write to the same location in the
database. Let us assume that the messages being written
to the database are elements in some field F of odd char-
acteristic (say F = F, where p = 25 —59). We replace
the XOR operation used in the basic scheme by addition
in [F.

To recover from a two-way collision we will need to
double the size of each cell in the database, but the overall
number of cells n will shrink by more than a factor of two.

When a client A wants to write the message my € F
to location ¢ in the database the client will actually write
the pair (ma,mj) € F? into that location. Clearly if no
collision occurs at location ¢ then recovering my at the end
of the epoch is trivial: simply drop the second coordinate
(it is easy to test that no collision occurred because the
second coordinate is a square of the first). Now, suppose
a collision occurs with some client B who also added her
own message (mp,m%) € F? to the same location ¢ (and
no other client writes to location £). Then at the end of the
epoch the published values are

Si=ma+mp (mod p) and S,=mi+m% (mod p)

From these values it is quite easy to recover both my4 and
mp by observing that
28, — 87 = (ma—mp)* (mod p)

from which we obtain m4 — mp by taking a square root
modulo p (it does not matter which of the two square roots
we use—they both lead to the same result). Since S| =
ma -+ mp is also given it is now easy to recover both iy
and mp.

Now that we can recover from two-way collisions we

can shrink the number of cells 7 in the table. Let 01(2) be

the event that exactly two balls fell into bin i. Then the
expected number of received messages is

nPr0"] +2nPr[0?)] (1



where Pr[0\”)] = (5)=(1- %)miz. As before, dividing
the expected number of received messages (1) by m, ex-
panding using the binomial theorem, and ignoring low or-
der terms gives the expected success rate as:

1 /m\2 1 /m\3

E[SuccessRate| ~ 1 3 (n) + 3 (n)
So, if we want an expected success rate of 95% we need
a table with n =~ 2.7m cells. This is a far smaller table
than before, when we could not handle collisions. In that
case we needed n ~ 19.5m which results in much bigger
tables, despite each cell being half as big. Shrinking the
table reduces the storage and computational burden on the
servers.

This two-way collision handling technique generalizes
to handle k-way collisions for £k > 2. To handle k-way
collisions, we increase the size of each cell by a factor of
k and have each client i write (m,-,miz, e ,m{‘) € F* to its
chosen cell. A k-collision gives k equations in k variables
that can be efficiently solved to recover all k messages, as
long as the characteristic of [F is greater than k [12, 20].
Using k > 2 further reduces the table size as the desired
success rate approaches one.

The collision handling method described in this section
will also improve performance of our full system, which
we describe in the next section.

Adversarial collisions. The analysis above assumes that
clients behave honestly. Adversarial clients, however,
need not write into random rows of the database—i.e., all
m balls might not be thrown independently and uniformly
at random. A coalition of clients might, for example, try
to increase the probability of collisions by writing into the
database using some malicious strategy.

By symmetry of writes we can assume that all 7z adver-
sarial clients write to the database before the honest clients
do. Now a message from an honest client is properly re-
ceived at the end of an epoch if it avoids all the cells filled
by the malicious clients. We can therefore carry out the
honest client analysis above assuming the database con-
tain n — 71 cells instead of n cells. In other words, given a
bound 771 on the number of malicious clients we can cal-
culate the required table size n. In practice, if too many
collisions are detected at the end of an epoch the servers
can adaptively double the size of the table so that the next
epoch has fewer collisions.

3.3 Forward Security

Even the first-attempt scheme sketched in Section 3.1 pro-
vides forward security in the event that all of the servers’

secret keys are compromised [17]. To be precise: an ad-
versary could compromise the state and secret keys of all
servers after the servers have processed n write requests
from honest clients, but before the time epoch has ended.
Even in this case, the adversary will be unable to deter-
mine which of the n clients submitted which of the n plain-
text messages with a non-negligible advantage over ran-
dom guessing. (We assume here that clients and servers
communicate using encrypted channels which themselves
have forward secrecy [56].)

This forward security property means that clients need
not trust that S — ¢ servers stay honest forever—just that
they are honest at the moment when the client submits its
upload request. Being able to weaken the trust assumption
about the servers in this way might be valuable in hostile
environments, in which an adversary could compromise a
server at any time without warning.

Mix-nets do not have this property, since servers must
accumulate a set of onion-encrypted messages before
shuffling and decrypting them [19]. If an adversary al-
ways controls the first mix server and if it can compro-
mise the rest of the mix servers after accumulating a set
of ciphertexts, the adversary can de-anonymize all of the
system’s users. DC-net-based systems that use “blame”
protocols to retroactively discover disruptors have a simi-
lar weakness [25, 82].

The full Riposte protocol maintains this forward secu-
rity property.

4 Improving Bandwidth Efficiency
with Distributed Point Functions

This section describes how application of private informa-
tion retrieval techniques can improve the bandwidth effi-
ciency of the first-attempt protocol.

Notation. The symbol F denotes an arbitrary finite field,
Zy is the ring of integers modulo L. We use e; € FL to
represent a vector that is zero everywhere except at index
¢ € 7, where it has value “1.” Thus, for m € IF, the vector
m-e; € FL is the vector whose value is zero everywhere
except at index ¢, where it has value m. For a finite set S,
the notation x < S indicates that the value of x is sampled
independently and uniformly at random from S. The ele-
ment v[i] is the value of a vector v at index i. We index
vectors starting at zero.

4.1 Definitions

The bandwidth inefficiency of the protocol sketched
above comes from the fact that the client must send an



L-bit vector to each server to flip a single bit in the logical
database. To reduce this O(L) bandwidth overhead, we
apply techniques inspired by private information retrieval
protocols [21,22,43].

The problem of private information retrieval (PIR) is
essentially the converse of the problem we are interested
in here. In PIR, the client must read a bit from a replicated
database without revealing to the servers the index being
read. In our setting, the client must write a bit into a repli-
cated database without revealing to the servers the index
being written. Ostrovsky and Shoup first made this con-
nection in the context of a “private information storage”
protocol [72].

PIR schemes allow the client to split its query to the
servers into shares such that (1) a subset of the shares does
not leak information about the index of interest, and (2)
the length of the query shares is much less than the length
of the database. The core building block of many PIR
schemes, which we adopt for our purposes, is a distributed
point function. Although Gilboa and Ishai [43] defined
distributed point functions as a primitive only recently,
many prior PIR schemes make implicit use the primi-
tive [21,22]. Our definition of a distributed point function
follows that of Gilboa and Ishai, except that we generalize
the definition to allow for more than two servers.

First, we define a (non-distributed) point function.

Definition 4 (Point Function). Fix a positive integer L and
afinite field F. Forall ¢ € Z; and m € F, the point function
Py Zy — T is the function such that Py ,,(¢) = m and
Prp(l') =0 forall ¢ #10'.

That is, the point function P, has the value 0 when
evaluated at any input not equal to ¢ and it has the value m
when evaluated at /. For example, if L=5 and F =T, the
point function P; ; takes on the values (0,0,0,1,0) when
evaluated on the values (0,1,2,3,4) (note that we index
vectors from zero).

An (s,)-distributed point function provides a way to
distribute a point function P, amongst s servers such that
no coalition of at most 7 servers learns anything about ¢ or
m given their ¢ shares of the function.

Definition 5 (Distributed Point Function (DPF)). Fix a
positive integer L and a finite field F. An (s,t)-distributed
point function consists of a pair of possibly randomized
algorithms that implement the following functionalities:
e Gen({,m) — (ko,...,ks—1). Given an integer { € Zy,
and value m € F, output a list of s keys.
e Eval(k,{') — m'. Given a key k generated using Gen,
and an index V' € 7y, return a value m' € TF.

We define correctness and privacy for a distributed
point function as follows:

e Correctness. For a collection of s keys generated
using Gen (¢, m), the sum of the outputs of these keys
(generated using Eval) must equal the point function
Py u. More formally, for all £,¢" € Z; and m € F:

Pr[(ko, ... ks—1) < Gen(¢,m) :
X Eval(ki, 0) = Pry(€)] = 1

where the probability is taken over the randomness
of the Gen algorithm.

e Privacy. Let S be any subset of {0,...,s — 1} such
that |S| <t. Then forany ¢ € Z; and m € F, let Dg ¢,
denote the distribution of keys {(k;) | i € S} induced
by (ko,...,ks—1) < Gen(¢,m). We say that an (s,7)-
DPF maintains privacy if there exists a p.p.t. algo-
rithm Sim such that the following distributions are
computationally indistinguishable:

Dg ¢ = Sim(S)

That is, any subset of at most ¢ keys leaks no informa-
tion about £ or m. (We can also strengthen this defi-
nition to require statistical or perfect indistinguisha-
bility.)

Toy Construction. To make this definition concrete, we
first construct a trivial information-theoretically secure
(s,5 — 1)-distributed point function with length-L keys.
As above, we fix a length L and a finite field [F.
e Gen(¢,m) — (ko,...,ks—1). Generate random vec-
tors ko, ... ,ks—2 € FL. Set ky_j = m-e; — X 3k;.
e Eval(k,/') — m'. Interpret k as a vector in . Return
the value of the vector k at index £
The correctness property of this construction follows im-
mediately. Privacy is maintained because the distribution
of any collection of s — 1 keys is independent of £ and m.
This toy construction uses length-L keys to distribute a
point function with domain Z;. Later in this section we
describe DPF constructions which use much shorter keys.

4.2 Applying Distributed Point Functions
for Bandwidth Efficiency

We can now use DPFs to improve the efficiency of the
write-private database scheme introduced in Section 3.1.
We show that the existence of an (s,7)-DPF with keys
of length |k| (along with standard cryptographic assump-
tions) implies the existence of write-private database
scheme using s servers that maintains anonymity in the
presence of ¢ malicious servers, such that write requests
have length s|k|. Any DPF construction with short keys



thus immediately implies a bandwidth-efficient write-
private database scheme.

The construction is a generalization of the one pre-
sented in Section 3.1. We now assume that there are s
servers such that no more than ¢ of them collude. Each
of the s servers maintains a vector in F~ as their database
state, for some fixed finite field F and integer L. Each
“row” in the database is now an element of [F and the
database has L rows.

When the client wants to write a message m € [F into
location ¢ € Zy in the database, the client uses an (s,7)-
distributed point function to generate a set of s DPF keys:

(ko, .. ks—1) « Gen(£,m)

The client then sends one of the keys to each of the
servers. Each server i can then expand the key into a
vector v € FE by computing v(¢') = Eval(k;, ') for ¢ =
0,...,L— 1. The server then adds this vector v into its
database state, using addition in FL. At the end of the
time epoch, all servers combine their database states to
reveal the set of client-submitted messages.

Correctness. The correctness of this construction follows
directly from the correctness of the DPF. For each of the
n write requests submitted by the clients, denote the j-th
key in the i-th request as k; ;, denote the write location as
¢;, and the message being written as ;. When the servers
combine their databases at the end of the epoch, the con-
tents of the final database at row ¢ will be:

n—1s—

d=Y

1 n—1
Eval(k,',j,ﬁ) = Z Pé,-,m,- (é) eF
i=0 j=0 =0

In words: as desired, the combined database contains the
sum of n point functions—one for each of the write re-
quests.

Anonymity. The anonymity of this construction follows
directly from the privacy property of the DPF. Given the
plaintext database state d (as defined above), any coali-
tion of ¢ servers can simulate its view of the protocol. By
definition of DPF privacy, there exists a simulator Sim,
which simulates the distribution of any subset of + DPF
keys generated using Gen. The coalition of servers can
use this simulator to simulate each of the n write requests
it sees during a run of the protocol. Thus, the servers can
simulate their view of a protocol run and cannot win the
anonymity game with non-negligible advantage.

Efficiency. A client in this scheme sends || bits to each
server (where k is a DPF key), so the bandwidth efficiency
of the scheme depends on the efficiency of the DPF. As
we will show later in this section, |k| can be much smaller
than the length of the database.

4.3 A Two-Server Scheme Tolerating One
Malicious Server

Having established that DPFs with short keys lead to
bandwidth-efficient write-private database schemes, we
now present one such DPF construction. This construc-
tion is a simplification of computational PIR scheme of
Chor and Gilboa [21].

This is a (2,1)-DPF with keys of length O(v/L) op-
erating on a domain of size L. This DPF yields a two-
server write-private database scheme tolerating one ma-
licious server such that writing into a database of size L
requires sending O(v/L) bits to each server. Gilboa and
Ishai [43] construct a (2,1)-DPF with even shorter keys
(|k| = polylog(L)), but the construction presented here is
efficient enough for the database sizes we use in practice.
Although the DPF construction works over any field, we
describe it here using the binary field F = [F (the field of
k-bit bitstrings) to simplify the exposition.

When Eval(k,¢') is run on every integer ¢’ € {0,...,L—
1}, its output is a vector of L field elements. The DPF
key construction conceptually works by representing this
a vector of L field elements as an x X y matrix, such that
xy > L. The trick that makes the construction work is that
the size of the keys needs only to grow with the size of
the sides of this matrix rather than its area. The DPF keys
that Gen(¢,m) outputs give an efficient way to construct
two matrices My and Mp that differ only at one cell ¢ =
(Uy,by) € Zy x Zy (Figure 2).

Fix a binary finite field F = F,:, a DPF domain size
L, and integers x and y such that xy > L. (Later in this
section, we describe how to choose x and y to minimize
the key size.) The construction requires a pseudo-random
generator (PRG) G that stretches seeds from some space S
into length-y vectors of elements of [F [53]. So the signa-
ture of the PRG is G : S — F”. In practice, an implemen-
tation might use AES-128 in counter mode as the pseudo-
random generator [69].

The algorithms comprising the DPF are:

o Gen(l,m) — (ka,kg). Compute integers ¢, € Z, and
¢y € Zy such that ¢ = £,y + {,. Sample a random bit-
vector by <~ {0, 1}*, a random vector of PRG seeds
s4 <= 5%, and a single random PRG seed 57 < S.
Given by and s4, we define bp and sp as:

ba = (bo,...,by,...,bx_1)
bg = (bo,...,by,,...,by1)
SA = (505380, ,Sx—1)
SB = (50,80 5-->Sx—1)

That is, the vectors by and bp (similarly s4 and sp)
differ only at index /.
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Figure 2: Left: We represent the output of Eval as an x x y matrix of field elements. Left-center: Construction of the
v vector used in the DPF keys. Right: using the v, s, and b vectors, Eval expands each of the two keys into an x X y
matrix of field elements. These two matrices sum to zero everywhere except at (¢x, ¢,) = (3,4), where they sum to m.

Letm- ey, be the vector in F of all zeros except that it
has value m at index £,. Define v < m-e;, +G(s¢,) +
G(s7,)-

The output DPF keys are:
kA:(bA,SA,V) kB:(bB,SB,V)
Eval(k,¢') — m'. Interpret k as a tuple (b,s,v). To
evaluate the PRF at index ¢/, first write ¢ as an
(é;,é;,) tuple such that ¢, € Z,, 5;, € Zy, and ¢’ =

£,y +£;. Use the PRG G to stretch the (i-th seed
of s into a length-y vector: g < G(s[(,]). Return
w  (gle)] + DIV,
Figure 2 graphically depicts how Eval stretches the keys
into a table of x x y field elements.

Correctness. We prove correctness of the scheme in Ap-
pendix B.

Privacy. The privacy property requires that there exists
an efficient simulator that, on input “A” or “B,” outputs
samples from a distribution that is computationally indis-
tinguishable from the distribution of DPF keys k4 or k3.

The simulator Sim simulates each component of the
DPF key as follows: It samples b <* {0,1}, s <* S*, and
v <& F¥. The simulator returns (b, s, v).

We must now argue that the simulator’s output distri-
bution is computationally indistinguishable from that in-
duced by the distribution of a single output of Gen. Since
the b and s vectors outputted by Gen are random, the
simulation is perfect. The v vector outputted by Gen is
computationally indistinguishable from random, since it
is padded with the output of the PRG seeded with a seed
unknown to the holder of the key. An efficient algorithm
to distinguish the simulated v vector from random can
then also distinguish the PRG output from random.

Key Size. A key for this DPF scheme consists of: a vector
in {0,1}*, a vector in S*, and a vector in F*. Let o be
the number of bits required to represent an element of S
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and let B be the number of bits required to represent an
element of IF. The total length of a key is then:

K| = (1+a)x+ By

For fixed spaces S and IF, we can find the optimal choices
of x and y to minimize the key length. To do so, we solve:

min((14+ a)x+ By) subjectto xy>L
X,y

and conclude that the optimal values of x and y are:

1
x=cVL and y=-vL where c:\/i.
c I+a

The key size is then O(\/L).

When using a database table of one million rows in
length (L = 2%°), a row length of 1 KB per row (F =
F,s192), and a PRG seed size of 128 bits (using AES-128,
for example) the keys will be roughly 263 KB in length.
For these parameters, the keys for the naive construction
(Section 3.1) would be 1 GB in length. Application of ef-
ficient DPFs thus yields a 4,000x bandwidth savings in
this case.

Computational Efficiency. A second benefit of this
scheme is that both the Gen and Eval routines are com-
putationally efficient, since they just require performing
finite field additions (i.e., XOR for binary fields) and PRG
operations (i.e., computations of the AES function). The
construction requires no public-key primitives.

4.4 An s-Server Scheme Tolerating s — 1
Malicious Servers

The (2,1)-DPF scheme described above achieved a key
size of O(v/L) bits using only symmetric-key primitives.
The limitation of that construction is that it only maintains
privacy when a single key is compromised. In the context
of a write-private database scheme, this means that the



construction can only maintain anonymity in the presence
of a single malicious server. It would be much better to
have a write-private database scheme with s servers that
maintains anonymity in the presence of s — I malicious
servers. To achieve this stronger security notion, we need
a bandwidth-efficient (s,s — 1)-distributed point function.

In this section, we construct an (s,s — 1)-DPF where
each key has size O(v/L). We do so at the cost of requir-
ing more expensive public-key cryptographic operations,
instead of the symmetric-key operations used in the prior
DPF. While the (2,1)-DPF construction above directly
follows the work of Chor and Gilboa [21], this (s,s —1)-
DPF construction is novel, as far as we know. In recent
work, Boyle et al. present a (s,s — 1)-DPF construction us-
ing only symmetric-key operations, but this construction
exhibits a key size exponential in the number of servers
s [13].

This construction uses a seed-homomorphic pseudo-
random generator [3, 11, 68], to split the key for the
pseudo-random generator G across a collection of s DPF
keys.

Definition 6 (Seed-Homomorphic PRG). A seed-
homomorphic PRG is a pseudo-random generator G
mapping seeds in a group (S,®) to outputs in a group
(G, ®) with the additional property that for any so, s € S:

G(so @ s1) = G(sp) ® G(s1)

It is possible to construct a simple seed-homomorphic
PRG from the decision Diffie-Hellman (DDH) assump-
tion [11,68]. The public parameters for the scheme are list
of y generators chosen at random from an order-g group
G, in which the DDH problem is hard [10]. For example,
if G is an elliptic curve group [62], then the public param-
eters will be y points (Fy,...,P,_1) € G. The seed space
is Z4 and the generator outputs vectors in G”. On input
s € Zg, the generator outputs (sFy,...,sP,_1). The gen-
erator is seed-homomorphic because, for any so,s1 € Zg,
andforalli € {1,...,y}: soP;+s1P = (so+s1)P.

As in the prior DPF construction, we fix a DPF domain
size L, and integers x and y such that xy > L. The con-
struction requires a seed-homomorphic PRG G : S — G,
for some group G of prime order g.

For consistency with the prior DPF construction, we
will write the group operation in G using additive nota-
tion. Thus, the group operation applied component-wise
to vectors u,v € G’ results in the vector (u+v) € G.
Since G has order ¢, gA =0 forall A € G.

The algorithms comprising the (s,s — 1)-DPF are:

e Gen(¢,m) — (ko,...,ks—1). Compute integers £y €

Zy and £y € Zy such that £ = £y +{,. Sample random
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integer-valued vectors by, ..., by_» ¢ (Z,;)*, random

vectors of PRG seeds sg, ...,S;_2 < S*, and a single

random PRG seed s* <* S.

Select by_; € (Z,)* such that &by = e, (mod q)

and select s;_; € S* such that Zi;(l)sk =s5"-e, € G".

Define v <= m- ey, — G(s*).

The DPF key for server i € {0,...,s — 1} is k; =

(bi,S,’,V).

Eval(k,¢') — m'. Interpret k as a tuple (b,s,v). To

evaluate the PRF at index ¢, first write ¢ as an

(¢}, ¢,) tuple such that £\ € Z,, {; € Zy, and ¢
ly+ /). Use the PRG G to stretch the ¢-th seed
of s into a length-y vector: g < G(s[f;]). Return
m' < (g]6]] +b[EIvIEL)).

We omit correctness and privacy proofs, since they fol-
low exactly the same structure as those used to prove se-
curity of our prior DPF construction. The only difference
is that correctness here relies on the fact that G is a seed-
homomorphic PRG, rather than a conventional PRG. As
in the DPF construction of Section 4.3, the keys here are

of length O(v/L).

Computational Efficiency. The main computational cost
of this DPF construction comes from the use of the
seed-homomorphic PRG G. Unlike a conventional PRG,
which can be implemented using AES or another fast
block cipher in counter mode, known constructions of
seed-homomorphic PRGs require algebraic groups [68] or
lattice-based cryptography [3, 11].

When instantiating the (s,s — 1)-DPF with the DDH-
based PRG construction in elliptic curve groups, each
call to the DPF Eval routine requires an expensive ellip-
tic curve scalar multiplication. Since elliptic curve opera-
tions are, per byte, orders of magnitude slower than AES
operations, this (s,s— 1)-DPF will be orders of magnitude
slower than the (2,1)-DPF. Security against an arbitrary
number of malicious servers comes at the cost of compu-
tational efficiency, at least for these DPF constructions.

With DPFs, we can now construct a bandwidth-efficient
write-private database scheme that tolerates one mali-
cious server (first construction) or s — 1 out of s malicious
servers (second construction).

S Preventing Disruptors

The first-attempt construction of our write-private
database scheme (Section 3.1) had two limitations: (1)
client write requests were very large and (2) malicious
clients could corrupt the database state by sending mal-
formed write requests. We addressed the first of these two



challenges in Section 4. In this section, we address the
second challenge.

A client write request in our protocol just consists of
a collection of s DPF keys. The client sends one key to
each of the s servers. The servers must collectively de-
cide whether the collection of s keys is a valid output of
the DPF Gen routine, without revealing any information
about the keys themselves.

One way to view the servers’ task here is as a secure
multi-party computation [47, 83]. Each server i’s private
input is its DPF key k;. The output of the protocol is a
single bit, which determines if the s keys (ko,...,ks_1)
are a well-formed collection of DPF keys.

Since we already rely on servers for availability (Sec-
tion 2.2), we need not protect against servers maliciously
trying to manipulate the output of the multi-party proto-
col. Such manipulation could only result in corrupting the
database (if a malicious server accepts a write request that
it should have rejected) or denying service to an honest
client (if a malicious server rejects a write request that it
should have accepted). Since both attacks are tantamount
to denial of service, we need not consider them.

We do care, in contrast, about protecting client privacy
against malicious servers. A malicious server participat-
ing in the protocol should not gain any additional infor-
mation about the private inputs of other parties, no matter
how it deviates from the protocol specification.

We construct two protocols for checking the validity
of client write requests. The first protocol is computa-
tionally inexpensive, but requires introducing a third non-
colluding party to the two-server scheme. The second
protocol requires relatively expensive zero-knowledge
proofs [36,48, 49, 75], but it maintains security when all
but one of s servers is malicious. Both of these protocols
must satisfy the standard notions of soundness, complete-
ness, and zero-knowledge [16].

Since the publication of this paper, Boyle et al. have
designed a very efficient protocol for checking the well-
formedness of DPF keys [14]. Their checking protocol
provides security against semi-honest (i.e., honest but cu-
rious) servers and requires only a constant amount of
server-to-server communication. If it is possible to extend
their checking protocol to provide security against fully
malicious servers, their new scheme could serve as a more
efficient alternative to the protocols described herein.

5.1 Three-Server Protocol

Our first protocol for detecting malformed write re-
quests works with the (2,1)-DPF scheme presented in
Section 4.3. The protocol uses only hashing and fi-
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nite field additions, so it is computationally inexpensive.
The downside is that it requires introducing a third au-
dit server, which must not collude with either of the
other two servers. This simple protocol draws inspira-
tion from classical secure multi-party computation proto-
cols [35,47,83].

As a warm-up to the full checking protocol, we develop
a three-server protocol called AlmostEqual that we use as
a subroutine to implement the full write-request validation
protocol. The AlmostEqual protocol takes place between
the client and three servers: database server A, database
server B, and an audit server.

Let A be a security parameter (e.g., A = 256). The pro-
tocol uses a hash function H : {0,1}* — {0,1}*, which
we model as a random oracle [6].

At the start of the protocol, database server A holds
a vector v4 € ", and database server B holds a vector
vp € F". The audit server takes no private input. The
client holds both v4 and vg.

The three servers execute a protocol that allows them to
confirm that the vectors v4 and vp are equal everywhere
except at exactly one index, and such that any one mali-
cious server learns nothing about the index at which these
vectors differ, as long as the vectors indeed differ at a sin-
gle index.

More formally, the servers want to execute this check
in such a way that the following properties hold:

— Completeness. If all parties are honest, and v4 and

vp are well formed, then the database servers almost
always accept the vectors as well formed.
Soundness. If v4 and vp do not differ at a single in-
dex, and all three servers are honest, then the servers
will reject the vectors almost always.
Zero knowledge. If v4 and vp are well formed and
the client is honest, then any one actively malicious
server can simulate its view of the protocol execu-
tion. Furthermore, the simulator does not take as in-
put the index at which v4 and vp differ nor the value
of the vectors at that index.

We denote an instance of the three-server protocol as
AlmostEqual(vs,vp), where the arguments denote the
private values that the two database servers take as input.
The protocol proceeds as follows:

1. The client sends a PRG seed o € {0,1}* to both
database servers.

2. Servers A and B use a PRG seeded with the seed
o to sample n pseudorandom values (rg,...,r,—1) €
{0,1}*". The servers also use the seed G to agree
upon a pseudorandom “shift” value f € Z,.



3. Server A computes the values m; < H(v4[i],r;) for
every index i € {0,...,n— 1} and sends to the auditor

my = (Mg, My, My 1,Mmo,...,Ms_1).

The vector my is a blinded version of server A’s in-
put vector v4. Using a secret random value p €
{0,1}* shared with server B (constructed using a
coin-flipping protocol [9], for example), server A
computes a check value ¢4 <— 0 @ p and sends ¢y to
the auditor.

Server B repeats Step 2 with vp.

. Since the client knows vy4, vp, and o, it can compute
my and mp on its own. The client computes digests
dy = H(my) and dg = H(mg), and sends these di-
gests to the audit server.

. The audit server returns “1” to servers A and B if and
only if:

e the vectors it receives from the two servers are
equal at every index except one,

e the values ¢4 and cp are equal, and

e the vectors my and mp satisfy d4 = H(m, ) and
dp = H(mg), where d, and dp are the client-
provided digests.

The auditor returns “0” otherwise.

We include proofs of soundness, correctness, and zero-
knowledge for this construction in Appendix C.

The keys for the (2, 1)-DPF construction have the form

ka = (ba,s4,V) kg = (bg,sp.v).

In a correctly formed pair of keys, the b and s vectors
differ at a single index /;, and the v vector is equal to
v=m-er, +G(sa[lx]) + G(spllx]).

To determine whether a pair of keys is correct, server
A constructs a test vector t4 such that t4[i] = ba[i]|[sali]
for i € {0,...,x — 1}. (where | denotes concatenation).
Server B constructs a test vector tp in the same way and
the two servers, along with the client and the auditor, run
the protocol AlmostEqual(t4, tg). If the output of this pro-
tocol is “1,” then the servers conclude that their b and s
vectors differ at a single index, though the protocol does
not reveal to the servers which index this is. Otherwise,
the servers reject the write request.

Next, the servers must verify that the v vector is well-
formed. To do so, the servers compute another pair of test
vectors:

x—1
ug =v+ Y G(sgli]).
i=0

x—1
uy =Y G(sali)
i—0

1

13

The client and servers run AlmostEqual(u4,ug) and ac-
cept the write request as valid if it returns “1.”

We prove security of this construction in Appendix D.

An important implementation note is that if m = 0—
that is, if the client writes the string of all zeros into the
database—then the u vectors will not differ at any index
and this information is leaked to the auditor. The protocol
only provides security if the vectors differ at exactly one
index. To avoid this information leakage, client requests
must be defined such that m # 0 in every write request. To
achieve this, clients could define some special non-zero
value to indicate “zero” or could use a padding scheme to
ensure that zero values occur with negligible probability.

As a practical matter, the audit server needs to be
able to match up the portions of write requests coming
from server A with those coming from server B. Riposte
achieves this as follows: When the client sends its upload
request to server A, the client includes a cryptographic
hash of the request it sent to server B (and vice versa).
Both servers can use these hashes to derive a common
nonce for the request. When the servers send audit re-
quests to the audit server, they include the nonce for the
write request in question. The audit server can use the
nonce to match every audit request from server A with the
corresponding request from server B.

This three-party protocol is very efficient—it only re-
quires O(+/L) applications of a hash function and O(v/L)
communication from the servers to the auditor. The audi-
tor only performs a simple string comparison, so it needs
minimal computational and storage capabilities.

5.2 Zero Knowledge Techniques

Our second technique for detecting disruptors makes use
of non-interactive zero-knowledge proofs [15,49,75].

We apply zero-knowledge techniques to allow clients
to prove the well-formedness of their write requests.
This technique works in combination with the (s,s —1)-
DPF presented in Section 4.4 and maintains client write-
privacy when all but one of s servers is dishonest.

The keys for the (s,s — 1)-DPF scheme are tuples
(bi,s;,v) such that:

s—1 s—1
Y bi=e, Y si=s"e v=m-es —G(s")
i=0 i=0

To prove that its write request was correctly formed, we
have the client perform zero-knowledge proofs over col-
lections of Pedersen commitments [73]. The public pa-
rameters for the Pedersen commitment scheme consist of
a group G of prime order ¢ and two generators P and Q of



G such that no one knows the discrete logarithm log, P.
A Pedersen commitment to a message m € Z, with ran-
domness r € Zy is C(m,r) = (mP+rQ) € G (writing the
group operation additively). Pedersen commitments are
homomorphic, in that given commitments to mq and m;,
it is possible to compute a commitment to mg + m:

C(mg,ro) +C(my,r1) = C(mo+my,ro+r1)

Here, we assume that the (s,s — 1)-DPF is instantiated
with the DDH-based PRG introduced in Section 4.4 and
that the group G used for the Pedersen commitments is
the same order-g group used in the PRG construction.

To execute the proof, the client first generates Peder-
sen commitments to elements of each of the s DPF keys.
Then each server i can verify that the client computed the
commitment to the i-th DPF key elements correctly. The
servers use the homomorphic property of Pedersen com-
mitments to generate commitments to the sum of the ele-
ments of the DPF keys. Finally, the client proves in zero
knowledge that these sums have the correct values.

The protocols proceed as follows:

1. The client generates vectors of Pedersen commit-
ments B; and S; committing to each element of b;
and s;. The client sends the B and S vectors to every
server.

. To server i, the client sends the opening of the com-
mitments B; and S;. Each server i verifies that B;
and S; are valid commitments to the b; and s; vectors
in the DPF key. If this check fails at some server i,
server i notifies the other servers and all servers reject
the write request.

. Using the homomorphic property of the commit-
ments, each server can compute vectors of com-
mitments Bgyn and Squm to the vectors Zf;lbi and
ys-lg

i=0 i+

. Using a non-interactive zero-knowledge proof, the
client proves to the servers that By, and Sy, are
commitments to zero everywhere except at a single
(secret) index £y, and that Bgy,[¢,] is a commitment
to one.! This proof uses standard witness hiding
techniques for discrete-logarithm-based zero knowl-
edge proofs [15,27]. If the proof is valid, the servers
continue to check the v vector.

This first protocol convinces each server that the b and
s components of the DPF keys are well formed. Next, the
servers check the v component:

ITechnically, this is a zero-knowledge proof of knowledge which proves
that the client knows an opening of the commitments to the stated val-
ues.
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—

. For each server i, the client sums up the seed values
s; it sent to server i: O; Zj;(l)si [7]. The client then
generates the output of G(0}) and blinds it:

).

G = (0;P +11Q, 6:P, + 10, ..

. The client sends the G values to all servers and the
client sends the opening of G; to each server i.

Each server verifies that the openings are correct, and
all servers reject the write request if this check fails
at any server.

. Using the homomorphic property of Pedersen com-
mitments, every server can compute a vector of com-
mitments Ggym = (Zf;(; G;) +v. If v is well formed,
then the Gy, vector contain commitments to zero
at every index except one (at which it will contain a
commitment to the client’s message m).

. The client uses a non-interactive zero-knowledge
proof to convince the servers that the vector of com-
mitments Gy, contains commitments to zero at all
indexes except one. If the proof is valid, the servers
accept the write request.

We prove in Appendix E that this protocol satisfies the
standard notions of soundness, completeness, and zero-
knowledge [16].

6 Experimental Evaluation

To demonstrate that Riposte is a practical platform for
traffic-analysis-resistant anonymous messaging, we im-
plemented two variants of the system. The first vari-
ant uses the two-server distributed point function (Sec-
tion 4.3) and uses the three-party protocol (Section 5.1)
to prevent malicious clients from corrupting the database.
This variant is relatively fast, since it relies primarily on
symmetric-key primitives, but requires that no two of the
three servers collude. Our results for the first variant
include the cost of identifying and excluding malicious
clients.

The second variant uses the s-server distributed point
function (Section 4.4). This variant protects against s — 1
colluding servers, but relies on expensive public-key op-
erations. We have not implemented the zero-knowledge
proofs necessary to prevent disruptors for the s-server pro-
tocol (Section 5.2), so the performance numbers represent
only an upper bound on the system throughput.

We wrote the prototype in the Go programming lan-
guage and have published the source code online at



https://bitbucket.org/henrycg/riposte/. We
used the DeterLab network testbed for our experi-
ments [63]. All of the experiments used commodity
servers running Ubuntu 14.04 with four-core AES-NI-
enabled Intel E3-1260L CPUs and 16 GB of RAM.

Our experimental network topology used between two
and ten servers (depending on the protocol variant in use)
and eight client nodes. In each of these experiments, the
eight client machines used many threads of execution to
submit write requests to the servers as quickly as possi-
ble. In all experiments, the server nodes connected to
a common switch via 100 Mbps links, the clients nodes
connected to a common switch via 1 Gbps links, and
the client and server switches connected via a 1 Gbps
link. The round-trip network latency between each pair
of nodes was 20 ms. We chose this network topology to
limit the bandwidth between the servers to that of a fast
WAN, but to leave client bandwidth unlimited so that the
small number of client machines could saturate the servers
with write requests.

Error bars in the charts indicate the standard deviation
of the throughput measurements.

6.1 Three-Server Protocol

A three-server Riposte cluster consists of two database
servers and one audit server. The system maintains its
security properties as long as no two of these three servers
collude. We have fully implemented the three-server pro-
tocol, including the audit protocol (Section 5.1), so the
throughput numbers listed here include the cost of detect-
ing and rejecting malicious write requests.

The prototype used AES-128 in counter mode as the
pseudo-random generator, Poly1305 as the keyed hash
function used in the audit protocol [8], and TLS for link
encryption.

Figure 3 shows how many client write requests our Ri-
poste cluster can service per second as the number of 160-
byte rows in the database table grows. For a database table
of 64 rows, the system handles 751.5 write requests per
second. At a table size of 65,536 rows, the system han-
dles 32.8 requests per second. At a table size of 1,048,576
rows, the system handles 2.86 requests per second.

We chose the row length of 160 bytes because it was the
smallest multiple of 32 bytes large enough to to contain a
140-byte Tweet. Throughput of the system depends only
the total size of the table (number of rows x row length),
so larger row lengths might be preferable for other appli-
cations. For example, an anonymous email system using
Riposte with 4096-byte rows could handle 2.86 requests
per second at a table size of 40,960 rows.
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Figure 4: Use of bandwidth-efficient DPFs gives a 768 x
speed-up over the naive constructions, in which a client’s
request is as large as the database.

An upper bound on the performance of the system is
the speed of the pseudo-random generator used to stretch
out the DPF keys to the length of the database table. The
dashed line in Figure 3 indicates this upper bound (605
MBY/s), as determined using an AES benchmark written in
Go. That line indicates the maximum possible through-
put we could hope to achieve without aggressive opti-
mization (e.g., writing portions of the code in assembly)
or more powerful machines. Migrating the performance-
critical portions of our implementation from Go to C (us-
ing OpenSSL) might increase the throughput by a fac-
tor of as much as 6 x, since openssl speed reports AES
throughput of 3.9 GB/s, compared with the 605 MB/s we
obtain with Go’s crypto library. At very small table sizes,
the speed at which the server can set up TLS connections
with the clients limits the overall throughput to roughly
900 requests per second.

Figure 4 demonstrates how the request throughput
varies as the width of the table changes, while the num-
ber of bytes in the table is held constant at 10 MB. This
figure demonstrates the performance advantage of using
a bandwidth-efficient O(v/L) DPF (Section 4) over the
naive DPF (Section 3.1). Using a DPF with optimal ta-
ble size yields a throughput of 38.4 requests per sec-
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Figure 5: The total client and server data transfer scales
sub-linearly with the size of the database.

ond. The extreme left and right ends of the figure indi-
cate the performance yielded by the naive construction, in
which making a write request involves sending a (1 x L)-
dimension vector to each server. At the far right extreme
of the table, performance drops to 0.05 requests per sec-
ond, so DPFs yield a 768 x speed-up.

Figure 5 indicates the total number of bytes transferred
by one of the database servers and by the audit server
while processing a single client write request. The dashed
line at the top of the chart indicates the number of bytes
a client would need to send for a single write request if
we did not use bandwidth-efficient DPFs (i.e., the dashed
line indicates the size of the database table). As the fig-
ure demonstrates, the total data transfer in a Riposte clus-
ter scales sub-linearly with the database size. When the
database table is 2.5 GB in size, the database server trans-
fers only a total of 1.23 MB to process a write request.

6.2 s-Server Protocol

In some deployment scenarios, having strong protection
against server compromise may be more important than
performance or scalability. In these cases, the s-server
Riposte protocol provides the same basic functionality as
the three-server protocol described above, except that it
maintains privacy even if s — 1 out of s servers collude
or deviate arbitrarily from the protocol specification. We
implemented the basic s-server protocol but have not yet
implemented the zero-knowledge proofs necessary to pre-
vent malicious clients from corrupting the database state
(Section 5.2). These performance figures thus represent
an upper bound on the s-server protocol’s performance.
Adding the zero-knowledge proofs would require an addi-
tional ®(+/L) elliptic curve operations per server in an L-
row database. The computational cost of the proofs would
almost certainly be dwarfed by the @ (L) elliptic curve op-
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Figure 6: Throughput of an eight-server Riposte cluster
using the (8,7)-distributed point function.

erations required to update the state of the database table.

The experiments use the DDH-based seed-
homomorphic pseudo-random generator described
in Section 4.4 and they use the NIST P-256 elliptic curve
as the underlying algebraic group. The table row size is
fixed at 160 bytes.

Figure 6 demonstrates the performance of an eight-
server Riposte cluster as the table size increases. At a
table size of 1,024 rows, the cluster can process one re-
quest every 3.44 seconds. The limiting factor is the rate
at which the servers can evaluate the DDH-based pseudo-
random generator (PRG), since computing each 32-byte
block of PRG output requires a costly elliptic curve scalar
multiplication. The dashed line in the figure indicates the
maximum throughput obtainable using Go’s implementa-
tion of P-256 on our servers, which in turn dictates the
maximum cluster throughput. Processing a single request
with a table size of one million rows would take nearly
one hour with this construction, compared to 0.3 seconds
in the AES-based three-server protocol.

Figure 7 shows how the throughput of the Riposte clus-
ter changes as the number of servers varies. Since the
workload is heavily CPU-bound, the throughput only de-
creases slightly as the number of servers increases from
two to ten.

6.3 Discussion: Whistleblowing and
Microblogging with Million-User
Anonymity Sets

Whistleblowers, political activists, or others discussing
sensitive or controversial issues might benefit from an
anonymous microblogging service. A whistleblower, for
example, might want to anonymously blog about an in-
stance of bureaucratic corruption in her organization.
The utility of such a system depends on the size of the
anonymity set it would provide: if a whistleblower is only
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Figure 7: Throughput of Riposte clusters using two differ-
ent database table sizes as the number of servers varies.

anonymous amongst a group of ten people, it would be
easy for the whistleblower’s employer to retaliate against
everyone in the anonymity set. Mounting this “punish-
them-all” attack does not require breaking the anonymity
system itself, since the anonymity set is public. As the
anonymity set size grows, however, the feasibility of the
“punish-them-all” attack quickly tends to zero. At an
anonymity set size of 1,000,000 clients, mounting an
“punish-them-all” attack would be prohibitively expen-
sive in most situations.

Riposte can handle such large anonymity sets as long
as (1) clients are willing to tolerate hours of messaging
latency, and (2) only a small fraction of clients writes into
the database in each time epoch. Both of these require-
ments are satisfied in the whistleblowing scenario. First,
whistleblowers might not care if the system delays their
posts by a few hours. Second, the vast majority of users
of a microblogging service (especially in the whistleblow-
ing context) are more likely to read posts than write them.
To get very large anonymity sets, maintainers of an anony-
mous microblogging service could take advantage of the
large set of “read-only” users to provide anonymity for the
relatively small number of “read-write” users.

The client application for such a microblogging ser-
vice would enable read-write users to generate and sub-
mit Riposte write requests to a Riposte cluster running the
microblogging service. However, the client application
would also allow read-only users to submit an “empty”
write request to the Riposte cluster that would always
write a random message into the first row of the Riposte
database. From the perspective of the servers, a read-only
client would be indistinguishable from a read-write client.
By leveraging read-only users in this way, we can increase
the size of the anonymity set without needing to increase
the size of the database table.

To demonstrate that Riposte can support very large
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anonymity set sizes—albeit with high latency—we con-
figured a cluster of Riposte servers with a 65,536-row
database table and left it running for 32 hours. In that
period, the system processed a total of 2,895,216 write
requests at an average rate of 25.19 requests per second.
(To our knowledge, this is the largest anonymity set ever
constructed in a system that offers protection against traf-
fic analysis attacks.) Using the techniques in Section 3.2,
a table of this size could handle 0.3% of users writing at
a collision rate of under 5%. Thus, to get an anonymity
set of roughly 1,000,000 users with a three-server Riposte
cluster and a database table of size 65,536, the time epoch
must be at least 11 hours long.

As of 2013, Twitter reported an average throughput of
5,700 140-byte Tweets per second [58]. That is equiva-
lent roughly 5,000 of our 160-byte messages per second.
At a table size of one million messages, our Riposte clus-
ter’s end-to-end throughput is 2.86 write requests per sec-
ond (Figure 3). To handle the same volume of Tweets as
Twitter does with anonymity set sizes on the order of hun-
dreds of thousands of clients, we would need to increase
the computing power of our cluster by “only” a factor of
~1,750.2 Since we are using only three servers now, we
would need roughly 5,250 servers (split into three non-
colluding data centers) to handle the same volume of traf-
fic as Twitter. Furthermore, since the audit server is just
doing string comparisons, the system would likely need
many fewer audit servers than database servers, so the to-
tal number of servers required might be closer to 4,000.

7 Related Work

Anonymity systems fall into one of two general cate-
gories: systems that provide low-latency communication
and those that protect against traffic analysis attacks by a
global network adversary.

Aqua [59], Crowds [76], LAP [54], Shad-
owWalker [64], Tarzan [37], and Tor [33] belong to
the first category of systems: they provide an anonymous
proxy for real-time Web browsing, but they do not protect
against an adversary who controls the network, many
of the clients, and some of the nodes on a victim’s path
through the network. Even providing a formal definition
of anonymity for low-latency systems is challenging [55]
and such definitions typically do not capture the need to
protect against timing attacks.

2We assume here that scaling the number of machines by a factor of k
increases our throughput by a factor of k. This assumption is reason-
able given our workload, since the processing of write requests is an
embarrassingly parallel task.



Even so, it would be possible to combine Tor (or an-
other low-latency anonymizing proxy) and Riposte to
build a “best of both” anonymity system: clients would
submit their write requests to the Riposte servers via
the Tor network. In this configuration, even if all of
the Riposte servers colluded, they could not learn which
user wrote which message without also breaking the
anonymity of the Tor network.

David Chaum’s “cascade” mix networks were one of
the first systems devised with the specific goal of defend-
ing against traffic-analysis attacks [19]. Since then, there
have been a number of mix-net-style systems proposed,
many of which explicitly weaken their protections against
a near omni-present adversary [79] to improve prospects
for practical usability (i.e., for email traffic) [29]. In con-
trast, Riposte attempts to provide very strong anonymity
guarantees at the price of usability for interactive applica-
tions.

E-voting systems (also called “verifiable shuffles”)
achieve the sort of privacy properties that Riposte offers,
and some systems even provide stronger voting-specific
guarantees (receipt-freeness, proportionality, etc.), though
most e-voting systems cannot provide the forward secu-
rity property that Riposte offers (Section 3.3) [1, 23, 38,
51,52,70,74].

In a typical e-voting system, voters submit their en-
crypted ballots to a few trustees, who collectively shuf-
fle and decrypt them. While it is possible to repurpose
e-voting systems for anonymous messaging, they typi-
cally require expensive zero-knowledge proofs or are in-
efficient when message sizes are large. Mix-nets that do
not use zero-knowledge proofs of correctness typically do
not provide privacy in the face of active attacks by a subset
of the mix servers.

For example, the verifiable shuffle protocol of Bayer
and Groth [5] is one of the most efficient in the litera-
ture. Their shuffle implementation, when used with an
anonymity set of size N, requires 16N group exponen-
tiations per server and data transfer O(N). In addition,
messages must be small enough to be encoded in single
group elements (a few hundred bytes at most). In con-
trast, our protocol requires O(L) AES operations and data
transfer 0(\/Z), where L is the size of the database table.
When messages are short and when the writer/reader ratio
is high, the Bayer-Groth mix may be faster than our sys-
tem. In contrast, when messages are long and when the
writer/reader ratio is low (i.e., L < O(N)), our system is
faster.

Chaum’s Dining Cryptographers network (DC-net) is
an information-theoretically secure anonymous broad-
cast channel [18]. A DC-net provides the same strong
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anonymity properties as Riposte does, but it requires every
user of a DC-net to participate in every run of the proto-
col. As the number of users grows, this quickly becomes
impractical.

The Dissent [82] system introduced the idea of us-
ing partially trusted servers to make DC-nets practical in
distributed networks. Dissent requires weaker trust as-
sumptions than our three-server protocol does but it re-
quires clients to send O(L) bits to each server per time
epoch (compared with our O(v/L)). Also, excluding a sin-
gle disruptor in a 1,000-client deployment takes over an
hour. In contrast, Riposte can excludes disruptors as fast
as it processes write requests (tens to hundreds per sec-
ond, depending on the database size). Recent work [26]
uses zero-knowledge techniques to speed up disruption
resistance in Dissent (building on ideas of Golle and
Juels [50]). Unfortunately, these techniques limit the sys-
tem’s end to end-throughput end-to-end throughput to 30
KB/s, compared with Riposte’s 450+ MB/s.

Herbivore scales DC-nets by dividing users into many
small anonymity sets [44]. Riposte creates a single large
anonymity set, and thus enables every client to be anony-
mous amongst the entire set of honest clients.

Our DPF constructions make extensive use of prior
work on private information retrieval (PIR) [21,22,39,43].
Recent work demonstrates that it is possible to make theo-
retical PIR fast enough for practical use [31,32,46]. Func-
tion secret sharing [13] generalizes DPFs to allow shar-
ing of more sophisticated functions (rather than just point
functions). This more powerful primitive may prove use-
ful for PIR and anonymous messaging applications in the
future.

Gertner et al. [42] consider symmetric PIR protocols, in
which the servers prevent dishonest clients from learning
about more than a single row of the database per query.
The problem that Gertner et al. consider is, in a way, the
dual of the problem we address in Section 5, though their
techniques do not appear to apply directly in our setting.

Ostrovsky and Shoup first proposed using PIR protocol
as the basis for writing into a database shared across a set
of servers [72]. However, Ostrovsky and Shoup consid-
ered only the case of a single honest client, who uses the
untrusted database servers for private storage. Since many
mutually distrustful clients use a single Riposte cluster,
our protocol must also handle malicious clients.

Pynchon Gate [77] builds a private point-to-point mes-
saging system from mix-nets and PIR. Clients anony-
mously upload messages to email servers using a tradi-
tional mix-net and download messages from the email
servers using a PIR protocol. Riposte could replace the
mix-nets used in the Pynchon Gate system: clients could



anonymously write their messages into the database us-
ing Riposte and could privately read incoming messages
using PIR.

8 Conclusion and Open Questions

We have presented Riposte, a new system for anony-
mous messaging. To the best of our knowledge, Ri-
poste is the first system that simultaneously (1) thwarts
traffic analysis attacks, (2) prevents malicious clients
from anonymously disrupting the system, and (3) enables
million-client anonymity set sizes. We achieve these goals
through novel application of private information retrieval
and secure multiparty computation techniques. We have
demonstrated Riposte’s practicality by implementing it
and evaluating it with anonymity sets of over two million
nodes. This work leaves open a number of questions for
future work, including:

e Does there exist an (s,s — 1)-DPF construction for
s > 2 that uses only symmetric-key operations?

e Are there efficient techniques (i.e., using no public-
key primitives) for achieving disruption resistance
without the need for a non-colluding audit server?

e Are there DPF constructions that enable processing
write requests in amortized time o(L), for a length-L
database?

With the design and implementation of Riposte, we have
demonstrated that cryptographic techniques can make
traffic-analysis-resistant anonymous microblogging and
whistleblowing more practical at Internet scale.
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A Definition of Write Privacy

An (s,7)-write-private database scheme consists of the
following three (possibly randomized) algorithms:

Write(¢,m) — (W ,... .w(=1). Clients use the Write
functionality to generate the write request queries
sent to the s servers. The Write function takes
as input a message m (from some finite message
space) and an integer ¢ and produces a set of s write
requests—one per server.

Update(o,w) — o’. Servers use the Update functional-
ity to process incoming write requests. The Update
function takes as input a server’s internal state o, a
write request w, and outputs the updated state of the
server 0.

Reveal(oy,...,05_1) — D. At the end of the time epoch,
servers use the Reveal functionality to recover the
contents of the database. The Reveal function takes
as input the set of states from each of the s servers
and produces the plaintext database contents D.

We define the write-privacy property using the follow-
ing security game, played between the adversary (who
statically corrupts up to ¢ servers and all but two clients)
and a challenger.

1. In the first step, the adversary performs the following
actions:

e The adversary selects a subset A C {0,...,s—
1} of the servers, such that |A| <r. The set A
represents the set of adversarial servers. Let the
set Hs = {0,...,5s— 1} \ A, represent the set of
honest servers.

e The adversary selects a set of clients H, C
{0,...,n— 1}, such that |H.| > 2, representing
the set of honest clients. The adversary selects
one message-location pair per honest client:

M= {(i,m,‘,é,‘) | i€ Hc}
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The adversary sends A, and M to the challenger.

2. In the second step, the challenger responds to the ad-
versary:

e For each (i,m;,¢;) € M, the challenger gener-
ates a write request:

(Wgo), - ,W§S71>) — Write(éi,mi)

The set of shares of the ith write request
revealed to the malicious servers is W; =
{Wz(j)}jEAS'

In the next steps of the game, the challenger
will randomly reorder the honest clients’” write
requests. The challenger should learn nothing
about which client wrote what, despite all the
information at its disposal.

e The challenger then samples a random permu-
tation 7 over {0,...,|H.| — 1}. The challenger
sends the following set of write requests to the
adversary, permuted according to 7:

(W) Wr(1ys - Wa(ae 1))

3. Foreach clienti in {0,...,n— 1} \ H,, the adversary
computes a write request (wgo), e ,wl(‘sfl)) (possibly
according to some malicious strategy) and sends the

set of these write requests to the challenger.

4. e For each server j € Hy, the challenger com-
putes the server’s final state ¢; by running the
Update functionality on each of the n client
write requests in order. Let S = {(j,0;) | j €
Hs} be the set of states of the honest servers.

e The challenger samples a bit b < {0,1}. If
b = 0, the challenger send (S,7) to the adver-
sary. Otherwise, the challenger samples a fresh
permutation 7* on H, and sets (S,7*) to the
adversary.

5. The adversary makes a guess b’ for the value of b.

The adversary wins the game if b = b’. We define
the adversary’s advantage as |Pr[b = b'] — 1/2|. The
scheme maintains (s,z)-write privacy if no efficient ad-
versary wins the game with non-negligible advantage (in
the implicit security parameter).

B Correctness Proof for (2,1)-DPF

This appendix proves correctness of the distributed point
construction of Section 4.3. For the scheme to be correct,
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it must be that, for (ka,kp) < Gen(¢,m), forall ¢' € Zy:
Eval(ka, ') + Eval(kp, ) = Py (C).

Let (¢y,¢,) be the tuple in Z, x Z, representing location ¢
and let (7., £,) be the tuple representing £'. Let:

X%y

mly < Eval(ka, ) mi < Eval(kg, ().
We use a case analysis to show that the left-hand side of
the equation above equals Py, for all £':

Case I 0, # (.. When {, # (', the seeds s4 [(,] and sp[(" ]
are equal, so g4 = gp. Similarly bs[¢,] = bg[l,]. The
output n, will be ga[(1]+ba[£}]v[(]], The output mj
will be identical to ;. Since the field is a binary
field, adding a value to itself results in the zero ele-
ment, so the sum ), +mj; will be zero as desired.

Casell: (, = (} and {, # ¢,. When {, = {,, the seeds
sall.] and sg[l.] are not equal, so g4 # gg. Simi-
larly b [£] # bp[(}]. When £y # 01, v[(}] = ga[£3] +
gp[l)]. Assume bs[¢;] = 0 (an analogous argument
applies when by [¢/] = 1), then:

v[l5] = (m-eq,) 03] + gally] + g[£)]-
The sum m/, + mj; will then be:
my -+ mp = ga (5] + gs[ ()] + V[£5] = 0.

CaseIII: ¢, = ¢, and ¢, = (. This is the same as Case
I1, except that (m-eq,)[(}] = m when £, = (], so the
sum m'y + my = m, as desired.

C Proof Sketches for the
AlmostEqual Protocol

This appendix proves security of the AlmostEqual proto-
col of Section 5.1.

Completeness. We must show that if the vectors v4 and
v differ in exactly one position, the audit server will out-
put “1” with overwhelming probability.

The audit server checks three things: (1) that m4 and
mp differ at a single index, (2) that the check values c4
and cp are equal, and (3) that the digests d4 and dp match
the digests of the vectors the database servers sent to the
audit server. This second and third tests will always pass
if all parties are honest.

The first test fails with some small probability: since
the audit server only outputs “1” if exactly one element
of the test vectors is equal, if there is a collision in the



hash function, the protocol may return an incorrect result.
The probability of this event is negligible in the security
parameter A.

Soundness. To demonstrate soundness, it is sufficient to
show that it is infeasible for a cheating client to produce
values (V4, Vg, 6y, 6‘B,dAA,dAB) such that ¥4 and v do not
differ at exactly one index, and yet the three honest servers
accept these vectors as almost equal.

Define (thy,¢4) and (rhp,é) to be the values that
the honest database servers send to the audit server the
database servers take the values (V4,65 ) and (Vg,63) as
input. the malicious client.

First, note that for the cheating client to succeed, it must
be that dy = H(riy) or dp = H (riag). So the choice of dy
and dp are fixed by the client’s choice of the other values.

Next, observe that if a cheating client submits values
64 # 6p to the servers, then &4 # ép with probability
1. This holds because we require soundness to hold only
when all three servers are honest, so both database servers
will generate c4 and cp using a common blinding value p.
So any successfully cheating client must submit a request
with ¢4 = ¢p.

To cause the servers to accept, the client must then find
values (V4,64 ) and (Vg, 63) such that, 6 = 64 = 63 and,
for all but one i € {0,...,n— 1}, My [i] = mpli]. If ¥4 =
Vg everywhere, then the probability of this event is zero:
the vectors my and mp will always be the same and the
servers will always reject.

Consider instead that ¥4 and Vv differ at two or more
indices and yet the servers accept the vectors. In this case,
V4 and Vg differ at least at indices i} and i; and yet my
and mp differ at only one index. In this case, at some
i* € {i1,i2}, we have that

Vali*] £ Vp[i*] and  HVa[i*],7+) = H(¥B[i*], P+ ).
If the client can find such vectors V4 and Vg, then the
client can find a collision in H. Any adversary that vi-
olates the soundness property of the protocol with non-
negligible probability can then find collisions in H with
non-negligible probability, which is infeasible.

Zero Knowledge. To show the zero-knowledge property
we must show that (1) each database server can simulate
its view of the protocol run and (2) the audit server can
simulate its view as well. Each simulator takes as input all
public parameters of the system plus each server’s private
input. Each simulator must produce faithful simulations
whenever the other parties are honest.

Showing that the audit server can simulate its view
of the protocol run is straightforward: the audit server

receives values (mgy,ca,dy) and (mp,cp,dp) from the
database servers and honest client.

Whenever the vectors differ at exactly one position the
audit server can simulate its view of the protocol. To do
so, the simulator picks length-n vectors my and mp of
random elements in the range of the hash function H sub-
ject to the constraint that the vectors are equal everywhere
except at a random index i’ € Z,,. The simulator outputs
the two vectors as the vectors received from servers A and
B. The simulator computes the digests d4 = H(my) and
dg = H(mg). The simulator sets c4 = cg < {0,1}*.

The simulation of my and mp is perfect, since these
values are independently random values, as long as all of
the values (rg,...,r,—1) generated from the seed o are
distinct. Since the servers sample each r; from {0, 1}’1, the
probability of a collision is negligible. The digests d4 and
dp are constructed exactly as in the real protocol run. The
values c4 and cp that the auditor sees in the real protocol
are equal values masked by a random A-bit string. The
simulation of ¢4 and cp is then perfect.

We now must show that each database server can sim-
ulate its view as well. Since the role of the two database
servers is symmetric, we need only produce a simulator
for server A.

In the real protocol run, the database server interacts
with the honest client and honest audit server as follows:

1. The honest client sends ¢ to the database server.

2. The database server produces a (possibly mal-
formed) test vector my and check value ¢4, and sends
these values to the audit server.

3. The audit server returns a bit B to the database server.

We must produce a simulator S = (S7,S,) that simu-
lates the first and third flows of this protocol. The sim-
ulator takes all of the public parameters of the system as
implicit input. The simulator also takes the vector v4 and
the shared random value p as input. The simulation pro-
ceeds as follows:

e (0,state) < S;(va,p). Simulator S} produces a ran-
dom PRG seed o € {0, 1}1. The simulator computes
my using v4 and o, as in the real protocol. The sim-
ulator computes ¢4 < p ¢ 0 and dy < H(m,). The
simulator outputs v4 as the output of the first flow,
and outputs the state as: state = (dy,ca).

° B « Sy(state = (da,cp),1i4,é4). The simulator
computes dy = H (riny) and outputs f = 1 if

dA = dA and éA =CA-

The simulator outputs ﬁ = 0 otherwise.
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We now must argue that the simulation is accurate. The
simulation of o is perfect, since this is just a random A-bit
value in the real protocol.

The distribution of B is statistically close to the distri-
bution in the real protocol. Whenever ¢4 # é4, in the real
protocol, the audit server will return O, as in the simu-
lation. Whenever dy # H(hy), in the real protocol, the
audit server will return O, as in the simulation. So the
only time when the simulation and real protocol diverge
is when d4 = H (14 ) but iy 7~ my. The probability (over
the randomness of server A and the random oracle) that A
outputs such a vector iy after making a polynomial num-
ber of random-oracle queries is negligible in the security
parameter. Thus, the simulation is near perfect.

D Security Proof Sketches for the
Three-Server Protocol

This appendix contains the security proofs for the three-
server protocol for detecting malicious client requests
(Section 5.1).

Completeness. If the pair of keys is well-formed then
the by and bp vectors (also the s4 and sp vectors) are
equal at every index i # {, and they differ at index i = /.
Even in the negligibly unlikely event that the random seed
chosen at s4[¢,] is equal to the random seed chosen at
sg[¢y], the test vectors t4 and tp will still differ because
ba[lx] # bp[ly]. Thus, a correct pair of b and s vectors
will pass the first AlmostEqual check.

The second AlmostEqual check is more subtle. If the v
vector is well formed then, letting ¢, be the index where
the s vectors differ, we have:

i=0
=uy + G(sa[ly]) + G(sp[ls]) + v

zuA—l—m-egy

up = <le G(sa [l])> +G(sa[lx]) + G(splbs]) +v

If v is well-formed, then two test vectors uy and up differ
only at index /y.

Soundness. To show soundness, we must bound the
probability that the audit server will output “1” when the
servers take a malformed pair of DPF keys as input. If
the b and s vectors are not equal everywhere except at one
index, the soundness of the AlmostEqual protocol implies
that the audit server will return “0” with overwhelming
probability when invoked the first time.

Now, given that the s vectors differ at one index, we
can demonstrate that if the u vectors pass the second
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AlmostEqual check, then v is also well formed. Let ¢,
be the index at which the s vectors differ. Write the val-
ues of the s vectors at index /, as s} and s;. Then, by
construction:

x—1
uy = (Z G(sa [i])> +G(sa)

iy

up = <XZI G(sp [i])) +G(sp)+v
iy

The first term of these two expressions are equal (be-
cause the s vectors are equal almost everywhere). Thus,
to violate the soundness property, an adversary must con-
struct a tuple (s%,s3,v) such that the vectors G(s}) and
(G(sp) + v) differ at exactly one index and such that
v # G(s}) + G(sp) +m-e. This is a contradiction, how-
ever, since if G(s}) and (G(sj) + v) differ at exactly one
index, then:

m-ep, = G(s3) +[(G(sp) +v)]
for some £y and m, by definition of m - ey,.

Zero Knowledge. The audit server can simulate its view
of a successful run of the protocol (one in which the in-
put keys are well-formed) by invoking the AlmostEqual
simulator twice.

E Security Proof Sketches for the
Zero-Knowledge Protocol

Completeness. Completeness for the first half of the pro-
tocol, which checks the form of the B and S vectors, fol-
lows directly from the construction of those vectors.

The one slightly subtle step comes in Step 5 of the sec-
ond half of the protocol. For the protocol to be complete,
it must be that Gy, is zero at every index except one.
This is true because:

Gam = (Z20G) +v=G(s*) +m- er,—G(s*) =m-ey,

Soundness. The soundness of the non-interactive zero-
knowledge proof in the first half of the protocol guaran-
tees that the B vectors sum to e, and that the s vectors
sum to s* - ¢ for some values £, € Z, and s* € S.

We must now argue that the probability that all servers
accept an invalid write request in the second half of the
protocol is negligible. The soundness property of the un-
derlying zero-knowledge proof used in Step 5 implies that
the vector Gguy, contains commitments to zero at all in-
dices except one. A client who violates the soundness



property produces a vector v and seed value s* such that
(Z0G) +v=m- eq, for some values £y € Zy andm € G,
and that v # m - e;, — G(s*). This is a contradiction, how-
ever, since (Z3-)G;) = G(s*), by the first half of the pro-
tocol, and so:

(4G +v=m- er, = G(s")+v

Finally, we conclude that v =m-e; — G(s%).

Zero Knowledge. The servers can simulate every mes-
sage they receive during a run of the protocol. In particu-
lar, they see only Pedersen commitments, which are statis-
tically hiding, and non-interactive zero-knowledge proofs,
which are simulatable in the random-oracle model [6].
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