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The proliferation of applications that must reliably distribute 
bulk data to a large number of autonomous clients motivates 
the design of new multicast and broadcast protocols. We de- 
scribe an ideal, fully scalable protocol for these applications 
that we call a digital fountain. A digital fountain allows 
any number of heterogeneous clients to acquire bulk data 
with optimal efficiency at times of their choosing. Moreover, 
no feedback channels are needed to ensure reliable delivery, 
even in the face of high loss rates. 

We develop a protocol that closely approximates a digital 
fountain using a new class of erasure codes that for large 
block sizes are orders of magnitude faster than standard 
erasure codes. We provide performance measurements that 
demonstrate the feasibility of our approach and discuss the 
design, implementation and performance of an experimental 
system. 

1 Introduction 

A natural solution for software companies that plan to ef- 
ficiently disseminate new software over the Internet to mil- 
lions of users simultaneously is multicast or broadcast trans- 
mission [24]. These transmissions must be fully reliable, 
have low network overhead, and support vast numbers of 
receivers with heterogeneous characteristics. Other activi- 
ties that have similar requirements include distribution of 
popular images, database replication and popular web site 
access. These applications require more than just a reliable 
multicast protocol, since users wish to access the data at 
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times of their choosing and these access times will overlap 
with those of other users. 

While unicast protocols successfully use receiver initiated 
requests for retransmission of lost data to provide reliability, 
it is widely known that the multicast analog of this solution 
is unscalable. For example, consider a server distributing 
a new software release to thousands of clients. As clients 
lose packets, their requests for retransmission can quickly 
overwhelm the server in a process known as feedback im- 
plosion. Even in the event that the server can handle the 
requests, the retransmitted packets are often of use only to 
a small subset of the clients. More sophisticated solutions 
that address these limitations by using techniques such as 
local repair, polling, or the use of a hierarchy have been pro- 
posed [5, 10, 15, 16, 271, but these solutions as yet appear in- 
adequate [19]. Moreover, whereas adaptive retransmission- 
based solutions are at best unscalable and inefficient on ter- 
restrial networks, they are unworkable on satellite networks, 
where the back channel typically has high latency and lim- 
ited capacity, if it is available at all. 

The problems with solutions based on adaptive retrans- 
mission have led many researchers to consider a 

P 
plying For- 

ward Error Correction based on erasure codes to reliable 
multicast [6, 17, 16, 20, 22, 23, 24, 251. The basic principle 
behind the use of erasure codes is that the original source 
data, in the form of a sequence of Ic packets, along with ad- 
ditional redundant packets, are transmitted by the sender, 
and the redundant data can be used to recover lost source 
data at the receivers. A receiver can reconstruct the original 
source data once it receives a sufficient number of packets. 
The main benefit of this approach is that different receivers 
can recover from different lost packets using the same re- 
dundant data. In principle, this idea can greatly reduce the 
number of retransmissions, as a single retransmission of re- 
dundant data can potentially benefit many receivers simul- 
taneously. (In other applications, such as real-time video, 
retransmission may also be undesirable due to timing con- 
straints; we emphasize that we are not considering real-time 
applications here.) 

The recent work of Nonnenmacher, Biersack and Towsley 
[20] defines a hybrid approach to reliable multicast, cou- 
pling requests for retransmission with transmission of redun- 
dant codewords, and quantifies the benefits of this approach 
in practice. Their work, and the work of many other au- 

’ Erasure codes are sometimes called forward-error correcting codes 
(FEC codes) in the networking community. However, FEC often 
refers to codes that detect and correct errors, and these codes are 
typically implemented in special purpose hardware. To avoid confu- 
sion, we always refer to the codes we consider as erasure codes. 
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thors, focus on erasure codes based on Reed-Solomon codes 
[7, 16, 17, 18, 22, 23, 241. The limitation of these codes 
is that encoding and decoding times are slow on large block 
sizes, effectively limiting Ic to small values for practical appli- 
cations. Hence, their solution involves breaking the source 
data into small blocks of packets and encoding over these 
blocks. Receivers that have not received a packet from a 
given block request retransmission of an additional code- 
word from that block. They demonstrate that this approach 
is effective for dramatically reducing the number of retrans- 
missions, when packet loss rates are low (they typically con- 
sider 1% loss rates). However, this approach cannot elimi- 
nate the need for retransmissions, especially as the number 
of receivers grows large or for higher rates of packet loss. 
Their approach also does not enable receivers to join the 
sessicn dynamically. 

To eliminate the need for retransmission and to allow 
receivers to access data asynchronously, the use of a data 
carousel or broadcast disk approach can ensure full relia- 
bility [l]. In a data carousel approach, the source repeat- 
edly loops through transmission of all data packets. Re- 
ceivers may join the stream at any time, then listen until 
they receive all distinct packets comprising the transmis- 
sion. Clearly, the reception overhead at a receiver, measured 
in terms of unnecessary receptions, can be extremely high 
using this approach. As shown in [23, 241, adding redundant 
codewords to the carousel can dramatically reduce reception 
overhead. These papers advocate adding a fixed amount 
of redundancy to blocks of the transmission using Reed- 
Solomon codes. The source then repeatedly loops through 
the set of blocks, transmitting one data or redundant packet 
about each block in turn until all packets are exhausted, and 
then repeats the process. This interleaved approach enables 
the receiver to reconstruct the source data once it receives 
sufficiently many packets from each block. The limitation of 
using this approach over lossy networks is that. the receiver 
may still receive many unnecessary packets from blocks that 
have already been reconstructed while waiting for the last 
packets from the last few blocks it still needs to reconstruct. 

The approaches described above that eliminate the need 
for retransmission requests can be thought of as weak ap- 
proximations of an ideal solution, which we call a digital 
fountain. A digital fountain is conceptually simpler, more 
efficient, and applicable to a broader class of networks than 
previous approaches. A digital fountain injects a stream of 
distinct encoding packets into the network, from which a re- 
ceiver can reconstruct the source data. The key property of a 
digital fountain is that the source data can be reconstructed 
intact from any subset of the encoding packets equal in total 
length to the source data. The digital fountain concept is 
similar to ideas found in the seminal works of Maxemchuk 
[13, 141 and Rabin [al]. Our approach is to construct better 
approximations of a digital fountain as a basis for protocols 
that perform reliable distribution of bulk data. 

We emphasize that the digital fountain concept is quite 
general and can be applied in diverse network environments. 
For example, our framework for data distribution is applica- 
ble to the Internet, satellite networks, and wireless networks 
with mobile agents. These environments are quite different 
in terms of packet loss characteristics, congestion control 
mechanisms, and end-to-end latency; we strive to develop a 
solution independent, of these environment-specific variables. 
These considerations motivate us to study, for example, a 
wide range of packet loss rates in our comparisons. 

The body of the paper is organized as follows. In the next 
section, we describe in more detail the characteristics of the 

problems we consider. In Section 3, we describe the digital 
fountain solution. In Section 4, we describe how to build a 
good theoretical approximation of a digital fountain using 
erasure codes. A major hurdle in implementing a digital 
fountain is that standard Reed-Solomon codes have unac- 
ceptably high running times for these applications. Hence, 
in Section 5, we describe Tornado codes, a new class of era- 
sure codes that have extremely fast encoding and decoding 
algorithms. These codes generally yield a far superior ap- 
proximation to a digital fountain than can be realized with 
Reed-Solomon codes in practice, as we show in Section 6. 
Finally, in Section 7, we describe the design and perfor- 
mance of a working prototype system for bulk data distri- 
bution based on Tornado codes that is built on top of IP 
Multicast. The performance of the prototype bears out the 
simulation results, and it also demonstrates the interoper- 
ability of this work with the layered multicast techniques of 
[25]. We conclude with additional research directions for the 
digital fountain approach. 

2 Requirements for an Ideal Protocol 

We recall an example application in which millions of clients 
want to download a new release of software over the course 
of several days. In this application, we assume that there 
is a distribution server, and that the server will send out a 
stream of packets (using either broadcast or multicast) as 
long as there are clients attempting to download the new 
release. This software download application highlights sev- 
eral important features common to many similar applica- 
tions that must distribute bulk data. In addition to keeping 
network traffic to a minimum, a scalable protocol for dis- 
tributing the software using multicast should be: 

Reliable: The file is guaranteed to be delivered in its 
entirety to all receivers. 

EfRcient: Roth the total number of packets each client 
needs to receive and the amount of time required to 
process the received packets to reconstruct the file should 
be minimal. Ideally, the total time for the download 
for each client should be no more than it would be had 
point-to-point connections been used. 

On demand: Clients may initiate the download at 
their discretion, implying that different clients may 
start the download at widely disparate times. Clients 
may sporadically be interrupted and continue the down- 
load at a later time. 

Tolerant: The protocol should tolerate a heteroge- 
neous population of receivers, especially a variety of 
end-to-end packet loss rates and data rates. 

We also state our assumptions regarding channel charac- 
teristics. IP multicast on the Internet, satellite transmission, 
wireless transmission, and cable transmission are represen- 
tative of channels we consider. Perhaps the most impor- 
tant property of these channels is that the return feedback 
channel from the clients to the server is typically of lim- 
ited capacity, or is non-existent. This is especially appli- 
cable to satellite transmission. These channels are gener- 
ally packet based, and each packet has a header including 
a unique identifier. They are best-effort channels designed 
to attempt to deliver all packets, but frequently packets are 
lost or corrupted. Wireless networks are particularly prone 
to high rates of packet loss and all of the networks we de- 
scribe are prone to bursty loss periods. We assume that 
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error-correcting codes are used to correct and detect errors 
within a packet. But if a packet contains more errors than 
can be corrected, it is discarded and treated as a loss. 

The requirement that the solution be reliable, efficient, 
and on demand implies that client robustness to missing 
packets is crucial. For example, a client may sporadically 
be interrupted, continuing the download several times before 
completion. During the interruptions the server will still be 
sending out a stream of packets that an interrupted client 
will miss. The efficiency requirement implies that the total 
length of all the packets such a client has to receive in order 
to recover the file should be roughly equal to the total length 
of the file. 

3 The Digital Fountain Solution 

In this section, we outline an idealized solution that achieves 
all the objectives laid out in the previous section for the 
channels of interest to us. In subsequent sections, we de- 
scribe and measure a new approach that implements an ap- 
proximation to this ideal solution that is superior to previous 
approaches. 

A server wishes to allow a universe of clients to acquire 
source data consisting of a sequence of L equal length pack- 
ets. In the idealized solution, the server sends out a stream 
of distinct packets, called encoding packets, that constitute 
an encoding of the source data. The server will transmit the 
encoding packets whenever there are any clients listening in 
on the session. A client accepts encoding packets from the 
channel until it obtains exactly k packets. In this idealized 
solution, the data can be reconstructed regardless of which 
k encoding packets the client obtains. Therefore, once k en- 
coding packets have been received the client can disconnect 
from the channel. We assume that in this idealized solution 
that there is very little processing required by the server to 
produce the encoding of packets and by the clients to recover 
the original data from k encoding packets. 

We metaphorically describe the stream of encoding pack- 
ets produced by the server in this idealized solution as a dig- 
ital fountain. The digital fountain has properties similar to 
a fountain of water for quenching thirst: drinking a glass of 
water, irrespective of the particular drops that fill the glass, 
quenches one’s thirst. The digital fountain protocol has all 
the desirable properties listed in the previous section and 
functions over channels with the characteristics outlined in 
the previous section. 

4 Building a Digital Fountain with Erasure Codes 

An ideal way to implement a digital fountain is to directly 
use an erasure code that takes source data consisting of k 
packets and produces sufficiently many encoding packets to 
meet user demand. Indeed, standard erasure codes such as 
Reed-Solomon erasure codes have the ideal property that a 
decoder at the client side can reconstruct the original source 
data whenever it receives any k of the transmitted packets. 
But erasure codes are typically used to stretch a file con- 
sisting of k packets into n encoding packets, where both 
k and n are input parameters. We refer to the ratio n/k 
as the stretch jractor of an erasure code. While this finite 
stretch factor limits the extent to which erasure codes can 
approximate a digital fountain, a reasonable approximation 
proposed by other researchers (e.g., [18, 22, 23, 25]), is to 
set n to be a multiple of k, then repeatedly cycle through 
transmission of the n encoding packets. The limitation is 
that for any pre-specified value of n, under sufficiently high 

loss rates a client may not receive k out of n packets in one 
cycle. Thus in lossy environments, a client may receive use- 
less duplicate transmissions before reconstructing the source 
data, decreasing the channel efficiency. But in practice, our 
experimental results indicate that this source of inefficiency 
is not large even under very high loss rates and when n is 
set to be a small multiple of k, such as n = 2k, the setting 
we use in the remainder of the paper. 

A more serious limitation regards the efficiency of en- 
coding and decoding operations. As detailed in subsequent 
sections, the encoding and decoding processing times for 
standard Reed-Solomon erasure codes are prohibitive even 
for moderate values of k and n. The alternative we pro- 
pose is to avoid this cost by using the much faster Tornado 
codes [ll]. As always, there is a tradeoff associated with 
using one code in place of another. The main drawback of 
using Tornado codes is that the decoder requires slightly 
more than k of the transmitted packets to reconstruct the 
source data. This tradeoff is the main focus of our compar- 
ative simulation studies that we present in Section 6. But 
first, in Section 5, we provide an in-depth description of the 
way Tornado codes are constructed and their properties. 

5 Tornado Codes 

In this section, we describe in some detail the construction 
of a specific Tornado code and explain some of the general 
principles behind Tornado codes. We first outline how these 
codes differ from traditional Reed-Solomon erasure codes. 
Then we give a specific example of a Tornado code based on 
[ll, 121 and compare its performance to a standard Reed- 
Solomon code. For the rest of the discussion, we will con- 
sider erasure codes that take a set of k source data pack- 
ets and produce a set of C redundant packets for a total of 
n = k + 1 encoding packets all of a fixed length P. 

5.1 Theory 

We begin by providing intuition behind Reed-Solomon codes. 
We think of the ith source data packet as containing the 
value of a variable z ,, and we think of the jth redundant 
packet as containing the value of a variable y3 that is a 
linear combination of the zi variables over an appropriate 
finite field. (For ease of description, we associate each vari- 
able with the data from a single packet, although in our 
simulations each packet may hold values for several vari- 
ables.) For example, the third redundant packet might hold 
ya = zr + zzcr + . + zkc@-‘, where (Y is some primitive 
element of the field. Typically, the finite field multiplication 
operations are implemented using table lookup and the ad- 
dition operations are implemented using exclusive-or. Each 
time a packet arrives, it is equivalent to receiving the value 
of one of these variables. 

Reed-Solomon codes guarantee that successful receipt of 
any k distinct packets enables reconstruction of the source 
data. When e redundant packets and k-e source data pack- 
ets arrive, there is a system of e equations corresponding to 
the e redundant packets received. Substituting all values 
corresponding to the k received packets into these equations 
takes time proportional to (k - e + 1)e. The remaining sub- 
system has e equations and e unknowns corresponding to 
the source data packets not received. With Reed-Solomon 
codes, this system has a special form that allows one to solve 
for the unknowns in time proportional to e2 via a matrix in- 
version and matrix multiplication. 
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Figure I: Structure of Tornado Codes 

The large decoding time for Reed-Solomon codes arises 
from the dense system of linear equations used. Tornado 
codes are built using random equations that are sparse, i.e. 
the average number of variables per equation is small This 
sparsity allows substantially more efficient encoding and de- 
coding. The price we pay for much faster encoding and 
decoding is that k packets no longer suffice to reconstruct 
the source data; instead slightly more than k packets are 
needed. In fact, designing the proper structure for the sys- 
tem of equations so that the number of additional packets 
and the coding times are simultaneously small is a difficult 
challenge [ll, 121. 

For Tornado codes, the equations have the form ys = 
rr@ x4 $27, where $ is bitwise exclusive-or. Tornado codes 
also use equations of the form ~5s = 31s $ y7 $ ~13; that 
is, redundant packets may be derived from other redundant 
packets. The encoding time is dominated by the number of 
exclusive-or operations in the system of equations. 

The decoding process for Tornado codes uses two basic 
operations. The first operation consists of replacing the re- 
ceived variables by their values in the equations in which 
they appear. The second operation is a simple svbstitvtion 
rule. The substitution rule can be applied to recover any 
missing variable that appears in an equation in which that 
variable is the unique missing variable. For example, con- 
sider again the equation ys = 21 @ 24 $ x7. Suppose the 
redundant packet containing 31s has been received, as well 
as the source data packets containing zi and zr, but 24 has 
not been received. Then we can use the above equation to 
solve for 24, again using only exclusive-or operations. Using 
this substitution rule repeatedly, a single packet arrival may 
allow us to reconstitute several additional packets, as the 
effect of that arrival propagates. In practice, the number 
of possible substitution rule applications remains minimal 
until slightly more than k packets have arrived. Then often 
a single arrival generates a whirlwind of substitutions that 
allow recovery of all of the remaining source data packets. 
IIence the name Tornado codes. 

The decoding may stop as soon as enough packets arrive 
so that the source data can be reconstructed. Note that 
Tornado codes use only exclusive-or operations and avoid 
both the field operations and the matrix inversion inher- 
ent in decoding Reed-Solomon codes. The total number of 
exclusive-or operations for decoding is at most the number 
used for encoding, and in general is less. 

As we have stated, to reconstruct the source data using 
a Tornado code, it suffices to recover slightly more than k of 

a+b+f 

a+b+c+d+g 

c+e+g+h 

c+d+e+f+h 

exclusive-or 

I Tornado Reed-Solomon 

Decoding inefficiency 1 + c required 1 
Encoding times (k +e)ln(l/c)P keP 
Decoding times (k + e)ln(l/c)P keP 
Basic oueration XOR Field ouerations 

Table 1: Properties of Tornado vs. Reed-Solomon codes 

the n packets. We say that the decoding inefficiencyis 1 + c 
if (I+ c)k encoding packets are required to reconstruct the 
source data. For Tornado codes the decoding inefficiency is 
not a fixed quantity but depends on the packet loss pattern 
and the random choices used to construct the code. This 
variance in decoding inefficiency is described in more detail 
in Section 5.3. 

The advantage of Tornado codes over standard codes 
is that they trade off a small increase in decoding ineffi- 
ciency for a substantial decrease in encoding and decoding 
times. Recall Reed-Solomon codes have encoding times pro- 
portional to klP and decoding times proportional to keP. 
As a result, Reed-Solomon codes can only be applied in 
practice when k and fJ are relatively small. (Values used in 
[20, 23, 25, 241 have k and t! ranging from 8 to 256.) In con- 
trast, there are families of Tornado codes that have encoding 
and decoding times that are proportional to (k+e) In(l/r)P 
with decoding inefficiency 1 + E. And in practice, the en- 
coding and decoding times of Tornado codes are orders of 
magnitude faster than Reed-Solomon codes for large values 
of k and e. A summary comparing the properties of Tornado 
codes and standard Reed-Solomon codes is given in Table 1. 

In the next section, we present an example of a fast Tor- 
nado code with decoding inefficiency 1 + c GZ 1.054 whose 
performance we compare directly with Reed-Solomon codes. 

5.2 An Example 

We now provide a specific example of a Tornado code. It is 
convenient to describe the association between the variables 
and the equations in terms of a levelled graph, as depicted 
in Figure 1. The nodes of the leftmost level of the graph 
correspond to the source data. Subsequent levels contain 
the redundant data. 

Each redundant packet is the exclusive-or of the pack- 

59 



ets held in the neighboring nodes in the level to the left, 
as depicted on the right side of Figure 1. The number of 
exclusive-or operations required for both encoding and de- 
coding is thus dominated by the number of edges in the 
entire graph. 

We specify the code by specifying the random graphs to 
place between consecutive levels. The mathematics behind 
this code, which we call Tornado Z, is described in [II, 121 
and will not be covered here. This code has 16,000 source 
data nodes and 16,000 redundant nodes. The code uses 
three levels; the number of nodes in the levels are 16,000, 
8,000 and 8,000 respectively. 

The graph between the first two levels is the union of two 
subgraphs, Gr and Gz. The graph Gr is based on a truncated 
heavy tail distribution. We say that a level has a truncated 
heavy tail distribution with parameter 11 when the fraction 
of nodes of degree i is & for i = 2,. . , D+ 1. The graph 

Gr connects the 16,000 source data nodes to 7,840 of the 
nodes at the second level. The node degrees on the left hand 
side are determined by the truncated heavy tail distribution, 
with D = 200. For example, this means that there are 

y%$#= 8,040 nodes of degree 2 on the left hand side. 

Each edge is attached to a node chosen uniformly at random 
from the 7,840 on the right hand side.2 The distribution of 
node degrees on the right hand side is therefore Poisson. 

In the second graph G2, each of the 16,000 nodes on the 
left has degree 2. The nodes on the right are the remaining 
160 nodes at the second level, and each of these nodes has 
degree 200. The edges of Gs are generated by randomly 
permuting the 32,000 edge slots on the left and connecting 
them in that permuted order to the 160 nodes on the right. 
The graph Gz helps prevent small cycles in Gr from halting 
progress during decoding. 

The second layer uses a graph with a specific distribution, 
designed using a linear programming tool discussed in [II, 
121. The linear program is used to find graphs that have low 
decoding inefficiency. III this graph, all of the 8,000 nodes 
on the left have degree 12. On the right hand side there are 
4,093 nodes of degree 5; 3,097 nodes of degree 6; 122 nodes 
of degree 33; 472 nodes of degree 34; 1 node of degree 141; 
27 nodes of degree 170; and 188 nodes of degree 171. The 
connections between the edge slots on the left and right are 
selected by permuting the edges slots on the left randomly 
and then connecting them to the edge slots on the right. 

In total there are 222,516 edges in this graph, or approx- 
imately 14 edges per source data node. The sparseness of 
this graph allows for extremely fast encoding and decoding. 

5.3 Performance 

In practice, Tornado codes where values of k and 1 are on 
the order of tens of thousands can be encoded and decoded 
in just a few seconds. In this section, we compare the effi- 
ciency of Tornado codes with standard codes that have been 
previously proposed for network applications [6, 20, 22, 23, 
24, 251. The erasure code listed in Tables 2 and 3 as Cauchy 
[4] is a standard implementations of Reed-Solomon erasure 
codes based on Cauchy matrices. (We note that the Cauchy 
implementation, available at [a], is faster for larger values of 
k than the implementation of Reed-Solomon codes based on 

2Notice that this may yield some nodes of degree 0 on the right 
hand side; however, this happens with small probability, and such 
nodes can be removed. Also, there may be multiple edges between 
pairs of nodes. This does not affect the behavior of the algorithm dra- 
matically, although the redistribution of such multiple edges improves 
performance marginally. 

SIZE 

Encoding Benchmarks 
Reed-Solomon Codes I] Tornado Codes 

Cauchy Tornado Z 

Table 2: Comparison of encoding times. 

Decoding Benchmarks 
II Reed-Solomon Codes II Tornado Codes 

SIZE Cauchy 

250 KB 2.06 seconds 
500 KB 8.4 seconds 

Tornado Z 

0.18 seconds 
0.24 seconds 

1 MB 
2MB 
4MB 
8 MB 

16 MB 

40.5 seconds 0.31 seconds 
199 seconds 0.44 seconds 
800 seconds 0.74 seconds 

3 166 seconds 1.28 seconds 
13629 seconds 2.27 seconds 

Table 3: Comparison of decoding times. 

Vandermonde matrices by Rizzo [22].) The Tornado Z codes 
were designed as described earlier in this section. The im- 
plementations were not carefully optimized, so their running 
times could be improved by constant factors. All experi- 
ments were benchmarked on a Sun 167 MHz UltraSPARC 1 
with 64 megabytes of RAM running Solaris 2.5.1. Ail runs 
are with packet length P = 1KB. For all runs, a file con- 
sisting of k packets is encoded into n = 2k packets, i.e., the 
stretch factor is 2. 

For the decoding of the Cauchy codes, we assume that 
k/2 original file packets and k/2 redundant packets were 
used to recover the original file. This assumption holds ap- 
proximately when a carousel encoding with stretch factor 2 
is used, so that roughly half the packets received are redun- 
dant packets. 

Tornado Z has an average decoding inefficiency of 1.054, 
so on average 1.054 . k/2 original file packets and 1.054 
k/2 redundant packets were used to recover the original file. 
Our results demonstrate that Tornado codes can be encoded 
and decoded much faster than Reed-Solomon codes, even for 
relatively small files. 

We note that there is a small variation in the decod- 
ing inefficiency for decoding Tornado codes depending on 

which particular set of encoding packets are received. To 
study this variation, we ran 10,000 trials using the Tornado 
Z code. In Figure 2, we show the percentage of trials for 
which the receiver could not reconstruct the source data 
for specific values of the decoding inefficiency. For exam- 
ple, using Tornado Z codes with each node representing one 
packet, a decoding inefficiency of 1.064 corresponds to re- 
ceiving 17,024 = 1.064 . 16,000 packets. Over 90% of the 
clients could reconstruct the source data before receiving 
this many packets. 

In our trials the average decoding inefficiency was 1.0536, 
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Figure 2: Decoding inefficiency variation over 10,000 trials 
of Tornado Z. 

the maximum reception inefficiency was 1.10, and the stan- 
dard deviation was 0.0073. For alI 10,000 trials the same 
graph was used; this graph was not specially chosen, but 
was generated randomly as described in Section 5.2. Hence 
one might achieve better performance by testing various ran- 
dom graphs for performance before settling on one. Our 
tests suggest that the performance given in Figure 2 is rep- 
resentative. 

6 Simulation Comparisons 

From the previous section, it is clear that using Reed-Solomon 
erasure codes to encode over large files for bulk data dis- 
tribution has prohibitive encoding and decoding overhead. 
But another approach, described in the introduction, is the 
method of interleaving suggested in [20, 22, 23, 241. In- 
terleaved codes are constructed as follows: suppose K + L 
encoding packets are to be produced from K file packets. 
Partition the K file packets into blocks of length k, so that 
there are B = K/k blocks in total. Stretch each block of k 
packets to an encoding block of k + e packets using a stan- 
dard erasure code by adding l = kL/K redundant packets. 
Then, form the encoding of length K+ L by interleaving the 
encoding packets from each block, i.e., the encoding consists 
of sequences of B packets, each of which consist of exactly 
one packet from each block. 

To compare various protocols, we compare the decoding 
inefficiency and decoding speed at each receiver. Recall that 
the decoding inefficiency is 1 + E if one must obtain (I+ c)k 
distinct packets in order to decode the source data. For 
Tornado codes, there is some decoding inefficiency based on 
how the codes are constructed. For interleaved codes, decod- 
ing inefficiency arises because in practice one must obtain 
more than k packets to have enough packets to decode each 
block. We emphasize that for interleaved codes the decod- 
ing inefficiency is a random variable that depends on the loss 
rate, loss pattern, and the block size. The tradeoff between 
decoding inefficiency and coding time for interleaved codes 
motivates the following set of experiments. 

l Suppose we choose k in the interleaved setting so that 
the decoding inefficiency is comparable to that of Tor- 
nado Z. How does the decoding time compare? 

l Suppose we choose k in the interleaved setting so that 
the decoding time is comparable to that of Tornado Z. 
How does the decoding inefficiency compare? 

The choice of the value of the parameter k for interleaved 
codes is crucial. To optimize encoding and decoding speed 
of the interleaved codes, k should clearly be chosen to be as 
small as possible. But choosing k to be very small defeats the 
purpose of using encoding, since any redundant packet that 
arrives can only be used to reconstruct a source data packet 
from the same block. Moreover, redundant packets that 
arrive for data blocks that have already been reconstructed 
successfully do not benefit the sender. 

In our initial simulations, we assume probabilistic loss 
patterns in which each transmission to each receiver is lost 
independently with a fixed probability p. We emphasize that 
using bursty loss models instead of this uniform loss model 
would not impact our results for Tornado code performance; 
only the overall loss rate is important. This is because when 
using Tornado codes we compute the entire encoding ahead 
of time and send out packets in a random order from the 
source end. Therefore, any loss pattern appears equivalent 
to a uniform loss pattern on the receiver end. Note that this 
randomization at the sender end may introduce latency, and 
therefore this Tornado code approach may not be appropri- 
ate for some applications such as real-time interactive video. 

To explain this in more detail, let us say that a block The choice of the uniform model does however impact the 
is furl from the client viewpoint when at least k distinct performance results of the interleaved codes, which (unless 
transmitted packets associated with that block have been the same randomization of the transmission order is used) 
received. The entire file can only be decoded by the client are highly dependent on the loss pattern. In particular, we 
when all blocks are full. (Note however that some of the de- would expect interleaved codes to have slightly better perfor- 
coding work can potentially be done in the background while mance under bursty losses. We therefore also provide results 
packets arrive; the same also holds for Tornado codes.) The from trace-driven simulations of the Internet to demonstrate 
phenomenon that arises when k is relatively small is illus- the relatively small effect of burstiness on interleaved code 
trated in Figure 3; while waiting for the last few blocks to performance. 
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0 = redundancy 

Figure 3: Waiting for the last blocks to fill... 

fill, the receiver may receive many packets from blocks that 
have already been reconstructed successfully. These useless 
packets contribute directly to the decoding inefficiency. To 
summarize, the choice of the value of k for interleaved codes 
introduces a tradeoff between decoding speed and decoding 
inefficiency. 
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Figure 4: Comparison of decoding inefficiency 

Speedup factor for Tornado Z 
erasure probabilities 

SIZE 0.01 [ 0.05 ( 0.10 ( 0.20 ( 0.50 

Table 4: Speedup of Tornado Z codes over interleaved codes 
with comparable efficiency. 

6.1 Equating Decoding Efficiency 

Our first simulation compares the decoding time of Tor- 
nado Z with an interleaved code with decoding inefficiency 
comparable to those of Tornado Z. In Section 5, we deter- 
mined experimentally that Tornado Z codes have the prop- 
erty that the decoding inefficiency is greater than 1.076 less 
than 1% of the time. In Table 4, we present the ratio be- 
tween the running time of an interleaved code for which k is 
chosen so that this property is also realized and the running 
time of Tornado Z. Of course, this ratio changes as the loss 
probability and file size change. 

We explain how the entries in Table 4 are derived. To 
compute the running time for interleaved codes, we first use 
simulations to determine for each loss probability value the 
maximum number of blocks the source data can be split into 
while still maintaining a decoding inefficiency less than 1.076 
for less than 1% of the time. (For example, a two megabyte 
file consisting of 2000 one kilobyte packets can be split into 
at most eleven blocks while maintaining this property when 
packets are lost with probability 0.10.) We then calculate 
the decoding time per block, and multiply by the number 
of blocks to obtain the decoding time for the interleaved 
code. With a stretch factor of two, one half of all packets 
injected into the system are redundant encoding packets and 
the other half are source data packets. Therefore, in com- 
puting the decoding time per block, we assume that half the 
packets received are redundant encoding packets. Based on 
the data previously presented in the Cauchy codes column 
of Table 3, we approximate the decoding time for a block 

. . . . . ..=..a..*.* ----. 4 ..-- a-----a 
1 7 

1 10 100 1000 10000 

Receivers 

codes with comparable decoding times. 

of k source data packets by k2/31250 seconds. To compute 
the running time for Tornado Z, we simply use the decode 
times for Tornado Z as given earlier in Table 3. 

As an example, suppose the encoding of a 16 MB file is 
transmitted over a 1 Mbit/second channel with a loss rate of 
50%. It takes just over 4 minutes to receive enough packets 
to decode the file using either Tornado Z or an interleaved 
code (with the desired decoding inefficiency guarantee), but 
then the decoding time is almost 8 minutes for the inter- 
leaved code compared with just over 2 seconds for Tornado 
Z. Comparisons for encoding times yield similar results. We 
note that by using slightly slower Tornado codes with less 
decoding inefficiency, we would actually obtain even bet- 
ter speedup results at high loss rates. This is because in- 
terleaved codes would be harder pressed to match stronger 
decoding guarantees. 

6.2 Equating Decoding Time 

Our second set of simulations examines interleaved codes 
that have comparable decoding times to Tornado Z. Cauchy 
codes with block length k = 20 are roughly equivalent in 
speed to the Tornado Z code. We also compare with a block 
length k = 50, which is slower but still reasonable in prac- 
tice. 

Using these block sizes, we now study the maximum de- 
coding inefficiency observed as we scale to a large number of 
receivers. The sender carousels through a two megabyte en- 
coding of a one megabyte file, while receivers asynchronously 
attempt to download it. We simulate results for the case in 
which packets are lost independently and uniformly at ran- 
dom at each receiver at rates of 10% and 50%. The 10% 
loss rates are representative of congested Internet connec- 
tions, while the 50% loss rates are near the upper limits of 
what a mobile receiver with poor connectivity might rea- 
sonably experience. The results we give can be interpolated 
to provide intuition for performance at intermediate rates 
of loss. For channels with very low loss rates, such as the 
1% loss rates studied in [20], interleaved codes and Tornado 
have generally comparable performance. 

Figure 4 shows for different numbers of receivers the 
worst case decoding efficiency experienced for any of the 
receivers averaged over 100 trials. In these figures, p refers 
to the probability a packet is lost at each receiver. Since 
the leftmost point in each subfigure is for the case of one 
receiver, this point is also just the average decoding inef- 
ficiency. The interesting feature of this figure is how the 
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Figure 5: Comparison of decoding 

worst case decoding inefficiency grows with the number of 
receivers. 

For packet loss rates of 10% and a block size of k = 50, 
the average inefficiency of interleaved codes is comparable 
to that of Tornado Z. But as packet loss rates increase, or 
if a smaller block size is used, the inefficiency of interleaved 
codes rises dramatically. Also, the inefficiency of the worst- 
case receiver does not scale with interleaved codes as the 
receiver size grows large. Tornado codes exhibit more robust 
scalability and better tolerance for high loss rates. 

6.3 Scaling to large Files 

Our next experiments demonstrate that Tornado codes also 
scale better than an interleaved approach as the file size 
grows large. This is due to the fact that the number of 
packets a client must receive to reconstruct the source data 
when using interleaving grows super-linearly in the size of 
the source data. (This is the well-known “coupon collector’s 
problem.“) In contrast, the number of packets the receivers 
require to reconstruct the source data using Tornado codes 
grows linearly in the size of the source data, and in particular 
the decoding inefficiency does not increase as the file size 
increases. 

The effect of this difference is easily seen in Figure 5. 
In this case both the average decoding inefficiency and the 
maximum decoding inefficiency grow with the length of the 
file when using the interleaving. This effect is completely 
avoided by using Tornado codes. 

6.4 Trace-Driven Simulations 

To study the impact of bursty loss patterns on the rela- 
tive performance of Reed-Solomon and Tornado code ap- 
proaches, we perform a similar comparison using publicly 
available MBone trace data collected by Yajnik, Kurose, 
and Towsley [26]. In these traces, between six and twenty 
clients from the US and abroad subscribed to MBone broad- 
casts each of roughly an hour in length and reported which 
packets they received. Clients experienced packet loss rates 
ranging from less than 1% to well over 20% over the course 
of these broadcasts. 

To sample loss patterns from these traces, we simply 
chose a random starting point for each broadcast, and then 
used the trace data to generate packet loss patterns for each 
receiver in the broadcast beginning at that time. We then 
simulated downloading files of various lengths using inter- 
leaving and using Tornado codes with these loss patterns. 
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Figure 6: Comparison of decoding inefficiency on trace data. 

Averaging over 146 loss patterns generated from 15 broad- 
casts, we plot the average decoding inefficiency for various 
file sizes in Figure 6. 

The average loss rate over the randomly chosen trace 
segments we selected was just over 11%. In this trace data, 
there was considerable variance in the loss rate; some clients 
received virtually every packet, others experienced large burst 
losses over significant periods of time. While this trace data 
is limited in scope, the Tornado codes maintain superior 
decoding inefficiency in the presence of high burst losses 
present in this data set. In fact, the results appear very 
similar to that in Figure 5 when p = 0.1, suggesting that 
the bursty loss pattern has only a small effect. 

7 Implementation of a Reliable Distribution Protocol us- 
ing Tornado Codes 

In this section, we describe an experimental system for dis- 
tributing bulk data to a large number of heterogeneous re- 
ceivers who may access the data asynchronously. Our im- 
plementation is designed for the Internet using a protocol 
built on top of IP Multicast. We have drawn on existing 
techniques to handle receiver heterogeneity and congestion 
control using layered multicast [15, 18, 251. We emphasize 
that the purpose of developing this system is to demonstrate 
the feasibility of using Tornado codes in actual systems, and 
not to create a completely functional multicast protocol for 



deployment. 
We expect that Tornado codes will also prove useful in 

other environments besides the Internet, such as satellite or 
wireless based systems. In these settings, different channel 
characteristics would suggest different approaches for con- 
gestion control and tolerating receiver heterogeneity. The 
Tornado code approach to bulk data distribution we ap- 
ply, however, would remain essentially the same, even under 
varying end-to-end bandwidths and packet loss rates. 

We first describe the design of our multicast protocol. 
The two main issues are the use of layered multicast and 
the approach the client uses to decode the message. Then 
we describe the experimental setup and performance results 
of our system. 

7.1 Layering Across Multiple Multicast Groups 

The congestion control approach we employ follows the lead 
of other authors who advocate layeredmulticast [15, 18, 251. 
The main idea underlying this approach is to enable the 
source to transmit data across multiple multicast groups, 
thereby allowing the receivers to subscribe to an appropriate 
subset of these layers. Of course, practical considerations 
warrant keeping the number of multicast groups associated 
with a given source to a minimum. A receiver’s subscription 
level is based on factors such as the width of its bottleneck 
link to the source and network congestion. The basic ideas 
common to the proposed layered schemes are: 

a The server transmits data over multiple layers, where 
the layers are ordered by increasing transmission rate. 

l The layers are cumzllotive in that a receiver subscrib- 
ing to layer i also subscribes to all layers beneath it. 
We say that a receiver subscribes to level i when it 
subscribes to layers 0 through i. 

For example, in our implementation, we use geometrically 
increasing transmission rates: B, = 2’-’ is the rate of the ith 
layer. Thus, a receiver at subscription level i would receive 
bandwidth proportional to 28;, for i > 1. The protocol we 
use is based on the scheme described % recent work of Vi- 
cisano, Rizzo and Crowcroft [25] that proposes the following 
two novel ideas, summarized here briefly: 

l Congestion control is achieved by the use of synchro- 
nization points (SP’s) that are specially marked pack- 
ets in the stream. A receiver can attempt to join a 
higher layer only immediately after an SP, and keeps 
track of the history of events only from the last SP. The 
rate at which SP’s are sent in a stream is inversely pro- 
portional to the bandwidth: lower bandwidth receivers 
are given more frequent opportunities to move up to 
higher levels. 

l Instead of explicit join attempts by clients, the server 
generates periodic bursts during which packets are sent 
at twice the normal rate on each layer. This has the 
effect of creating network congestion conditions simi- 
lar to those that receivers would experience following 
an explicit join. Receivers use a packet loss event as 
an indication of congestion. So if a receiver witnesses 
no packet losses during the burst, it adds a layer at 
the next SP. Conversely, receivers drop to a lower sub- 
scription level whenever a packet loss occurs outside of 
a burst preceding a synchronization point. 

Both the sending of SP’s and burst periods are driven 
by the sender, with the receivers reacting appropriately. 

The attractive features of this approach are that receivers 
do not need to provide congestion control feedback to the 
source and receivers need not coordinate join attempts to 
prevent disruption to other receivers. These features are 
particularly important in the context of a digital fountain in 
which receiver-to-source and inter-receiver communication 
are undesirable. Moreover, the work of [25] demonstrates 
how to set transmission rates and the interarrival time be- 
tween SP’s so that the resulting congestion control policy is 
TCP-friendly, and shares bandwidth in a comparable way 
to point-to-point TCP connections. We refer the reader to 
[25] for further details. 

7.2 Scheduling Packet Transmissions Across Multiple Mul- 
ticast Groups 

As described earlier, a receiver at level i subscribes to all 
layers 0 through i. Therefore, it is important to sched- 
ule packet transmissions carefully across the multiple lay- 
ers, so as to minimize the number of duplicate packets that 
a client receives. The stretch factor c limits the number of 
distinct packets that can be transmitted, and therefore also 
has a strong effect on the number of duplicates a client re- 
ceives, especially in the presence of high packet loss rates. 
Of course, using a large stretch factor provides more flex- 
ibility, but it slows decoding time and increases the space 
requirements for decoding.3 For these reasons, we typically 
choose a stretch factor c = 2 as compared to c = 8 used 
in [23, 241, although using larger stretch factors with Tor- 
nado codes is certainly feasible. We find that this choice 
is suitable in practice because we use a packet transmission 
scheme that has the following property: 

One Level Property: If a receiver remains at a fixed sub- 
scription level throughout the transmission and packet loss 
remains sufficiently low, it can reconstruct the source data 
before receiving any duplicate transmissions. Specifically, if 
the loss rate is below below 1 - %, where 1 + c is the recep- 
tion inefficiency of the Tornado code, then in one cycle of 
clc encoding packets a receiver obtains the (1 + c)k packets 
necessary to decode. 

Recently, Bhattacharyya et al. show that a general trans- 
mission scheme exists that realizes the one level property for 
any arbitrary set of layered transmission rates [3]. For ex- 
ample, Table 5 demonstrates a simple sending pattern for 
the rate organization previously described with 4 layers, 4 
source data packets, and a stretch factor of 2. 

Our sending pattern satisfies the One Level Property. 
In fact, the sender transmits a permutation of the entire 
encoding both to each multicast layer and to each cumula- 
tive subscription level before repeating a packet. Receivers 
that change their subscription level over time, however, do 
not witness this ideal behavior. While we show in Sec- 
tion 7.4 that the reception inefficiency remains low even 
when receiver subscription levels change frequently, opti- 
mizing properties of the schedule further for this scenario 
remains an open question. 

7.3 Reconstruction at the Client 

As detailed in the previous subsection, the client is respon- 
sible for observing SPs and modifying its subscription level 
as congestion warrants. The other activity that the client 
must perform is the reconstruction of the source data. There 
are two ways to implement the client decoding protocol. The 

3The memory required for decoding Tornado codes is proportional 
to the length of the encodmg, not to the size of the sowxe data. 
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Handwidth Packets sent during 
Layer per Round Rd 1 Rd 2 Rd 3 Rd 4 Rd 5 Rd 6 Rd 7 Rd 8 

3 4 o-3 4-7 o-3 4-7 o-3 4-7 o-3 4-7 
2 2 4-5 O-l 6-7 2-3 4-5 O-l 6-7 2-3 
1 1 6 2 4 0 7 3 5 1 
0 1 7 3 5 1 6 2 4 0 

Table 5: Packet transmission scheme for 4 layers 

first is an incremental approach in which the client performs 
preliminary decoding operations after each packet arrives. 
This approach leads to some redundant computation: re- 
constructed source data may later arrive intact. Moreover, 
there may be substantial overhead in processing individual 
packets immediately on arrival. A second, patient approach 
that reduces these effects is to wait until a fixed number of 
packets arrive from which it is likely that the source can 
be reconstructed, based on statistical observations. If the 
decoding cannot be completed at this time, then additional 
packets may be processed individually or in small groups. 
While the incremental approach has the benefit of enabling 
some decoding computation to be overlapped with packet 
reception, we found the patient approach to be simpler to 
implement in practice, with little loss of decoding speed. 
In our final implementation we wait until 1.0551c packets ar- 
rive, attempt to decode, and then process additional packets 
individually as needed until decoding is successful. 

7.4 Experimental Setup and Results 

Now we turn to measurements of the efficiency of our ex- 
perimental system. First, we clarify the two sources of in- 
efficiency. Recall that the decodang inefficiency, 1 + c = nc, 
captures the inefficiency due specifically to the use of Tor- 
nado codes. It is defined as 

7l 
c 

= # of distinct packets received prior to reconstruction 

# of source data packets 

There is, however, another possible source of inefficiency: 
a receiver could obtain duplicate packets. The distinctness 
inefficiency, 7]d, captures the loss in efficiency caused by re- 
ceiving duplicate packets. This can occur either by cycling 
through the carousel under exceedingly high loss rates or 
by changing the receiver subscription layer as described in 
Section 7.2. It is defined as 

Total # of packets received 

nd = # of distinct packets received. 

Combining these two effects yields the reception ineficiency, 
71. It is defined as 

II= 
Total # of packets received prior to reconstruction 

# of source data packets 

It iS clear that 17 = l)cl)d. 
The experimental results measure our prototype imple- 

mentation. Besides testing the layered protocol we have de- 
scribed, we also test a single layer protocol. That is, we also 
measure the reception inefficiency when the server transmits 
the file on a single multicast group at a fixed rate. These 
results allow us to focus on the efficiency of the packet trans- 
mission scheme independent of the layering scheme for con- 
gestion control. The server runs two threads: a UDP uni- 
cast t,hread that provides various control information such 

as multicast group information and file length to the client 
and a multicast transmission thread. The clients for both 
protocols connect to the server’s known UDP port for con- 
trol information and on receipt of the information, subscribe 
to the appropriate multicast groups. 

Our test source data consisted of a Quicktime movie (a 
clip available from www.nfl. corn) with size slightly over two 
megabytes. The encoding algorithm used a stretch factor of 
c = 2 to produce 8264 packets of size 500 bytes. The pack- 
ets were additionally tagged with 12 bytes of information 
(packet index, serial number and group number) to give a 
final packet size of 512 bytes. The server and clients were 
on three different subnets, located at Berkeley, CMU and 
Cornell. There were 16 hops on the path from Berkeley 
to CMU, and the bottleneck bandwidth (obtained by us- 
ing mtrace and pathchar [9]) was 8 Mb/s with an RTT of 
60 ms. There were 17 hops on the path from Berkeley to 
Cornell, and the bottleneck bandwidth was 9.3 Mb/s with 
an RTT of 87 ms. Base layer bandwidth was set at rates 
ranging from 64 Kb/sec to 512 Kb/sec. We ran experiments 
with the server both at Berkeley and at CMU and with the 
clients located at the other two subnets. Locating the server 
at CMU tended to generate higher packet loss rates for the 
same transmission bandwidth. The machines used at CMU 
and Berkeley were 167 MHz UltraSPARC-l’s running So- 
laris 2.5.1. The client at Cornell ran on a 60 MHz Spare. 
When running the layered protocol, we used 4 layers. 

In our initial experiments, in some cases we witnessed 
loss rates over the course of the transmission of over 20% 
- rates that are admittedly far higher than the congestion 
control techniques of [25] were intended to handle. To gen- 
erate even higher loss rates that might arise in other envi- 
ronments, such as mobile wireless networks, the base layer 
rate was set artificially high, causing a router along the path 
to drop packets persistently. 

The data from the two sets of experiments are shown 
in Figure 7. As seen from the graphs for the single layered 
case, for packet losses of less than 50% , thezlistinctness inef- 
ficiency is almost always 1. This is to be expected because of 
the One Level Property.4 Thus, for low loss rates, the recep- 
tion inefficiency is effectively the decoding inefficiency, which 
in our example was roughly 1.07 on average. (This decoding 
inefficiency is slightly higher than for Tornado Z because a 
different code was used in these experiments, and because 
we wait until at least 1.0551c packets arrive before trying to 
decode.) We further observe that the transmission scheme 
is robust even under severe loss rates - at nearly a 70% loss 
rate, the reception inefficiency is generally below 1.4. Of 
course, if one had reason to suspect such excessively high 

4Note that it is possible to have a cumulatzve loss rate that is less 
than 50% but in which losses initially are higher than 50% in the first 
cycle so that the client receives some duplicates. This is precisely 
what happened for the outlying point at 35% packet loss in the single 
layer distinctness inefficiency graph. 
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Figure 7: Experimental Results of the Prototype 

loss rates ahead of time, one could choose a larger stretch 
factor, at the expense of proportionally higher encoding and 
decoding times. 

Figure 7 also shows experimental data for the mnltilay- 
ered case. We observe that the use of multiple layers for con- 
gestion control increases the distinctness inefficiency. This is 
natural as switching among subscription levels can cause the 
client to receive packets that had already been obtained at 
other subscription levels. For high loss rates, the distinct- 
ness inefficiency remained low because receivers generally 
subscribed only to the base layer. An interesting direction 
we intend to pursue further is to study how the reception 
efficiency varies with the rates of change in receiver subscrip- 
tion level. 

8 Conclusion 

The introduction of Tornado codes yields significant new 
possibilities for the design of reliable multicast protocols. 
To explore these possibilities, we formalized the notion of an 
ideal digital fountain and explained how Tornado codes can 
yield a much closer approximation to a digital fountain than 
previous systems based on standard Reed-Solomon erasure 
codes. Our prototype multicast data distribution system 
demonstrates that simple protocols using Tornado codes are 
effective in practice. It would be useful to test a similar 
system with a large number of users to fully demonstrate 
the effectiveness of our approach. 

Given that we can closely approximate a digital fonn- 
tain with Tornado codes, we conclude with other possible 
applications for such an encoding scheme. One application 

is dispersity routing of data from endpoint to endpoint in a 
packet-routing network. With packets generated by a dig- 
ital fountain, the source can inject packets along multiple 
paths in the network. Those packets that experience con- 
gestion are delayed, but the destination can recover the data 
once a sufficient number of packets arrive, irrespective of the 
paths they took. This application dates back to the semi- 
nal works on dispersity routing by Maxemchnk [13, 141 and 
information dispersal by Rabin [21]. Both suggested using 
standard erasure codes. We expect Tornado codes will lead 
to improved practical dispersity routing schemes. 

Another application for which the Tornado code approx- 
imation might be useful arises in the context of mirrored 
data. Currently, to minimize response time, clients search 
for a lightly loaded mirror site on an nncongested path. If 
the sources use ideal digital fountains to transmit the data, 
clients can access multiple sources simultaneously, and ag- 
gregate all the packets they receive to recover the data effi- 
ciently. The problem with a Tornado code solution is that 
if the stretch factor is small, one receives duplicate packets 
frequently; if the stretch factor is large, the space and time 
requirements for decoding become prohibitive. We are cnr- 
rently studying how parameters may be set appropriately to 
yield a viable solution. 
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