
A Digital Fountain Approach
to

Reliable Distribution of Bulk Data

John W. Byers *

Abstract

Michael Lubyt Michael Mitzenmachert Ashutosh Rege 5

The proliferation of applications that must reliably distribute
bulk data to a large number of autonomous clients motivates
the design of new multicast and broadcast protocols. We de-
scribe an ideal, fully scalable protocol for these applications
that we call a digital fountain. A digital fountain allows
any number of heterogeneous clients to acquire bulk data
with optimal efficiency at times of their choosing. Moreover,
no feedback channels are needed to ensure reliable delivery,
even in the face of high loss rates.

We develop a protocol that closely approximates a digital
fountain using a new class of erasure codes that for large
block sizes are orders of magnitude faster than standard
erasure codes. We provide performance measurements that
demonstrate the feasibility of our approach and discuss the
design, implementation and performance of an experimental
system.

1 Introduction

A natural solution for software companies that plan to ef-
ficiently disseminate new software over the Internet to mil-
lions of users simultaneously is multicast or broadcast trans-
mission [24]. These transmissions must be fully reliable,
have low network overhead, and support vast numbers of
receivers with heterogeneous characteristics. Other activi-
ties that have similar requirements include distribution of
popular images, database replication and popular web site
access. These applications require more than just a reliable
multicast protocol, since users wish to access the data at

*UC Berkeley and International Computer Science Institute,
Berkeley, California. Research supported in part by Na
tional Science Foundation operating grant NCR-9416101. Email:
byersQicsi.berkeley.edu

tInternational Computer Science Institute, Berkeley, California.
Research supported in part by National Science Foundation operating
grant NCR-9416101. Email: luby@icsl.berkeley.edu

$Digital Systems Research Center, Palo Alto, California. Email:
michaehn@pa.dec.com

51nternational Computer Science Institute, Berkeley, California.
Research supported in part by National Science Foundation operating
grant NCR-9416101. Email: rege@icsi.berkeley.edu

Permiswon to make di@itel or herd copies of all or psrt of this work for
personal or classroom use is granted without fee provided that
copws are not made or distributed for profit or commercial advan-
tege and that copses bear this notice and the full c&t&ton on the first page.
To copy ofherws.. to rspubksh. to post on servers or to
redMribute to kste.. require@ prior specific permission and/or a fee.
SIGCOMM ‘98 Vencouver, B.C.
0 1998 ACM l-58113.003-1/981ooo8...$5.W

times of their choosing and these access times will overlap
with those of other users.

While unicast protocols successfully use receiver initiated
requests for retransmission of lost data to provide reliability,
it is widely known that the multicast analog of this solution
is unscalable. For example, consider a server distributing
a new software release to thousands of clients. As clients
lose packets, their requests for retransmission can quickly
overwhelm the server in a process known as feedback im-
plosion. Even in the event that the server can handle the
requests, the retransmitted packets are often of use only to
a small subset of the clients. More sophisticated solutions
that address these limitations by using techniques such as
local repair, polling, or the use of a hierarchy have been pro-
posed [5, 10, 15, 16, 271, but these solutions as yet appear in-
adequate [19]. Moreover, whereas adaptive retransmission-
based solutions are at best unscalable and inefficient on ter-
restrial networks, they are unworkable on satellite networks,
where the back channel typically has high latency and lim-
ited capacity, if it is available at all.

The problems with solutions based on adaptive retrans-
mission have led many researchers to consider a

P
plying For-

ward Error Correction based on erasure codes to reliable
multicast [6, 17, 16, 20, 22, 23, 24, 251. The basic principle
behind the use of erasure codes is that the original source
data, in the form of a sequence of Ic packets, along with ad-
ditional redundant packets, are transmitted by the sender,
and the redundant data can be used to recover lost source
data at the receivers. A receiver can reconstruct the original
source data once it receives a sufficient number of packets.
The main benefit of this approach is that different receivers
can recover from different lost packets using the same re-
dundant data. In principle, this idea can greatly reduce the
number of retransmissions, as a single retransmission of re-
dundant data can potentially benefit many receivers simul-
taneously. (In other applications, such as real-time video,
retransmission may also be undesirable due to timing con-
straints; we emphasize that we are not considering real-time
applications here.)

The recent work of Nonnenmacher, Biersack and Towsley
[20] defines a hybrid approach to reliable multicast, cou-
pling requests for retransmission with transmission of redun-
dant codewords, and quantifies the benefits of this approach
in practice. Their work, and the work of many other au-

’ Erasure codes are sometimes called forward-error correcting codes
(FEC codes) in the networking community. However, FEC often
refers to codes that detect and correct errors, and these codes are
typically implemented in special purpose hardware. To avoid confu-
sion, we always refer to the codes we consider as erasure codes.

56

thors, focus on erasure codes based on Reed-Solomon codes
[7, 16, 17, 18, 22, 23, 241. The limitation of these codes
is that encoding and decoding times are slow on large block
sizes, effectively limiting Ic to small values for practical appli-
cations. Hence, their solution involves breaking the source
data into small blocks of packets and encoding over these
blocks. Receivers that have not received a packet from a
given block request retransmission of an additional code-
word from that block. They demonstrate that this approach
is effective for dramatically reducing the number of retrans-
missions, when packet loss rates are low (they typically con-
sider 1% loss rates). However, this approach cannot elimi-
nate the need for retransmissions, especially as the number
of receivers grows large or for higher rates of packet loss.
Their approach also does not enable receivers to join the
sessicn dynamically.

To eliminate the need for retransmission and to allow
receivers to access data asynchronously, the use of a data
carousel or broadcast disk approach can ensure full relia-
bility [l]. In a data carousel approach, the source repeat-
edly loops through transmission of all data packets. Re-
ceivers may join the stream at any time, then listen until
they receive all distinct packets comprising the transmis-
sion. Clearly, the reception overhead at a receiver, measured
in terms of unnecessary receptions, can be extremely high
using this approach. As shown in [23, 241, adding redundant
codewords to the carousel can dramatically reduce reception
overhead. These papers advocate adding a fixed amount
of redundancy to blocks of the transmission using Reed-
Solomon codes. The source then repeatedly loops through
the set of blocks, transmitting one data or redundant packet
about each block in turn until all packets are exhausted, and
then repeats the process. This interleaved approach enables
the receiver to reconstruct the source data once it receives
sufficiently many packets from each block. The limitation of
using this approach over lossy networks is that. the receiver
may still receive many unnecessary packets from blocks that
have already been reconstructed while waiting for the last
packets from the last few blocks it still needs to reconstruct.

The approaches described above that eliminate the need
for retransmission requests can be thought of as weak ap-
proximations of an ideal solution, which we call a digital
fountain. A digital fountain is conceptually simpler, more
efficient, and applicable to a broader class of networks than
previous approaches. A digital fountain injects a stream of
distinct encoding packets into the network, from which a re-
ceiver can reconstruct the source data. The key property of a
digital fountain is that the source data can be reconstructed
intact from any subset of the encoding packets equal in total
length to the source data. The digital fountain concept is
similar to ideas found in the seminal works of Maxemchuk
[13, 141 and Rabin [al]. Our approach is to construct better
approximations of a digital fountain as a basis for protocols
that perform reliable distribution of bulk data.

We emphasize that the digital fountain concept is quite
general and can be applied in diverse network environments.
For example, our framework for data distribution is applica-
ble to the Internet, satellite networks, and wireless networks
with mobile agents. These environments are quite different
in terms of packet loss characteristics, congestion control
mechanisms, and end-to-end latency; we strive to develop a
solution independent, of these environment-specific variables.
These considerations motivate us to study, for example, a
wide range of packet loss rates in our comparisons.

The body of the paper is organized as follows. In the next
section, we describe in more detail the characteristics of the

problems we consider. In Section 3, we describe the digital
fountain solution. In Section 4, we describe how to build a
good theoretical approximation of a digital fountain using
erasure codes. A major hurdle in implementing a digital
fountain is that standard Reed-Solomon codes have unac-
ceptably high running times for these applications. Hence,
in Section 5, we describe Tornado codes, a new class of era-
sure codes that have extremely fast encoding and decoding
algorithms. These codes generally yield a far superior ap-
proximation to a digital fountain than can be realized with
Reed-Solomon codes in practice, as we show in Section 6.
Finally, in Section 7, we describe the design and perfor-
mance of a working prototype system for bulk data distri-
bution based on Tornado codes that is built on top of IP
Multicast. The performance of the prototype bears out the
simulation results, and it also demonstrates the interoper-
ability of this work with the layered multicast techniques of
[25]. We conclude with additional research directions for the
digital fountain approach.

2 Requirements for an Ideal Protocol

We recall an example application in which millions of clients
want to download a new release of software over the course
of several days. In this application, we assume that there
is a distribution server, and that the server will send out a
stream of packets (using either broadcast or multicast) as
long as there are clients attempting to download the new
release. This software download application highlights sev-
eral important features common to many similar applica-
tions that must distribute bulk data. In addition to keeping
network traffic to a minimum, a scalable protocol for dis-
tributing the software using multicast should be:

Reliable: The file is guaranteed to be delivered in its
entirety to all receivers.

EfRcient: Roth the total number of packets each client
needs to receive and the amount of time required to
process the received packets to reconstruct the file should
be minimal. Ideally, the total time for the download
for each client should be no more than it would be had
point-to-point connections been used.

On demand: Clients may initiate the download at
their discretion, implying that different clients may
start the download at widely disparate times. Clients
may sporadically be interrupted and continue the down-
load at a later time.

Tolerant: The protocol should tolerate a heteroge-
neous population of receivers, especially a variety of
end-to-end packet loss rates and data rates.

We also state our assumptions regarding channel charac-
teristics. IP multicast on the Internet, satellite transmission,
wireless transmission, and cable transmission are represen-
tative of channels we consider. Perhaps the most impor-
tant property of these channels is that the return feedback
channel from the clients to the server is typically of lim-
ited capacity, or is non-existent. This is especially appli-
cable to satellite transmission. These channels are gener-
ally packet based, and each packet has a header including
a unique identifier. They are best-effort channels designed
to attempt to deliver all packets, but frequently packets are
lost or corrupted. Wireless networks are particularly prone
to high rates of packet loss and all of the networks we de-
scribe are prone to bursty loss periods. We assume that

57

error-correcting codes are used to correct and detect errors
within a packet. But if a packet contains more errors than
can be corrected, it is discarded and treated as a loss.

The requirement that the solution be reliable, efficient,
and on demand implies that client robustness to missing
packets is crucial. For example, a client may sporadically
be interrupted, continuing the download several times before
completion. During the interruptions the server will still be
sending out a stream of packets that an interrupted client
will miss. The efficiency requirement implies that the total
length of all the packets such a client has to receive in order
to recover the file should be roughly equal to the total length
of the file.

3 The Digital Fountain Solution

In this section, we outline an idealized solution that achieves
all the objectives laid out in the previous section for the
channels of interest to us. In subsequent sections, we de-
scribe and measure a new approach that implements an ap-
proximation to this ideal solution that is superior to previous
approaches.

A server wishes to allow a universe of clients to acquire
source data consisting of a sequence of L equal length pack-
ets. In the idealized solution, the server sends out a stream
of distinct packets, called encoding packets, that constitute
an encoding of the source data. The server will transmit the
encoding packets whenever there are any clients listening in
on the session. A client accepts encoding packets from the
channel until it obtains exactly k packets. In this idealized
solution, the data can be reconstructed regardless of which
k encoding packets the client obtains. Therefore, once k en-
coding packets have been received the client can disconnect
from the channel. We assume that in this idealized solution
that there is very little processing required by the server to
produce the encoding of packets and by the clients to recover
the original data from k encoding packets.

We metaphorically describe the stream of encoding pack-
ets produced by the server in this idealized solution as a dig-
ital fountain. The digital fountain has properties similar to
a fountain of water for quenching thirst: drinking a glass of
water, irrespective of the particular drops that fill the glass,
quenches one’s thirst. The digital fountain protocol has all
the desirable properties listed in the previous section and
functions over channels with the characteristics outlined in
the previous section.

4 Building a Digital Fountain with Erasure Codes

An ideal way to implement a digital fountain is to directly
use an erasure code that takes source data consisting of k
packets and produces sufficiently many encoding packets to
meet user demand. Indeed, standard erasure codes such as
Reed-Solomon erasure codes have the ideal property that a
decoder at the client side can reconstruct the original source
data whenever it receives any k of the transmitted packets.
But erasure codes are typically used to stretch a file con-
sisting of k packets into n encoding packets, where both
k and n are input parameters. We refer to the ratio n/k
as the stretch jractor of an erasure code. While this finite
stretch factor limits the extent to which erasure codes can
approximate a digital fountain, a reasonable approximation
proposed by other researchers (e.g., [18, 22, 23, 25]), is to
set n to be a multiple of k, then repeatedly cycle through
transmission of the n encoding packets. The limitation is
that for any pre-specified value of n, under sufficiently high

loss rates a client may not receive k out of n packets in one
cycle. Thus in lossy environments, a client may receive use-
less duplicate transmissions before reconstructing the source
data, decreasing the channel efficiency. But in practice, our
experimental results indicate that this source of inefficiency
is not large even under very high loss rates and when n is
set to be a small multiple of k, such as n = 2k, the setting
we use in the remainder of the paper.

A more serious limitation regards the efficiency of en-
coding and decoding operations. As detailed in subsequent
sections, the encoding and decoding processing times for
standard Reed-Solomon erasure codes are prohibitive even
for moderate values of k and n. The alternative we pro-
pose is to avoid this cost by using the much faster Tornado
codes [ll]. As always, there is a tradeoff associated with
using one code in place of another. The main drawback of
using Tornado codes is that the decoder requires slightly
more than k of the transmitted packets to reconstruct the
source data. This tradeoff is the main focus of our compar-
ative simulation studies that we present in Section 6. But
first, in Section 5, we provide an in-depth description of the
way Tornado codes are constructed and their properties.

5 Tornado Codes

In this section, we describe in some detail the construction
of a specific Tornado code and explain some of the general
principles behind Tornado codes. We first outline how these
codes differ from traditional Reed-Solomon erasure codes.
Then we give a specific example of a Tornado code based on
[ll, 121 and compare its performance to a standard Reed-
Solomon code. For the rest of the discussion, we will con-
sider erasure codes that take a set of k source data pack-
ets and produce a set of C redundant packets for a total of
n = k + 1 encoding packets all of a fixed length P.

5.1 Theory

We begin by providing intuition behind Reed-Solomon codes.
We think of the ith source data packet as containing the
value of a variable z ,, and we think of the jth redundant
packet as containing the value of a variable y3 that is a
linear combination of the zi variables over an appropriate
finite field. (For ease of description, we associate each vari-
able with the data from a single packet, although in our
simulations each packet may hold values for several vari-
ables.) For example, the third redundant packet might hold
ya = zr + zzcr + . + zkc@-‘, where (Y is some primitive
element of the field. Typically, the finite field multiplication
operations are implemented using table lookup and the ad-
dition operations are implemented using exclusive-or. Each
time a packet arrives, it is equivalent to receiving the value
of one of these variables.

Reed-Solomon codes guarantee that successful receipt of
any k distinct packets enables reconstruction of the source
data. When e redundant packets and k-e source data pack-
ets arrive, there is a system of e equations corresponding to
the e redundant packets received. Substituting all values
corresponding to the k received packets into these equations
takes time proportional to (k - e + 1)e. The remaining sub-
system has e equations and e unknowns corresponding to
the source data packets not received. With Reed-Solomon
codes, this system has a special form that allows one to solve
for the unknowns in time proportional to e2 via a matrix in-
version and matrix multiplication.

58

k

:

n
a

b

C

d

e

f
8
h

Figure I: Structure of Tornado Codes

The large decoding time for Reed-Solomon codes arises
from the dense system of linear equations used. Tornado
codes are built using random equations that are sparse, i.e.
the average number of variables per equation is small This
sparsity allows substantially more efficient encoding and de-
coding. The price we pay for much faster encoding and
decoding is that k packets no longer suffice to reconstruct
the source data; instead slightly more than k packets are
needed. In fact, designing the proper structure for the sys-
tem of equations so that the number of additional packets
and the coding times are simultaneously small is a difficult
challenge [ll, 121.

For Tornado codes, the equations have the form ys =
rr@ x4 $27, where $ is bitwise exclusive-or. Tornado codes
also use equations of the form ~5s = 31s $ y7 $ ~13; that
is, redundant packets may be derived from other redundant
packets. The encoding time is dominated by the number of
exclusive-or operations in the system of equations.

The decoding process for Tornado codes uses two basic
operations. The first operation consists of replacing the re-
ceived variables by their values in the equations in which
they appear. The second operation is a simple svbstitvtion
rule. The substitution rule can be applied to recover any
missing variable that appears in an equation in which that
variable is the unique missing variable. For example, con-
sider again the equation ys = 21 @ 24 $ x7. Suppose the
redundant packet containing 31s has been received, as well
as the source data packets containing zi and zr, but 24 has
not been received. Then we can use the above equation to
solve for 24, again using only exclusive-or operations. Using
this substitution rule repeatedly, a single packet arrival may
allow us to reconstitute several additional packets, as the
effect of that arrival propagates. In practice, the number
of possible substitution rule applications remains minimal
until slightly more than k packets have arrived. Then often
a single arrival generates a whirlwind of substitutions that
allow recovery of all of the remaining source data packets.
IIence the name Tornado codes.

The decoding may stop as soon as enough packets arrive
so that the source data can be reconstructed. Note that
Tornado codes use only exclusive-or operations and avoid
both the field operations and the matrix inversion inher-
ent in decoding Reed-Solomon codes. The total number of
exclusive-or operations for decoding is at most the number
used for encoding, and in general is less.

As we have stated, to reconstruct the source data using
a Tornado code, it suffices to recover slightly more than k of

a+b+f

a+b+c+d+g

c+e+g+h

c+d+e+f+h

exclusive-or

I Tornado Reed-Solomon

Decoding inefficiency 1 + c required 1
Encoding times (k +e)ln(l/c)P keP
Decoding times (k + e)ln(l/c)P keP
Basic oueration XOR Field ouerations

Table 1: Properties of Tornado vs. Reed-Solomon codes

the n packets. We say that the decoding inefficiencyis 1 + c
if (I+ c)k encoding packets are required to reconstruct the
source data. For Tornado codes the decoding inefficiency is
not a fixed quantity but depends on the packet loss pattern
and the random choices used to construct the code. This
variance in decoding inefficiency is described in more detail
in Section 5.3.

The advantage of Tornado codes over standard codes
is that they trade off a small increase in decoding ineffi-
ciency for a substantial decrease in encoding and decoding
times. Recall Reed-Solomon codes have encoding times pro-
portional to klP and decoding times proportional to keP.
As a result, Reed-Solomon codes can only be applied in
practice when k and fJ are relatively small. (Values used in
[20, 23, 25, 241 have k and t! ranging from 8 to 256.) In con-
trast, there are families of Tornado codes that have encoding
and decoding times that are proportional to (k+e) In(l/r)P
with decoding inefficiency 1 + E. And in practice, the en-
coding and decoding times of Tornado codes are orders of
magnitude faster than Reed-Solomon codes for large values
of k and e. A summary comparing the properties of Tornado
codes and standard Reed-Solomon codes is given in Table 1.

In the next section, we present an example of a fast Tor-
nado code with decoding inefficiency 1 + c GZ 1.054 whose
performance we compare directly with Reed-Solomon codes.

5.2 An Example

We now provide a specific example of a Tornado code. It is
convenient to describe the association between the variables
and the equations in terms of a levelled graph, as depicted
in Figure 1. The nodes of the leftmost level of the graph
correspond to the source data. Subsequent levels contain
the redundant data.

Each redundant packet is the exclusive-or of the pack-

59

ets held in the neighboring nodes in the level to the left,
as depicted on the right side of Figure 1. The number of
exclusive-or operations required for both encoding and de-
coding is thus dominated by the number of edges in the
entire graph.

We specify the code by specifying the random graphs to
place between consecutive levels. The mathematics behind
this code, which we call Tornado Z, is described in [II, 121
and will not be covered here. This code has 16,000 source
data nodes and 16,000 redundant nodes. The code uses
three levels; the number of nodes in the levels are 16,000,
8,000 and 8,000 respectively.

The graph between the first two levels is the union of two
subgraphs, Gr and Gz. The graph Gr is based on a truncated
heavy tail distribution. We say that a level has a truncated
heavy tail distribution with parameter 11 when the fraction
of nodes of degree i is & for i = 2,. . , D+ 1. The graph

Gr connects the 16,000 source data nodes to 7,840 of the
nodes at the second level. The node degrees on the left hand
side are determined by the truncated heavy tail distribution,
with D = 200. For example, this means that there are

y%$#= 8,040 nodes of degree 2 on the left hand side.

Each edge is attached to a node chosen uniformly at random
from the 7,840 on the right hand side.2 The distribution of
node degrees on the right hand side is therefore Poisson.

In the second graph G2, each of the 16,000 nodes on the
left has degree 2. The nodes on the right are the remaining
160 nodes at the second level, and each of these nodes has
degree 200. The edges of Gs are generated by randomly
permuting the 32,000 edge slots on the left and connecting
them in that permuted order to the 160 nodes on the right.
The graph Gz helps prevent small cycles in Gr from halting
progress during decoding.

The second layer uses a graph with a specific distribution,
designed using a linear programming tool discussed in [II,
121. The linear program is used to find graphs that have low
decoding inefficiency. III this graph, all of the 8,000 nodes
on the left have degree 12. On the right hand side there are
4,093 nodes of degree 5; 3,097 nodes of degree 6; 122 nodes
of degree 33; 472 nodes of degree 34; 1 node of degree 141;
27 nodes of degree 170; and 188 nodes of degree 171. The
connections between the edge slots on the left and right are
selected by permuting the edges slots on the left randomly
and then connecting them to the edge slots on the right.

In total there are 222,516 edges in this graph, or approx-
imately 14 edges per source data node. The sparseness of
this graph allows for extremely fast encoding and decoding.

5.3 Performance

In practice, Tornado codes where values of k and 1 are on
the order of tens of thousands can be encoded and decoded
in just a few seconds. In this section, we compare the effi-
ciency of Tornado codes with standard codes that have been
previously proposed for network applications [6, 20, 22, 23,
24, 251. The erasure code listed in Tables 2 and 3 as Cauchy
[4] is a standard implementations of Reed-Solomon erasure
codes based on Cauchy matrices. (We note that the Cauchy
implementation, available at [a], is faster for larger values of
k than the implementation of Reed-Solomon codes based on

2Notice that this may yield some nodes of degree 0 on the right
hand side; however, this happens with small probability, and such
nodes can be removed. Also, there may be multiple edges between
pairs of nodes. This does not affect the behavior of the algorithm dra-
matically, although the redistribution of such multiple edges improves
performance marginally.

SIZE

Encoding Benchmarks
Reed-Solomon Codes I] Tornado Codes

Cauchy Tornado Z

Table 2: Comparison of encoding times.

Decoding Benchmarks
II Reed-Solomon Codes II Tornado Codes

SIZE Cauchy

250 KB 2.06 seconds
500 KB 8.4 seconds

Tornado Z

0.18 seconds
0.24 seconds

1 MB
2MB
4MB
8 MB

16 MB

40.5 seconds 0.31 seconds
199 seconds 0.44 seconds
800 seconds 0.74 seconds

3 166 seconds 1.28 seconds
13629 seconds 2.27 seconds

Table 3: Comparison of decoding times.

Vandermonde matrices by Rizzo [22].) The Tornado Z codes
were designed as described earlier in this section. The im-
plementations were not carefully optimized, so their running
times could be improved by constant factors. All experi-
ments were benchmarked on a Sun 167 MHz UltraSPARC 1
with 64 megabytes of RAM running Solaris 2.5.1. Ail runs
are with packet length P = 1KB. For all runs, a file con-
sisting of k packets is encoded into n = 2k packets, i.e., the
stretch factor is 2.

For the decoding of the Cauchy codes, we assume that
k/2 original file packets and k/2 redundant packets were
used to recover the original file. This assumption holds ap-
proximately when a carousel encoding with stretch factor 2
is used, so that roughly half the packets received are redun-
dant packets.

Tornado Z has an average decoding inefficiency of 1.054,
so on average 1.054 . k/2 original file packets and 1.054
k/2 redundant packets were used to recover the original file.
Our results demonstrate that Tornado codes can be encoded
and decoded much faster than Reed-Solomon codes, even for
relatively small files.

We note that there is a small variation in the decod-
ing inefficiency for decoding Tornado codes depending on

which particular set of encoding packets are received. To
study this variation, we ran 10,000 trials using the Tornado
Z code. In Figure 2, we show the percentage of trials for
which the receiver could not reconstruct the source data
for specific values of the decoding inefficiency. For exam-
ple, using Tornado Z codes with each node representing one
packet, a decoding inefficiency of 1.064 corresponds to re-
ceiving 17,024 = 1.064 . 16,000 packets. Over 90% of the
clients could reconstruct the source data before receiving
this many packets.

In our trials the average decoding inefficiency was 1.0536,

60

100

90

60

70

Decoding Inefficiency, Tornado 2

k
E 60

9 50

% 40

30

20

10

0
1.02 1.04 1.06 1.06 1.1

Decoding lnefficlency

Figure 2: Decoding inefficiency variation over 10,000 trials
of Tornado Z.

the maximum reception inefficiency was 1.10, and the stan-
dard deviation was 0.0073. For alI 10,000 trials the same
graph was used; this graph was not specially chosen, but
was generated randomly as described in Section 5.2. Hence
one might achieve better performance by testing various ran-
dom graphs for performance before settling on one. Our
tests suggest that the performance given in Figure 2 is rep-
resentative.

6 Simulation Comparisons

From the previous section, it is clear that using Reed-Solomon
erasure codes to encode over large files for bulk data dis-
tribution has prohibitive encoding and decoding overhead.
But another approach, described in the introduction, is the
method of interleaving suggested in [20, 22, 23, 241. In-
terleaved codes are constructed as follows: suppose K + L
encoding packets are to be produced from K file packets.
Partition the K file packets into blocks of length k, so that
there are B = K/k blocks in total. Stretch each block of k
packets to an encoding block of k + e packets using a stan-
dard erasure code by adding l = kL/K redundant packets.
Then, form the encoding of length K+ L by interleaving the
encoding packets from each block, i.e., the encoding consists
of sequences of B packets, each of which consist of exactly
one packet from each block.

To compare various protocols, we compare the decoding
inefficiency and decoding speed at each receiver. Recall that
the decoding inefficiency is 1 + E if one must obtain (I+ c)k
distinct packets in order to decode the source data. For
Tornado codes, there is some decoding inefficiency based on
how the codes are constructed. For interleaved codes, decod-
ing inefficiency arises because in practice one must obtain
more than k packets to have enough packets to decode each
block. We emphasize that for interleaved codes the decod-
ing inefficiency is a random variable that depends on the loss
rate, loss pattern, and the block size. The tradeoff between
decoding inefficiency and coding time for interleaved codes
motivates the following set of experiments.

l Suppose we choose k in the interleaved setting so that
the decoding inefficiency is comparable to that of Tor-
nado Z. How does the decoding time compare?

l Suppose we choose k in the interleaved setting so that
the decoding time is comparable to that of Tornado Z.
How does the decoding inefficiency compare?

The choice of the value of the parameter k for interleaved
codes is crucial. To optimize encoding and decoding speed
of the interleaved codes, k should clearly be chosen to be as
small as possible. But choosing k to be very small defeats the
purpose of using encoding, since any redundant packet that
arrives can only be used to reconstruct a source data packet
from the same block. Moreover, redundant packets that
arrive for data blocks that have already been reconstructed
successfully do not benefit the sender.

In our initial simulations, we assume probabilistic loss
patterns in which each transmission to each receiver is lost
independently with a fixed probability p. We emphasize that
using bursty loss models instead of this uniform loss model
would not impact our results for Tornado code performance;
only the overall loss rate is important. This is because when
using Tornado codes we compute the entire encoding ahead
of time and send out packets in a random order from the
source end. Therefore, any loss pattern appears equivalent
to a uniform loss pattern on the receiver end. Note that this
randomization at the sender end may introduce latency, and
therefore this Tornado code approach may not be appropri-
ate for some applications such as real-time interactive video.

To explain this in more detail, let us say that a block The choice of the uniform model does however impact the
is furl from the client viewpoint when at least k distinct performance results of the interleaved codes, which (unless
transmitted packets associated with that block have been the same randomization of the transmission order is used)
received. The entire file can only be decoded by the client are highly dependent on the loss pattern. In particular, we
when all blocks are full. (Note however that some of the de- would expect interleaved codes to have slightly better perfor-
coding work can potentially be done in the background while mance under bursty losses. We therefore also provide results
packets arrive; the same also holds for Tornado codes.) The from trace-driven simulations of the Internet to demonstrate
phenomenon that arises when k is relatively small is illus- the relatively small effect of burstiness on interleaved code
trated in Figure 3; while waiting for the last few blocks to performance.

Q
I
+ 8 I.S..I .,...
:

:
8

L 1 ii
v A

B blocks

0 = source data

0 = redundancy

Figure 3: Waiting for the last blocks to fill...

fill, the receiver may receive many packets from blocks that
have already been reconstructed successfully. These useless
packets contribute directly to the decoding inefficiency. To
summarize, the choice of the value of k for interleaved codes
introduces a tradeoff between decoding speed and decoding
inefficiency.

61

Decoding Inefficiency on a 1MB File, p = 0.1 Decoding Inefilclencg cm a 1MB File, p = 0.5

1 10 100 1000 10000

Receivers

Figure 4: Comparison of decoding inefficiency

Speedup factor for Tornado Z
erasure probabilities

SIZE 0.01 [0.05 (0.10 (0.20 (0.50

Table 4: Speedup of Tornado Z codes over interleaved codes
with comparable efficiency.

6.1 Equating Decoding Efficiency

Our first simulation compares the decoding time of Tor-
nado Z with an interleaved code with decoding inefficiency
comparable to those of Tornado Z. In Section 5, we deter-
mined experimentally that Tornado Z codes have the prop-
erty that the decoding inefficiency is greater than 1.076 less
than 1% of the time. In Table 4, we present the ratio be-
tween the running time of an interleaved code for which k is
chosen so that this property is also realized and the running
time of Tornado Z. Of course, this ratio changes as the loss
probability and file size change.

We explain how the entries in Table 4 are derived. To
compute the running time for interleaved codes, we first use
simulations to determine for each loss probability value the
maximum number of blocks the source data can be split into
while still maintaining a decoding inefficiency less than 1.076
for less than 1% of the time. (For example, a two megabyte
file consisting of 2000 one kilobyte packets can be split into
at most eleven blocks while maintaining this property when
packets are lost with probability 0.10.) We then calculate
the decoding time per block, and multiply by the number
of blocks to obtain the decoding time for the interleaved
code. With a stretch factor of two, one half of all packets
injected into the system are redundant encoding packets and
the other half are source data packets. Therefore, in com-
puting the decoding time per block, we assume that half the
packets received are redundant encoding packets. Based on
the data previously presented in the Cauchy codes column
of Table 3, we approximate the decoding time for a block

.=..a..*.* ----. 4 ..-- a-----a
1 7

1 10 100 1000 10000

Receivers

codes with comparable decoding times.

of k source data packets by k2/31250 seconds. To compute
the running time for Tornado Z, we simply use the decode
times for Tornado Z as given earlier in Table 3.

As an example, suppose the encoding of a 16 MB file is
transmitted over a 1 Mbit/second channel with a loss rate of
50%. It takes just over 4 minutes to receive enough packets
to decode the file using either Tornado Z or an interleaved
code (with the desired decoding inefficiency guarantee), but
then the decoding time is almost 8 minutes for the inter-
leaved code compared with just over 2 seconds for Tornado
Z. Comparisons for encoding times yield similar results. We
note that by using slightly slower Tornado codes with less
decoding inefficiency, we would actually obtain even bet-
ter speedup results at high loss rates. This is because in-
terleaved codes would be harder pressed to match stronger
decoding guarantees.

6.2 Equating Decoding Time

Our second set of simulations examines interleaved codes
that have comparable decoding times to Tornado Z. Cauchy
codes with block length k = 20 are roughly equivalent in
speed to the Tornado Z code. We also compare with a block
length k = 50, which is slower but still reasonable in prac-
tice.

Using these block sizes, we now study the maximum de-
coding inefficiency observed as we scale to a large number of
receivers. The sender carousels through a two megabyte en-
coding of a one megabyte file, while receivers asynchronously
attempt to download it. We simulate results for the case in
which packets are lost independently and uniformly at ran-
dom at each receiver at rates of 10% and 50%. The 10%
loss rates are representative of congested Internet connec-
tions, while the 50% loss rates are near the upper limits of
what a mobile receiver with poor connectivity might rea-
sonably experience. The results we give can be interpolated
to provide intuition for performance at intermediate rates
of loss. For channels with very low loss rates, such as the
1% loss rates studied in [20], interleaved codes and Tornado
have generally comparable performance.

Figure 4 shows for different numbers of receivers the
worst case decoding efficiency experienced for any of the
receivers averaged over 100 trials. In these figures, p refers
to the probability a packet is lost at each receiver. Since
the leftmost point in each subfigure is for the case of one
receiver, this point is also just the average decoding inef-
ficiency. The interesting feature of this figure is how the

62

Decoding Inelliciency, SO0 Receivers, p = 0.1 Decoding Inefflcieocy, SO0 Receivers, p = 0.5
1.6

l-l I
100 1000 10000

File Size, KB

Figure 5: Comparison of decoding

worst case decoding inefficiency grows with the number of
receivers.

For packet loss rates of 10% and a block size of k = 50,
the average inefficiency of interleaved codes is comparable
to that of Tornado Z. But as packet loss rates increase, or
if a smaller block size is used, the inefficiency of interleaved
codes rises dramatically. Also, the inefficiency of the worst-
case receiver does not scale with interleaved codes as the
receiver size grows large. Tornado codes exhibit more robust
scalability and better tolerance for high loss rates.

6.3 Scaling to large Files

Our next experiments demonstrate that Tornado codes also
scale better than an interleaved approach as the file size
grows large. This is due to the fact that the number of
packets a client must receive to reconstruct the source data
when using interleaving grows super-linearly in the size of
the source data. (This is the well-known “coupon collector’s
problem.“) In contrast, the number of packets the receivers
require to reconstruct the source data using Tornado codes
grows linearly in the size of the source data, and in particular
the decoding inefficiency does not increase as the file size
increases.

The effect of this difference is easily seen in Figure 5.
In this case both the average decoding inefficiency and the
maximum decoding inefficiency grow with the length of the
file when using the interleaving. This effect is completely
avoided by using Tornado codes.

6.4 Trace-Driven Simulations

To study the impact of bursty loss patterns on the rela-
tive performance of Reed-Solomon and Tornado code ap-
proaches, we perform a similar comparison using publicly
available MBone trace data collected by Yajnik, Kurose,
and Towsley [26]. In these traces, between six and twenty
clients from the US and abroad subscribed to MBone broad-
casts each of roughly an hour in length and reported which
packets they received. Clients experienced packet loss rates
ranging from less than 1% to well over 20% over the course
of these broadcasts.

To sample loss patterns from these traces, we simply
chose a random starting point for each broadcast, and then
used the trace data to generate packet loss patterns for each
receiver in the broadcast beginning at that time. We then
simulated downloading files of various lengths using inter-
leaving and using Tornado codes with these loss patterns.

63

2.2 ~ . 8. Tomdn7,Avg.
. l - Tstmdo 7, Mu.

2 - 4-Intwkrvld,k -so,*vg.
4-Itdedcmd, k P SO, Mm.
4-Idorlena~ k I ao, Avg.
-O-Inkth~d, k I 20, Mu

~:t~:.:~J:.:::I:::::I:i::::-:::ll::::
1 a
100 1000 10000

File Size, KB

inefficiency as file size grows.

Decoding Inefficiency, 146 Receivers,
1.5 1 Trace Data

100 1000 10000
File Size, KB

Figure 6: Comparison of decoding inefficiency on trace data.

Averaging over 146 loss patterns generated from 15 broad-
casts, we plot the average decoding inefficiency for various
file sizes in Figure 6.

The average loss rate over the randomly chosen trace
segments we selected was just over 11%. In this trace data,
there was considerable variance in the loss rate; some clients
received virtually every packet, others experienced large burst
losses over significant periods of time. While this trace data
is limited in scope, the Tornado codes maintain superior
decoding inefficiency in the presence of high burst losses
present in this data set. In fact, the results appear very
similar to that in Figure 5 when p = 0.1, suggesting that
the bursty loss pattern has only a small effect.

7 Implementation of a Reliable Distribution Protocol us-
ing Tornado Codes

In this section, we describe an experimental system for dis-
tributing bulk data to a large number of heterogeneous re-
ceivers who may access the data asynchronously. Our im-
plementation is designed for the Internet using a protocol
built on top of IP Multicast. We have drawn on existing
techniques to handle receiver heterogeneity and congestion
control using layered multicast [15, 18, 251. We emphasize
that the purpose of developing this system is to demonstrate
the feasibility of using Tornado codes in actual systems, and
not to create a completely functional multicast protocol for

deployment.
We expect that Tornado codes will also prove useful in

other environments besides the Internet, such as satellite or
wireless based systems. In these settings, different channel
characteristics would suggest different approaches for con-
gestion control and tolerating receiver heterogeneity. The
Tornado code approach to bulk data distribution we ap-
ply, however, would remain essentially the same, even under
varying end-to-end bandwidths and packet loss rates.

We first describe the design of our multicast protocol.
The two main issues are the use of layered multicast and
the approach the client uses to decode the message. Then
we describe the experimental setup and performance results
of our system.

7.1 Layering Across Multiple Multicast Groups

The congestion control approach we employ follows the lead
of other authors who advocate layeredmulticast [15, 18, 251.
The main idea underlying this approach is to enable the
source to transmit data across multiple multicast groups,
thereby allowing the receivers to subscribe to an appropriate
subset of these layers. Of course, practical considerations
warrant keeping the number of multicast groups associated
with a given source to a minimum. A receiver’s subscription
level is based on factors such as the width of its bottleneck
link to the source and network congestion. The basic ideas
common to the proposed layered schemes are:

a The server transmits data over multiple layers, where
the layers are ordered by increasing transmission rate.

l The layers are cumzllotive in that a receiver subscrib-
ing to layer i also subscribes to all layers beneath it.
We say that a receiver subscribes to level i when it
subscribes to layers 0 through i.

For example, in our implementation, we use geometrically
increasing transmission rates: B, = 2’-’ is the rate of the ith
layer. Thus, a receiver at subscription level i would receive
bandwidth proportional to 28;, for i > 1. The protocol we
use is based on the scheme described % recent work of Vi-
cisano, Rizzo and Crowcroft [25] that proposes the following
two novel ideas, summarized here briefly:

l Congestion control is achieved by the use of synchro-
nization points (SP’s) that are specially marked pack-
ets in the stream. A receiver can attempt to join a
higher layer only immediately after an SP, and keeps
track of the history of events only from the last SP. The
rate at which SP’s are sent in a stream is inversely pro-
portional to the bandwidth: lower bandwidth receivers
are given more frequent opportunities to move up to
higher levels.

l Instead of explicit join attempts by clients, the server
generates periodic bursts during which packets are sent
at twice the normal rate on each layer. This has the
effect of creating network congestion conditions simi-
lar to those that receivers would experience following
an explicit join. Receivers use a packet loss event as
an indication of congestion. So if a receiver witnesses
no packet losses during the burst, it adds a layer at
the next SP. Conversely, receivers drop to a lower sub-
scription level whenever a packet loss occurs outside of
a burst preceding a synchronization point.

Both the sending of SP’s and burst periods are driven
by the sender, with the receivers reacting appropriately.

The attractive features of this approach are that receivers
do not need to provide congestion control feedback to the
source and receivers need not coordinate join attempts to
prevent disruption to other receivers. These features are
particularly important in the context of a digital fountain in
which receiver-to-source and inter-receiver communication
are undesirable. Moreover, the work of [25] demonstrates
how to set transmission rates and the interarrival time be-
tween SP’s so that the resulting congestion control policy is
TCP-friendly, and shares bandwidth in a comparable way
to point-to-point TCP connections. We refer the reader to
[25] for further details.

7.2 Scheduling Packet Transmissions Across Multiple Mul-
ticast Groups

As described earlier, a receiver at level i subscribes to all
layers 0 through i. Therefore, it is important to sched-
ule packet transmissions carefully across the multiple lay-
ers, so as to minimize the number of duplicate packets that
a client receives. The stretch factor c limits the number of
distinct packets that can be transmitted, and therefore also
has a strong effect on the number of duplicates a client re-
ceives, especially in the presence of high packet loss rates.
Of course, using a large stretch factor provides more flex-
ibility, but it slows decoding time and increases the space
requirements for decoding.3 For these reasons, we typically
choose a stretch factor c = 2 as compared to c = 8 used
in [23, 241, although using larger stretch factors with Tor-
nado codes is certainly feasible. We find that this choice
is suitable in practice because we use a packet transmission
scheme that has the following property:

One Level Property: If a receiver remains at a fixed sub-
scription level throughout the transmission and packet loss
remains sufficiently low, it can reconstruct the source data
before receiving any duplicate transmissions. Specifically, if
the loss rate is below below 1 - %, where 1 + c is the recep-
tion inefficiency of the Tornado code, then in one cycle of
clc encoding packets a receiver obtains the (1 + c)k packets
necessary to decode.

Recently, Bhattacharyya et al. show that a general trans-
mission scheme exists that realizes the one level property for
any arbitrary set of layered transmission rates [3]. For ex-
ample, Table 5 demonstrates a simple sending pattern for
the rate organization previously described with 4 layers, 4
source data packets, and a stretch factor of 2.

Our sending pattern satisfies the One Level Property.
In fact, the sender transmits a permutation of the entire
encoding both to each multicast layer and to each cumula-
tive subscription level before repeating a packet. Receivers
that change their subscription level over time, however, do
not witness this ideal behavior. While we show in Sec-
tion 7.4 that the reception inefficiency remains low even
when receiver subscription levels change frequently, opti-
mizing properties of the schedule further for this scenario
remains an open question.

7.3 Reconstruction at the Client

As detailed in the previous subsection, the client is respon-
sible for observing SPs and modifying its subscription level
as congestion warrants. The other activity that the client
must perform is the reconstruction of the source data. There
are two ways to implement the client decoding protocol. The

3The memory required for decoding Tornado codes is proportional
to the length of the encodmg, not to the size of the sowxe data.

64

Handwidth Packets sent during
Layer per Round Rd 1 Rd 2 Rd 3 Rd 4 Rd 5 Rd 6 Rd 7 Rd 8

3 4 o-3 4-7 o-3 4-7 o-3 4-7 o-3 4-7
2 2 4-5 O-l 6-7 2-3 4-5 O-l 6-7 2-3
1 1 6 2 4 0 7 3 5 1
0 1 7 3 5 1 6 2 4 0

Table 5: Packet transmission scheme for 4 layers

first is an incremental approach in which the client performs
preliminary decoding operations after each packet arrives.
This approach leads to some redundant computation: re-
constructed source data may later arrive intact. Moreover,
there may be substantial overhead in processing individual
packets immediately on arrival. A second, patient approach
that reduces these effects is to wait until a fixed number of
packets arrive from which it is likely that the source can
be reconstructed, based on statistical observations. If the
decoding cannot be completed at this time, then additional
packets may be processed individually or in small groups.
While the incremental approach has the benefit of enabling
some decoding computation to be overlapped with packet
reception, we found the patient approach to be simpler to
implement in practice, with little loss of decoding speed.
In our final implementation we wait until 1.0551c packets ar-
rive, attempt to decode, and then process additional packets
individually as needed until decoding is successful.

7.4 Experimental Setup and Results

Now we turn to measurements of the efficiency of our ex-
perimental system. First, we clarify the two sources of in-
efficiency. Recall that the decodang inefficiency, 1 + c = nc,
captures the inefficiency due specifically to the use of Tor-
nado codes. It is defined as

7l
c

= # of distinct packets received prior to reconstruction

of source data packets

There is, however, another possible source of inefficiency:
a receiver could obtain duplicate packets. The distinctness
inefficiency, 7]d, captures the loss in efficiency caused by re-
ceiving duplicate packets. This can occur either by cycling
through the carousel under exceedingly high loss rates or
by changing the receiver subscription layer as described in
Section 7.2. It is defined as

Total # of packets received

nd = # of distinct packets received.

Combining these two effects yields the reception ineficiency,
71. It is defined as

II=
Total # of packets received prior to reconstruction

of source data packets

It iS clear that 17 = l)cl)d.
The experimental results measure our prototype imple-

mentation. Besides testing the layered protocol we have de-
scribed, we also test a single layer protocol. That is, we also
measure the reception inefficiency when the server transmits
the file on a single multicast group at a fixed rate. These
results allow us to focus on the efficiency of the packet trans-
mission scheme independent of the layering scheme for con-
gestion control. The server runs two threads: a UDP uni-
cast t,hread that provides various control information such

as multicast group information and file length to the client
and a multicast transmission thread. The clients for both
protocols connect to the server’s known UDP port for con-
trol information and on receipt of the information, subscribe
to the appropriate multicast groups.

Our test source data consisted of a Quicktime movie (a
clip available from www.nfl. corn) with size slightly over two
megabytes. The encoding algorithm used a stretch factor of
c = 2 to produce 8264 packets of size 500 bytes. The pack-
ets were additionally tagged with 12 bytes of information
(packet index, serial number and group number) to give a
final packet size of 512 bytes. The server and clients were
on three different subnets, located at Berkeley, CMU and
Cornell. There were 16 hops on the path from Berkeley
to CMU, and the bottleneck bandwidth (obtained by us-
ing mtrace and pathchar [9]) was 8 Mb/s with an RTT of
60 ms. There were 17 hops on the path from Berkeley to
Cornell, and the bottleneck bandwidth was 9.3 Mb/s with
an RTT of 87 ms. Base layer bandwidth was set at rates
ranging from 64 Kb/sec to 512 Kb/sec. We ran experiments
with the server both at Berkeley and at CMU and with the
clients located at the other two subnets. Locating the server
at CMU tended to generate higher packet loss rates for the
same transmission bandwidth. The machines used at CMU
and Berkeley were 167 MHz UltraSPARC-l’s running So-
laris 2.5.1. The client at Cornell ran on a 60 MHz Spare.
When running the layered protocol, we used 4 layers.

In our initial experiments, in some cases we witnessed
loss rates over the course of the transmission of over 20%
- rates that are admittedly far higher than the congestion
control techniques of [25] were intended to handle. To gen-
erate even higher loss rates that might arise in other envi-
ronments, such as mobile wireless networks, the base layer
rate was set artificially high, causing a router along the path
to drop packets persistently.

The data from the two sets of experiments are shown
in Figure 7. As seen from the graphs for the single layered
case, for packet losses of less than 50% , thezlistinctness inef-
ficiency is almost always 1. This is to be expected because of
the One Level Property.4 Thus, for low loss rates, the recep-
tion inefficiency is effectively the decoding inefficiency, which
in our example was roughly 1.07 on average. (This decoding
inefficiency is slightly higher than for Tornado Z because a
different code was used in these experiments, and because
we wait until at least 1.0551c packets arrive before trying to
decode.) We further observe that the transmission scheme
is robust even under severe loss rates - at nearly a 70% loss
rate, the reception inefficiency is generally below 1.4. Of
course, if one had reason to suspect such excessively high

4Note that it is possible to have a cumulatzve loss rate that is less
than 50% but in which losses initially are higher than 50% in the first
cycle so that the client receives some duplicates. This is precisely
what happened for the outlying point at 35% packet loss in the single
layer distinctness inefficiency graph.

65

Experimental data - single layer

50

Packet Loss (96)

50

Packet Loss (%)

50

Packet Loss (%)

Distinctness Jneflkiency

.iF

0 20 40 60

Packet Loss (%)

Experimental data - 4 layers

Decoding IneffIcIency Reception Inefnckncy

Pi;= F;;!ggEJ

0 20 40 60 0 20 40 60

Packet Loss (%) Packet Loss (%)

Figure 7: Experimental Results of the Prototype

loss rates ahead of time, one could choose a larger stretch
factor, at the expense of proportionally higher encoding and
decoding times.

Figure 7 also shows experimental data for the mnltilay-
ered case. We observe that the use of multiple layers for con-
gestion control increases the distinctness inefficiency. This is
natural as switching among subscription levels can cause the
client to receive packets that had already been obtained at
other subscription levels. For high loss rates, the distinct-
ness inefficiency remained low because receivers generally
subscribed only to the base layer. An interesting direction
we intend to pursue further is to study how the reception
efficiency varies with the rates of change in receiver subscrip-
tion level.

8 Conclusion

The introduction of Tornado codes yields significant new
possibilities for the design of reliable multicast protocols.
To explore these possibilities, we formalized the notion of an
ideal digital fountain and explained how Tornado codes can
yield a much closer approximation to a digital fountain than
previous systems based on standard Reed-Solomon erasure
codes. Our prototype multicast data distribution system
demonstrates that simple protocols using Tornado codes are
effective in practice. It would be useful to test a similar
system with a large number of users to fully demonstrate
the effectiveness of our approach.

Given that we can closely approximate a digital fonn-
tain with Tornado codes, we conclude with other possible
applications for such an encoding scheme. One application

is dispersity routing of data from endpoint to endpoint in a
packet-routing network. With packets generated by a dig-
ital fountain, the source can inject packets along multiple
paths in the network. Those packets that experience con-
gestion are delayed, but the destination can recover the data
once a sufficient number of packets arrive, irrespective of the
paths they took. This application dates back to the semi-
nal works on dispersity routing by Maxemchnk [13, 141 and
information dispersal by Rabin [21]. Both suggested using
standard erasure codes. We expect Tornado codes will lead
to improved practical dispersity routing schemes.

Another application for which the Tornado code approx-
imation might be useful arises in the context of mirrored
data. Currently, to minimize response time, clients search
for a lightly loaded mirror site on an nncongested path. If
the sources use ideal digital fountains to transmit the data,
clients can access multiple sources simultaneously, and ag-
gregate all the packets they receive to recover the data effi-
ciently. The problem with a Tornado code solution is that
if the stretch factor is small, one receives duplicate packets
frequently; if the stretch factor is large, the space and time
requirements for decoding become prohibitive. We are cnr-
rently studying how parameters may be set appropriately to
yield a viable solution.

References

[l] S. Acharya, M. Franklin, and S. Zdonik, “Dissemination
Based Data Delivery Using Broadcast Disks,” IEEE
Personal Communications, December 1995, pp. 50-60.

66

PI

[31

[41

[51

@I

PI

PI

PI

[lOI

WI

P21

P31

[I41

P51

[I61

[I71

A. Bestavros. “AIDA-based real-time fault-tolerant
broadcast disks.” In Procedings of the 16th IEEE Real-
Time System Symposium, 1996.

S. Bhattacharyya, J. F. Knrose, D. Towsley, and R. Na-
garajan, “Efficient Rate-Controlled Bulk Data Transfer
using Multiple Multicast Groups”, In Proc. of INFO-
COM ‘98, San Francisco, April 1998.

.J. Blamer, M. Kalfane, M. Karpinski, R. Karp, M.
Lnby, and D. Znckerman, “An XOR-Based Erasnre-
Resilient Coding Scheme,” ICSl Technical Report No.
TR-95-048, August 1995.

S. Floyd, V. Jacobson, C. G. Lin, S. McCanne, and
L. Zhang, “A Reliable Multicast Framework for Light-
Weight Sessions and Application Level Framing.” In
ACM SIGCOMM ‘95, pp. 342-356, August 1995.

J. Gemmell, “ECSRM - Erasure Correcting Scalable
Reliable Multicast,” Microsoft Research Technical Re-
port MS-TR-97-20, June 1997.

C. Hnitema, “The Case for Packet Level FEC.” In Proc.
of IFIP 5th Int’l Workshop on Protocols for High Speed
Networks, Sophia Antipolis, France, October 1996.

Cauchy-based Reed-Solomon codes. Available at
http://aww.icsi.berkeley.edu/“luby.

V. Jacobson, “pathchar”, available
http://www-nrg.ee.lbl.gov/pathchar.

at

J. C. Lin and S. Paul, “RMTP: A Reliable Mnlti-
cast Transport Protocol.” In IEEE INFOCOM ‘96, pp.
1414-1424, March 1996.

M. Lnby, M. Mitzenmacher, A. Shokrollahi, D.
Spielman, and V. Stemann, “Practical Loss-Resilient
Codes.” In Proceedings of the 2gth ACM Symposium
on Theory of Computing, 1997.

M. Lnby, M. Mitzenmacher, and A. Shokrollahi, “Anal-
ysis of Random Processes via And-Or Tree Evaluation.”
In Proceedings of the gth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, January 1998.

N. F. Maxemchnk, Dispersity Routing in Store
and Forward Networks. Ph. D. thesis, University
of Pennsylvania, May 1975.

N. F. Maxemchnk, “Dispersity Routing.” Proceedings
of ICC ‘75, San Francisco, CA, pp. 41-10 - 41-13, 1975.

S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
driven Layered Multicast.” In Proc. of ACM SIG-
COMM ‘96, pp. 117-130, 1996.

C. K. Miller, “Reliable Multicast Protocols: A Practical
View.” In Proc. of the 22nd Annual Conference on Local
Computer Networks (LCN ‘97), 1997.

J. Nonnenmacher and E. W. Biersack, “Reliable Mul-
ticast: Where to Use Forward Error Correction.” In
Proc. of IFIP 5th Int’l Workshop on Protocols for High
Speed Networks, pp. 134-148, Sophia Antipolis, France, _. .~

P91

DO1

WI

[=I

P31

P41

P51

PI

1271

J. Nonnenmacher, M. Lather, M. Jung, G. Carl, and
E.W. Biersack, “How Bad is Reliable Multicast With-
out Local Recovery. 7” In Proc. of INFOCOM ‘98, San
Francisco, April 1998.

J. Nonnenmacher, E. W. Biersack, and D. Towsley,
“Parity-Based Loss Recovery for Reliable Multicast
Transmission.” In Proc. of ACM SIGCOMM ‘97, 1997.

M. 0. Rabin, “Efficient Dispersal of Information for Se-
curity, Load Balancing, and Fault Tolerance.” In Jour-
nal of the ACM, Volume 38, pp. 335-348, 1989.

L. Rizzo, “Effective Erasure Codes for Reliable Com-
puter Communication Protocols.” In Computer Com-
munication Review, April 1997.

L. Rizzo and L. Vicisano, “A Reliable Multicast data
Distribution Protocol Based on Software FEC Tech-
niques.” In Proc. of HPCS ‘97, Greece, June 1997.

E. Schooler and J. Gemmell, “Using multicast FEC
to solve the midnight madness problem,” Microsoft
Research Technical Report MS- TR-97-25, September
1997.

L. Vicisano, L. Rizzo, and J. Crowcroft. “TCP-like con-
gestion control for layered multicast data transfer.” In
Proc. of INFOCOM ‘98, San Francisco, April 1998.

M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss
Correlation in the MBone Multicast Network.” In Pro-
ceedings of IEEE Global Internet ‘96, London, Novem-
ber 1996.

R. Yavatkar, J. Griffoen and M. Sudan, “A Reliable Dis-
semination Protocol for Interactive Collaborative Ap-
plications.” In Proceedings of ACM Multimedia ‘95, San
Francisco, 1995, pp. 333-344.

October 1996. Chapman and Hall.

[18] J. Nonnenmacher and E.W. Biersack, “Asynchronous
Multicast Push: AMP.” In Proc. of International Con-
ference on Computer Communications, Cannes, France,
November 1997.

67

