
Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance

MICHAEL 0. RABIN

Harvard University, Cambridge, Massachusetts

Abstract. An Information Dispersal Algorithm (IDA) is developed that breaks a file F of length
L = (F(into n pieces F,, 1 5 i 5 n, each of length (F, 1 = L/m, so that every m pieces suffice for
reconstructing F. Dispersal and reconstruction are computationally efficient. The sum of the lengths
(F, 1 is (n/m) . L. Since n/m can be chosen to be close to I, the IDA is space eflicient. IDA has
numerous applications to secure and reliable storage of information in computer networks and even on
single disks, to fault-tolerant and efficient transmission of information in networks, and to communi-
cations between processors in parallel computers. For the latter problem provably time-efftcient and
highly fault-tolerant routing on the n-cube is achieved, using just constant size buffers.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: nonsecret encoding schemes

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Fault tolerance, parallel computers, routing of data, storage of data

1. Introduction

The storage and transmission of data tiles in distributed systems gives rise to
significant security and reliability problems. We may assume the availability of a
dependable encryption system, but even then various dangers remain. Consider a
user who keeps tiles at a certain workstation. By encrypting the files and taking
appropriate care of the encryption/decryption keys, the user ensures the confiden-
tialily of the information when other people use the workstation, or if someone
removes the local disk. But under these circumstances the files may still be erased,
physically destroyed, or removed.

Consider a distributed network of computers and workstations. The nodes are
often connected by a sparse system of physical links where each edge, by definition,
directly connects two nodes, but not every pair of nodes are directly linked. A user
who wishes to send a file F from node A to some other node B selectes a path x of
edges that together link A to B and sends F, possibly in encrypted form, over that
path. We assume that error-correction codes are used so that transmission is error
free, but there is a certain small probability for edges to go down, thereby causing
loss of message. The probability for any particular edge to fail is small, but since a
path T from node A to node B may contain many edges, the probability for a path
failing is nonnegligible.

Author’s address: Harvard University Center for Research in Computing Technology, Aiken Compu-
tation Laboratory, Cambridge, MA 02 138.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0004-54 1 l/89/0400-0335 $0 I .50

Journal ofthe Association for Computing Machinery. Vol. 36, No. 2, April 1989, pp. 335-348.

336 MICHAEL 0. RABIN

An obvious countermeasure against loss of files is to store copies at other network
nodes. If we consider, say, a total of five copies to be necessary for the required
safety margin, then this entails a fivefold blowup of the total storage in the system.

In the case of file transmission, we can send a file along a single path R, request
a confirmation, and retransmit along a different path in case of failure. This entails
a loss in time. Alternatively, we can create k copies of the file, select k paths

. . 2 KX connecting node A to node B, and send a copy along each path.
t&will result in k-fold increase in network load.

We propose a method, the Information Dispersal Algorithm (IDA), of reliably
dispersing the information in F into n pieces or locations. The file can be
reconstructed from any m pieces. The salient point is that each piece is of size
I F] /m, where (F I is the size (number of characters) of F. Consequently, the total
number of characters is (n/m) .] F I. Since we can choose n so that n/m - 1, our
dispersal method is space efficient. Also, the dispersal and reconstruction are
computationally efficient.

Shamir’s algorithm [1 l] for sharing secrets breaks a secret string 9 into IZ pieces
9 . . .) ~,,,eachofthesamesizeas~, 191 =]P;], 15t5n,sothatPcan
be’;econstructed from any m pieces. Thus his method leads to n-fold increase in
total storage, and for the applications in this paper is no better than n-fold
replication. On the other hand, in Shamir’s scheme, any m - 1 pieces give no
information about 9.

Our method can be viewed as belonging to the field of error correction codes
[2], in which extra bits are added to a message creating a block, so that after
occurrence of any k errors within the block, the message can still be reconstructed.
These k errors can be anywhere in the block, changing a bit or erasing it. We,
however, treat a specialized case of the problem and consequently achieve optimal
efficiency in data overhead and utter simplicity in the coding-decoding algorithms.
Namely, assume we take, say, a file F of 10,000 characters and disperse it into
14 pieces, any 10 of which suffice for reconstructing F. The loss of four iden-
tified pieces is equivalent, from the block encoding point of view, to the
loss (not mutation) of four characters in the same identified positions within each
block. As a result we can do with pieces of size] F I /lO = 1000, which means
that any surviving 10,000 characters suffice to reconstruct F, that is, optimal
efficiency in data overhead. Furthermore, this allows extra efficient and prac-
tical encoding-decoding.

Chaum has drawn my attention to [11, where Asmuth and Blakely give another
algorithm for information dispersal. Their algorithm uses number theoretic con-
structs (Chinese remaindering) and is more complicated than the one presented
here. They treat specific small values (n, m); it is not clear that optimal space
efficiency is obtainable for arbitrary (n, m), as in the present paper.

Coming back to the security-reliability problems, we consider the storage prob-
lem, and assume that no more than, say, four nodes will crash, or be taken over
by adversaries, between computer sessions of a user. At the end of a session, the
user will encode any newly created, or altered, tile F. The user will split it into 14
pieces F, , . . . , F,, so that any 10 pieces suffice to reconstruct F, and store each F,
at a different node. On coming back, the user can find 10 intact pieces from which
to reconstruct F. Since I F; I =) F I /lo, the total number of characters stored is
I F) : 14/10. Thus, the storage-space overhead is just 40%. The numbers n = 14,
m = 10, used here are just for illustration. Our file dispersal scheme is general
and the parameters n, m can be chosen as needed.

Similarly for the transmission problem. If we wish to transmit F from node A to
node B, we split F as above, select, say, 14 paths H, , . . . , r14 from A to B, and

Information Dispersalfor Security, Load Balancing, and Fault Tolerance 337

send Fi from A to B along xi, 1 5 i I 14. Again, if no more than four paths break
down, then F will be reconstructable at B, and the blow-up in the total number of
transmitted characters will be 40%. An additional benefit from this dispersal is a
more even distribution of network load.

In Section 4 we give a detailed application of the Information Dispersal Algorithm
(IDA) to the routing of data in parallel computers. We consider a parallel architec-
ture PC,,, where N = 2” processors are placed at the vertices of the n-dimensional
Boolean cube C, = (0, 11”. Every node x E C, is connected by two-way links to its
n neighbors. At every node there is a packet Px of information, and we want to
simultaneously route every packet Px to a destination T(X) E C,,, where K E &
is a permutation of C,. In [131, Valiant proposes a randomized algorithm with
the following properties. For K 2 2.5, the probability that the total transmission
round, that is, arrival of all packets at their destinations, will not terminate in
2(K + l)logzN time units is shown to be smaller than N-(2K-‘). The local queues,
in which packets await their transfer to neighboring nodes, will not contain more
than K . logzN packets, with the same probability. In [6], Pippenger showed that
fixed-size queues sufftce, at the expense of lengthening the transmission time.

We employ the IDA to achieve assured fast transmission time, small fixed (i.e.,
independent of N) buffer size, and high fault tolerance. Thus, in Theorem 1,
we show that with local buffers containing up to p = 6 packets, and total transmis-
sion time never exceeding 2 . logzN, the probability of all packets arriving is at
least 1 - N-4. The exponent of N in this analysis decreases rapidly with p,
while the transmission time remains 2 . logZN. Thus for p = 9.6, the probability
of all packets arriving is at least 1 - NeL3. As to fault tolerance, if up to N/n
links are allowed to fail, and we use the IDA with m = Ln/2J, the probability
that no packets will be lost in a transmission round is at least 1 - N-*, where
a! - 0.25 . log2n (Theorem 2).

The efficacy of the IDA approach in assuring reliability is brought out by a
detailed analysis for the case n = 10, i.e., 1024 nodes. Assume that in a time
interval T (say T equals one day), ten links are expected to fail and that inspection
and repair at the end of T ensure that no more than ten failures accumulate.

If we employ simple duplication of packets, then the probability of loss of packets
in a one transmission round due to ten random link faults is 0.32.

If we employ the IDA with m = 5, n = 10, thus again just doubling the vol-
ume of information, then the corresponding probability of failures is less than
7.7 . 10e6. In terms of error-free intervals, in the simple duplication mode, one
interval T in 3 will have some transmission failures. With the IDA, just one
interval Tin 130 will have some transmission failures.

These quantitative results concerning packet transmission in the n-cube, dem-
onstrate the efficacy of the IDA in load balancing (as evidenced by the small
constant buffer size), speed of transmission, and fault tolerance. Similar benefits
will occur in applying the IDA to other network topologies.

Other applications of the IDA, to be discussed elsewhere, include simple, efficient,
and fault-tolerant broadcasts in ether and satellite-type networks, and dispersal of
tiles in magnetic disk systems as protection against failures.

2. Splitting and Recombining Files
LetF=b,,b2,.. . , bN be a file, that is, a string of characters. Assume that we want
to disperse F, either for storage or for transmission, under the given condition that
with overwhelming probability no more than k pieces will be lost through node or
communication-path failures.

338 MICHAEL 0. RABIN

The characters bi may be considered as integers taken from a certain range
[O *-- B]. For example, if the bi are eight-bit bytes, then 0 5 b, c: 255. Take a
prime B c p. For bytes, p = 257 will suffice; but we may wish to choose a prime
larger than the smallest B < p. Note that with p = 257 there is an excess of one bit
per byte, we shall see later how to implement IDA in fields GF(2”), s = 8 for bytes,
without any excess. Now, F is a string of residues mod p, that is, a string of elements
in the finite field 2,. All the following computations are in Z,, that is, mod p.

Choose an appropriate integer m so that n = m + k satisfies n/m I 1 + E for a
specified t > 0. Choose n vectors U; = (ail, . . . , ai,) E Zr, 1 5 i 5 n, such that
every subset of m different vectors are linearly independent. Alternatively, it will
suffice to assume that with high probability, a randomly chosen subset of I)? vectors
inla,,..., a,) is linearly independent. We shall see later on how to satisfy each of
these conditions.

The file F is segmented into sequences of length m. Thus

F= (b,, b,), (bm+,, b2m),

Denote S, = (b,, . . . , b,), etc. For i = 1, . . . , n,

Fi = Gil, Ci2, * -. 7 ciN/m,

where

Cik = Ui . Sk = Uil * b<k-I)m+l + .*. + Ui, * bkm. (1)

It follows that 1 Fi 1 = 1 F 1 /m.
If m pieces of F, say, F, , . . . , F, are given, we reconstruct F as follows. Let A =

(Uii)Il;,j=m be the ~lt X m matrix whose ith row is Ui. It is readily seen that

and hence

Denote the ith row of A-’ by (ail, . . . , aim), then in general, for 1 I k 5 N/m,

bj = ailclk + ’ . * f (YimCmk, 1 SjSiV, (2)

where i = j mod m, k = [j/ml (here we take the residues to be 1, . . . , m).
Thus we invert A once and for all, and reconstruct F by (2), which involves 2m

mod poperations per character of F. For sufficiently large tiles satisfying m2 5
1 F 1, the operation cost of computing A-’ is majorized by the cost of reconstructing
F by (2), even if we use m3 operations for computing A-‘. It will be shown that we
canchooseu,,..., a, so that the computation of any A-’ will require just O(m2)
operations.

Since both splitting up the file by (I), and reconstruction by (2) involve just
inner products, the method is readily adaptable to vectorized, systolic, or parallel
architectures.

Information Dispersalfor Security, Load Balancing, and Fault Tolerance 339

Remark. It is possible to’use other fields instead of Z,. Thus, for example, for
8-bit bytes we can directly use the field E = GF(28) of characteristic 2 and having
256 elements. All we need is an irreducible polynomial p(x) E Z2[x] of degree 8
to allow us to effectively compute in E (see [7]).

2. The Independence Condition

Let xl, . . . , x,, yI, . . . , y,,, E Z, satisfy the conditions: For all i and j

xi + yj # 0; iZj+xi#xj and yifyj,

(this requires n + m < p). Define

(1 1 ai=- -
Xi + y, ’ ’ ’ ’ ’ X; + ym 1 ’

15isr.z.

Let A be the matrix with rows aI, . . . , a,,, then [5, p. 351

(3)

(4)

It follows from (3) and (4) that 1 A 1 # 0. Thus any m vectors in (a,, . . . , a,) are
linearly independent.

Furthermore, if A-* = [bij], then bij = (-l)i+‘(.4(j, i)(/]A 1, where A(j, i)
is the matrix obtained from A by deleting the jth row and ith column. Denote,
for 1 5 k I m,

ck = iz (xi - xk)(xk - xj),

kej

dk = n (Yi - Yk)(Yk - xj),
i-zk
kcj

ek = n (xk + fi),

fk = 7 (xi + ykb

These quantities can be calculated in 0(m2) operations. Now (4) implies

IA(j, i)l = IAl
cj - di * ej * fi‘ ’ (Xj + vi)*

Thus A-’ can be computed by O(m’) operations.
Another way to ensure that any m vectors out of a,, . . . , a,, are linearly

independent, is to choose n different elements a,, . . . , a,, E Z, (this requires
n<p)andset

ai = (1, ai, . . . , a?-‘), 15iSn.

If we want every ai to depend on more than one parameter ai, we can simply
choose ai = (ail,. . . , ai,) randomly, by randomly and independently selecting the
residues aij E Z,. Every m x m matrix A, obtained by selecting m different vectors
outofla,, a,,1 as rows, is again a randomly chosen matrix. It is readily seen
that

1
1

-p p-l
~LsFr(A:(A~#O)~ 1 -+,

so that for 100 c p with probability nearly 1 - (l/p), the matrix is nonsingular.

340 MICHAEL 0. RABIN

If we want to increase the probability that the matrix A used in the reconstruction
is nonsingular, we can choose larger primes p. Thus, if F is a string of bytes, we
can choose a prime p satisfying 2r6 < p. Considering every pair b, bz, b3b4, . . . of
bytes as a character, we employ our scheme. Now the probability of having a
nonsingular matrix is at least 1 - l/64,000.

3. Fingerprints

In implementing the file dispersal scheme, it is useful to include the coding vector
a; = (a;,, . . .) aim) as a header of the piece F;, SO that Fi = di, d;z . . . diM, where
M= N/m + m, d;, = ~1, di2 = ai2, d;.,+l = ciL , etc. In this way there is no need
to store the vectors al, . . . , a, separately, they also are protected by dispersal.

Unlike Shamir’s sharing of secrets, in our scheme m - I pieces F, , . . . , F,-,
may provide some information about F. For the version employing randomly
chosen vectors aI, . . . , a,, we do not see a way of fully reconstructing even small
portions of F from m - 1 pieces. Still, it is possible that an adversary will obtain
m pieces of F by eavesdropping. For this reason it is best to encrypt F before
dispersing it, and decode it after reconstruction of the encrypted version. This does
not change anything in our scheme.

One possible attack on the security of the dispersed storage scheme would be to
replace a piece Fi at some node by a string G. If we use G as one of the pieces for
reconstruction, we shall not get F back.

A reliable method to counter this replacement attack is to use fingerprints [8].
We randomly choose an irreducible polynomial f(x) E Z,,[x] of a small degree k,
say, k = 11. We consider the piece (including the header ai) F; = djl . . . d[M, A4 =
N/m + m, as a polynomial

F;(X) = dilx”-’ + **. d,M.

and compute P, = re.s(F,(x),f(x)). We encrypt P, by an encryption function E and
store or transmit the pairs (E(P,), Fi), I 5 i 5 n. If we use IDA for transmission
we must also transmit E(f).

When receiving pairs, call them (H, G), for reconstructing F, we test whether

E-‘(H) = res(G(x), f). (5)

Only if (5) holds for a pair (H, G), do we use G as one of the pieces Fi. By
assumption, we shall have m such pieces.

It is proved in [8] that an adversary, who does not know the polynomial f(x),
has an exponentially small probability of producing a pair (H, G) for which (5)
holds. For p = 257, deg f = I 1, and files with up to a million characters, that
probability is smaller than lo-*‘.

4. Routing for Parallel Computers
As a typical application of our information dispersal algorithm we consider the
problem of routing of information in parallel computers.

Let PC,, be a parallel computer consisting of N = 2” nodes, where each
node x contains a processor Cx and local memory module Mx. We name the
nodes by elements of the Boolean n-cube C,, = (0, 11”. For x E C,,, 1 5 i 5 n,
the notation x // i denotes the node y E C,, such that x[j] = y[j] for j # i, and
y[i] = 1 - x[i J. In PC, the node x is connected by two-way links to each of the
nodes x // i, 1 d i % n.

Information Dispersal for Security, Load Balancing, and Fault Tolerance 341

Cube-based architectures for parallel computers were considered in theoretical
studies [121, and were actually constructed [4, lo]. A basic question is how
information will be routed between the memory modules. In his ground-breaking
paper [131, Valiant considers a model where at each node x there is a packet Px of
information that has to be sent to a destination node n(x), where r: C,, + C, is
a permutation. He proposes a randomized algorithm consisting of two phases. In
Phase 1 every node x chooses a random intermediate node R(x) and routes Px
from x to R(x). In Phase 2, every packet Px is routed from R(x) to r(x). Valiant
proves that with overwhelming probability 1 - N-“, every packet reaches its
destination within time c . logZN, and queues at the individual nodes contain no
more than d . logzN packets. The exponent k depends on c and d.

We consider the case that the packets Px are sufficiently large, say the size of
pages in a virtual memory operating system, so that the method of information
dispersal is applicable. We shall give a routing algorithm employing information
dispersal, which will require only fixed-sized queues (buffers) and which will exhibit
fault-tolerance to a large number of link failures.

In the spirit of this paper, the packet Px emanating from a node n will be broken
into n pieces Pxl, . . . , Pxn, so that every m = L5n/6J pieces sufhce for reconstruct-
ing Px.

In the transfer of Px from x to r(x), each piece Pxi, 1 zz i 5 n, will be routed
independently. The piece Pxi will be supplied at x with a ticket Txi that is a vector
of length 2 . (n + 1) of integers 0 5 k 5 n.

At any time 1 I t i 2(n + 1) during the execution of the simultaneous
routing of all pieces Pxi, x E C,,, 1 5 i 5 n, to their destinations n(x), every node y
contains a number of pieces (P’, T’), (P”, T”), . . . , where T’ is the ticket attached
to P, T” is attached to P”, etc. The processor Cy tests T’[t], T”[t], . . . , and
for every 1 ‘:j 5 n sends all the packets P(l) with T(‘)[t] =j to the node y //j. This
is completed by time t + 1 for all nodes y E C,,, and for all links from y to y // j,
1 sj 5 n. If Tcr)[j] = 0, then P(‘) stays at y at time t.

We also make an assumption concerning the temporary storage available at each
node for the packets in transit. Let the size, that is, number of characters,
of every packet be 1 Px 1 = L. Then] Pxi 1 = L/m, m = L5n/6J, and 2;] Pxi (=
1.2 . L. We assume that at every node y E C,, there is a buffer BF(y) of size
6 . L, large enough to accommodate six packets Px.

For the above communications model, we implement the concurrent routing of
all packets Px from x to a(x), x E C,,, by the following Routing Algorithm:

cobegin for x E C, :
(1) Split Px into n = log,Npieces Pxl, . . . , Pxn;
(2) Choose randomly n pairwise different nodes R,(x), . . . , R,,(x);
(3) Select pairwise vertex-disjoint (except for x) paths D,(x), . . . , D,,(x) from x to

R,(x), . . . , R,(x), each of length at most n + 1;
(4) Select vertex disjoint paths E,(x), 1 5 i 5 n, from R,(x) to r(x), each of length at most

n+ 1;
(5) Attach to Pxi, 1 zz i 5 ~1, a ticket Txi for routing from x to r(x), along Q(x) followed

with E,(x);
(6) Simultaneously send all pieces (Pxi, Txi) to r(x) in the manner explained before.
coend.

We shall call an execution of the Routing Algorithm, in which for a permutation
7r E S,” packets Px are simultaneously routed from x to x(x) for every x E C,,, a
transmission round,

Comment 1. Every m = t5n/6J of the pieces Px 1, . . . , Pxn suffice to reconstruct
Px. Later on, for Theorem 2, we shall take m = Ln/21.

342 MICHAEL 0. RABIN

Comment 2. A proof that such paths D;(x), 1 5 i 5 n, exist, and an algorithm
for their construction are given in Lemma 3.

Comment 3. For the sake of uniformity we pad a ticket Txi, when length(D,(x))
= k < n + 1, by zeros so that Txi[k + 11 = . . . = Txi[~ + I] = 0, and similarly
for the E,(x) portion of the route.

Comment 4. In phase 6, at any time 1 % t 5 2(n + I), if a buffer BF(y) at a
node y receives more than 5n pieces Pxi (with different pairs (x, i)), then the
overflow above its capacity of 6 . L (the equivalent of six original packets), will be
rejected and lost.

THEOREM 1. Under the Routing Algorithm (RA), for any given permutation r,
the probability of all packets reaching their destination is at least 1 - (1 /N4).

PROOF. Consider a time point 1 5 t 5 2(n + I), and a node y. Denote by
Y(y, x, t) the random variable that is the number of pieces Pxi arriving at y at
time t. By Comment 3, all the pieces Pxi are simultaneously either on their
respective ways along Di(x) to R;(x), or on their way along the paths E,(x) from
R;(x) to r(x). The nonintersection property of the paths D;(x), 1 5 i 5 n, and the
same property for the El(x), imply that for every x E C,, at most one piece Pxi
arrives at node y at time t. Thus Y(y, x, t) is 0, 1 valued. Denote by p(y, x, t) the
probability that Y(y, x, t) = 1.

The buffer BF(y) will overflow at time t if

C Y(y, x, t) 2 52. (6) SEC,

We want to show that the probability for (6) to occur is small. According
to Comment 4, the occurrence of buffer-overflow results in the disappearance
of pieces Pxi. For the sake of the present proof, we shall assume that no pieces
Pxi are lost, that is, we disregard the restriction in Comment 4. The probability
p(y, x, t) used in the proof refers to this nondestructive model. Clearly the proba-
bility for (6) to occur in this model is greater than the corresponding probability in
the actual RA.

The RA itself, and its modified version disregarding overflows, are completely
symmetrical at any time 1 5 t 5 2(n + l), for all y E C,,. Since at t = 1 we have y1
pieces Pxi at each node, we must have

c p(y,x,t)=n. (7) hE c n

From the definition of the RA it follows that the random variables Y(y, x, t) are
pairwise independent (here y and t are fixed, x E C,).

A recent theorem of Raghavan and Spencer [9] states that if Y,, . . . , Yhi are
independent Bernoulli trials such that the expected value E for their sum is

E CY; =n,
(i)

andif6>O,then(withe=2.71 . ..).

(8)

The above analysis shows that the conditions of the Raghavan-Spencer theorem
hold for the random variables Y(y, x, t), x E C,,. In particular, (7) is condition (8)

Information Dispersal for Security, Load Balancing, and Fault Tolerance 343

for our variables. The probability of the buffer-overflow-event (6) is bounded by
(9), with 6 = 4.

Thus for buffer size (BF(y) [= 6 (Px 1, the probability of overflow of BF(y) at
time t is less than (e4/S), - 2-“’ . 1.8-“. Now, the probability of overflow of some
buffer at some time 1 I t 5 2(~ + l), that is, during a transmission round is at
most

Pr(some overflow during one transmission round)

5 24” . 1.p
2(n + 1)

.N.2(n+l)=N4. 18,1 . (10)

This implies the theorem for n 2 4.
By way of example, for n = 10, the probability, for a transmission round, of even

one packet Px not arriving is, according to (lo), at most 6 . 10hi4.
We now turn to the study of the fault tolerance properties of the Routing

Algorithm on PC,,. To simplify computations we assume that the information
dispersal algorithm is used with m = h/21, so that the total amount of information
is doubled. We further assume that the sizes of the buffers BF(y) are a sufficiently
large multiple p . (Px 1 of the basic packet size, so that the probability of loss of a
packet due to buffer overflow is negligible.

THEOREM 2. Assume for PC,, that within a transmission round fewer than N/n
of the links randomly fail. If we break each packet Px inio n pieces so that any
m = ln/21 pieces suSfice for reconstruction of Px, and if we employ the Routing
Algorithm with buffer size (BF(y) 1 = p . 1 Px 1 large enough to make the probability
of buffer-overflow negligible, then the probability of all packets Px reaching their
respective destinations is at least 1 - 2 . N . (4 . e/n)0.25’r.

PROOF. To realize the permutation r E S,, the RA constructs, for every
x E C,,, paths D,(x) from x to R;(x) and E,(x) from R;(x) to K(X), 1 5 i P n. The
piece Pxi is sent along (D;(x), E,(x)) f rom x to r(x). The piece Pxi will be lost if
one of the faulty links occurs on Di(x) or on E,(x).

A packet Px will not be reconstructable at n(x), if more than k = n - m of its
pieces Pxi are lost. If this happens, then (k + 1)/2 of the paths D,(x), 1 ‘: i 5 n, or
(k + 1)/2 of the paths E,(x), must have been disconnected by link failures.

We approximate our link failure pattern by assuming that every link has failure
probability (N/n)/&’ = l/n’, and that link failures are independent. Consider the
event that (k + 1)/2 2 0.25 . n of the paths Di(x), 1 5 i 5 n, are disconnected.
The probability that a single path Di(x), which contains at most I? + 1 links
(Comment 2), will fail is at most (n + 1)/n’ - I/n. Thus the expected number of
disconnected paths is n . l/n = I. By the Raghavan-Spencer relation (9) with 6 =
0.25n - 1 - 0.25n, and exponent 1,

Pr(more than 0.25n paths D,(x) fail) 5

The same bound holds for the paths E,(x). By our analysis, the probability that Px
will not be reconstructable at r(x) is at most twice the probability in (11). Since
there are N = 2” packets, the probability that some packet will fail within a
transmissjon round is at most 2 ’ N . (4e/n)0.25’r.

Although asymptotically the above probability of failure is smaller than NpK for
any fixed K, the generality of our derivation resulted in a formula that does not
provide a good estimate for small values of n. It is instructive to carry out a direct,
less rigorous, calculation for n = 10.

344 MICHAEL 0. RABIN

tVe assume that up to 10 links may break down during a time interval T (say, T
equals one day). An inspection and replacement routine ensures that no more than
ten links are faulty at any given time. Further, we assume that the paths D,(x) and
E,(x) are so constructed that also, for the same x E C,, no D;(x) has any link in
common with any E,(x). We do not know how to achieve this, but probabilistic
considerations suggest that the link-overlap between the union of paths D,(x) and
the union of the E,(x) can be made small.

Consider first the approach to fault tolerance through simple duplication. Every
packet Px, x E C,,, will have two copies P'x, P"x. The node x will be connected
to a(x) by two links-disjoint paths G,, , Gh-2, going as in the Routine Algorithm,
through two randomly chosen nodes R,(x), R*(x).

The probability of failure of any given link during the time-interval T is & =
&. Each of the paths G;(x), i = 1,2, contains about 20 links, so that the probability
of a path G,(x) being disconnected is very nearly & = &. The packet Px is lost if
both copies P'x, P"x are lost, that is, if both paths G,(x), G*(x) are disconnected;
the probability for that is nearly &. The probability for all packets to reach their
destination is (1 - (&&loo0 - 0.68. Thus, the probability of some packet failing to
arrive at a simple transmission round, is at least 0.32.

Consider now the situation under the Routing Algorithm with m = 5, M = 10,
that is, any five pieces being sufficient for reconstructing a packet. Consider a
packet Px and the associated paths H,(x) = (D;(x), E,(x)), I c: i 5 10, from x to
T(X). Again, the probability for a path to be disconnected by a link failure is nearly
G%=& . Under our assumption concerning disjointness, the failures of paths, for
the same x E C,,, are independent. The packet Px will not be reconstructable at
X(X) if six or more of the paths H,(x) fail. Hence

Pr(Px not reconstructable) = (k”) * (-g * (1 -&I+ *.*.

The further terms are negligible, and the first term is smaller than 7.7 . 10-9. There
are 1024 - 1000 packets, so the probability that some packet will fail in one
transmission round is at most 7.7 . 10p6.

This should be compared with the previously computed failure probability of
0.32, when using simple duplication of packets.

The fault-tolerance advantage is further emphasized by considering the behavior
throughout a complete time-interval T (for which we assumed no more than 10
random link failures). We modify the Routing Algorithm as follows. Instead of
choosing, for the node x E C,,, the intermediate nodes R,(x), . . . , R,(x) randomly,
once the permutation z E S, is given, we randomly choose for every y E C,,,
intermediate nodes R,(x, y), . . . , R,,(x, y). Furthermore, we select paths H,(x, y)
= (D;(x, y), Ei(x, y)), 1 5 i 5 n, from x to Ri(x, y) to y, in accordance with
Lemma 3.

The Modified Routing Algorithm (MRA) will use for realizing a permutation
K E S,, for every node x E C,, the chosen nodes R,(x, n(x)), 1 d t 5 n, and
paths H,(x, y). In practice, the intermediate nodes can be chosen by use of a
pseudo-random number generator. Theorem 1 does not hold for the MRA, but it
can be shown that for every K, for suitably larger buffer size (still independent of
n), with high probability, there will not occur any buffer overflow in N” transmission
rounds.

Coming back to the fault-tolerance question for PClo, we carry out the probability
computation for the case of the MRA. For a random failure of 10 links and one

Information Dispersalfor Security, Load Balancing, and Fault Tolerance 345

choice of intermediate points R,(x), 1 5 i 5 10, the probability of failure of the
packet Px to arrive is at most 7.7 . 10e9. Thus the probability of Px not arriving
at some y E Cl0 due to link faults is at most 1024 . 7.7 . lOA - 7.7 . 10a6. The
probability of this happening for some packet Pz, z E ClO, is 1024 . 7.7 . 10e6 =
7.7 . 10e3. Since in the MRA we realize every permutation 7r E S, by the prechosen
path systems H&Y, y), 1 c= i P n, X, y E C,, the probability that for ten randomly
chosen link faults some permutation will not be realized is at most 7.7 . lo-“.

Now, by our assumption, ten is the expected number of link faults within time
T, and inspection and repair (for replacement) keep the total number from
exceeding 10. Hence the probability of some packet not arriving in some transmis-
sion round in the time-interval T is at most 7.7 . lo-“. Put differently, in
approximately 130 time-intervals T, there will be an expected number of just one
time interval with any transmission failures due to link faults (and this under the
assumption that we allow ten link faults to accumulate). By way of contrast, simple
duplication results in expected transmission failures in one out of three time-
intervals T.

We must still prove the existence of not-too-long and nonintersecting paths from
any x E C, to pairwise different R;(x), 1 I i I ~1, as claimed in Comment 2. The
author had the result with paths of length up to 2n. Michael Ben-Or (private
communication) suggested the improvement to paths of length up to y1 + 1, which
is best possible, and this appears here with his kind permission.

LEMMA 3. Let C,, = (0, 1)“, S = (y,, . . . , y,,] C C,, and x E C,, - S. There exist
paths D,, . . . , D,,fromxtoy,, y,,, so that for i # j. Dj and D, have only the
node x in common, and length(D,) I n + 1, 1 5 i 5 II.

PROOF. The unit vectors of C,, are, by definition, the vectors e,, 1 % i 5 n, such
that e, [j] = aii. Denote by U, the set of all unit vectors. The lemma clearly follows
from the following claim.

Let U C U,,, H C C,,, 1 H 1 = 1 U 1 = k, U rl H = 0. Then there exist k
vertex-disjoint paths F, , . . . , Fk, connecting the nodes in U to the nodes in H. If
z E HII U,,, then the path F, connecting it to a node e, E U has just these two
nodes in U,,. If z E H - U,,, then the connecting path has just the node ej in U,,.
Finally, length (F,) I n, 1 5 i 5 k.

The proof of this claim is by induction on n. The case n = 2 is dealt with
by inspection. Assume validity for C,,. Let U C U,,+,, H C C,,, ,) H) = 1 U 1 =
k 5 n + 1, U n H = 0. The cube C,,,, can be viewed as the union C,,,, = Ct U
CL where C’s1 = C,, x 101, Cl, = C,, x (1). Thus to x E C, there correspond (x, 0),
(4 1) E c,,+,, and we shall use the notations p, q, to denote the functions
P((X, 0)) = (4 11, d(x, 1)) = (x, 0).

We must consider several cases.

Case 1. Assume H C Ci, e,+l = (0, . . . , 0, 1) @ U, then there is nothing to
prove. If e,,+, E U, then connect by the induction hypothesis the nodes in U -
{e,,,,) by k - 1 paths to k - 1 nodes in H. If one of the paths to some z E H passes
through the remaining point w, then remove the path segment from)V to z. In
either case we now have k - 1 paths from U - (e,,,) to H - (u), where u is z or
w. Connect e,?+, by a shortest path F in C,‘, to p(u). The path (F, U) is the kth
required path.

Case 2. Assume H _C Cf,. This is dealt with in a similar manner by connecting
e,,+, in C’,‘? to a nearest node z E H, and connecting the nodes in U - {e,,+,) to the

346 MICHAEL 0. RABIN

nodes in q(H - {z)). If it happens that for y E H - {z), q(z) = e, E U, then take
(e;, y) as the required path and remove y from H and e, from U. The induction
hypothesis allows the connecting paths in CT: to avoid e;.

Case 3. H = Ho U H,, Ho G Cz, H, C CA, e,+, E U. Let [H, [= m 5 n.
For yn - 1 unit vectors (of C,,,) in U, say e,, . . . , e,,-, , consider p(e,), . . . ,
P(e,,,-,) E C!,. If any a(e;) E H,, take (e;, p(e,)) as the required path and
remove et from U and p(e;) from H. Thus without loss of generality p(ei) 4 H,,
lii5m-1.

Viewing e,,+, as the origin in C,!,, the vect,orsp(e,), . . . , p(e,) are the unit vectors
of Cf,. Recall that m % n so that m - I < n. Thus if p(e,,) B H,, then { p(e,), . . . ,
p(e,,,-,), p(e,n)) and H, satisfy the induction hypothesis in CA and there are m
nonintersecting paths of length at most y1 from the nodes p(e,), 1 P i 5 m, to the
nodes in H, . Augmenting the path G starting at p(e,??) to (e,,,, , G) and each path
G; starting at p(e,), 1 5 i % m - 1 to (e;, Go, provides disjoint paths from nodes
in U to all nodes in H,, and all paths are of length at most n + 1.

We must still connect from U - (e,, . . . , e,-, , en+,) to Ho. But this is possible
by the induction hypothesis for CZ, and the paths do not pass through any of the
unit vectors in U,,, n C except those in U - {e, , . . . , e,-, , e,,+, 1.

Case 4. Similar to Case 3, but e,;, 4 U. The proof is similar.

The above proof provides a very rapid recursive algorithm for constructing the
paths in Lemma 3.

5. Simplified Route Computation

The Routing Algorithm of Theorem 1 requires the computation of the paths D,(X),
E,(x) by the algorithm of Lemma 3. Although the algorithm is fast, the computation
time for 2n paths per packet Px may be deemed expensive. We therefore propose
another routing method in which the pieces emanating from a node are first
distributed to fixed locations that are mutually far apart, and then dispatched to
random intermediate destinations.

A matrix H = [d,] is Hadamand if d,, = fl and

i # j implies d;,d,, + . . f + d,,,d,,, = 0. (12)

For the sake of simplicity we assume that the dimension n of the cube is itself a
power of 2 or that n - 1 is a prime, n = 0 mod 4 (e.g., n = 12, 24). For such n,
and many others there exist n x n Hadamand matrices [3] H,, that are very rapidly
calculable.

Condition (12) implies that two different rows in H, differ in exactly n/2
locations.Delinev,EC,,, 1 sisnbyv,[jJ= lifd,,= l,v,[j]=Oifd,,=-1.
Then d(v,, v,) = n/2 for i # j, where d(v, U) is the Hamming distance. The author
has directly constructed systems of vectors v,, . . . , v,, with this mutual distance
property. The connection to Hadamand matrices was pointed out by D. Sleator
(private communication).

As stated before, for a given n of the appropriate form, H,, and hence the v,, 1 5
i % n, can be rapidly computed. Alternatively, we can precompute and store these
vectors. By renumbering we can arrange it so that vi[i] = 1, 1 5 i 5 n.

Information Dispersal for Security, Load Balancing, and Fault Tolerance 347

We can now outline a routing algorithm for implementing a permutation
R E s,.

cobegin for x E C,I:
(I) Split Px into n pieces Pxl, . . , Pxn;
(2) Choose randomly n nodes R,(x), . . . , R,,(x);
(3) Send each piece Pxi from x to x + v,;
(4) Send each piece Pxi from x + v, to R,(x) along shortest path;
(5) Send each piece Pxi from R,(x) to a(x) + v, along shortest path;
(6) Send each /‘xi from T(X) + v, to T(X).
coend.

THEOREM 4. With the above algorithm and the same assumption concerning
buffer size as in Theorem 1, the probability that all packets will arrive at their
destinations is at least 1 - Nd4. For an appropriate 0 < c, if up to N/n links
randomly fail, the probability that no packet will be lost through link failure is at
least 1 - n-“’ “.

The proof of the first statement is a simple variant of the proof of Theorem 1.
The proof for the fault-tolerance statement proceeds by showing that the randomly
selected portions of the paths for pieces Pxi of the same packet Px are, with high
probability, almost edge-disjoint. Details of the argument and additional results
will be given elsewhere.

The above routing method avoids costly route computations because the routing
tickets for phases 3 and 6 can be precomputed (or else computed on the fly), and
the tickets for phase 4 and 5 involve just random bits, which again may be
computed on the fly. Yuh-Dauh Lyuu has another very simple routing method
achieving the same results as in Theorem 4.

6. Conclusions and Further Directions
The IDA has numerous potential applications to secure and fault-tolerant storage
and transmission of information. A beneficial side effect of using IDA is improved
load balancing in storage and transmission. All of these claimed benefits of IDA
are quantitatively analyzed and demonstrated in the case of packet switching on
the n-cube.

In practical applications to the latter problem, one need not strictly adhere to
the routing algorithms of Sections 4 and 5. One can elect for a given dimension,
say d = 16, to split packets Px into a number n of pieces smaller than d, say n = 6
with m = 4 sufficing for reconstruction. It is then possible to test by experimentation
what assumption concerning buffer sizes and faults lead to acceptable levels of
performance and fault-tolerance. In fact, the (n, m) parameters of IDA can be
dynamically tuned to message loads.

Returning to the general algorithm, we conjecture that Theorem I, strong as it
is, does not reflect the full power of applying IDA. We conjecture that the
probability of all packets reaching their destinations in a transmission round is at
least 1 - N-“‘“, for an appropriate not very small 0 < c.

An obvious extension of this work is to consider network topologies other than
the n-cube.

REFERENCES

1. ASMUTH, C. A.. BLAKLEY, G. R. Pooling splitting and restituting information to overcome total
failure of some channels of communication. In Proceedings ofthe 1982 Symposium on Security
and Privacy. IEEE Society, New York, 1982, pp. I56- 169.

348 MICHAEL 0. RABIN

2. BERLEKAMP, E. R. Algebraic coding theory. McGraw-Hill, New York, 1968.
3. HALL, M. Combinatorial Theory. Wiley, New York, 1980.
4. HILLIS, W. D. The Connection Machine. MIT Press, Cambridge, Mass., 1985.
5. MIRSKY, L. An Introduction to Linear Algebra. Dover, New York, 1982.
6. PIPPENGER, N. Parallel communication with limited buffers. In Proceedings of the IEEE 25th

Symposium on Foundations of Computer Science. IEEE, New Yolk, 1984, pp. 127-136.
7. RABIN, M. 0. Probabilistic algorithms in finite fields. SIAM .I. Comput. 9, 1980, 273-280.
8. RABIN, M. 0. Fingerprinting by random polynomials. Tech. Rep. TR- 15-8 1. Center for Research

in Computing Technology. Harvard Univ., Cambridge, Mass., 198 1.
9. RAGHAVAN, P. Probabilistic construction of deterministic algorithms: Approximating packing

integer programs. In Proceedings of the IEEE 27th Symposium on Foundations of Computer
Science. IEEE, New York, 1986, pp. 10-18.

10. SEITZ, C. L. The cosmic cube. Commun. ACM 28, 1 (Jan. 1985), 22-33.
11. SHAMIR, A. How to share a secret. Commun. ACM 22, 11 (Nov. 1979), 6 12-6 13.
12. SIEGEL, H. J. A model of SIMD machines and a comparison of various interconnection networks.

IEEE Trans. Comput. 28, 12 (1979), 907-9 17.
13. VALIANT, L. G. A scheme for fast parallel communication. SIAM J. Comput. 11, 2 (1982),

350-361.

RECEIVED MAY 1987; REVISED JUNE 1988; ACCEPTED AUGUST 1988

Journal of the Association for Computing Machinery, Vol. 36, No. 2, April 1989.

