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time for all neighbors m  of j and hence Zj will become 
(S + 1). Since j has no nodes at hop-distance (S + l), (7) 
will hold and this completes the proof of the lemma. 

Lemma MH-1 a) and Lemma MH-2 a), b) are exactly 
Theorem MH-1 and this completes the proof of the theo- 
rem. 
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On Secret Sharing  Systems 
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MARTIN E. HELLMAN, FELLOW, IEEE 

Abstract-A “secret sharing system” permits a secret to be shared 
among n trustees in such a way that any k of them can recover the secret, 
but any k - 1 have complete uncertainty about it. A linear coding scheme 
for secret sharing is exhibited which subsumes the polynomial interpolation 
method proposed by Shamir and can also he viewed as a deterministic 
version of Blakley’s probabilistic method. Bounds on the max imum value of 
n for a given k and secret size are derived for any system, linear or 
nonlinear. The proposed scheme achieves the lower bound which, for 
practical purposes, differs insignificantly from the upper bound. The scheme 
may  be extended to protect several secrets. Methods to protect against 
deliberate tampering by any of the trustees are also presented. 

1. INTRODUCTION 

C RYPTOGRAPHY is extremely useful for making 
data files unintelligible to anyone who does not 

possess the secret key in which they were enciphered. But 
what happens if the legitimate owner of the file loses the 
key or is himself lost through incapacity or death? 

There is a clear need for providing a backup copy of the 
key to protect against these eventualities. A safe deposit 
box can easily store a backup copy of the key on a punch 
card or similar data storage medium since most keys will 
be between 50 and 1000 bits long. But even a safe deposit 
box is vulnerable (e.g., to the “silverfish threat,” named for 
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an insect which eats punch cards), so it may be advanta- 
geous to provide multiple backup copies. To guard against 
simultaneous destruction, these copies should be stored in 
physically separated safe deposit boxes. Letting oi denote 
the information stored in the ith safe deposit box and 
letting s denote the secret key, 

VI =v2 = . . . =vn=s. 

The secret s can be recovered even if n  - 1  pieces have 
been destroyed, but theft of even one piece compromises 
the secret. 

A different approach protects against the threat of theft, 
but aggravates the “silverfish threat.” Divide the secret key 
s into n pieces v,, v2; .*, v,, in a manner such that no 
information about s is learned from any n - 1  pieces. This 
can be accomplished by letting v, to v,- , be independent 
random variables, uniformly distributed over S, the set of 
all possible secret keys, and letting 

v, = s + (v, + v2 + . . . +vn-,)(mod q), 

where q = 1 S 1 is the cardinality of S. As a small example, 
when q = 2, v, is the exclusive or of s with v, through v~- r. 
While a l-bit key is of no value, the technique can be 
applied to successive bits of the key. 

The advantage of this method is also a disadvantage: if 
even one of the vi is destroyed, the legitimate owner is 
unable to reconstruct the key from the remaining backup 
information. 

Motivated by a desire to protect against both threats, 
several researchers have investigated the following secret 
sharing problem. 
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Divide a secret s into n pieces 2) i, 02,. . . , v,, each chosen 
from a set V, such that the following conditions are 
satisfied. 

Cl) The secret s is recoverable from any k pieces 
(k 5 n). 

C2) Knowledge of k - 1 or fewer pieces provides abso- 
lutely no information about s. 
If the system is not to involve data expansion we 
also require: 

C3) ) V ] I 1 S 1 . That is, each piece vi is to be no longer 
than s. 

Any such system will be referred to as a “k-out-of-n 
secret sharing system.” The technique applies not only to 
protecting backup copies of a key in safe deposit boxes, 
but also to sharing any secret among n trustees in such a 
way that any k of them can reconstruct the secret, but, any 
k - 1 or fewer of them cannot learn anything about it. 

Restating these requirements using the notation of infor- 
mation theory we have for any set of k indices 
{i,, i,; * .,i,}: 

H(s(vi,,vi*‘...,Vjk) =o 0) 
and 

(4 
Theorem 1: For conditions Cl) and C2) to hold it is 

necessary that 

fed 2 fw i = 1,2;.-,n. 

Note: If s is uniformly distributed over S then Theorem 
1 implies that ] V(,?l SI , and condition C3) can be re- 
placedby] VI=JS].F or an arbitrary distribution C3) and 
Theorem 1 imply that 

H(Vi) = H(s), i= 1,2 ,“.,?I. (3) 

Proof: We have 

H(vj,) z l(s; Oj, 1 vj,3’. e2vj,_,) 

because a random variable cannot provide more informa- 
tion than it has uncertainty. From (1) and (2) above we see 
that I(s; vi, ] vi,; . *,vikmI ) = H(s). Combining the last two 
expressions and replacing the dummy variable i, by i 
complete the proof. Q.E.D. 

Blakley [l] was the first to publish an approach to 
solving the secret sharing problem. His is a probabilistic 
approach based on linear projective geometry. Each vi 
specifies a hyperplane and the secret s is the (hopefully) 
unique point of intersection of the n hyperplanes. Blakley 
satisfies Cl) by specifying more hyperplanes than are 
needed. He gives a probabilistic argument which indicates 
that C2) should also hold. 

Shamir [2] has also published a solution, and bases his 
approach on the observation that any k distinct points 
(x, y) suffice to determine the coefficients of the (k - 1)st 
degree polynomial 

y = a, + a,x + +x2 + . . . +a,-,XV (4) 

By giving each trustee a different (x, y ) point, v, = (i, y(i)), 
and by setting a 0 = y(O) = s,. Shamir is able to satisfy 
condition Cl). By dealing in a finite field F with ] F I= ) S I , 
he is able to ,satisfy condition C2) as well. 

Because there are only I F 1 distinct x values and s = y(O), 
Shamir’s system is limited to a number of trustees (or 
pieces) 

n r/l;1 -1. (5) 
Otherwise one of the vi would have to equal s, or two of 
the vi would be mathematically equivalent. Either way Cl) . 
or C2) would fail to hold. (The only exception is when 
k = 1. Then each trustee knows the whole secret, each vi is 
equal to s, and n can be as large as desired, independent of 
IFI- 

The approach to secret sharing developed in Section II 
of this paper can be viewed as a deterministic version of 
Blakley’s approach and includes Shamir’s method as a 
special case. 

Section III establishes upper and lower bounds on the 
maximum value of n for given values of k and [ S 1, with 
any system, linear or nonlinear. 

Section IV generalizes Cl) and C2) to the situation 
where there are I secrets s,, s2, * * . , sI to be protected, and it 
is required that for any 1 5 j I 1 and for any set of k 
indices {i,, i,; 1 .,ik}, 

H(Sj ( vi,, viz,* * * ‘VJ = 0 (6) 

and 

H(sj)vi,,vi2”.“vjk-,) =H(s,)m (7) 

That is any k trustees can determine all I secrets perfectly, 
but any k - 1 trustees have no information about any 
particular secret. (The k - 1 trustees might have significant 
information about two or more secrets taken as a pair.) 

This generalization has the advantage of allowing several 
secrets to be protected with the same amount of data as is 
usually needed to protect one secret by itself. Or a large 
secret might be partitioned into 1 pieces and these pro- 
tected with a smaller amount of data than is needed to 
protect the entire secret. 

In Section V we show that for some parameter values 
our system is computationally more efficient than previous 
techniques. 

Section VI discusses the problem of detecting tampering 
by one of the trustees. A solution based on one-way 
functions is suggested. 

II. REQUIREMENTSFORASECFLET SHARING SYSTEM 

Our method for. secret sharing grew out of the following 
probabilistic reasoning: Let u be a totally random 300-bit 
binary row vector. Let each of the v, be a loo-bit binary 
row vector consisting of 100 random parity checks on u. 
That is, each parity check bit is the exclusive or of a 
random subset of the 300 bits of u. 

Then any three v, are related to I( by a random 300-by-300 
binary matrix. As shown in [3], approximately 29 percent 
of the n-by-n binary matrices are nonsingular over GF(2), 
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the binary field, and most of the rest have small rank 
defect. It is therefore likely that any three v, allow u to be 
reconstructed nearly perfectly. Yet any two v, must leave at 
least 100 bits of uncertainty about U: 200 bits of informa- 
tion (the two v,) must leave at least 100 bits of uncertainty 
about the 300-bit vector U. 

This would give rise to a “three-out-of-n secret sharing 
system,” except for two facts: 

1) 

2) 

Condition Cl) is not exactly met because u is not 
always perfectly reconstructable from three of the vi; 
Condition C2) is not met. Any two pieces v, and u, 
leave approximately iO0 bits of uncertainty about u, 
but u  is 300 bits long. 

Before treating these problems, we note that the method 
generalizes to any “k-out-of-n” system and to any secret 
size. For example, if one desires a 7-out-of-10 system with 
at least 40 bits of uncertainty if six or fewer pieces are 
known, then make u (7 X 40 = 280)-bits long, and let each 
vj be 40 random parity checks on u. 

To meet condition Cl) we will use deterministic codes 
rather than a random coding argument. But, unlike many 
other areas of information theory, the random coding 
argument is applicable in practice because the effort re- 
quired to decode a randomly chosen code is reasonable, 
involving only a matrix inversion. Contrast this with the 
effort required to decode a random, linear error correcting 
code [5]. 

Meeting condition C2) is exactly the “key distillation” 
problem solved in [3] and [4]. In key distillation, one is 
given a partially uncertain random variable (u in the above 
discussion) and must find a new, totally uncertain random 
variable (the secrets) which is a function of u. Further, the 
uncertainty of the new random variable must be the same 
as that of the partially uncertain variable. The new variable 
has all of the uncertainty of the original variable, but in 
concentrated or ‘“distilled” form. Put in terms of the secret 
sharing problem, we require 

and 

H( u  1  vj,, vj,l' ' . Yvj,_,) = H(s). (9) 

In [3] and [4] it is shown that random, linear projections 
of u  often have the desired distillation property. Each of 
the v, is also a random linear projection of u, so we can 
consider s as a new, (n + 1)st “piece” of u  and denote it by 
vO. If the key distillation is perfect, s is the same length as 
each vi. 

Theorem 2: Associating s with v,, and generalizing from 
GF(2) to any finite field GF(q), the problem of finding a 
secret sharing system of the form 

vj = UiAj (10) 
is equivalent to the following. 

Find a set of n  + 1 matrices over GF(q), 
{A,, A,, 4,. . . ,A,,}, each of dimension km-by-m, such 

that every set of k of the Aj has full rank, km. (m is the 
secret size and k is the number of pieces required to 
reconstruct the secret. The dimension of u  is km.) 

Note: Although we will usually deal with q being prime, 
this theorem and all subsequent statements are correct 
when q is a power of a  prime. 

Example: Here is a 2-out-of-4 system with a 2-bit secret 
s. 

In this example s = (u,, u,), v, = (u,, u,), v2 = (24, + u2 
+ u3, ua + u,), etc. It is not hard to check that any single 
trustee knows nothing about s and that any two trustees 
can solve for s = (u,, 2~). 

Proof of Theorem 2: When s is the secret value to be 
protected, choose u uniformly at random from U(s), the 
set of vectors which satisfy s = uA,. For all s, the cardi- 
nality of U(s) is qck-ljrn so 

H(u) = H(s) + (k - 1)m . log(q). 01) 
First we show that if every set of k of the Ai has full rank 

then conditions Cl) and C2) are met. 
It is easiest to deal with condition Cl) first. If k trustees 

collaborate they can reconstruct u  because, by the full-rank 
assumption, their pooled information is related to u by an 
invertible matrix. Knowing u they can then compute s = 
uA,. (The Aj are public information.) 

Condition C2) is established by noting that if k - 1  
trustees were to collaborate and were also told the secret, 
they.could reconstruct u  perfectly. This follows from the 
full-rank assumption, using A, as one of the matrices. 
Therefore 

H(“Is,vj,,vj2”‘.‘vjt)ik~l) =O 

so  

H(“Ivj,,vj,,“‘,vj,_,) = l(“; slvi,tvj,,“‘tvj,_,). 

02) 

Then 

H(sIvj,, vj,?‘*‘>v~,-,) 21(u; slvj,>v~,>“‘>vjk_,) 

=H(uIvj,,vi,,“‘,v~,~,) 

2 H(u) -(k - Z)H(v,) 

r H(u) -(k - 1)m . log(q) 

= H(s), 

which is the desired result. The first inequality just states 
that the information provided by a random variable is at 
most equal to its uncertainty. The next equality follows 
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from (12) above. The next inequalities follow from H( u ( c 
1 H(u) - H(v) and H(v,) _( length(v,) = m * log(q). The 
final equality follows from (11). Thus condition C2) is met 
as well. 

We now show the converse: If there is a set of k of the Aj 
with a dependence then either condition Cl) or condition 
C2) must be violated. Because the distribution on s is 
arbitrary, and we are seeking a counter example, we can 
assume s is uniformly distributed and H(s) = m . log(q). 

If any columns of A, are involved in the dependent 
subset, then there is a set of k - 1 trustees who can 
reconstruct part of s (the bits corresponding to the depen- 
dent columns), in violation of C2). If the dependent subset 
does not involve A, then at least one bit known by some 
trustee is also known if a subset of k - 1 other trustees 
were to collaborate. But these k - 1 trustees have m . 
log(q) bits of uncertainty about s by condition C2), and 
when the k th trustee joined them he could not reduce the 
uncertainty by m . log(q), the length of his piece of the 
secret, because at least one bit of it was already known by 
the dependence assumption. There would then be a subset 
of k trustees who could not reconstruct s, violating condi- 
tion Cl). Q.E.D. 

Theorem 3: The secret s can be taken to be the first m 
components of u without loss of generality. Further, v, can 
be taken to be the next m components of II, v2 can be taken 
to be the next m components of u, * * *, and ok-, can be 
taken to be the last m components of u. 

Note: The example following Theorem 2 is of this form. 

Proof: Given a secret sharing system using matrices 
{A,, A,,. . . ,A,}, let T be the invertible km-by-km matrix 
consisting of [A,, A,, . 1 . ,A,- i]. (T must have full rank by 
Theorem 2). Letting 

A; = T-‘Ai, i = 0,1,2;..,n, 

we then have Ai of the desired form for i = 0, 1,. . . , k - 1. 
The new secret sharing system has the same properties as 
the old one, because they are related by the invertible 
transformation T. Equivalently, we have defined a new 
vector u’ = UT and the Ai matrices give the vj in terms of u’ 
instead of in terms of u. That is, 

vz = uA, = uTT-‘Aj = u’A;. Q.E.D. 

Up to this point we considered the secret as a string of m 
symbols over GF(q). An alternative description might be: 
Let s be a one component (scalar) secret over GF(q”). 
Then u is a k-dimensional row vector, the matrices {Aj} 
become k-dimensional column vectors {uj} and vi is the 
inner (dot) product of ai with u. 

Going from a- scalar system in GF(q”) to a vector 
system in GF(q) is always possible because a linear rela- 
tion of the form y = ax, where y, a, and x are all in 
GF(q”‘), is also a (matrix) linear relation between m- 
dimensional vectors in GF(q). While the converse is not 
true, the fairly tight upper and lower bounds we shall 
derive in Section III on the maximum value of n, for a 

given k, are the same for both types of systems. The upper 
and lower bounds will be shown to practically coincide, 
hence in what follows we shall mainly treat the scalar 
systems over GF(q”). Applying Theorem 2, and with this 
restriction, we can restate the problem of finding a k-out- 
of-n secret sharing system as follows. 

Problem Statement: Find a (k-by-n + I)-dimensional 
matrix G whose n + 1 columns form a set of k-dimensional 
vectors, {uO, a,; . f ,a,}, over GF(q”) such that any k of 
the columns are linearly independent. Theorem 3 allows us 
to assume without loss of generality that G has a k-by-k 
identity matrix for its first k columns, i.e., is in a systematic 
form. 

In this framework, 

v=uG (13) 

with v0 = u, = s, the secret to be protected. The similarity 
between (10) and the encoding relation for a linear (parity 
check) code is evident. G is the generator matrix for a 
linear code which can correct any (n + 1) - k erasures 
(k-out-of-n trustees can reconstruct u and thence s), but 
which provides no information about the first component 
of u when there are (n + 1) - (k - 1) or more erasures 
(k - 1 trustees know nothing about s). 

While the second requirement is a somewhat unusual for 
a code, results from coding theory are useful in this con- 
text. In Section III we use an upper bound on the mini- 
mum distance of nonlinear codes to show that nonlinear 
and linear secret sharing systems obey the same upper 
bound on n max, the maximum number of trustees, for given 
values of I S ) and k. 

Generalizing from linear to nonlinear secret sharing 
systems, we allow the secret s to be any function of a 
random variable u E U, and each trustee is given a subset 
V, of U in which u lies. Letting Si be the image of 5 under 
the mapping from u to s, conditions Cl), C2), and C3) 
become the following. 

Cl’) The intersection of any k subsets Sj is the same 
single point, namely the secret s. 

C2’) The intersection of any k - 1 subsets S, is the 
entire space S. 

C3’) Foreachi, 1 YlslS]. 

III. BOUNDSONTHEMAXIMUMVALUE OF n 

We now address the following question: Given a secret 
set of cardinality I S 1 and k, the number of trustees re- 
quired to recover the secret, what is the maximum number 
of trustees, n ,,? The next theorems give bounds for nmax, 
and thus also demonstrate the existence of all types of 
secret sharing systems described in the previous section. 

Theorem 4: Given ] S I = q” and k, a one component 
secret sharing system of the form v = uG has 

q”-(n,,(q”+k-2, 4” ’ k, (14) 
n = max k, q”’ I k. (15) 
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Proof: We  first show the lower bound of (14). Let (Y 
be a primitive element of GF(q”) and denote the identity 
of the field by 1. The following matrix, 

column must be different. Since there are k entries, this is 
possible only if k I q” - 1. Otherwise, i.e., for k 2 qm, P 
has no second column and so 

I- 

G= 

10 1 1 . . . 1  
00 a a2 . . . &P 1 

0 0 a2 lx4 ... &Y- I)2 
. . . . . . 
0  1 J-l (pk-I) . . . &- I)(k- 1) 

(16) 
is a k-by-q” + 1 matrix with any k columns linearly inde- 
pendent. This is because the determinant of the associated 
k-by-k matrix is a  Vandermonde determinant (or a  product 
of nonzero elements by such a determinant), and 
cx, a2; * -,a4 

“1 
-’ are all different elements of GF(q”). 

Hence we can always find a matrix G with number of 
columns 

(n+ 1)2q”+ 1 
or 

n ’ qm. Inax- 
To upper bound n max suppose we have found a satisfactory 
k-by-(n + 1) matrix G. By Theorem 3, we may assume 
without loss of generality that G is in systematic form, 
namely 

G = (II P>, (17) 
where I is a  k-by-k identity matrix and P is k by (n + 1 - 
k). We  claim that every j-by-j minor of P, j = 
1,2;. *, min (k, n  + 1 - k), is nonzero. To see this pick 
any j columns of P and any k -j columns of I. The 
resulting matrix should be nonsingular, which implies that 
the j-by-j minor is nonzero. In particular all the entries of 
P must be nonzero. 

W ithout introducing any dependencies among the col- 
umns of G, we can divide each row by its first entry in P, 
and then divide each column by its first entry. We  thus 
obtain a matrix of the form: 

: 

1  0 ... 0  1 1 ... 1  
0 1 ..* 0  1 x *** x 

(I(P) = . . . . . . : : . (18) . . . . . . 
(j 0  .:. ; ; j( .:. j( I 

Consider now a two-by-two minor of P formed by two 
entries from the first row and two entries from the second. 
Since it is nonzero, the two entries from the second row 
must be different. This is true for any two entries, so all 
n  + 1 - k entries of the second row must be different. 
There are only q” - 1  different nonzero elements in 
GF( qm); hence 

n+l-k<q”-1 

which implies the upper bound in (14). 
Similarly, since all two-by-two minors from the first and 

second columns of P are nonzero, all entries in the second 

n+l-k=l 
which implies (15). Q.E.D. 

Note 1: Suppose one chooses G as in (16) deleting the 
second column. Then the components of v in v = UC can 
also be evaluated as 

where 

vi = D(d), i = 1,2;*.,n, 

D(x) = 24, + u*x + u3x2 + . . . +u,xk-’ 

and v0 = U, = s. But this is exactly Shamir’s polynomial 
interpolation scheme (compare with (4)), which is thus 
shown to be included as a special case of our method. 

Note 2: Over any finite field GF(q”) the k-by-(k + 1) 
matrix 

1 0 ... 0  1 
0 1 ... 0  1 

G= . . . . . . . . . . 
0  (j .:. ; ; 

exists, and has the desired properties for a  “k-out-of-k 
secret sharing system.” (Thi s is the system mentioned in 
the introduction as a means of protecting against theft 
while aggravating the “silverfish threat.“) This achieves the 
upper bound (15) which applies to “small secrets,” i.e., 
qm zz k. Note that polynomial interpolation schemes can- 
not generate k = n secret sharing systems when qm I k, 
because of the restriction (5). 

Corollary 1: Given I S I = q” and k, the bounds (14) and 
(15) apply to an m-component secret sharing system of the 
form vj = uAj where entries are over GF(q). (See descrip- 
tion in Theorem 2.) 

Proof: The lower bound in (11) is obvious, since ex- 
istence of a  k-by-n matrix G over GF( q”) implies existence 
of an appropriate km-by-nm matrix over GF(q) (as dis- 
cussed in Section II). In analogy to what we have done 
while proving Theorem 4, G can be represented as the 
following block matrix: 

I, 0  . . * 0  I, I, . . . I, 
0  I, *. . 0  I, x . . . x 

(II@= . . . . . . . . 7  . . . . . 
(j ;, .:. I, r, x . . x 

(19) 

where I,,, is an m-by-m identity matrix, and X stands for an 
m-by-m matrix. Pick any 2m-by-2m submatrix of P con- 
sisting of four m-by-m blocks of the first and second block 
rows. This 2m-by-2m matrix should be nonsingular, and in 
particular the first and the (m + I)st columns should dif- 
fer. Hence all first (m component) columns of the blocks in 
the second block row of G are distinct. Since they must 
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also be nonzero, their number is bounded by 4”’ - 1, 
which implies (14). 

A similar argument applied to the first columns of the 
m-by-m blocks in the second block-column of P yields (15). 

Q.E.D. 

The difference between the upper and lower bounds we 
established in (14) is k - 2, which is negligible with respect 
to rImax. Even for a very small secret of only 20 bits, 

P- 
> lo6 is obtained, which far exceeds any reasonable 

Next we show that even the most general secret sharing 
system does not yield a substantial increase in nmax. 

Theorem 5: Any linear or nonlinear secret sharing sys- 
tem which satisfies Cl)-C3) (see Section II) has 

n maxsISJ +k-2. (20) 

Proof: Each trustee is given a symbol vi which is an 
element of an alphabet having at most 1 S 1 letters, because 
of C3). Consider 

u= v,,v2,-yln) ( 
as a codeword with n components. We would like to 
establish that the distance of this code is n - k + 1. 

By Cl) n - k erasures still enable us to recover s. What 
we must show is that not only s, but the whole codeword 
can be restored, i.e., 

H(Vik+, Ivj,>vj2~~“~vjk) = O, 

for any (k + 1)st piece. 
First we notice that 

(21) 

= H(vjk+, Is> vj,>’ * *,vjk)3 

where the last equality follows from (1). The right-hand 
side can be bounded further by 

H(vik+, ~s~vi,~~~~~vi~~,~vi~) _iH(vjk+, IS>vj,>*‘*>vjk-,)~ 

hence to prove (21) it suffices to show that 

H(V~kIS~vj,~“‘~vj,-,) = O. (22) 

We rewrite (1) and (2) as 

4 s, vj,3’ ’ e>vjk--I> Vi,) - ff(vi,>. . ‘,Vik-,> Vi,) = 0 

and 

H(s>V,,,.**>Vi,-,) -H(Vi,>...,Vik-,) = H(s). 

Subtracting these equations we obtain 

H(v;~Is~V;,,...,U;,-,) -H(v;~IV;,~...~U;~-,) = -H(s). 

Since 

H(Vik 1 Vi,,* * *yVik--l ) 5 Hbi,) 5 H(s), 

where the last inequality is due to C3) or (3), we get 

H(vik IS, Vi,,* * *>Vi,_,) 5 0, 

which establishes (22) and thus (21). 
Obviously the code cannot correct more than n - k 

erasures, because this would violate C2). Hence we have 
shown that any secret sharing system which satisfies Cl)- 
C3) is also a code of distance n - k + 1, i.e., it is a 
maximum distance (n, k) code. 

Maximum distance codes (not necessarily linear) were 
first studied by Singleton [5], and n was shown there to be 
bounded by 

n max+Yl +k- 1. 

Since one of the symbols is the secret itself, we get (20). 
Q.E.D. 

IV. PROTECTING MORE THAN ONE SECRET 

Suppose we have a set of n + 1 matrices over GF(q), 
{A,, A,,*. * ,A,,}, each of dimension km-by-m, and any k 
of the Ai have full rank. Then as we have shown in 
Theorem 2, ui = uA, is a k-out-of-n secret sharing system, 
where s = v, and vi, i = 1,2, * . *, n, is the information 
available to the i th trustee. It is clear that there is no 
difference in kind between v, and any other projection vi of 
U. Hence each u, can be considered equally well as a secret 
as long as it is not given to one of the trustees. 

We conclude that as many as (nmax + 1) - n projections 
can be kept secret in the following sense. 

Any k trustees can recover all the projections, and any 
k - 1 trustees have absolutely no information about any 
particular projection. (Obviously k - 1 trustees know as 
much as (k - 1)m * log(q) bits about U, thus having sig- 
nificant information about the set of secrets when consid- 
ered as one entity.) 

As an application of these facts consider a k-out-of-n 
secret sharing system which can protect I secrets when 
1 5 1 I k. This can be accomplished by letting 

and 

A; = [0 . . . 01,O . . . OIT, OSiiZ- 1, (24) 

with I,, the m-by-m identity matrix as the (i + 1)st block. 
so, Sl,’ . ‘,S[-1 are the secrets to be protected, and 
up * * * ,uk-,, is a string of (k - I)m independent random 
variables each drawn according to a uniform distribution 
on GF( q). We recall that {A,, A,; . * ,A,} can always be 
chosen so that (24) is satisfied, due to Theorem 3. 

Alternatively, one may use this procedure to protect a 
large secret by dividing smaller pieces among the trustees. 
If m * log (4) bits of uncertainty seems adequate, a secret s 
of length Zm can be protected; just let 

(so,s,,--,sI-,1) =s 

and choose u and Ai as in (23) and (24). 
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As an example, a  lOOO-bit secret can be protected by 
giving each of the n (n 2 10) trustees just 100 bits. Any 
nine of them still have 100 bits of uncertainty about each 
segment of s. 

V. COMPUTATIONAL ASPECTS 

This section analyzes the computational requirements of 
our secret sharing system. When the k trustees collaborate 
to recover the secret, they have to solve k linear equations 
with k unknowns, (we consider the one component case in 
GF(q”)). For an arbitrary A,, such as in [ 11, this takes 
0( k3) operations, while Shamir’s polynomial interpolation 
method [2] requires O(k * log2 k) operations. 

However, there are cases for which our method is more 
efficient. Suppose we wish to protect one secret and 
“silverfish” are rare; i.e., n  - k can be a small number. By 
choosing G as a systematic matrix with n + 1 columns, the 
worst case is when the collaborating k trustees correspond 
to the last k columns of G. The resulting matrix may be 
reduced to the form 

I Y [ 1  0 x 
merely by interchanging rows and columns. I is an identity 
matrix, and the dimensions of X are (n + 1 - k) by (n + 
1 - k). Hence it takes only O((n - k + 1)3) operations (in 
the worst case) to recover the secret. 

VI. DETECTING DELIBERATE TAMPERING 

Suppose one or more of the trustees deliberately changes 
his piece of information. If this trustee is one of the k who 
collaborate to recover the secret, an erroneous value of s 
results. Unfortunately, within the framework described so 
far, this is inevitable as the next theorem explains. 

Theorem 6: No secret sharing system which satisfies 
conditions Cl)-C3) can detect tampering. 

Proof: As discussed in the proof of Theorem 5, a 
k-out-of-n secret sharing system which satisfies Cl)-C3) is 
an (n, k) code, with minimum distance d = n - k + 1. By 
a basic theorem in coding theory (see e.g., [7, pp. 140-1411) 
such a code can correct c errors and detect t errors if and 
only if 

c+tld-1. 
(A corrected error is counted as a detected error, too.) A 

detected error is equivalent to an erasure, or the absence of 
a  trustee in our case. Allowing n - k trustees to be absent 
means 

t=n-k=d-1. 
Hence further detection (or correction) of errors, due to 
deliberate tampering or other reasons, is impossible. Q.E.D. 

We  can clearly detect and even correct tampering by 
increasing the number of required trustees beyond k which 
was originally required, but this violates Cl), C2). 

We  suggest a different approach to handle the tampering 
problem. Let F  be a one-way function [8], and let 

s’ = F(s). (25) 

The image of the secret, s’, as well as the function F  are 
public. Once k trustees compute the secret, they can check 
the image of their result against s’ and thus detect tamper- 
ing. 

We  implicitly assume here that the secret is uniformly 
distributed in a set S, where 1 S 1 is a large number. (Or 
alternatively, H(s) is large.) Otherwise an exhaustive search 
over all 1  S ] possible values is feasible and compromises s. 

As an example, a  56-bit secret may be applied to the key 
port of a  data encryption standard (DES) [8] device, while 
the plaintext and the resulting ciphertext are public. Clearly 
using a one-way function changes the status of the secret 
sharing system from unconditionally secure to computa- 
tionally secure only. 
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