
IEEE Std 1363.1™-2008

IEEE Standard Specification for Public
Key Cryptographic Techniques Based
on Hard Problems over Lattices 

IEEE
3 Park Avenue 
New York, NY 10016-5997, USA

10 March 2009

IEEE Computer Society
Sponsored by the
Microprocessor Standards Committee 

13
63

.1
TM

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



 
IEEE Standard Specification for Public 
Key Cryptographic Techniques Based 
on Hard Problems over Lattices 

Sponsor 
Microprocessors and Microcomputers Committee 
of the 
IEEE Computer Society 
 

Approved 10 December 2008 

IEEE-SA Standards Board 

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



Abstract: Specifications of common public key cryptographic techniques based on hard 
problems over lattices supplemental to those considered in IEEE Std 1363-2000 and IEEE Std 
1363a-2004, including mathematical primitives for secret value (key) derivation, public key 
encryption, identification and digital signatures, and cryptographic schemes based on those 
primitives are provided. Also presented are specifications of related cryptographic parameters, 
public keys, and private keys. Class of computer and communications systems is not restricted. 
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Introduction 

This introduction is not part of IEEE Std 1363.1-2008, IEEE Standard Specification for Public Key Cryptographic 
Techniques Based on Hard Problems over Lattices. 

The IEEE P1363™ project started as the “Standard for Rivest-Shamir-Adleman, Diffie-Hellman, and 
Related Public Key Cryptography” with its first meeting in January 1994, following a strategic initiative by 
the Microprocessor Standards Committee to develop standards for cryptography. Over the next eight years, 
the working group produced a broad standard reflecting the state of the art in public key cryptography, 
including techniques from three major families of hard problems. In addition, the working group drafted an 
addendum that provides additional techniques from those three major families. A more thorough history of 
the IEEE P1363 working group and its contributions beyond IEEE Std 1363™-2000 are given in the 
Introduction to IEEE Std 1363-2000. 

At the same time, new cryptographic research was producing additional families of cryptographic 
techniques such as the family of techniques based on hard problems over lattices. These techniques enjoy 
operating characteristics that make them attractive in certain implementation environments, and thus they 
have received considerable scrutiny and deployment.  

As a result, the working group proposed a new project to standardize techniques from this family. This 
project was approved by the Microprocessors and Microcomputers Standards Committee, and this current 
standard is the result of this project. 

Notice to users 

Laws and regulations 

Users of these documents should consult all applicable laws and regulations. Compliance with the 
provisions of this standard does not imply compliance to any applicable regulatory requirements. 
Implementers of the standard are responsible for observing or referring to the applicable regulatory 
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in 
compliance with applicable laws, and these documents may not be construed as doing so.  

Copyrights 

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and 
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this 
document available for use and adoption by public authorities and private users, the IEEE does not waive 
any rights in copyright to this document. 
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Updating of IEEE documents 

Users of IEEE standards should be aware that these documents may be superseded at any time by the 
issuance of new editions or may be amended from time to time through the issuance of amendments, 
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the 
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether 
a given document is the current edition and whether it has been amended through the issuance of 
amendments, corrigenda, or errata, visit the IEEE Standards Association web site at 
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously. 

For more information about the IEEE Standards Association or the IEEE standards development process, 
visit the IEEE-SA web site at http://standards.ieee.org. 

Errata  

Errata, if any, for this and all other standards can be accessed at the following URL:  
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL 
for errata periodically. 

Interpretations 

Current interpretations can be accessed at the following URL:  http://standards.ieee.org/reading/ieee/interp/ 
index.html. 

Patents 

Attention is called to the possibility that implementation of this standard may require use of subject matter 
covered by patent rights. By publication of this standard, no position is taken with respect to the existence 
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying 
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity 
or scope of Patents Claims or determining whether any licensing terms or conditions provided in 
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable 
or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any 
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further 
information may be obtained from the IEEE Standards Association. 

Participants 

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the P1363 Working 
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IEEE Standard Specification for Public 
Key Cryptographic Techniques Based 
on Hard Problems over Lattices 

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or 
environmental protection in all circumstances. Implementers of the standard are responsible for 
determining appropriate safety, security, environmental, and health practices or regulatory 
requirements. 

This IEEE document is made available for use subject to important notices and legal disclaimers.   
These notices and disclaimers appear in all publications containing this document and may be found 
under the heading “Important Notice” or “Important Notices and Disclaimers Concerning              
IEEE Documents.” They can also be obtained on request from IEEE or viewed at 
http://standards.ieee.org/IPR/disclaimers.html. 

1. Overview 

1.1 Scope 

This standard provides specifications of common public key cryptographic techniques based on hard 
problems over lattices supplemental to those considered in IEEE Std 1363™-2000 [B47]1 and IEEE Std 
1363a™-2004 [B48], including mathematical primitives for secret value (key) derivation, public key 
encryption, identification and digital signatures, and cryptographic schemes based on those primitives. 
Specifications of related cryptographic parameters, public keys, and private keys are also presented. Class 
of computer and communications systems is not restricted. 

1.2 Purpose 

The transition from paper to electronic media brings with it the need for electronic privacy and authenticity. 
Public key cryptography offers fundamental technology addressing this need. Many alternative public key 
techniques have been proposed, each with its own benefits. IEEE Std 1363-2000 [B47] and IEEE Std 
1363a-2004 [B48] have produced a comprehensive reference defining a range of common public key 

                                                 
1 The numbers in brackets correspond to those of the bibliography in Annex B. 
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techniques covering key agreement, public key encryption, and digital signatures from several families, 
namely the discrete logarithm, integer factorization, and elliptic curve families.  

This standard specifies cryptographic techniques based on hard problems over lattices. These techniques 
may offer tradeoffs in operating characteristics when compared with the methods already specified in IEEE 
1363-2000 and IEEE Std 1363a-2004. This standard also provides a second-generation framework for the 
description of cryptographic techniques, as compared to the initial framework provided in IEEE Std 1363-
2000 and IEEE Std 1363a-2004. 

It is not the purpose of this project to mandate any particular set of public key techniques or security 
requirements (including key sizes) for this or any family. Rather, the purpose of this standard is to provide 
the following: 

a) A reference for specification of a variety of techniques from which applications may select 

b) The relevant number-theoretic background 

c) Extensive discussion of security and implementation considerations so that a solution provider can 
choose appropriate security requirements for itself 

2. Normative references 

The following referenced documents are indispensable for the application of this document (i.e., they must 
be understood and used, so each referenced document is cited in text and its relationship to this document is 
explained). For dated references, only the edition cited applies. For undated references, the latest edition of 
the referenced document (including any amendments or corrigenda) applies. 

FIPS 180, Secure Hash Standard, Federal Information Processing Standards Publication 180, U.S. 
Department of Commerce/National Institute of Standards and Technology, National Technical Information 
Service, Springfield, Virginia.2  

3. Definitions, acronyms, and abbreviations 

3.1 Definitions 

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary 
of IEEE Standards [B46] should be referenced for terms not defined in this clause. 

3.1.1 algorithm: A clearly specified mathematical process for computation; a set of rules that, if 
followed, give a prescribed result. 

3.1.2 asymmetric cryptographic algorithm: A cryptographic algorithm that uses two related keys, a 
public key and a private key; the two keys have the property that, given the public key, it is 
computationally infeasible to derive the private key. 

3.1.3 authentication (of a message): The act of determining that a message has not been changed since 
leaving its point of origin. The identity of the originator is implicitly verified. 

                                                 
2FIPS 180 current version as of 2008 is FIPS 180-2, August 26, 2002, available at http://csrc.nist.gov/CryptoToolkit/Hash.html.  
 

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 1363.1- 2008 
IEEE Standard Specification for Public Key Cryptographic Techniques Based on 

 Hard Problems over Lattices 

3 
Copyright © 2009 IEEE. All rights reserved. 

3.1.4 authentication of ownership:  The assurance that a given, identified party intends to be 
associated with a given public key. May also include assurance that the party possesses the 
corresponding private key (see IEEE Std 1363-2000, Annex D.3.2, for more information). 

3.1.5 big modulus: The big modulus q is used to define the larger polynomial ring. The modulus q can 
generally be taken to be any value that is relatively prime in the ring to the small modulus p. 

3.1.6 birthday paradox: For a category size of 365 (the days in a year), after only 23 people are 
gathered, the probability is greater than 0.5 that at least two people have a common birthday 
(month and day). The reason is that among 23 people, there are 23 × (23 – 1)/2 = 253 pairs of 
people, each with a 1/365 chance of having matching birthdays. The chance of no matching 
birthday is therefore (364/365)253 ~ 0.4995. In general, any case where the criterion for success is 
to find a collision (two matching values) rather than a hit (one value that matches a pre-selected 
one) displays this pairing property, so that the size of the space to be searched for success is about 
the square root of the size of the space of all possible value. 

3.1.7 bit length: See: length. 

3.1.8 bit string: An ordered sequence of zeroes and ones. The left-most bit is the most-significant bit of 
the string. The right-most bit is the least-significant bit of the string. A bit and a bit string of length 
1 are equivalent for all purposes of this standard. 

3.1.9 blinding polynomial: In this standard, the ciphertext e is generated according to the equation e = 
r × h + m’, where h is the public key, m’ is the message representative, and r is a pseudorandomly 
generated blinding polynomial. 

3.1.10 blinding polynomial generation methods: In the encryption schemes in this document, a 
blinding polynomial generation method (LBP-BPGM) is used to generate a blinding polynomial r 
from the padded message pm in order to provide plaintext awareness. 

3.1.11 blinding polynomial space: The space that a LBP-BPGM selects from. Usually defined implicitly 
by the definition of the LBP-BPGM.  

3.1.12 certificate: The public key and identity of an entity together with some other information rendered 
unforgeable by signing the certificate with the private key of the certifying authority, which issued 
that certificate. 

3.1.13 ciphertext: The result of applying encryption to a message. Contrast: plaintext. See also: 
encrypt. 

3.1.14 composite:  An integer that has at least two prime factors. 

3.1.15 confidentiality: The property that information is not made available or disclosed to unauthorized 
individuals, entities, or processes. 

3.1.16 conformance region:  A set of inputs to a primitive or a scheme operation for which an 
implementation operates in accordance with the specification of the primitive or scheme operation  

3.1.17 cryptographic family: A set of cryptographic techniques in similar mathematical settings. For 
example, this standard presents a single family of techniques based on the underlying hard 
problems of finding a short vector and a close vector in a lattice. 

3.1.18 cryptographic hash function: See: hash function. 
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3.1.19 cryptographic key (key): A parameter that determines the operation of a cryptographic function 
such as: the transformation from plain text to cipher text and vice versa; synchronized generation 
of keying material; digital signature computation, or validation. 

3.1.20 cryptography: The discipline that embodies principles, means, and methods for the 
transformation of data in order to hide its information content, prevent its undetected modification, 
prevent its unauthorized use, or a combination thereof. 

3.1.21 data integrity: A property whereby data has not been altered or destroyed.  

3.1.22 decrypt: To produce plaintext (readable) from ciphertext (unreadable). Contrast: encrypt. See 
also: ciphertext; encrypt; plaintext. 

3.1.23 dimension: The dimension N identifies the dimension of the convolution polynomial ring used. 
The dimension of the associated lattice problem is 2N.  Elements of the ring are represented as 
polynomials of degree N – 1. 

3.1.24 domain parameters: A set of mathematical objects, such as fields or groups, and other 
information, defining the context in which public/private key pairs exist. More than one key pair 
may share the same domain parameters. Not all cryptographic families have domain parameters. 
See also: public/private key pair; valid domain parameters. 

3.1.25 domain parameter validation:  The process of ensuring or verifying that a set of domain 
parameters is valid. See also: domain parameters; key validation; valid domain parameters. 

3.1.26 encrypt: To produce ciphertext (unreadable) from plaintext (readable). Contrast: decrypt. See 
also: ciphertext; encrypt; plaintext. 

3.1.27 encryption primitives: An operation that converts a plaintext to a ciphertext, providing security 
according to the difficulty of solving an underlying hard problem, against a ciphertext-only attack 
by a passive attacker who only has a single non-chosen ciphertext. A building block for encryption 
schemes. 

3.1.28 encryption scheme: A means for providing encryption, based on an encryption primitive, that is 
secure against both active and passive attackers. A secure encryption scheme typically provides 
semantic security (an attacker who knows that one of two messages has been encrypted will find it 
computationally infeasible to determine which) against an attacker who can make polynomially 
many queries to a decryption oracle. 

3.1.29 entity: A participant in any of the schemes in this standard.  The words “entity” and “party” are 
used interchangeably.  This definition may admit many interpretations: it may or may not be 
limited to the necessary computational elements; it may or may not include or act on behalf of a 
legal entity.  The particular interpretation chosen does not affect operation of the key agreement 
schemes. 

3.1.30 exclusive OR (XOR): A mathematical bit-wise operation, symbol ⊕ , defined as: 
 0  ⊕  0  =  0, 
 0  ⊕  1  =  1, 
 1  ⊕   0  =  1, and 
 1  ⊕   1  =  0. 
Equivalent to binary addition without carry. May also be applied to bit strings: the XOR of two bit 
strings of equal length is the concatenation of the XORs of the corresponding elements of the bit 
strings. 

3.1.31 family: See: cryptographic family. 
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3.1.32 field: A setting in which the usual mathematical operations (addition, subtraction, multiplication, 
and division by nonzero quantities) are possible and obey the usual rules (such as the 
commutative, associative, and distributive laws). 

3.1.33 finite field: A field in which there are only a finite number of quantities. 

3.1.34 first bit: The leading bit of a bit string or an octet. For example, the first bit of 0110111 is 0. 
Contrast: last bit. Syn: most significant bit; leftmost bit. See also: bit string; octet. 

3.1.35 first octet: The leading octet of an octet string. For example, the first octet of 1c 76 3b e4 is 1c. 
Contrast: last octet. Syn: most significant octet; leftmost octet. See also: octet; octet string. 

3.1.36 hash function: A function that maps a bit string of arbitrary length to a fixed-length bit string and 
satisfies the following properties:  

1. It is computationally infeasible to find any input that maps to any pre-specified output; 

2. It is computationally infeasible to find any two distinct inputs that map to the same 
output. 

3.1.37 hash value: The result of applying a hash function to a message. 

3.1.38 index generation function (IGF): An IGF is a function that is seeded once, can be called multiple 
times, and produces statistically independent integers modulo some number m on each call. 

3.1.39 key: See: cryptographic key. 

3.1.40 key confirmation:  The assurance of the legitimate participants in a key establishment protocol 
that the intended recipients of the shared key actually posses the shared key. 

3.1.41 key derivation:  The process of deriving one or more session keys from a shared secret and 
(possibly) other, public information. Such a function can be constructed from a one-way hash 
function such as SHA-1. 

3.1.42 key encrypting key (KEK): A key used exclusively to encrypt and decrypt keys. 

3.1.43 key establishment: A protocol that reveals a secret key to its legitimate participants for 
cryptographic use. 

3.1.44 key generation primitive: A method used to generate a key pair. 

3.1.45 key management: The generation, storage, secure distribution, and application of keying material 
in accordance with a security policy. 

3.1.46 key pair: When used in public key cryptography, a private key and its corresponding public key. 
The public key is commonly available to a wide audience and can be used to encrypt messages or 
verify digital signatures; the private key is held by one entity and not revealed to anyone--it is used 
to decrypt messages encrypted with the public key and/or produce signatures that can verified with 
the public key. A public/private key pair can also be used in key agreement. In some cases, a 
public/private key pair can only exist in the context of domain parameters. See also: digital 
signature; domain parameters; encryption; key agreement; public key cryptography; valid 
key; valid key pair. 

3.1.47 key transport: A key establishment protocol under which the secret key is determined by the 
initiating party. 

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 1363.1- 2008 
IEEE Standard Specification for Public Key Cryptographic Techniques Based on 

 Hard Problems over Lattices 

6 
Copyright © 2009 IEEE. All rights reserved. 

3.1.48 key validation:  the process of ensuring or verifying that a key conforms to the arithmetic 
requirements for such a key in order to thwart certain types of attacks. See also: domain 
parameter validation; public/private key pair; valid key; valid key pair. 

3.1.49 keying material: The data (e.g., keys, certificates and initialization vectors) necessary to establish 
and maintain cryptographic keying relationships. 

3.1.50 known-key security: Known-key security for Party U implies that the key agreed upon will not 
be compromised by the compromise of the other session keys. If each ephemeral key is used only 
to compute a single session key, then known-key security may be achieved. 

3.1.51 last bit:  The trailing bit of a bit string or an octet. For example, the last bit of 0110111 is 1. 
Contrast: first bit. Syn: least significant bit; rightmost bit. See also: first bit; octet. 

3.1.52 last octet: The trailing octet of an octet string. For example, the last octet of 1c 76 3b e4 is e4. 
Contrast: first octet. Syn: least significant octet; rightmost octet. See also: octet; octet string. 

3.1.53 lattice-based polynomial public key encryption: An encryption mechanism where operations 
are based on polynomial multiplication and the security is based on the difficulty of performing 
high-dimension lattice reduction. 

3.1.54 least significant: See: last bit; last octet.  

3.1.55 leftmost bit:  See: first bit. 

3.1.56 leftmost octet:  See:  first octet. 

3.1.57 length:  (1) Length of a bit string is the number of bits in the string. (2) Length of an octet string is 
the number of octets in the string. (3) Length in bits of a nonnegative integer n is ⎣log2 (n + 1)⎦  
(i.e., the number of bits in the integer’s binary representation). (4) Length in octets of a 
nonnegative integer n is ⎣log256 (n + 1)⎦ (i.e., the number of digits in the integer’s representation 
base 256). For example, the length in bits of the integer 500 is 9, and its length in octets is 2. 

3.1.58 mask generation function (MGF): An MGF is a construction built around a hash function that 
produces an arbitrary-length output string, possibly longer than the output of the underlying hash 
function. 

3.1.59 message authentication code (MAC): A cryptographic value that is the results of passing a 
financial message through the message authentication algorithm using a specific key. 

3.1.60 message length encoding length: In SVES, the length of the message that is to be encrypted is 
encoded in the padded message.  The length of the field that represents the length of the message, 
called the message length encoding length, is represented by the parameter lLen.  For all parameter 
sets in this standard,  lLen is set to 1.  

3.1.61 message representative:  A mathematical value for use in a cryptographic primitive, computed 
from a message that is input to an encryption or a digital signature scheme and uniquely linked to 
that message. See also: encryption scheme; digital signature scheme. 

3.1.62 modular lattice: A lattice in which (among other things) all values are integers reduced mod q.  

3.1.63 most significant: See:  first bit; first octet. 

3.1.64 norm: A measure of the “size” of a vector or polynomial.  
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3.1.65 octet: A bit string of length 8. An octet has an integer value between 0 and 255 when interpreted 
as a representation of an integer in base 2. An octet can also be represented by a hexadecimal 
string of length 2, where the hexadecimal string is the representation of its integer value base 16. 
For example, the integer value of the octet 10011101 is 157; its hexadecimal representation is 9d. 
Also commonly known as a byte. See also:  bit string. 

3.1.66 octet string:  An ordered sequence of octets. See also: octet. 

3.1.67 owner: The entity whose identity is associated with a key pair. 

3.1.68 parameters:  See: domain parameters. 

3.1.69 plaintext: A message before encryption has been applied to it; the opposite of ciphertext. 
Contrast: ciphertext. See also: encryption. 

3.1.70 polynomial index generation constant: A value used when generating a random number in the 
range [0, N – 1], to eliminate bias without impacting efficiency. 

3.1.71 prime number: An integer that is greater than 1 and divisible only by 1 and itself. 

3.1.72 primitives: Cryptographic primitives used in the SVES encryption scheme include key generation 
primitives, encryption primitives, and decryption primitives.  

3.1.73 private key: The private element of the public/private key pair. See also: public/private key 
pair; valid key. 

3.1.74 private key space: The space from which a key generation primitive selects the private key. 

3.1.75 public key: The public element of the public/private key pair. See also: public/private key pair; 
valid key.  

3.1.76 public key cryptography: Methods that allow parties to communicate securely without having 
prior shared secrets through the use of public/private key pairs. Contrast: symmetric 
cryptography. See also: public/private key pair.  

3.1.77 public key space: The space from which a key generation primitive selects the public key. 

3.1.78 public key validation: See: key validation. 

3.1.79 public/private key pair:  See: key pair. 

3.1.80 rightmost bit:  See:  last bit. 

3.1.81 rightmost octet:  See:  last octet. 

3.1.82 ring: A setting in which addition, subtraction, and multiplication are possible, and division by a 
given nonzero quantity may or may not be possible. A field is a special case of a ring. See also: 
field. 

3.1.83 ring element: In general, an element in a ring. In the context of this standard, a binary N-ring 
element refers to an element in the ring (Z/2Z)[X]/(XN – 1), which is to say a binary polynomial of 
degree N-1 or an array of N binary elements. A (q, N)-ring element refers to an element in the ring 
(Z/qZ)[X]/(XN – 1), which is to say a polynomial of degree N – 1 with coefficients reduced mod q 
or an array of N elements each taken mod q. 
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3.1.84 salt: Random bits that are used to pad the message during encryption, to provide for semantic 
security. 

3.1.85 salt size: The size of the salt. This can be expressed in bits or octets. 

3.1.86 scheme options: Scheme options consist of parameters and algorithms that do not affect the key 
space (i.e., that are not domain parameters), but that shall be agreed upon in order to implement 
the encryption scheme. 

3.1.87 secret key: A key used in symmetric cryptography; needs to be known to all legitimate 
participating parties involved, but cannot be known to an adversary. Contrast: public/private key 
pair. See also: key agreement; shared secret key; symmetric cryptography. 

3.1.88 secret value: A value that can be used to derive a secret key, but typically cannot by itself be used 
as a secret key. See also:  secret key. 

3.1.89 shared secret key:  A secret key shared by two parties, usually derived as a result of a key 
agreement scheme. See also: key agreement; secret key. 

3.1.90 shared secret value:  A secret value shared by two parties, usually during a key agreement 
scheme. See also: key agreement; secret value. 

3.1.91 short vector encryption scheme (SVES): The encryption scheme defined in IEEE Std 1363.1-
2008. 

3.1.92 signature:  See:  digital signature. 

3.1.93 small modulus: In LBP-PKE, the small modulus p is used for key generation and for modular 
reduction during decryption.  

3.1.94 statistically unique: For the generation of n-bit quantities, the probability of two values repeating 
is less than or equal to the probability of two n-bit random quantities repeating.  More formally, an 
element chosen from a finite set S of n elements is said to be statistically unique if the process that 
governs the selection of this element is such that, for any integer L ≤ n, the probability that all of 
the first L selected elements are different is no smaller than the probability of this happening when 
the elements are drawn uniformly randomly from S. 

3.1.95 symmetric cryptographic algorithm: A cryptographic algorithm that uses one cryptographic 
key.  Anyone who knows the key can both encrypt and decrypt a message, and can calculate a 
Message Authentication Code using that key. 

3.1.96 symmetric cryptography: Methods that allow parties to communicate securely only when they 
already share some prior secrets, such as the secret key. Contrast: public key cryptography. See 
also: secret key. 

3.1.97 symmetric key: A cryptographic key that is used in symmetric cryptographic algorithms. The 
same symmetric key that is used for encryption is also used for decryption. 

3.1.98 user: A party that uses a public key. 

3.1.99 valid domain parameters: A set of domain parameters that satisfies the specific mathematical 
definition for the set of domain parameters of its family. While a set of mathematical objects may 
have the general structure of a set of domain parameters, it may not actually satisfy the definition 
(for example, it may be internally inconsistent) and thus not be valid. See also: domain 
parameters; public/private key pair; valid key; valid key pair; validation. 
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3.1.100 valid key: A key (public or private) that satisfies the specific mathematical definition for the keys 
of its family, possibly in the context of its set of domain parameters. While some mathematical 
objects may have the general structure of keys, they may not actually lie in the appropriate set (for 
example, they may not lie in the appropriate subgroup of a group or be out of the bounds allowed 
by the domain parameters) and thus not be valid keys. See also: domain parameters; 
public/private key pair; valid domain parameters; valid key pair; validation. 

3.1.101 valid key pair: A public/private key pair that satisfies the specific mathematical definition for the 
key pairs of its family, possibly in the context of its set of domain parameters. While a pair of 
mathematical objects may have the general structure of a key pair, the keys may not actually lie in 
the appropriate sets (for example, they may not lie in the appropriate subgroup of a group or be out 
of the bounds allowed by the domain parameters) or may not correspond to each other; such a pair 
is thus not a valid key pair. See also: domain parameters; public/private key pair; valid 
domain parameters; valid key; validation. 

3.1.102 validation: See: domain parameter validation; key validation. 

3.1.103 verify: In relation to a Digital Signature means to determine accurately: (1) that the Digital 
Signature was created during the operational period of a valid Certificate by the private key 
corresponding to the public key listed in the Certificate; and (2) the message has not been altered 
since its Digital Signature was created. 

3.2 Acronyms and abbreviations 

BS2IP  bit string to integer conversion primitive 

BS2REP  bit string to ring element conversion primitive 

BS2ROSP bit string to right-padded octet string conversion primitive  

BPGM blinding polynomial generation method 

DP decryption primitive 

ES encryption scheme 

I2BSP  integer to bit string conversion primitive 

I2OSP integer to octet string conversion primitive 

IGF index generation function 

IGF-MGF1 index generation function based on mask generation function 1 

KGP key generation primitive 

LBP-BPGM1 blinding polynomial generation method for generating binary blinding polynomials 

LBP-BPGM2 blinding polynomial generation method for generating product-form blinding 
polynomials 

LBP-DP1 decryption primitive for use with lattice-based polynomial public key decryption 
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LBP-KGP1 lattice-based polynomial key generation primitive 

LBP-PKE lattice-based polynomial public key encryption 

MAC message authentication code. 

MGF mask generation function  

MPM message padding method 

MRGM message representative generation method 

OS2IP octet string to integer conversion primitive 

OS2REP  octet string to ring element conversion primitive 

RE2BSP  ring element to bit string conversion primitive 

RE2OSP  ring element to octet string conversion primitive 

ROS2BSP right-padded octet string to bit string conversion primitive 

SVDP short vector decryption primitive  

SVES short vector encryption scheme  
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4. Types of cryptographic techniques 

4.1 General model 

As stated in Clause 1, the purpose of this standard is to provide a reference for specifications of a variety of 
common public key cryptographic techniques from which applications may select. Different types of 
cryptographic techniques can be viewed abstractly according to the following three-level general model: 

⎯ Primitives:  Basic mathematical operations. Historically, they were discovered based on number-
theoretic hard problems. Primitives are not meant to achieve security just by themselves, but they 
serve as building blocks for schemes. 

⎯ Schemes:  A collection of related operations combining primitives and additional methods (see 
4.4). Schemes can provide complexity-theoretic security that is enhanced when they are 
appropriately applied in protocols. 

⎯ Protocols: Sequences of operations to be performed by multiple parties to achieve some security 
goal. Protocols can achieve desired security for applications if implemented correctly. 

From an implementation viewpoint, primitives can be viewed as low-level implementations (e.g., 
implemented within cryptographic accelerators, or software modules), schemes can be viewed as medium-
level implementations (e.g., implemented within cryptographic service libraries), and protocols can be 
viewed as high-level implementations (e.g., implemented within entire sets of applications). 

This standard contains only specifications of schemes.  

4.2 Schemes 

Schemes in this standard are presented in a general form based on certain primitives and additional 
methods. For example, the encryption scheme defined in this standard is based on a key generation 
primitive, a decryption primitive, and a blinding polynomial generation method. 

Schemes also include key management operations, such as selecting a private key or obtaining another 
party’s public key. For proper security, a party needs to be assured of the true owners of the keys and 
domain parameters and of their validity.  Generation of domain parameters and keys needs to be performed 
properly, and in some cases validation also needs to be performed. While outside the scope of this standard, 
proper key management is essential for security. 

This standard defines one type of scheme, as follows: 

⎯ Encryption schemes (ESs), in which any party can encrypt a message using a recipient’s public 
key, and only the recipient can decrypt the message by using its corresponding private key.  
Encryption schemes may be used for establishing secret keys to be used in symmetric 
cryptography. 

 

An encryption scheme is specified by providing the following: 

⎯ Name 

⎯ Type (e.g., asymmetric public key encryption scheme) 

⎯ Options (key type, primitives, parameters) 
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⎯ Operations 

⎯ Key pair generation 

⎯ Key pair validation 

⎯ Public key validation 

⎯ Encryption operation 

⎯ Input 
⎯ Output 

⎯ Decryption operation 
⎯ Input  
⎯ Output 

An encryption scheme specification may also include the following: 

⎯ Security considerations 

⎯ Implementation considerations 

⎯ Related standards 
 

The specifications are functional specifications, not interface specifications. As such, the format of inputs 
and outputs and the procedure by which an implementation of a scheme is invoked are outside the scope of 
this standard.  

4.3 Additional methods 

This standard specifies the following additional methods: 

⎯ Blinding polynomial generation methods, which are components of encryption schemes. 

⎯ Auxiliary Functions, which are building blocks for other additional methods. 

⎯ Index generation functions 

⎯ Mask generation functions 

⎯ Hash functions, which are used as the core of index generation functions and of mask 
generation functions.  

The specified additional methods are required for conformant use of the schemes.  The use of an inadequate 
message encoding method, key derivation function, or auxiliary function may compromise the security of 
the scheme in which it is used.  Therefore, any implementation that chooses not to follow the recommended 
additional methods for a particular scheme should perform its own thorough security analysis of the 
resulting scheme. 

4.4 Algorithm specification conventions 

When specifying an algorithm or method, this standard uses four parts to specify different aspects of the 
algorithm.  They are as follows: 

a) Components, such as choice of index generation function (IGF), are parameters that are specified 
before the beginning of the operation and that are not specific to the particular algorithm call.  
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Components tend to be kept fixed for multiple users and multiple instances of the algorithm call 
and need not be explicitly specified if they are implicitly known [e.g., if they are defined within a 
selected object identifier (OID)].  

b) Inputs, such as keys and messages, are values that shall be specified for each algorithm call.   

c) Outputs, such as ciphertext, are the result of transformations on the inputs. 

d) Operations specify the transformations that are performed on the data to arrive at the output.  
Throughout the standard, the operations are defined as a sequence of steps. A conformant 
implementation may perform the operations using any sequence of steps that consistently produces 
the same output as the sequence in this standard. Caution should be taken to ensure that 
intermediate values are not revealed, however, as they may compromise the security of the 
algorithms. 

5.  Mathematical notation 

When referring to mathematical objects and data objects in this standard, the following notation in Table 1 
is used.  Throughout the document, numbers at the end of variable names are used to distinguish different, 
but related values (df1, df2, df3 or Dmin1, Dmin2, etc.). 

Table 1—Mathematical notation 

0 Denotes the integer 0, the bit 0, or the additive identity (the element zero) of a ring. 

1 Denotes the integer 1, the bit 1, or the multiplicative identity (the element one) of a ring. 

 ×  Indicates the convolution product of two polynomials and is also used to indicate multiplication 
of integers. 

⊕ or XOR Exclusive OR function. 

|| Concatenation. A||B  is the concatenation of the octet strings A and B where the leading octet of 
A is the leading octet of A||B and the trailing octet of B is the trailing octet of A||B. 

:=  Initialization. a := b means initialize or set the value of a equal to the value of b. 

A Lower-bound decryption coefficient, used in decryption process to reduce into correct interval. 

ceil[.] or ⎡.⎤  Ceiling function (i.e., the smallest integer greater than or equal to the contents of [.]). 

db The number of random bits used as input for encryption. 

df An integer specifying the number of ones in the polynomials that comprise the private key 
value f (also specified as df1, df2, and df3, or as dF). 

dg An integer specifying the number of ones in the polynomials that comprise the temporary 
polynomial g (often specified as dG). 

dr An integer specifying the number of ones in the blinding polynomial r in SVES. (Also specified 
as dr1, dr2, and dr3.) 

e Encrypted message representative, a polynomial, computed by an encryption primitive. 
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E Encrypted message, an octet string. 

ES (Asymmetric) encryption scheme. 

f Private key in SVES. 

F In SVES, a polynomial that is used to calculate the value f when f = 1 + pF.  

floor[.] or ⎣.⎦  Floor function (i.e. the largest integer less than or equal to the contents of [.]). 

g In SVES, a temporary polynomial used in the key generation process. 

GCD(a, b) Greatest Common Divisor of two non-negative integers a and b. 

h Public key.  

Hash( ) A cryptographic hash function computed on the contents of ( ). 

hLen Length in octets of a hash value. 

i An integer. 

k Security level in bits. 

m The message, an octet string, which is encrypted in SVES. 

M In SVES, the padded and formatted message representative octet string used during encryption 
and decryption. 

m’ The message representative polynomial that is submitted to the encryption primitive in the 
SVES encryption scheme. 

mod q Used to reduce the coefficients of a polynomial into some interval of length q. 

mod p Used to reduce a polynomial to an element of the polynomial ring mod p. 

N Dimension of the polynomial ring used (i.e., polynomials are up to degree N – 1). 

p “Small” modulus, an integer or a polynomial. 

q “Big” modulus, usually an integer. 

r In LBP-PKE, the encryption blinding polynomial (generated from the hash of the padded 
message M in SVES).  

x The integer input to or output from integer conversion primitives. 

X The indeterminate used in polynomials. 

Z The ring of integers. 

Zq The ring of integers mod q. 
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6. Polynomial representation and operations 

6.1 Introduction 

The cryptographic techniques specified in this standard require arithmetic in quotient polynomial rings, 
also called convolution polynomial rings. Intuitively, these algebraic objects consist of polynomials with 
integer coefficients. Manipulation of these ring elements is accomplished by polynomial arithmetic modulo 
a fixed polynomial: XN – 1 in this standard.  

6.2 Polynomial representation 

Typically in mathematical literature, a polynomial a in X is denoted a(X). In this standard, when the 
meaning is clear from the context, polynomials a in the variable X are simply denoted by a.  Further, all 
polynomials used in this standard have degree N – 1, unless otherwise noted. In addition, given a 
polynomial a, a variable denoted ai, where i is an integer, represents the coefficient of a of degree i.  In 
other words, the polynomial denoted a represents the polynomial a(X) = a0 + a1X + a2X2 + a3X3 + …+ aiXi + 
… + aN–1 XN – 1, unless otherwise specified.  

6.3 Polynomial operations 

6.3.1 Polynomial multiplication 

Let Z be the ring of integers.  The polynomial ring over Z, denoted Z[X], is the set of all polynomials with 
coefficients in the integers. The convolution polynomial ring (over Z) of degree N is the quotient ring 
Z[X]/(XN – 1). The product c of two polynomials a,b ε Z[X]/(XN – 1) is given by Equation (1). 

)()()( XbXaXc ×=    with    ∑
≡+

=
)(mod Nkji

jik bac  (1) 

All multiplications of polynomials a and b, represented as a × b, are taken to occur in the ring Z[X]/(XN – 1) 
unless otherwise noted. 

6.3.2 Reduction of a polynomial mod q 

Throughout the document, polynomials are taken mod q, where q is an integer. To reduce a polynomial 
mod q, one simply reduces each of the coefficients independently mod q into the appropriate (specified) 
interval. 

6.3.3 Inversion in (Z/qZ)[X]/(XN – 1) 

For certain cryptographic operations such as key generation, it is necessary to take the inverse of a 
polynomial in (Z/qZ)[X]/(XN – 1). This clause describes the algorithms necessary for inversion in this ring. 
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6.3.3.1 Polynomial division algorithm in Zp[X] 

This algorithm divides one polynomial by another polynomial in the ring of polynomials with integer 
coefficients modulo a prime p. All convolution operations occur in the ring Zp[X] in this algorithm (i.e., 
there is no modular reduction of the powers of the polynomials). 

Input: A prime p, a polynomial a in Zp[X] and a polynomial b in Zp[X] of degree N – 1 whose leading 
coefficient bN is not 0. 

Output: Polynomials q and r in Zp[X] satisfying a = b × q + r and deg r < deg b.  

Operation: Polynomial division algorithm in Zp[X] shall be computed by the following or an equivalent 
sequence of steps: 

a) Set r := a and q := 0 

b) Set u := bN
–1 mod p 

c) While deg r ≥ N do 

1) Set d := deg r(X) 

2) Set v := u × rd × X(d–N) 

3) Set r := r – v × b 

4) Set q := q + v 

d) Return q, r 

6.3.3.2 Extended Euclidean Algorithm in Zp[X] 

The Extended Euclidean Algorithm finds a greatest common divisor d (there may be more than one that are 
constant multiples of each other) of two polynomials a and b in Zp[X] and polynomials u and v such that a 
× u + b × v = d. All convolution operations occur in the ring Zp[X] in this algorithm (i.e., there is no 
modular reduction of the powers of the polynomials). 

Input: A prime p and polynomials a and b in Zp[X] with a and b not both zero. 

Output: Polynomials u, v, d in Zp[X] with d = GCD(a, b) and a × u + b × v = d. 

Operation: Extended Euclidean Algorithm in Zp[X] shall be computed by the following or an equivalent 
sequence of steps:  

a) If b = 0 then return (1, 0, a) 

b) Set u := 1 

c) Set d := a  

d) Set v1 := 0 

e) Set v3 := b 

f) While v3 ≠ 0 do 

1) Use the division algorithm (6.3.3.1) to write d = v3 × q + t3 with deg t3 < deg v3 

2) Set t1 := u – q × v1 

3) Set u := v1 

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 1363.1- 2008 
IEEE Standard Specification for Public Key Cryptographic Techniques Based on 

 Hard Problems over Lattices 

17 
Copyright © 2009 IEEE. All rights reserved. 

4) Set d := v3 

5) Set v1 := t1 

6) Set v3 := t3 

g) Set v := (d – a × u)/b  [This division is exact, i.e., the remainder is 0] 

h) Return (u, v, d) 

6.3.3.3 Inverses in Zp[X]/(XN – 1) 

The Extended Euclidean Algorithm may be used to find the inverse of a polynomial a in Zp[X]/(XN – 1) if 
the inverse exists. The condition for the inverse to exist is that GCD(a, XN – 1) should be a polynomial of 
degree 0 (i.e., a constant). All convolution operations occur in the ring Zp[X]/(XN – 1) in this algorithm. 

Input: A prime p, a positive integer N and a polynomial a in Zp[X]/(XN – 1). 

Output: A polynomial b satisfying a × b = 1 in Zp[X]/(XN – 1) if a is invertible in Zp[X]/(XN – 1), otherwise 
FALSE. 

Operation: Inverses in Zp[X]/(XN – 1) shall be computed by the following or an equivalent sequence of 
steps:  

a) Run the Extended Euclidean Algorithm (6.3.3.2) with input a and (XN – 1). Let (u, v, d) be the 
output, such that a × u + (XN – 1) × v = d = GCD(a, (XN – 1)). 

b) If deg d = 0. 

c) Return b = d–1 (mod p) × u. 

d) Else return FALSE. 

6.3.3.4 Inverses in Zp^r[X]/(XN – 1) 

For key generation in this standard it is necessary to calculate inverses in Za[X]/(XN – 1), where q is a power 
of 2. In this case, the inversion algorithm (6.3.3.3) may be used to find the inverse of a(X) in the quotient 
ring (R/2R)[X]/(M(X)). Then the following algorithm may be used to lift it to an inverse of a(X) in the 
quotient ring (R/peR)[X]/(M(X)) with higher powers of the prime 2 (or any prime p). 

Input: A prime p in a Euclidean ring R, a monic polynomial M(X) ε R[X], a polynomial a(X) ε R[X], and an 
exponent e. 

Output: An inverse b(X) of a(X) in the ring (R/peR)[X]/(M(X)) if the inverse exists, otherwise FALSE. 

a) Use the inversion algorithm 6.3.3.4 to compute a polynomial b(X) ε R[X] that gives an inverse of 
a(X) in (R/pR)[X]/(M(X)). Return FALSE if the inverse does not exist. [The inversion algorithm 
may be applied here because R/pR is a field, and so (R/pR)[X] is a Euclidean ring.] 

b) Set n  2 

c) While e > 0 do 

d) b(X)  2 × b(X) – a(X) × b(X)2   (mod M(X)), with coefficients computed modulo pn 

e) Set e  ⎣ e/2 ⎦ 

f) Set n  2 × n 

g) Return b(X) mod M(X) with coefficients computed modulo pe 

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 1363.1- 2008 
IEEE Standard Specification for Public Key Cryptographic Techniques Based on 

 Hard Problems over Lattices 

18 
Copyright © 2009 IEEE. All rights reserved. 

7. Data types and conversions 

7.1 Bit strings and octet strings 

As usual, a bit is defined to be an element of the set {0, 1}. A bit string is defined to be an ordered array of 
bits. A byte (also called an octet) is defined to be a bit string of length 8. A byte string (also called an 
octet string) is an ordered array of bytes. The terms first and last, leftmost and rightmost, most 
significant and least significant, and leading and trailing are used to distinguish the ends of these 
sequences (first, leftmost, most significant, and leading are equivalent; last, rightmost, least significant, 
and trailing are equivalent). Within a byte, this standard additionally refers to the high-order and low-
order bits, where high-order is equivalent to first and low-order is equivalent to last. 

Note that when a string is represented as a sequence, it may be indexed from left to right or from right to 
left, starting with any index. For example, consider the octet string of two octets: 2a 1b. This corresponds to 
the bit string 0010 1010 0001 1011. No matter what indexing system is used, the first octet is still 2a, the 
first bit is still 0, the last octet is still 1b, and the last bit is still 1. The high-order bit of the second octet is 0; 
the low-order bit of the second octet is 1. 

When a bit string or a octet string is being encoded into a polynomial with coefficients reduced mod q (a 
“ring element”), where q is usually either 128 or 256, the integer coefficients are mapped individually to bit 
or octet strings, which are then concatenated. This mapping and its reverse are described in the conversion 
primitives OS2REP, BS2REP, RE2OSP, and RE2BSP in 7.5 and 7.6.  

This standard does not specify a single algorithm for converting from bit/octet strings to ternary 
polynomials in an unbiased and reversible fashion. Instead, the standard uses two algorithms, which are 
defined inline in the techniques that use them. One algorithm is reversible but biased; the other is unbiased 
but non-reversible. 

7.2 Converting between integers and bit strings (I2BSP and BS2IP) 

7.2.1 Integer to bit string primitive (I2BSP) 

I2OSP converts a nonnegative integer to a bit string of a specified length. 

Input: i, nonnegative integer to be converted; bLen, intended length of the resulting bit string 

Output: B, corresponding bit string of length bLen 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) If x ≥ 2 xLen, output “integer too large” and stop. 

b) Write the integer x in its unique xLen-bit representation in base 2 as follows: 
 x = xxLen–1 × 2 xLen–1 + xxLen–2 × 2 xLen–2 + … + x1 × 2 + x0   
where xi = 0 or 1 (note that one or more leading bits will be zero if x is less than 2 xLen–1). 

c) Output the bit string xxLen–1 xxLen–2  … x1 x0. 
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7.2.2 Bit string to integer primitive (BS2IP) 

BS2IP converts a bit string to a nonnegative integer. 

Input: B, bit string to be converted (bLen is used to denote the length of B) 

Output: x, corresponding nonnegative integer 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) If B is of length 0, output 0. 

b) Let bbLen–1 bbLen–2  … b1 b0 be the bits of B from leftmost to rightmost. 

c) Let x = bbLen–1 × 2 bLen–1 + bbLen–2 × 2 bLen–2 + … + b1 × 2 + b0. 

d) Output x. 

7.3 Converting between integers and octet strings (I2OSP and OS2IP) 

7.3.1 Integer to octet string primitive (I2OSP) 

I2OSP converts a nonnegative integer to an octet string of a specified length. 

Input: x, nonnegative integer to be converted; oLen, intended length of the resulting octet string 

Output: O, corresponding octet string of length oLen 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) If x ≥ 256 oLen, output “integer too large” and stop. 

b) Write the integer x in its unique oLen-digit representation in base 256: 
 x = ooLen–1 × 256 oLen–1 + ooLen–2 × 256 oLen–2 + … + o1 × 256 + o0 

where 0 ≤ oi < 256 (note that one or more leading digits will be zero if o is less than 256oLen–1). 

c) For 1 ≤ x ≤ oLen, let the octet Oi be the concatenation of the bits in the integer representation of 
ooLen-i, where left-most bit of the octet is the high order bit of the binary representation. Output the 
octet string O = O1 O2 … OoLen . 

NOTE—As an example, the integer 944 has the three-digit representation 944 = 0 × 256 2 + 3 × 256 + 178. The 
corresponding octet string, expressed in integer values, is 0 3 178; as binary values, it is 

 00000000  00000011  10110010 

and in hexadecimal it is 00 03 b2.3 

7.3.2 Octet string to integer primitive (OS2IP) 

OS2IP converts an octet string to a nonnegative integer. 

                                                 
3 Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard. 
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Input: x, nonnegative integer to be converted; oLen, intended length of the resulting octet string. 

Output: O, corresponding octet string of length oLen. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) If O is of length 0, output 0. 

b) Let O1 O2 … OoLen be the octets of O from first to last, and let ooLen–j be the integer value of the 
octet Oj for 1 ≤ j ≤ oLen, where the integer value is represented as an octet (i.e., an eight-bit string) 
most significant bit first. 

c) Output x = ooLen–1 × 256 oLen–1 + ooLen–2 × 256 oLen–2 + … + o1 × 256 + o0. 

7.4 Converting between bit strings and right-padded octet strings (BS2ROSP and 
ROS2BSP) 

This clause gives the primitives used to convert between bit strings and right-padded octet strings. 

7.4.1 Bit string to right-padded octet string primitive (BS2ROSP) 

Input: B: bit string to be converted; oLen: intended length of the resulting octet string. 

Output: O, corresponding octet string of length oLen. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) Set bLen equal to the length of x in bits. 

b) If bLen > 8 × oLen, output “input too long” and stop. 

c) Append (8 × oLen – bLen) zero bits to the end of x. 

d) Let b0 b1 … bxLen–2 bxLen–1 be the bits of B from first to last. For 0 ≤ i < oLen – 1, let the octet Oi = 
b8i b8i+1 … b8i+7. Output the octet string 

 O = O0 O1 … OoLen-1 

7.4.2 Right-padded octet string to bit string primitive (ROS2BSP) 

ROS2BSP converts an octet string to a bit string of a specified length. 

Input: O: octet string to be converted; bLen: intended length of the resulting bit string. 

Output: B: corresponding bit string of length bLen. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) Set oLen equal to the length of O in octets. 

b) If bLen > 8 × oLen, output “input too short” and stop. 

c) For 0 ≤ i < oLen – 1, consider the octet Oi to be the bits b8i b8i + 1 … b8 i+ 7. 

d) If any of the bits bbLen –1 … b8 × oLen –1 are non-zero, output “non-zero bits found after end of bit 
string” and stop. 
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e) Output the bit string 

 B = b0 b1 … bbLen-1 

7.5 Converting between ring elements and bit strings (RE2BSP and BS2REP) 

While octet string representation may be most convenient for ring element arithmetic in a microprocessor, 
ring elements may be more compactly stored and transmitted as bit strings. This clause provides the 
appropriate conversion primitives. 

7.5.1 Ring element to bit string primitive (RE2BSP) 

RE2OSP converts a ring element to a bit string. 

Input: a: ring element to be converted, equal to a0 + a1 X + a2 X2 + … + aN–1 XN–1; N: dimension of ring; q: 
larger modulus: all coefficients of the ring element are between 0 and q – 1. 

Output: B: resulting bit string. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) For j = 0 to N – 1: 

1) Set Aj equal to the smallest positive representation of aj mod q. 

2) Set Bj = I2BSP (Aj, ceil[log2 q]). If the call to I2BSP outputs an error, output that error and 
stop. 

b) Output the bit string B = B0 || B1 || … || BN – 1. 

NOTE—As an example, if q = 128 and N = 5, the polynomial 

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4 

is represented by the bit string 0101101 0000010 1001101 1100111 0001010. (If this were subsequently to be 
converted to an octet string using BS2ROSP, it would become first the bit string 0101 1010 0000 1010 0110 1110 0111 
0001 0100 0000, and then the octet string 5a 0a 6e 71 40.) 

7.5.2 Bit string to ring element primitive (BS2REP) 

BS2REP converts a bit string to a ring element. 

Input: B: bit string to be converted; N: dimension of ring; q: larger modulus: all coefficients of the ring 
element are between 0 and q – 1. 

Output: a: resulting ring element, equal to a0 + a1 X + a2 X2 + … + aN–1 XN – 1. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) If the length of B is not equal to N × ceil[log2 q], output “bit string incorrect length” and stop. 

b) Consider B to be the series of bit strings B = B0 B1 … BN–1., where each Bj is of length ceil[log2 q] 
bits. 

c) For j = 0 to N – 1, set aj = BS2IP (Bj). If BS2IP outputs an error, output “error.” 

d) Output a = a0 + a1 X + a2 X2 + … + aN–1 XN – 1. 
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7.6 Converting between ring elements and octet strings (RE2OSP and OS2REP) 

This clause gives the primitives for converting between ring elements and octet strings. 

7.6.1 Ring element to octet string primitive (RE2OSP) 

RE2OSP converts a ring element to an octet string. 

Input: a: ring element to be converted, equal to a0 + a1 X + a2 X2 + … + aN–1 XN–1; N: dimension of ring; q: 
larger modulus to be passed to RE2BSP: all coefficients of the ring element are between 0 and q–1. 

Output: O: corresponding octet string. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) Convert the ring element a to a bit string bA using RE2BSP. 

b) Convert the bit string bA to the octet string O using BS2ROSP. 

c) Output O. 

7.6.2 Octet string to ring element primitive (OS2REP) 

OS2REP converts an octet string to a ring element. 

Input: O: octet string to be converted; N: dimension of ring; q: larger modulus: all coefficients of the ring 
element are between 0 and q – 1. 

Output: a: resulting ring element, equal to a0 + a1 X + a2 X2 + … + aN–1 XN – 1. 

Operation: The output shall be computed by the following or an equivalent sequence of steps: 

a) If the length of O is not equal to N × ceil[log256 q], output “octet string incorrect length” and stop. 

b) Convert the octet sting O to the bit string bA using ROS2BSP. 

c) Convert the bit string bA to the ring element a using BS2REP. 

d) Output a. 

8. Supporting algorithms 

8.1 Overview 

In order to perform the operations securely, implementers shall choose supporting algorithms that satisfy 
the security needs of the schemes. The security level of the supporting algorithm typically depends on the 
desired security level of the scheme (e.g., for a desired security level of 80 bits, the SHA-1 hash algorithm 
described in FIPS 180 is typically chosen). This clause defines the algorithms that shall be used to meet this 
standard. 
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8.2 Hash functions 

Hash functions are used in two distinct situations in this standard: as the core of a mask generation 
function, and as the core of a pseudo-random bit generator. For security purposes, the hash function should 
be chosen at a strength that is commensurate to the desired security level. The recommended parameter sets 
in this document specify hash functions appropriate to their security levels. 

The only currently supported hash functions for use within this standard are SHA-1 and SHA-256 (see 
FIPS 180). 

All hash functions in this standard take an octet string as an input and produce an octet string as an output. 
For compatibility with other standards that specify input and output as bit strings, the conversion primitives 
ROS2BSP and BS2ROSP (7.4.1 and 7.4.2) may be used. 

8.3 Encoding methods 

8.3.1 General 

Before a message is encrypted, it shall be processed to provide certain desirable security properties such as 
semantic security. In this clause, the auxiliary methods for manipulating data for the encryption scheme are 
listed. These currently consist of specific methods for generating the blinding polynomial r. 

8.3.2 Blinding polynomial generation methods (BPGM) 

8.3.2.1 General 

In order to provide plaintext awareness, a blinding polynomial generation method (BPGM) shall be used to 
generate a blinding polynomial r from the padded message pm. This clause contains two BPGMs. The first 
utilizes the standard polynomial convolution method, and the second utilizes the optimized polynomial 
convolution method. 

8.3.2.2 lbp-bpgm-3 

The blinding polynomial r shall be generated deterministically from the message m and the random value b 
using a pseudo-random number generator.  

Components: The parameters N and dr, the chosen index generation function IGF(), the hash function 
Hash() chosen to parameterize IGF(), the polynomial index generation constant c, and the minimum 
number of hash calls for the IGF to make, minCallsR. 

Input: The seed, which is an octet string seed. 

Output: The blinding polynomial, which is a polynomial r. 

Operation: The blinding polynomial shall be computed by the following or an equivalent sequence of 
steps: 

a) Call the IGF with hash function Hash() and input seed, N, c, minCallsR to obtain the IGF state s. 
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b) Set r := 0 

c) Set t := 0 

d) While t < dr do 

1) Call the IGF with input s to obtain an integer i mod N. 

2) If ri = 0 

i) Set ri := 1 

ii) Set t := t + 1 

e) Set t := 0 

f) While t < dr do 

1) Call the IGF with input s to obtain an integer i mod N and the updated state s. If the IGF 
outputs “error”, output “error.” 

2) If ri = 0 

i) Set ri := –1 

ii) Set t := t + 1 

g) Return r 

8.4 Supporting algorithms 

In order to perform the operations securely, implementers shall choose supporting algorithms that satisfy 
the security needs of the schemes. The security level of the supporting algorithm typically depends on the 
desired security level of the scheme [e.g., for a desired security level of 80 bits, the SHA-1 hash algorithm 
(see FIPS 180) is typically chosen]. This clause defines the algorithms that shall be used to meet this 
standard. 

8.4.1 Mask generation functions 

Mask generation functions (MGFs) are functions similar to hash functions, except that instead of producing 
a fixed-length output they produce an output of arbitrary length.  

All mask generation functions are parameterized by the choice of a core hash function. The only hash 
functions supported for use with the MGFs in this standard are SHA-1 and SHA-256 (see FIPS 180).  

This standard only permits the use of one mask generation function, MGF-TP-1. This function takes as 
input an octet string and the desired degree of the output, and produces a ternary polynomial of the 
appropriate degree. The only hash functions supported for use with this mask generation function are SHA-
1 and SHA-256 (see FIPS 180). 

8.4.1.1 Mask generation function for ternary polynomials (MGF-TP-1) 

Components: A hash function Hash with output length hLen octets. 

Input: an octet string seed of length seedLen octets; the degree N, an integer; an argument hashSeed, taking 
the values “yes” or “no”; and the minimum number of calls minCallsMask, an integer. 

Output: An polynomial i of degree N – 1; or “error.” 
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Operation: The integer and state shall be produced by the following or an equivalent sequence of steps: 

a) If seedLen+4 exceeds any input length limitation on the hash function Hash, output “error” and 
exit. 

b) If minCallsMask exceeds 232, output “error” and exit. 

c) Check the value of hashSeed. 

1) If hashSeed = “yes,”  set the octet string Z to Hash(seed) and the integer zLen to hLen. 

2) If hashSeed = “no,” set the octet string Z to seed and the integer zLen to seedLen. 

d) Initialize the octet string buf to be a zero-length octet string. 

e) Initialize counter:= 0. 

f) Initialize N and c with the provided values. Set cLen = ceil (c/8). 

g) While counter < minCallsR do 

1) Convert counter to an octet string C of length 4 octets using I2OSP. 

2) Compute Hash(Z || C) with the selected hash function to produce an octet string H of length 
hLen octets. 

3) Let buf = buf || H. 

4) Increment counter by one. 

h) Initialize i to be the null polynomial and cur, a pointer to the current coefficient of i, to be 0. 

i) For each octet o in buf: 

1) Convert o to an integer O using OS2IP. 

2) If O ≥ 243 (= 35) discard O, move to the next octet, and go to step d)1). 

3) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3. 

4) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3. 

5) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3. 

6) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3. 

7) Set icur = O; if cur = N output i; set cur = cur + 1. 

j) If cur < N: 

1) Convert counter to an octet string C of length 4 octets using I2OSP. 

2) Compute Hash(Z || C) with the selected hash function to produce an octet string H of length 
hLen octets. 

3) Let buf = H. 

4) Increment counter by one. 

5) Return to step i). 

k) Output i. 

8.4.2 Index generation function 

The term “index generation function,” (IGF) as used in this standard, applies to functions that are initialized 
with a seed in the form of an octet string and may then be called repeatedly, producing an integer in a 
specified range on each call. 
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An IGF may be deterministic or non-deterministic. A deterministic IGF is parameterized by a hash 
function; the only hash functions supported for use with the IGFs in this standard are SHA-1 and SHA-256 
(see FIPS 180). On initialization, it takes as input a seed, which is an octet string; a modulus N; an index 
generation constant c; and the desired minimum number of calls to the underlying hash function, 
minCallsR. It outputs an integer in the range [0, N – 1] and the internal state s. On subsequent calls, it takes 
as input the current state s and outputs an octet string of length oLen and the updated internal state s. 

This standard permits the use of a deterministic index generation function based on a hash function and a 
nondeterministic index generation function based on a random bit generator. 

8.4.2.1 Index generation function (IGF-2) 

Components: A hash function Hash with output length hLen octets. 

Input:  
EITHER: an octet string seed of length seedLen octets; the modulus N, an integer; an argument 
hashSeed, taking the values “yes” or “no”; the index generation constant c, an integer; and the minimum 
number of calls minCallsR, an integer. 

OR: the state s. 

Output: An integer i and the state s; or “error.” 

Operation: The integer and state shall be produced by the following or an equivalent sequence of steps: 

a) If s is not provided: 

1) If seedLen+4 exceeds any input length limitation on the hash function Hash, output “error” 
and exit 

2) If minCallsR exceeds 232, output “error” and exit. 

3) Check the value of hashSeed. 

i) If hashSeed = "yes", set the octet string Z to Hash(seed) and the integer zLen to hLen. 

ii) If hashSeed = "no", set the octet string Z to seed and the integer zLen to seedLen. 

4) Intialize remLen to 0.  

5) Initialize the bit string buf to be a zero-length bit string. 

6) Initialize counter:= 0. 

7) Initialize N and c with the provided values. 

8) While counter < minCallsR do 

i) Convert counter to an octet string C of length 4 octets using I2OSP. 

ii) Compute Hash(Z || C) with the selected hash function to produce an octet string H of 
length hLen octets. 

iii) Let buf = buf || OS2BSP(H). 

iv) Increment counter by one. 

9) Set remLen = minCallsR × 8 × hLen. 

b) Otherwise (if s is provided): 

3) Extract the values Z, remLen, buf, counter, N, c from the state s. (The details of how they are 
stored in s may be determined by the implementer). 
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c) If remLen < c 

1) Let the bit string M be the trailing remLen bits in buf. 

2) Let tmpLen:=c – remLen. 

3) Let cThreshold = counter + ceil[tmpLen/hLen]. 

4) While counter < cThreshold do 

i) Convert counter to an octet string C of length 4 octets using I2OSP. 

ii) Compute Hash(Z || C) with the selected hash function to produce an octet string H of 
length hLen octets. 

iii) Let M = M || OS2BSP(H). 

iv) Increment counter by one. Increment remLen by 8 × hLen. 

v) If counter = 232, output “error” and exit. 

5) Set buf:=M. 

e) Set the bit string b to the leading c bits in buf.  

f) Convert b to an integer i using OS2IP. 

g) If i ≥ 2c – (2c mod N) go back to step c). 

h) Store the values Z, remLen, counter, N, cLen and c in the state s. (The details of how they are stored 
in s may be determined by the implementer). 

i) Output i mod N and s. 

8.4.2.2 Index generation function (IGF-RBG) 

This IGF is based on any approved random bit generator. 

Components: An approved random bit generator RBG. 

Input: The modulus N, an integer; the index generation constant c, an integer. 

Output: An integer i.  

Operation: The integer i shall be produced by the following or an equivalent sequence of steps: 

a) Set cLen = ceil (c/8). 

b) Obtain a bit string b of length 8 × cLen bits from RBG. 

c) Convert b to an octet string o using BS2OSP.  

d) Set the leftmost 8cLen – c bits of o to 0. 

e) Convert o to an integer i using OS2IP. 

f) If i ≥ 2c – (2c mod N) go back to step b) 

g) Output i mod N. 
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9. Short vector encryption scheme (SVES) 

The following clause defines the supported encryption schemes. The only encryption scheme currently 
supported is SVES. SVES stands for short vector encryption scheme.  

9.1 Encryption scheme (SVES) overview 

The general encryption scheme is a sequence of operations that are performed based on the choices of the 
parameters, primitives, encoding functions, and supporting algorithms. In order to perform all of the SVES 
encryption scheme operations, all of the components shall be specified. 

9.2 Encryption scheme (SVES) operations 

The SVES encryption scheme consists of the five operations key generation, key pair validation, public key 
validation, encryption, and decryption. These operations are defined generally in this clause without 
assuming any specific choices of the components listed in 9.1. 

9.2.1 Key generation 

A key pair shall be generated using the following or a mathematically equivalent set of steps. Note that the 
algorithm below outputs only the values f and h. In some applications it may be desirable to store the values 
f –1 and g as well. This standard does not specify the output format for the key as long as it is unambiguous. 

Components: The parameters N, q, p, dF, dg; EITHER an Approved random number generator capable of 
generating unbiased output in the range (0, N – 1) OR an index generation function IGF that takes an 
Approved random bit generator RBG and the polynomial index generation constant c used by the IGF. 

Input: None 

Output: An key pair consisting of the private key f and the public key h. 

Operation: The key pair shall be computed by the following or an equivalent sequence of steps: 

a) Set the polynomial F := 0. 

b) Set t := 0. 

c) While t < dF do 

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N. 

2) If Fi = 0 

i) Set Fi := 1 

ii) Set t := t + 1 

d) Set t:=0 While t < dF do 

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N. 

2) If Fi = 0 

i) Set Fi := –1 

ii) Set t := t + 1 
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e) Compute the polynomial f := 1 + p × F in (Z/qZ)[X]/(XN – 1) 

f) Compute the polynomial f –1 (i.e., the polynomial f –1 such that f –1 × f = f × f –1 = 1) in       
(Z/qZ)[X]/(XN – 1).  If f –1 does not exist, go to step a). 

g) Set the polynomial g := 0. 

h) Set t := 0 

i) While t < dg + 1 do 

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N. 

2) If gi = 0 

i) Set gi := 1 

ii) Set t := t + 1 

j) Set t := 0 

k) While t < dg do 

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N. 

2) If gi = 0 

i) Set gi := –1 

ii) Set t := t + 1 

l) Check that g is invertible mod q. If it is not, go back to step g). 

m) Compute the polynomial h := f –1 × g × p in (Z/qZ)[X]/(XN – 1). 

n) Output f, h. 
 

9.2.2 Encryption operation 

This clause defines the encryption operation. Note that within the definition of the spaces there may be 
definitions of additional variables (e.g., when defining Dr, the values dr1, dr2 and dr3 may be specified as 
well as the appropriate method of combining them). 

Components: 

⎯ The length of the encoded length lLen. 

⎯ The number of bits of random data db, which shall be a multiple of 8. 

⎯ The chosen mask generation function and associated parameters. 

⎯ The chosen blinding polynomial generation method and the associated parameters. 

⎯ The OID, an octet string 

⎯ The number of bits of public key to hash, pkLen. 

⎯ The minimum message representative weight, dm0. 

⎯ The minimum number of calls to generate the masking polynomial, minCallsMask. 

⎯ The maximum message length maxMsgLenBytes. 

⎯ The minimum number of calls to generate the blinding polynomial, minCallsR. 

⎯ The length of the encoding buffer, bufferLenBits. 
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Inputs: 

⎯ The message m, which is an octet string of length l octets. 

⎯ The public key h. 

Output: The ciphertext e, which is a ring element, or “message too long.” 

Operation: The ciphertext e shall be calculated by the following or an equivalent sequence of steps: 

a) Calculate octL = the lLen-octet-long encoding of the message length l. 

b) If l > maxLen, output  “message too long” and stop. 

c) Randomly select an octet string b of length bLen using a random number generator with at least 8 × 
bLen bits of entropy content. 

d) Form the octet string p0, consisting of the 0 byte repeated (maxMsgLenBytes + 1 – l) times. 

e) Form the octet string M of length bufferLenBits/8 as b || octL || m || p0. 

f) Convert M to a bit string Mbin using OS2BSP. 

g) If Mbin is not a multiple of three bits long, append 0 bits to bring it up to a multiple of three. 

h) Convert Mbin to a ternary polynomial of degree N – 1 as follows. Treat Mbin as a concatenation of 
3-bit quantities. Convert each three-bit quantity to two ternary coefficients as follows, and 
concatenate the resulting ternary quantities to obtain Mtrin. 

⎯ {0, 0, 0} is converted to {0, 0} 

⎯ {0, 0, 1} is converted to {0, 1} 

⎯ {0, 1, 0} is converted to {0, –1} 

⎯ {0, 1, 1} is converted to {1, 0} 

⎯ {1, 0, 0} is converted to {1, 1} 

⎯ {1, 0, 1} is converted to {1, –1} 

⎯ {1, 1, 0} is converted to {–1, 0} 

⎯ {1, 1, 1} is converted to {–1, 1} 

i) Convert the public key h to a bit string bh using RE2BSP (7.5.1). Form the bit string bhTrunc by 
taking the first pkLen bits of bh. Convert bhTrunc to the octet string hTrunc, of length pkLen/8 
using BS2OSP. Form sData as the octet string  

 OID || m || b || hTrunc 

j) Use the chosen blinding polynomial generation method with the seed sData and the chosen 
parameters to produce r. IF the blinding polynomial generation method outputs “error,” output 
“error.” 

k) Calculate R = r × h mod q. 

l) Calculate R4 = R mod 4. 

m) Convert R4 to the octet string oR4 using RE2OSP, using q = 4 within RE2OSP. 

n) Generate a masking polynomial mask by calling the given MGF with inputs (oR4, N, 
minCallsMask). 

o) Form m’ by polynomial addition of M and mask mod p. 
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p) If the number of 1s, or –1s, or 0s in m’ is less than dm0, discard m’ and return to step c). 

q) Calculate the ciphertext as e = R + m’ mod q. 

r) Output e. 
 

Graphically, the encryption operation may be represented as follows in Figure 1. 
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Figure 1—Encryption operation 

9.2.3 Decryption operation 

This clause defines the decryption operation. Note that within the definition of the spaces there may be 
definitions of additional variables (e.g., when defining Dr, the values dr1, dr2 and dr3 may be specified as 
well as the appropriate method of combining them).   

Components: 

⎯ The LBP-PKE decryption primitive to use. 

⎯ The length of the encoded length lLen. 

⎯ The number of bits of random data db, which shall be a multiple of 8. 

⎯ The chosen mask generation function and hash function. 

⎯ The chosen blinding polynomial generation method and the associated parameters. 

⎯ The OID, an octet string. 

⎯ The number of bits of public key to hash, pkLen. 

⎯ The lower bound A. 

⎯ The minimum message representative weight dm0. 

⎯ The maximum message length maxMsgLenBytes. 

Inputs:  

⎯ The ciphertext e, which is a polynomial of degree N – 1. 
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⎯ The private key f or (f, fp). 

⎯ The public key h 
Output: The message m, which is an octet string, or “fail.” 

Operation: The message m shall be calculated by the following or an equivalent sequence of steps: 

a) Calculate: 

1) nLen = ceil [N/8], the number of octets required to hold N bits.  

2) bLen = db/8, the length in octets of the random data.  

3) maxLen = nLen – 1 – lLen – bLen, the maximum message length. 

b) Decrypt the ciphertext e using the selected NTRU decryption primitive with inputs e and f to get the 
candidate decrypted polynomial ci. 

c) If the number of 1s, or –1s, or 0s in ci is less than dm0, set “fail” to 1. 

d) Calculate the candidate value for r × h, cR = e – ci. 

e) Calculate cR4 = cR mod 4. 

s) Convert cR4 to the octet string coR4 using RE2OSP, using q = 4 within RE2OSP. 

f) Generate a masking polynomial mask by calling the given MGF with inputs (coR4, N, 
minCallsMask). 

g) Form cMTrin by polynomial subtraction of cm’ and mask mod p. 

h) Convert cMTrin to a bit string as follows. Treat cMTrin as a concatenation of polynomials each 
containing 2 ternary coefficients. Convert each set of two ternary coefficients to three bits as 
follows, and concatenate the resulting bit quantities to obtain cMBin. 

⎯ {0, 0} is converted to {0, 0, 0} 

⎯ {0, 1} is converted to {0, 0, 1} 

⎯ {0, -1} is converted to {0, 1, 0} 

⎯ {1, 0} is converted to {0, 1, 1} 

⎯ {1, 1} is converted to {1, 0, 0} 

⎯ {1, –1} is converted to {1, 0, 1} 

⎯ {–1, 0} is converted to {1, 1, 0} 

⎯ {–1, 1} is converted to {1, 1, 1} 

⎯ {–1, –1} is converted to set  “fail” to 1 and set bit string to {1, 1, 1} 

i) If cMBin is not a multiple of 8 bits long, remove the final (length – length mod 8) bits. 

j) Convert cMBin to an octet string cM using BS2OSP. 

k) Parse cM as follows. 

1) The first bLen octets are the octet string cb.  

2) The next lLen octets represent the message length. Convert the value stored in these octets to 
the candidate message length cl. If cl > maxMsgLenBytes, set fail = 1 and set cl = maxL.  

3) The next cl octets are the candidate message cm. the remaining octets should be 0. If they are 
not, set fail = 1. 
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l) Convert the public key h to a bit string bh using RE2BSP (7.5.1). Form the bit string bhTrunc by 
taking the first pkLen bits of bh. Convert bhTrunc to the octet string hTrunc, of length pkLen/8 
using BS2OSP. Form sData as the octet string  

 OID || m || b || hTrunc 

m) Use the chosen blinding polynomial generation method with the seed sData and the chosen 
parameters to produce cr. 

n) Calculate cR' = h × cr mod q. 

o) If cR' != cR, set fail = 1. 

p) If fail = 1, output “fail.” Otherwise, output cm as the decrypted message m. 
 

9.2.4 Key pair validation methods 

A key pair validation method determines whether a candidate LBP-PKE public key/private key pair meets 
the constraints for key pairs produced by a particular key generation method.  

9.2.4.1 kpv3: key pair validation for ternary keys 

This key validation method corresponds to the key generation operation in 9.2.1. 

Components: The parameters N, q, dF, dg, 

Input: The private key component F and the public key h. 

Output: “valid” or “invalid.” 

Operation:  

a) Check that F and h are polynomials of degree no greater than N – 1. If either of them has greater 
degree, output “invalid” and stop. 

b) Check that all of the coefficients of h lie in the range [0, q – 1]. If any coefficients lie outside this 
range, output “invalid” and stop. 

c) Check that F is ternary with exactly dF 1s and dF –1s. If it is not, output “invalid” and stop. 

d) Set f = 1 + 3F mod q. 

e) Set g = f × h × 3–1 mod q. 

f) Check that g is ternary with exactly dg + 1 1s and dg –1s. If it is not, output “invalid” and stop. 

g) Output “valid.” 
 

9.2.5 Public key validation 

9.2.5.1 Full public key validation 

A full public key validation method determines whether a candidate public key satisfies the definition of a 
public key and meets any additional constraints imposed by a given key pair generator. Such methods 
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provide the highest assurance to a relying party. For example, for keys generated using the key generation 
operation in 9.2.1, full public key validation would prove that h = f–1g mod q, where f = 1 + pF and F, g 
have dF, dg 1s respectively. Currently there are no known methods that provide full public key validation 
for the LBE-PKE schemes in this standard. 

9.2.5.2 Partial public key validation and plausibility tests 

9.2.5.2.1 Overview 

A partial public key validation method determines, with some level of assurance, whether a candidate 
public key meets some of the properties of a public key. As with full public key validation methods, partial 
public key validation methods may be interactive or non-interactive. This standard supports only non-
interactive methods. 

Non-interactive methods for LBP-PKE public keys that do not require a witness are called plausibility tests. 
The name reflects the fact that, while examining only the public key, the tests only determine whether the 
public key is plausible, not necessarily whether it is valid. Plausibility tests can detect unintentional errors 
with reasonable probability, though not with certainty. (See the note below.) 

This is still an active research area; further methods may be described in future versions of this standard. 

NOTE—There are other ways to detect unintentional errors; a checksum on the key can be used to detect storage and 
transmission errors, and the signature on a certificate will likely fail verification if the public key is modified. The 
checks in this clause provide an additional level of assurance beyond the other methods, or an alternative when they are 
not available. 

9.2.5.2.2 Example suite of plausibility tests 

The following is an example of a plausibility test, corresponding to the key generation operation in 9.2.1.  

a) Check that h(1) = g(1)/(1 + pF(1)) mod q. [For binary polynomials, F(1) = dF; for product-form 
polynomials, F(1) = df1 × df2+df3. In both cases, g(1) = dg.] If it is not, output “invalid” and stop. 

b) For t = 0 to q – 1, reduce h into the range [t, t + q – 1]. 

c) Calculate the centered norm ||h|| for h reduced into this range. 

d) Set ||h||min equal to the minimum value of ||h|| obtained in the previous step. 

e) Set ||r|| = √ [2 dr]. 

f) If ||h||min > q (√N) / (3 ||r||), output “plausible public key” and stop. Otherwise, output “invalid” and 
stop. 

Steps b)–e) are motivated by the considerations of A.4.2: for a valid public key h, the calculation of h × r 
mod q involves a large number of reductions mod q. The test checks that ||h × r|| > q√(N)/2, in other words 
that the centered norm of h × r is with high likelihood greater than the centered norm of a polynomial 
consisting of N/2 coefficients with the value q/2 and N/2 coefficients with the value –q/2 (this calculation 
uses the pseudo-multiplicative property of the centered norm defined in A.1.1). For genuine h, the typical 
value of ||h||min is slightly under q √(N/12). For binary polynomials, the centered norm ||r|| is √(2dr), which 
is considerably greater than √(3) for all parameter sets in this standard. A valid h therefore passes this test 
with high probability. 
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Annex A  

(informative) 

Security considerations 

A.1 Lattice security: background 

This subclause provides an overview of the properties of lattices, as a necessary preliminary to considering 
the security of cryptosystems based on hard lattice problems. 

A.1.1 Lattice definitions 

A lattice of dimension n is a maximal discrete subgroup of real n-dimensional space Rn. A lattice L may be 
specified by a spanning set of n linearly independent vectors {b1,…,bn} called a basis for L, in which case L 
is the set of vectors shown in Equation (A.1). 

L = { x1b1 + … + xnbn : x1,…,xn ε Z } (A.1) 

A lattice has many bases. A lattice is called integral if it is contained in Zn and it is called rational if it is 
contained in Qn. A (row) matrix for L is a matrix whose rows form a basis for L. The discriminant of L, 
denoted Disc(L), is the determinant of any matrix for L; the value is independent of the choice of basis. The 
discriminant is also characterized as the volume of a fundamental domain for the quotient space Rn/L, so it 
is also sometimes called the volume (really co-volume) of L. 

The L2-norm and the centered L2-norm of a vector a are given by the respective formulas [see Equation 
(A.2) and Equation (A.3)]. 
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Let aavg be the vector whose coordinates are all equal to (a0+a1+…+aN – 1)/N, the average of the coordinates 
of a. Then the centered L2-norm of a may also be defined by  ||a||2,ctr = ||a – aavg||2.  

A vector a is said to be centered if a0 + a1 +…+ aN–1 = 0, that is, if the average of its coordinates is 0. (If the 
vectors a and b represent polynomials, the sum a(X) + b(X) and the product a(X) × b(X) of centered 
polynomials a(X) and b(X) are themselves centered.) 

The L2-norm of the (convolution) product of two independent centered polynomials a(X) and b(X) may be 
estimated by Equation (A.4). 

||a(X) × b(X)||2  ≈  ||a(X)||2 × ||b(X)||2 (A.4) 

This is known as the pseudo-multiplicative property of the centered norm. 
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The first minimum of L, denoted λ(L) or λ1(L), is the length of the smallest nonzero vector in L. More 
generally, for each 1 ≤ i ≤ n, the ith successive minimum of L, denoted λi(L), is the infimum of all numbers λ 
such that L contains i linearly independent vectors of length at most λ. Hermite’s constant γn is the infimum 
of the ratio λ1(L)2/Disc(L)2/n as L runs over all lattices of dimension n. It is known that γn θ(n), although the 
exact value of γn is only known for 1 ≤ n ≤ 8. 

Let a ε Rn. The distance from a to L, denoted λ(L,a), is the distance from a to the closest vector in L. 

A.1.2 Hard lattice problems 

The shortest vector problem (SVP) for a lattice L is to find a vector v ε L satisfying ||v|| = λ1(L), that is, to 
find a vector of shortest nonzero length. The approximate short vector problem (apprSVP) is to find a 
vector v ε L satisfying ||v|| ≤ f(n)λ1(L) for some (slowly growing) function f of the dimension n. 

The closest vector problem (CVP) for a lattice L and vector a ε Rn is the problem of finding a vector v ε L 
satisfying ||v – a|| = λ(L,a), i.e., minimizing the distance ||v – a||. The approximate closest vector problem 
(apprCVP) is to find a vector v ε L satisfying ||v – a||  ≤  f(n)λ(L,a) for some (slowly growing) function f of 
the dimension n. 

The smallest basis problem (SBP) for a lattice L has many different formulations depending on how one 
measures the “smallness” of a basis. A common definition is to minimize the length of the longest element 
of the basis. Another common definition is to minimize the product of the lengths of the elements in the 
basis. 

A.1.3 Theoretical complexity of hard lattice problems 

It is known that SVP is NP-hard under randomized reductions (Ajtai [B1]), and the same is true for 
apprSVP with approximating factor √2 (Miciancio [B75]). It is known that CVP is NP-hard (van Emde 
Boas [B101]). Although CVP appears to be somewhat harder than SVP, it is known that an algorithm to 
solve apprSVP with approximating function f(n) can be used to solve apprCVP with approximating 
function n3/2f(n) (Kannan [B60]), so the two are polynomially equivalent. In practice, a CVP in dimension n 
can often be solved by transforming it into an SVP in dimension n + 1. In the other direction, it is very 
unlikely that apprSVP or apprCVP is NP-hard for the approximating function f(n) ≈ (n/log n)1/2 (Goldreich 
and Goldwasser [B23]).  

A.1.4 Lattice reduction algorithms 

Let L be an integral (or rational) lattice of dimension n. An exhaustive search can be used to solve SVP or 
CVP, with expected running time exponential in n. There are algorithms for solving apprSVP and apprCVP 
with polynomial (in n) running time and (slightly better than) exponential approximating factor f(n). More 
precisely, the LLL algorithm (Lenstra, et al. [B69]) runs in polynomial time and returns a nonzero vector 
v ε L satisfying ||v|| ≤ 2n/2λ1(L); the approximating factor can be improved to 2O(n(log log n)2/log n) (Schnorr 
[B89]). More generally, Schnorr [B89], Schnorr and Euchner [B90], and Schnorr and Hoerner [B91] 
describe block variants of the LLL algorithm called BKZ-LLL whose running time and approximating 
factor depend on the choice of a block size β. Larger values of β lead to better results and longer running 
times. The BKZ-LLL algorithm with block size β finds a nonzero vector v ε L satisfying Equation (A.5). 

||v||  ≤  (2.45β)n/β λ1(L)   in time at most   O(n2(ββ/2+o(β) + n2)) (A.5) 

Thus in order to obtain a provable polynomial approximation factor, the block size β must be proportional 
to the dimension n, in which case the running time is (at least) exponential in the dimension. 
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In practice, the LLL algorithm and its BKZ-LLL variants tend to return answers that are somewhat better 
than the upper bounds given by theory. However, also in practice, the shortest vector returned by BKZ-LLL 
tends to be considerably longer than λ1(L) until the block size β is an appreciable fraction of the dimension 
n. Also in practice, the running time of BKZ-LLL is (at least) exponential in the block size β. In other 
words, even in practice, BKZ-LLL is unlikely to find a vector as short as cn/β in time less than O(n2ββ/2). 

Recent research (Schnorr [B92]) suggests another block-based algorithm known as Random Sampling 
Reduction (RSR), which is guaranteed to find a nonzero vector v ε L satisfying Equation (A.6). 

||v||  ≤  (k/6)n/2k λ1(L)   in time approximately  O(n3(k/6)k/4) (A.6) 

For exact solutions to SVP and CVP, there are superexponential algorithms (Kannan [B59][B61]) with 
running time 2O(n log n) and a more recent algorithm with exponential running time (Ajtai, et al. [B3]). Other 
lattice reduction algorithms are described in LaMacchia [B68], Villard [B102], Buchmann and Ludwig 
[B13], Nguyen and Stehle [B82]. The review in Howgrave-Graham [B38] considers known lattice attacks 
and concludes that no better attack is currently known than straightforward BKZ. 

For solving a CVP of dimension n, the best method in practice is to embed it into an SVP of one higher 
dimension (Goldreich [B24] and Nguyen [B80]. Let (L,a) be a CVP. Then one takes a basis {b1,…,bn} for 
L, forms the lattice L × in Rn+1 with basis {[b1,0],…,[bn,0],[a,c]} for an appropriate constant c and hopes 
that a shortest vector in L × has the form [u,c], in which case the vector a + u is in L and is likely to be a 
closest vector to a.  

A.1.5 The Gaussian heuristic and the closest vector problem 

Let L be a lattice and let a ε Rn be a vector. The Gaussian heuristic says that all other things being equal, 
the distance from a to the closest vector in L is probably approximately equal to the value of R specified by 
following condition: 

Volume of a ball of radius R around a > Discriminant of L 

The intuition underlying the Gaussian heuristic is that all of Rn can be covered by disjoint n-dimensional 
parallelopipeds of volume Disc(L) centered at the points of L, so any nicely shaped region with the same 
volume is likely to contain a point of L. Using the formula πn/2/(n/2)! for the volume of an n dimensional 
ball (n even) and using Stirling’s formula to approximate factorials as k! ≈ (k/e)k(2πk)1/2, the Gaussian 
heuristic says that in a lattice of large dimension n, the critical radius is given by Equation (A.7). 

Rcrit(L) =  (n/2πe)1/2 Disc(L)1/dim(L)  (A.7) 

If R is somewhat larger than Rcrit(L), then the Gaussian heuristic predicts that there are many vectors of L 
that are within a distance R of a; while if R is smaller than Rcrit(L), then the Gaussian heuristic predicts that 
there are few or no vectors of L that are within a distance R of a.  

Let L be a lattice of dimension n and let a ε Rn. In many situations of cryptographic interest, one hides a 
vector v ε L that is a known (short) distance δ from the known vector a. Thus the lattice L, the vector a, and 
the distance δ are public knowledge, while the vector v is the private information. The Gaussian heuristic 
can be used to predict if v is likely to be a closest vector to a, in which case recovery of the private 
information is probably equivalent to solution of the CVP for (L,a). More precisely, the Gaussian heuristic 
says that if δ = ||v – a|| is significantly smaller than (n/2πe)1/2 Disc(L)1/n, say less than ½ or ⅓ of this 
quantity, then v is probably a solution to the CVP for (L,a) and δ = λ(L,a). 
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A.1.6 Modular lattices: definition 

A modular lattice (ML) with dimension parameter n = 2N and modulus parameter q is a lattice of 
dimension n generated by the rows of an n-by-n matrix of the form shown in Equation (A.8). 
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 (A.8) 

The entries of the ML matrix are integers. Without loss of generality, it may be assumed that the integers hij 
all satisfy |hij| ≤ q/2, since this may be achieved by subtracting appropriate multiples of the bottom N rows 
from the top N rows. The integer b is called the balancing constant. It is selected to balance the two halves 
of the target vector.  

It is often convenient to write an ML matrix in abbreviated form as ⎥
⎦

⎤
⎢
⎣

⎡
qI
hbI

0
, where I denotes an N-by-N 

identity matrix, 0 denotes an N-by-N zero matrix, and h denotes an N-by-N matrix with integer entries. 

A.1.7 Modular lattices and quotient polynomial rings 

It is convenient to identify a polynomial F(X) = F0 + F1X + F2X2 + … + FN–1XN–1 of degree less than N with 
its vector of coefficients F = [F0, F1, F2, …,  FN–1]. If F(X) and G(X) are two polynomials, let [F, G] be the 
vector of dimension 2N formed by concatenating their coefficients. 

Let M(X) ε Zq[X] be a monic polynomial of degree N. Then each polynomial h(X) in the quotient ring 
Zq[X]/(M(X)) can be used to form a modular lattice Lh as follows in Equation (A.9). 

Lh  =  { [F, G]  :  F(X) × h(X) = G(X)  in Zq[X]/(M(X))  } (A.9) 

In other words, the lattice Lh is formed from all polynomials F(X),G(X) ε Z[X] satisfying Equation (A.10). 

F(X) × h(X) ≡ G(X)   (modulo q and M(X)) (A.10) 

The ith row of the N-by-N upper righthand block of the matrix for Lh is formed from the coefficients of the 
remainder when Xih(X) is divided by M(X). In the important case that M(X) = XN – 1, this block is the 
circulant matrix formed from the coefficients of h(X) (see A.1.12). 

The following procedure creates a modular lattice containing a preselected vector [f, g]. Choose h(X) to 
satisfy h(X) ≡ f(X)–1 × g(X) (modulo q and M(X)). [This assumes that f(X) has an inverse in the ring 
Zq[X]/(M(X)).] 

A.1.8 Balancing CVP in modular lattices 

Let (L,a) be a closest vector problem in a modular lattice L and let v ε L be a solution. Write a as a = 
[a1,a2], so a1 and a2 each have N coordinates, and similarly write v as v = [v1,v2]. If the balancing constant b 
(see A.1.8) in the matrix of L is replaced by a new balancing constant bnew to form a new modular lattice 
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Lnew, then the closest vector problem (Lnew,anew) has the solution vnew, where anew = [(bnew/b)a1,a2] and vnew = 
[(bnew/b)v1,v2]. (More precisely, vnew is very close to anew and the Gaussian heuristic can be used to verify 
that it is likely to be a closest vector.) Thus for any given modular lattice closest vector problem (L,a), one 
solves the problem by choosing a balancing constant b and modified lattice and vector a that make the 
problem easiest. 

In practice, it is easiest to solve a modular lattice closest vector problem (L,a) if the two halves of the 
problem have approximately equal length. A ML CVP is said to be balanced if a solution v = [v1,v2] ε L to 
the CVP satisfies Equation (A.11). 

|| v1 – a1 || ≈ || v2 – a2 || (A.11) 

It is often possible to use general knowledge about the form of the solution vector v to determine a 
balancing constant that makes the problem balanced. (For example, one might know that v1 is a binary 
vector with d1 ones and that v2 is a binary vector with d2 ones.) Thus, in analyzing the difficulty of solving 
the CVP, it is advisable to always assume that the attacker knows how to balance the problem.  

An equivalent definition of a balanced closest vector problem says that among all choices of balancing 
constant b, the ratio of the target distance ||v – a|| to the root-discriminant Disc(L)1/dim(L) = (bq)1/2 is 
minimized. Thus in order to balance a closest vector problem, it is only necessary to know (approximately) 
the distance from a closest vector to a. It is not necessary to actually know a closest vector. 

A.1.9 Fundamental CVP ratios in modular lattices 

If the lattice L were to have a basis consisting of n equal length, pairwise orthogonal vectors, then those n 
basis vectors would each have length equal to the root-discriminant Disc(L)1/dim(L). Lattices that have such a 
basis are particularly easy to work with. For a closest vector problem (L,a) in which the target vector is 
quite close to a (i.e., closer than predicted by the Gaussian heuristic), the ratio of the root-discriminant to 
the target distance is one measure of the difficulty of solving the problem. This ratio is denoted by Equation 
(A.12). 

ρ = ρ (L,a) = λ(L,a)/Disc(L)1/dim(L)  (A.12) 

In general, the smaller the value of ρ (L,a), the easier it is to find a closest vector to a. This is true because a 
small value of ρ means that the target vector v is probably much closer to a than it is to any other vector in 
L, so a lattice search algorithm will have an easier time distinguishing v from the other vectors in L.  

Experimentally in Hoffstein, et al. [B35], it is observed that a more useful quantity to hold constant as the 
dimension increases is not σ, but rather the related quantity c = ρ × √(2N). 

Let L be a modular lattice L of dimension n = 2N and modulus q. A second quantity that affects the 
difficulty of solving a closest vector problem in L is the ratio of the dimension to the modulus. This ratio is 
denoted by Equation (A.13). 

a = a(L) = N/q  (A.13) 

Experiments have suggested that holding a constant and increasing c increases lattice breaking times 
considerably, and that holding c constant and increasing a decreases lattice breaking times very slightly. 

A.1.10 Creating a balanced CVP for modular lattices containing a short vector 

A typical problem of cryptographic interest is to find a short target vector v = [v1,v2] in a given modular 
lattice L of dimension 2N, modulus q, and balancing constant b = 1. Assuming that v is actually a shortest 
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vector in L, it can be found by solving the SVP for L, but one frequently knows some additional 
information about v1 and v2 that allows an easier CVP to be solved.  

Write v1 = [v11,v12,…,v1N] and v2 = [v21,v22,…,v2N]. In many situations, one knows (or can approximate) the 
quantities as shown in Equation (A.14). 

γ1 = v11 + v12 + … + v1N         δ1 = v11
2 + v12

2 + … +v1N
2 

γ2 = v21 + v22 + … + v2N         δ2 = v21
2 + v22

2 + … +v2N
2 (A.14) 

Example. If v1 and v2 are binary vectors with a specified number of zeros and ones, then it is                   
easy to compute γ1,δ1,γ2,δ2.] The length ||v|| is larger than the distance from v to the known vector                
d = [d1,a2] = [γ1/N, γ1/N, …,γ1/N, γ2/N, γ2/N, …,γ2/N], so it will generally be easier to find v by solving the 
CVP for (L,d) than it is by solving SVP for L. The precise formulas for the relevant distances are shown in 
Equation (A.15) and Equation (A.16). 

||v||2 = δ1 + δ2  (A.15) 

||v – d||2 = δ1 – γ1
2/N + δ2 – γ2

2/N    (A.16) 

In order to balance the problem, one uses the balancing constant b = ||v2 – d2||/||v1 – d1|| for L. Then the 
closest vector to [bd1,d2] is probably the vector [bv1,v2]. The ρ parameter for this balanced CVP is shown in 
Equation (A.17). 

ρ = [2(δ1 – γ1
2/N)1/2(δ2 – γ2

2/N)1/2/q]1/2 (A.17) 

The Gaussian heuristic predicts that the balanced CVP has a unique solution (up to obvious symmetries of 
the lattice) provided that the value of ρ is significantly smaller than (N/2πe)1/2, which implies that the value 
of c is significantly smaller than N/√( πe). 

A.1.11 Modular lattices containing (short) binary vectors 

Let BN(d) = { binary vectors of dimension N with d ones and N – d zeros }. 

For example, B4(2) = { [0,0,1,1], [0,1,0,1], [0,1,1,0], [1,0,0,1], [1,0,1,0], [1,1,0,0] }. In general, the set 
BN(d) has N!/d!(N-d)! elements. 

Let L be a modular lattice of dimension 2N and modulus q and balancing constant b = 1, and suppose      
that it is known that L contains a vector v = [v1,v2] with v1 ε BN(d1) and v2 ε BN(d2). Then it is known that   
γ1 = d1,   δ1 = d1,   γ2 = d2,   δ2 = d2. 

The best method to search for v is to solve a balanced CVP with fundamental ratios as shown in Equation 
(A.18). 

ρ = (2/q)1/2(d1(1 – d1/N)d2(1 – d2/N))1/4     and     a = N/q (A.18) 

If d1 = d2 = d, then the CVP is already balanced and the formulas for the fundamental ratios simplify to 
Equation (A.19). 

ρ = (2d(1 – d/N)/q)1/2     and     a = N/q (A.19) 
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A.1.12 Convolution modular lattices 

A Convolution (or Circulant) Modular Lattice (CML) is a modular lattice in which the matrix h is a 
circulant matrix, that is, h is a matrix of the form shown in Equation (A.20). 

h = 
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 (A.20) 

where h0,…,hN-1 are integers, taken without loss of generality to satisfy |hi| ≤ q/2. 

A simple way to generate a convolution modular lattice containing a short vector of a specified length is to 
use the convolution ring Rq = Zq[X]/(XN–1). First choose two polynomials f(X),g(X) ε Rq whose vectors of 
coefficients are short. For example, f(X) might have binary coefficients with d1 ones and g(X) might have 
binary coefficients with d2 ones. Then find a solution h(X) ε Rq to the equation f(X) × h(X) = g(X). A 
solution generally exists provided gcd(h(1),q) = 1; and if a solution exists, it is easily computed using the 
Euclidean algorithm and (if q is composite) the Chinese Remainder Theorem and Hensel’s Lemma. If the 
coefficients of h(X) = h0+h1X+h2X2+…+hN-1XN-1 are used as the upper righthand quadrant of a convolution 
modular lattice Lh, then the lattice Lh contains the vector shown in Equation (A.21). 

[ f0, f1, f2, …, fN–1, g0, g1, g2, …, gN–1 ]  ε  BN(d1) × BN(d2) (A.21) 

The cyclic nature of a convolution lattice L means that for every vector  

v = [ a0, a1, a2, …, aN-1, b0, b1, b2, …, bN-1 ] ε L, 

all of the vectors obtained by cyclically shifting the two halves of v are in L. In other words, the vectors 

[ ak, ak+1, ak+2, …, ak–1, bk, bk+1, bk+2, …, bk–1 ],   k = 1, 2, 3, …, N – 1, 

are also in L.  

A.1.13 Heuristic solution time for CVP in modular lattices 

Let L be a modular lattice of dimension n = 2N and modulus q, and let (L,v) be a balanced closest vector 
problem. Then experimental evidence in Hoffstein et al. [B35] and Howgrave-Graham, et al. [B43] 
suggests that the average time T to solve the closest vector problem (L,a) is exponential in the dimension, 
with constants depending on the quantities c(L,a) and a(L) introduced in A.1.9. In other words, 

log(T) ≈ α N + β 

where  

α = α(c, a)  

β = β(c, a) depend on c = c(L, v) and a = a (L) 

This heuristic allows experimental determination of the constants α and β for given values of c and a. After 
α and β are determined, then the formula log(T) ≈ α N + β can be used to extrapolate the time needed to 
solve a balanced closest vector problem (L*,v*) whose dimension 2N* is too large to solve directly. Thus, 
the following steps can be used to estimate the time to solve a modular lattice CVP: 
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a) Replace (L*,a*) by an associated balanced CVP if it is not already balanced.  

b) Compute the c and a constants c* = c(L*,v*) and μ* = μ(L*) for the given CVP. 

c) Perform experiments to solve many balanced ML CVPs (L,v) whose c and a constants satisfy c(L,a) 
= c* and a(L) = a*. Do this for many different problems in each of many different dimensions 2Ni, i 
= 1,2,3,…. Record the average time Ti to solve the problems in each dimension. 

d) Plot the points (Ni,log(Ti)), i = 1,2,3,…, and compute the regression line Y = α X + β.  

e) Extrapolate the solution time T* for the original problem by the formula log(T*) ≈ α N* + β. 

A.1.14 Zero-forcing 

If f or g have a large number of zero entries, then the zero-forcing algorithms of May [B72] and May and 
Silverman [B73] for modular convolution lattices may allow reduction of the lattice dimension. In the case 
that f has d ones and N – d zeroes, the speedup in performing an r-fold zero-force is approximately as 
shown Equation (A.22). 
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where the running time for the given class of lattices is T ≈ 2αN + β. The optimal value of r may be 
determined using this formula. If g has more zeroes than f, an attacker may invert h mod q and attempt 
zero-forcing in the lattice defined by h–1 to recover (g, f). For all the parameter sets in this standard, f has 
more zeroes than g, so this approach does not advantage the attacker. 

A.2 Experimental solution times for NTRU lattices—full key recovery 

A.2.1 Experimental solution times for NTRU lattices using BKZ reduction 

A private key consists of a pair of (f(X),g(X)). The associated LBP-PKE public key h(X) is formed via the 
relation shown in Equation (A.23). 

f(X) × h(X) ≡ p × g(X)  (mod q) (A.23) 

The associated CML CVP formed from the coefficients of h(X)/p mod q has target vector v = [v1,v2] formed 
from the coefficients of [f(X),g(X)]. The selection of f(X) and g(X) should follow the guidelines described in 
this Annex for the selection of target vectors for ML CVPs. In the case that f(X) has the form f0(X) + p × 
F(X) for a known polynomial f0(X) (e.g., f0(X) = 1), then the CML CVP target vector is the vector 
[F(X),g(X)]. The security is computed using the smaller norm bound associated to [F(X),g(X)]. 

The CML formed using the coefficients of the public key h(X) may also be used to formulate a CVP in 
which the target vector v = [v1,v2] is formed from the coefficients of [r(X),m(X)]. This lattice problem can 
also be described in terms of the values a and c. For the parameter sets given in this standard, the message-
recovery lattice problem is slightly easier than the key-recovery lattice problem. 

Table A.1gives the relationship between N and lattice security levels in bits as determined experimentally 
for convolution modular lattices. Experiments were run using Victor Shoup’s NTL library [B95]. Lattices 
with the given values of c and a were successfully reduced at low dimension, and the figures given below 
were obtained by a least-squares fit to the points corresponding to the values of N that required more than 
35 bits of effort to reduce (this value varied depending on c and a). It was observed that holding a constant 
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and increasing c increased lattice breaking times considerably, and that holding c constant and increasing a 
decreased lattice breaking times very slightly [see Equation (A.24)]. 

c = √(4πe ||F|| ||g|| / q) (A.24) 

The experiments were run on 400 MHz Celeron machines, and the time in seconds converted to the time in 
MIPS-years by first multiplying by 400 (to account for the 400 MHz machines) and then dividing by 
31557600, which is the number of seconds in a year. Breaking times were converted to bit security using 
the identification of 80-bit security with 1012 MIPS-years Lenstra and Verheul [B70] (see Table A.1). 

 

Table A.1—Lattice security 
c a Bit security 

1.73 0.53 0.3563N –  2.263 
2.6 0.8 0.4245N –  3.440 
3.7 2.7 0.4512N +  0.218 
5.3 1.4 0.6492N –  5.436 

For the parameter sets in this standard, the value of c is between 1.74 and 3.03 (see Figure A.1). 

 

Figure A.1—Lattice breaking times and linear extrapolations 

There is some variation among published estimates of running time due to the particular definition of a 
MIPS-Year and to the difficulty of estimating actual processor utilization. (How many arithmetic 
instructions a modern processor performs in a second when running an actual piece of code depends 
heavily not only on the clock rate, but also on the processor architecture, the amount and speeds of caches 
and RAM, and the particular piece of code.) Thus, the estimates given here may differ from others in the 
literature, although the relative order of growth remains the same. The current estimates of lattice strength 
allow a large margin for error and for improvements in lattice reduction techniques. 
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NOTE—The strength of any cryptographic algorithm relies on the best methods that are known to solve the hard 
mathematical problem that the cryptographic algorithm is based upon. The discovery and analysis of the best methods 
for any hard mathematical problem is a continuing research topic. Users of LBP-PKE should monitor the state of the art 
in lattice reduction, as it is subject to change. 

A.2.2 Alternative target vectors 

Examination of the NTRU decryption process reveals that any sufficiently small (f’, g’), with the property 
that f’ × h = p × g’ mod q, allows decryption. Coppersmith and Shamir [B19] observes that, with slightly 
longer vectors, it might be possible to decrypt with sufficient accuracy to allow an attacker to complete the 
decryption by brute force. Neither of these attacks appears to be feasible. Although NTRUSign [B31] 
makes use of the existence of short vectors that are linearly independent of f and g, it has been observed 
experimentally in Hirschhorn et al. [B29] and [B35] that lattice reduction techniques that find any vector 
shorter than q in fact terminates with (f, g) or one of its trivial “rotations” (f × Xk, g × Xk). Thus, there is not 
currently known to be an attacker who can mount an attack based on slightly longer short vectors but does 
not know the short vectors themselves. 

A.3 Combined lattice and combinatorial attacks on LBP-PKE keys and messages 

A.3.1 Overview 

Howgrave-Graham [B38] presents a method for combining lattice reduction and combinatorial attacks. We 
refer to this attack as a “hybrid” attack. In this approach, an attacker performs a certain amount of work to 
reduce the central part of an NTRU lattice. Following the reduction, rows 1 to y1 –1, y1 < N, are unreduced, 
rows y1 to y2, N < y2 < 2N, are reduced, and rows y2 + 1 to 2N are unreduced. Let K = 2N – y2 be that part of 
the lattice containing the private key f that remains unreduced. The attacker can perform a combinatorial 
search for the part of the key contained in the K-dimensional subspace. The attacker guesses the 
coefficients of the part of f in this subspace and sums the lower K rows of the lattice to construct a          
2N-dimensional vector. If the guess is correct, the first y2 entries in the vector are very close to a point in 
the y2-dimensional transformed lattice that was output by the original reduction process. 

The attack thus has two stages: the lattice reduction stage and the combinatorial stage. The total time for the 
attack is the sum of the time for these stages. This standard requires that for a security level k, both of these 
stages shall take more than k bits of work. 

A.3.2 Lattice strength 

In a hybrid attack, the lattice is not completely reduced. Instead, the attacker selects a sublattice of the main 
lattice and applies a lattice reduction algorithm to that sublattice. With high probability, this sublattice does 
not include any vector with length shorter than the Gaussian value discussed in A.1.5. The lattice running 
times given in A.2 are for full key recovery; in this case, a short vector is present, and this reduces lattice 
reduction times. In the hybrid case, where no short vector is present, the experiments of A.2 no longer 
apply and, rather than measuring the running times necessary to recover the short vector, the new 
experiments measure the amount of reduction that can be performed in a given amount of time. In this case, 
the amount of reduction is measured by the number of diagonal entries bi in the lattice that can be altered 
by the reduction process so they take a value other than q or 1. 

Figure A.2 presents the results of a number of lattice experiments for q = 2048, also presented in 
Hirschhorn, et al. [B29]. The experimental results fall into three clusters corresponding to three different 
experimental techniques: standard BKZ, given by the points in the bottom left corner; the isodual technique 
described in Howgrave-Graham [B38], given by the points in the top half of the graph around the middle; 
and a refinement of the isodual technique in which the output from each blocksize (where blocksize is a 
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fundamental tuning parameter) is used as the input into the next blocksize rather than running each 
blocksize on the original, unreduced lattice (Hirschhorn, et al. [B29]). As demonstrated by Figure A.2, this 
final technique is the best one known to date. 

 

 

Figure A.2—Time to remove x q vectors by different lattice reduction  
techniques, experimentally determined 

Based on this data, it appears the running time t to remove a given number Nq of q-vectors using the best 
currently known method is given by Equation (A.25). 

t = 0.9501Nq – 3 ln (2 Nq) – 123.58 (A.25) 

A.3.3 Reduced lattices and the “cliff” 

A.3.3.1 Running time to obtain a given profile 

An attacker’s chance of successfully recovering the private key depends on the values on the diagonal 
entries of the reduced lattice. We refer to the set of the logs of these values as the lattice’s “profile.” For 
convenience we take logs base q, so a profile goes from 1 to 0. Figure A.3 presents a set of reduced 
profiles. If a profile does not go continuously to 0, we say it has a “cliff” of height α. 

The running time to obtain a slope δ if there is no cliff can be related straightforwardly to the time to 
remove Nq q-vectors: if there is no cliff, the reduction is symmetric about N (in order to keep the 
determinant constant) so the slope δ = 1/(y2 – y1) = 1/2Nq. 

The time to obtain a cliff of height α, occurring at location N < y2 < 2N in the profile, is related to the time 
to obtain a slope δ with no cliff as follows in Equation (A.26) and Equation (A.27) (Hirschhorn, et al. 
[B29]).  
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If 

cmt ++= )/1ln(3/)(log 2 δδ , where in this case t = 0.4750/ δ + 3 ln (1/ δ) – 123.58, (A.26) 

then  

cyyNymt +−+
−
−= )ln(3

)1(
)(2)(log 122

2
2 α

  (A.27) 

Since lattice attacks are continually improving, the parameter sets in this standard are generated by 
assuming the extrapolation line shown in Equation (A.28). 

t = 0.2/ δ – 3 ln (1/ δ) – 50 (A.28) 

This grants the attacker considerably more power than they are currently known to have. 

A.3.3.2 The cliff height α and ps 

For a given amount of work, the attacker may choose from a range of (y2, α) pairs. 

 

Figure A.3—Lattice profiles 
Having performed the reduction, the attacker has the view of the lattice shown in Figure A.4. The middle 
section of the lattice contains some rotation of a part of g and a part of f. The attack consists of an 
enumeration through the substring of f in the unreduced part of the lattice on the right, combined with 
reduction against the reduced part of the lattice in the middle and the unreduced part on the left. The 
enumeration of the substring of f is speeded up using meet-in-the-middle techniques. 
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Figure A.4—The attacker’s view of the lattice following reduction 

If the attacker has correctly guessed f’ and f’’ such that f’ + f’’ makes up the part of the key f that lies in the 
unreduced section y2 < i < 2N, they can confirm this guess by reducing against the rest of the lattice, 0 < i < 
y2. The most efficient way of carrying out this reduction is by using Babai’s method [B9], which has a 
running time of about N2. However, this reduction method has a chance of failing: if any term in the part of 
the key that lies in the reduced area is greater than the corresponding diagonal term, the Babai reduction 
will not be successful. Figure A.5 gives an example where the Babai reduction fails. This illustrates that if 
there is a “cliff” in the profile, the Babai reduction is much more likely to succeed. 

 

Figure A.5—A case where Babai reduction fails 
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The probability of success at this stage, given an f’ and f’’ that should make f, is denoted by ps. This value 
ps depends on N, q, the height of the cliff α, and the boundaries of the reduced area (y1, y2), and is given by 
Equation (A.29) (Hirschhorn, et al. [B29]). 
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where 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−
12

2
erfc),( 2

2

2σ

π
σ

σ
σ

D

e
D

DDf  

A.3.4 Combinatorial strength 

This subclause considers the effort required of the attacker in the combinatorial phase of the combined 
attack. 

A.3.4.1 Combinatorial attacks on LBP-PKE keys and messages 

An exhaustive search algorithm tries all allowable values for v1, computes the value of v2 = v1 × h, and 
checks if v2 is an allowable value. Let S1 denote the sample space for v1. The exhaustive search method has 
average running time ½|S1| for general modular lattices and average running time (1/2N)|S1| for convolution 
modular lattices (since a convolution modular lattice generally has N target vectors). An exhaustive search 
algorithm has no storage requirements. 

A collision search algorithm of Odlyzko is described in Howgrave-Graham, et al. [B42][B43].  

If S1 = BN(d) is the space of binary vectors of dimension N with d ones, then the running time of the 
collision search method is approximately d1/2C(N/2,d/2) operations. [Here C(n,k) = n!/k!(n–k)! is the usual 
combinatorial symbol.] The storage requirement is approximately 2C(N/2,d/2).  

If S1 = TN(d) is the space of ternary vectors of dimension N with d 1s and d – 1s, then the running time of 
the collision search method is approximately d1/2C(N,d) operations. The storage requirement is 
approximately 2C(N,d).  

It is not known if there is a collision search method that does not require substantial storage, but it is 
recommended that security be computed under the assumption that storage requirements are not an issue (a 
contrary view is given in Silverman [B99]). 

A.3.4.2 Combinatorial strength in the hybrid case 

In the hybrid case the attacker is searching a space of size K for a ternary polynomial with c1 +1s and c2 –
1s. The amount of work that is typically required to search this space using a standard collision search 
method is as shown in Equation (A.30): 
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Wagner’s generalized birthday paradox search (Wagner [B103]) presents an attack that may potentially 
improve the running time of this stage to Equation (A.31). 
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It is not clear exactly how this attack would be implemented against the current form of LBP-PKE. 
Nevertheless, the parameter sets presented in this standard for a given security level k assume the attacker 
can mount this generalized birthday paradox attack and so use the second form for Wsearch. 

Wsearch contributes to the full security level of the combinatorial search phase. Two additional contributions 
to this security level are: first, the chance that the search is not successful; second, the cost of performing 
the reduction against the rest of the lattice. 

The chance that the search is not successful depends on the following two quantities: 

a) The chance that the lattice reduction allows a correct guess to be confirmed, ps. The value for ps is 
given above. For the standard attack, the search work becomes Wsearch / √ ps. For the generalized 
attack, the search work becomes Wsearch / ps. The total search work is therefore Wsearch × Wps. 

b) The chance that the attacker has guessed the right values for c1, c2, Psplit (c1, c2; N, K, d1, d2). Here 
the analysis is complicated by the fact that the lattice in fact contains N rotations of the private key. 
The chance that the attacker has guessed the right values for c1 and c2 for a single rotation of the 
key is shown in Equation (A.32). 
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If the attacker can take advantage of the fact that the lattice contains N rotations of the key, Psplit improves 
to become Psplit,N = 1 – (1 – Psplit,1)N. 

It is currently believed that the form of the private key, f = 1 = pF, requires the attacker to solve a CVP 
problem that “locks in” a single rotation of the key, and so the appropriate measure of Psplit is Psplit, 1. 
However, to protect against an improved reduction algorithm that would let an attacker search against all 
rotations of the key, the parameters in this standard were generated with Psplit = Psplit, N. 

Finally, in the specific setting of the hybrid attack, the reduction using Babai’s method involves multiplying 
by a 2N × 2N transformation matrix; experimentally it is found that this multiplication has bit security 
about Wreduction = N2/21.06. 

Since the matrix is the same in all cases, this security level can probably be optimized, and for purposes of 
estimating security it is taken to have the value Wreduction = N/21.06. 

This time, multiplied by the search time of the meet-in-the-middle part of the attack, gives the full running 
time of this phase of the hybrid attack. 

The total expected work of this phase for a given choice of c1, c2, given the values K, α, y1, and y2 that 
resulted from the lattice reduction phase, is therefore Wmitm (c1, c2) = Wreduction × Wsearch × Wps / Psplit. 

Finally, the security level due to this phase is taken to be Wmitm  = minc1, c2 Wmitm (c1, c2). 
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A.3.5 Summary 

A hybrid attack involves the lattice reduction work, Wlatt, and the meet-in-the-middle work, Wmitm. The 
optimal strategy for an attacker is to balance these two phases so that they take equal amounts of time. A 
parameter set has a strength of greater than k bits if, for all profiles produced by performing k bits of lattice 
reduction, the value of Wmitm > k.  

A.4 Other security considerations for LBP-PKE encryption 

A.4.1 Entropy requirements for key and salt generation 

The security of a parameter set does not meet the claimed level if an attacker can guess either the key or the 
random padding with less effort than a brute-force search. One means of doing this would be for the 
attacker to guess the internal state of the random number generator used in key generation and salt 
generation. These RNGs shall be seeded with the appropriate amount of entropy, which is k + 64 for a 
claimed security level k. 

A.4.2 Reduction mod q 

If the calculation of rh mod q involves little or no reduction mod q, an attacker can attempt to use their 
knowledge of h to solve e = rh + m’ using linear algebra. For the parameter sets in this standard, this is 
vanishingly unlikely to occur if h is a valid public key. The public key partial validation method given in 
9.2.5.2.2 checks that it is highly likely that the calculation of r × h involves significant reduction mod q. 

A.4.3 Selection of N 

It is required that the security parameter N be prime (i.e., the dimension n of the lattice be twice a prime).  
If N is highly composite (e.g., if N is a power of 2), then Gentry [B22] has shown that a folding method 
allows the private key and plaintext to be recovered from a lattice of dimension much smaller than N. 

A.4.4 Relationship between q and N 

It is recommended that for each prime divisor q0 of q, the polynomial XN – 1 modulo q0 should have no 
factors of small degree (aside from the obvious factor X – 1). If N is prime, then XN – 1 modulo q0 factors as 
(X – 1)A1(X)…Ae(X), where each Ai(X) has degree equal to the multiplicative order of q0 modulo N. If h(X) 
or r(X) is zero in the field mod Ai(X), it leaks the value of m’(X) in this field. If Ai(X) has degree t, the 
probability that h(X) or r(X) is divisible by Ai(X) is presumably 1 = qt. To avoid attacks based on the 
factorization of h or r, this standard requires that for each prime divisor P of q, the order of P (mod N) shall 
be N – 1 or (N – 1)/2. This requirement has the useful side-effect of increasing the probability that a 
randomly chosen f is invertible in Rq. 

A.4.5 Form of q 

So long as the factors of q have sufficient order mod N (A.4.5), there are no known security issues with the 
form of q: it may be chosen to be either prime or composite. This standard selects q to be 2l for some l to 
increase the efficiency of the modular reduction operations. 
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A.4.6 Leakage of m’(1) 

Because XN – 1 is always divisible by X – 1, the mapping f(X)  f(1) is a ring homomorphism, i.e.,             
(f × g) (1) = f(1)g(1). 

Note that f(1) is simply the sum of the coefficients of f. Since an attacker can calculate h(1), and since r(1) 
is part of the parameter set, this means that an attacker can recover m’(1) from e = r × h + m’. The attacker 
could potentially distinguish between two m’s by their Hamming weight. This is addressed by the masking 
process, which ensures that m’(1) does not leak information about m(1); see A.4.8 for further details. 

For binary keys, m'(1) reveals the number of 1s in m'. Since lattice and combinatorial attacks on (r, m’) get 
easier as m’ gets more unbalanced (in other words, as the number of 1s gets further and further from N/2), 
an attacker can select (r, m’) pairs that are more vulnerable to these attacks based on the revealed value of 
m’(1). However, for ternary keys and messages (including product-form ternary keys), m'(1) is simply the 
number of 1s minus the number of –1s and does not directly reveal information about more versus less 
vulnerable message representatives. 

A.4.7 Relationship between p, q, and N 

If the smaller modulus p divides the large modulus q, then reduction modulo p of an expression p × r × h + 
m modulo q immediately recovers m. More generally, if p and q are not relatively prime in the ring 
Z[X]/(XN – 1), then reduction modulo a common factor reveals information about m. For this reason it is 
required that the large modulus q and the smaller modulus p be relatively prime in the ring Z[X]/(XN – 1). 
This is equivalent to the condition that the three quantities q, p, and XN – 1 generate the unit ideal in the 
ring Z[X]. 

The large modulus q is required to be in Z, but the smaller modulus p need not be in Z. For example, if N is 
odd and if q is a power of 2, then p could equal X + 2 or X – 2, since the three quantities XN – 1, 2k, and     
X ± 2 generate the unit ideal in the ring Z[X]. 

A.4.8 Adaptive chosen ciphertext attacks 

If the same r is used to encrypt two different message representatives m’1 and m’2 under the same key, then 
the difference of the two ciphertexts e1 – e2 ≡ m’1 – m’2 (mod q) reveals a large portion of m’1 and m’2. 
With the encryption schemes in this standard, m’ = M ⊕ MGF(r × h) = M + MGF(r × h) mod 2, so e1 – e2 
(mod q)(mod 2) = M1 ⊕ M2. With the key establishment schemes in this standard, there are two ways that 
an r could be repeated. They are as follows: 

a) The same message m could be encrypted twice with the same salt b.  

b) Two different (m, b) pairs could produce the same r. 

If the same message m is encrypted twice with the same salt b, an attacker can determine that this has 
happened but will not obtain any additional information about m or b. Since this standard is a key 
establishment standard and the m should therefore be chosen at random for each message sent, the chance 
that an (m, b) pair is used twice should be the chance of a collision in the entire (m, b) space, which requires 
the sending of about 2N/2 messages. 

The chance that two different (m, b) pairs produce the same r is the chance of a collision when selecting 
from the space of all possible blinding polynomials, Dr. In order to have a significant chance of a collision, 
the attacker must observe about √(# Dr) messages, or √(C(N,d)/N), where C is the usual combinatorial 
symbol. For the parameter sets in this document, this number of messages is always greater than the stated 
security level of that parameter set. 
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A single message element m(X) should not be encrypted using two different blinding elements. If m(X) is 
encrypted using r1(X) and r2(X), then the quantity (ph(X))–1(e1(X) – e2(X)) ≡ r1(X) – r2(X) (mod q) reveals a 
large portion of r1(X) and r2(X). [Even if h(X)–1 mod q does not exist, one may still gain considerable 
information using a partial inverse.] 

In general, as with all public key cryptosystems, the LBP-PKE primitives shall be within an appropriate 
encryption scheme to provide security against chosen plaintext, chosen ciphertext and adaptive chosen 
ciphertext attacks (Hong, et al. [B36], Howgrave-Graham, et al. [B44] Jaulmes and Joux, [B57], and 
Nguyen and Pointcheval [B81]). The scheme used in this standard has a proof of security in the random 
oracle model presented in Howgrave-Graham, et al. [B44]. In this model, the salt b that is added to the 
message before encryption is not vulnerable to birthday paradox-type attacks, but only to exhaustive 
search-type attacks. For a k-bit security level, it is therefore appropriate to take the salt length db to be k 
bits. 

A.4.9 Invertibility of g in Rq 

The proof of security in Howgrave-Graham, et al. [B44] requires h, and therefore g, to be invertible in Rq. 
This is the reason for the check in step j) of the key generation operation in 9.2.1. There are no specific 
known attacks that apply only if g is not invertible. Note that, even if h is not invertible, there is often a 
“pseudo-inverse” that plays the same role (Nguyen and Pointcheval [B81]); this is not taken into account in 
the proof in Howgrave-Graham, et al. [B44]. 

A.4.10 Decryption failures 

On decryption, the decrypter calculates Equation (A.33) as follows: 

a = f × e mod q = prg + m’ + pFm’ mod q (A.33) 

Decryption depends on this equality holding over the integers, not simply mod q. Presentations of LBP-
PKE in other for a in the past have used parameter sets for which the value of q or the mod q reduction 
method would not always make it possible to satisfy this equality. Therefore, decryption would 
occasionally fail. An attacker who observed decryption failures could recover the private key (Howgrave-
Graham [B40], Jaulmes and Joux [B57], Meskanen and Renvall [B74], Proos[B85], Silverman  and Whyte 
[B97]) even if the underlying encryption scheme was CCA2-secure in the absence of decryption failures.  

For ternary polynomials with d +1s and the same number of –1s, the chance of a decryption failure is given 
by Equation (A.34) (Hirschhorn, et al. [B29]): 

Prob(q, d, N)(Decryption fails) = P(d, N)((q – 2)/6) (A.34) 

where 

P(d, N)(c) = N × erfc (c / (σ√[2N])) 

σ(d, N) = √(8d/3N) 

A.4.11 OID 

The OID is included in step j) of encryption and step m) of decryption to give an assurance that encrypters 
are using the encryption scheme specified in this document. This protects against modified parameter 
attacks (Howgrave-Graham, et al. [B41]), in which an attacker persuades an encrypter to encrypt with an 
encryption scheme other than the one the decrypter specifies use with that key. Under certain 
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circumstances, modified parameter attacks can recover information about the ciphertext. The inclusion of 
the OID ensures that a message will only decrypt correctly if it was encrypted with the exact parameter set 
expected by the receiver.  

A.4.12 Use of hash functions by supporting functions 

The security requirements on a hash function when used as the core of a random bit string generator are 
different from those on a fixed-length hash function. This standard follows common practice in using   
SHA-1 (see FIPS 180) in random bit generators at security levels up to k = 128, and SHA-256 (see FIPS 
180) at security levels up to k = 256. 

A.4.13 Generating random numbers in [0, N – 1] 

The BPGM method (8.3.2.2) converts a random bit or byte stream to a series of integers. These integers are 
uniformly distributed in the range [0, N – 1]. If they were not, an attacker could exploit the bias to speed up 
an attack based on guessing r. The method given in this document ensures that the numbers are unbiased by 

⎯ Selecting a set of bits. 

⎯ Converting the bits to an integer. 

⎯ Only reducing the integer mod N if it falls into a range [0, kN – 1] for some parameter-set-specific 
value k, and otherwise selecting a fresh set of r random bits. 

The output of the random bit string generator shall be statistically random; there should be no simple (e.g., 
linear) relationship between the sets of bits chosen for reduction. 

The number of bytes chosen pre-reduction is the minimum number necessary to hold N. The number of bits 
chosen from these bytes (denoted by c in the parameter sets) is selected to give the minimum value of (2c 
mod N). There are no known security implications to the choice of c, so long as 2c > N. 

A.4.14 Attacks based on variation in decryption times 

The paper Silverman and Whyte [B98] demonstrates that a naïve implementation of the BPGMs in this 
standard (without the minimum IGF output parameter minCallsR) leaks private key information because 
the decryption time depends on the ciphertext. To prevent these attacks, it is necessary to ensure that 
decryption takes constant time (or at least that variations in time occur with negligible probability). 

Silverman and Whyte [B98] suggests that effectively constant decryption times can be obtained by 
choosing oLenMin such that the chance that more than oLenMin octets of output are needed is less than 2–k, 
where k is the security parameter and oLenMin = minCallsR × hLen, hLen the length in octets of output 
from the hash function. The chance that greater than oLenMin individual octets are needed is given by 
Equation (A.35). 

∑
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0),(,, =dLP nNC  if L < d 
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⎛ −= 1)0,(,,  

 C = 2c, c’ = ceil[c/8] 

minCallsR should be taken to be the smallest integer such that the chance that more than oLenMin octets of 
output are needed is less than 2–k. 

A.4.15 Choosing to attack r or m 

An attacker may choose to mount an attack on a ciphertext to recover either r or i; recovering one of these 
trivially recovers the other. The attacker’s best strategy is to attack whichever is thinner. Since i is chosen 
at random from the space of ternary polynomials, if r is thick (as is the case for the size-optimized 
parameters in this standard), i is general thinner and may be easier to recover than the intended security 
level. 

To mitigate this risk, the encryption scheme in this standard requires that an sender discards an encrypted 
message if the message representative i has fewer than dr + 1s, –1s, or 0s. If the sender generates such a 
message representative, they shall discard that message representative and restart the encryption process 
with a different salt b. If the receiver receives a ciphertext that decrypts to a message representative i with 
fewer than dr +1s, –1s, or 0s, the receiver shall treat the decryption as having failed (though the receiver 
should complete all the stages of decryption in order to avoid leaking timing information about the cause of 
the decryption failure). 

A.4.16 Quantum computers 

All cryptographic systems based on the problems of integer factorization, discrete log, and elliptic curve 
discrete log are potentially vulnerable to the development of an appropriately sized quantum computer, as 
algorithms for such a computer are known that can solve these problems in time polynomial in the size of 
the inputs. For LBP-PKE (Ludwig [B71]), proposes a quantum lattice reduction algorithm that may 
improve reduction speeds while remaining exponential-time. Regev [B86] and [B87], Tatsuie and Hiroaki 
[B100], Kuperberg [B66], and Hughes, et al. [B45] consider potential sub-exponential algorithms for 
certain lattice problems. However, these algorithms depend on a subexponential number of coset samples 
to obtain a polynomial approximation to the shortest vector, and no method is currently known to produce a 
subexponential number of samples in subexponential time. 

A.4.17 Other considerations 

The private key representation does not affect security in general, although the effectiveness of physical 
attacks may vary according to the representation. The private key should be stored securely, and the 
encryption blinding polynomial should be erased after use. The domain parameters should be protected 
from unauthorized modification. 

A.5 A parameter set generation algorithm 

This subclause describes an algorithm that may be used to generate parameter sets with a desired level of 
security. 
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a) Set a desired security level k. 

b) Set q = 2048. 

c) Choose a performance metric. Possible metrics include size = N × log2(q); operation time = N × d; 
or some combination of the two, such as speed2 × size. 

d) Set N equal to the first prime greater than k such that the order of 2 mod N is (N – 1) or (N – 1)/2 
and enter the following loop 

1) For each d, 1 < d < N/3: 

i) For each possible N < y2 < 2N: 

i) For each 0 < y1 < N: 

⎯ Calculate the profile produced by k bits of lattice reduction for that y2 y1. 

⎯ If such a profile exists, calculate Wmitm using the formula given in A.3.4.2. 

⎯ If Wmitm < k, that value of d does not give sufficient security. Increment d by 
one and re-enter the y2 loop. 

ii) We have now obtained the minimum value of d for the given N that gives k bits of 
security. Check that the value of d in question has a decryption failure probability of      
< 2–k using the formula given in A.4.10.  

iii) If the decryption failure probability is > 2–k, increase N to the next prime such that the 
order of 2 mod N is (N – 1) or (N – 1)/2 and re-enter the d loop 

iv) Return d. 

2) Calculate the “goodness” of the parameter set (N, d, q) using the chosen metric. 

3) Increase N to the next prime such that the order of 2 mod N is (N – 1) or (N – 1)/2 and re-enter 
the d loop 

e) Output the stored (N, d, q) that give the best score under the chosen metric. 
The parameter sets in this standard were generated to minimize running time and to minimize size. With 
this parameter generation algorithm it is possible to generate parameters that satisfy arbitrary performance 
criteria, such as “the fastest operations with a key size of less than 5000 bits.”  

A.6 Possible parameter sets 

This subclause defines specific sets of parameters for the encryption scheme (SVES) that give a specific 
level of security according to the metrics in this standard. 

A.6.1 Size-optimized 

These parameter sets are optimized for size at a given security level. 

A.6.1.1 ees401ep1 

This parameter set is suitable for use at the 112-bit security level (see Table A.2.). 
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Table A.2—ees401ep1 
N = 401 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 113 
        dg = 133 
lLen = 1 
db = 112 
maxMsgLenBytes = 60 
bufferLenBits = 600 
bufferLenTrits = 400 
dm0 = 113 
MGF-TP-1 with 
        SHA-1 (MGF) 
BPGM2 with 
        IGF-MGF-1 with SHA-1 (IGF) 
        dr = 113 
        c = 11 
        minCallsR = 32 
        minCallsMask = 9 
OID = 00 02 04 
pkLen = 114 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 0.023276. 

A.6.1.2 ees449ep1 

This parameter set is suitable for use at the 128-bit security level (see Table A.3). 

Table A.3—ees449ep1 
N = 449 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 134 
        dg = 149 
lLen = 1 
db = 128 
maxMsgLenBytes = 67 
bufferLenBits = 672 
bufferLenTrits = 448 
dm0 = 134 
MGF-TP-1 with 
        SHA-1 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-1 (IGF) 
        dr = 134 
        c = 9 
        minCallsR = 31 
        minCallsMask = 9 
OID = 00 03 03 
pkLen = 128 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 0.10411. 

A.6.1.3 ees677ep1 

This parameter set is suitable for use at the 192-bit security level (see Table A.4). 
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Table A.4—ees677ep1 
N = 677 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 157 
        dg = 225 
lLen = 1 
db = 192 
maxMsgLenBytes = 101 
bufferLenBits = 1008 
bufferLenTrits = 676 
dm0 = 157 
MGF-TP-1 with 
        SHA-256 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-256 (IGF) 
        dr = 157 
        c = 11 
        minCallsR = 27 
        minCallsMask = 9 
OID = 00 05 03 
pkLen = 192 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–27.29. 

A.6.1.4 ees1087ep2 

This parameter set is suitable for use at the 256-bit security level (see Table A.5). 

Table A.5—ees1087ep2 
N = 1087 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 120 
        dg = 362 
lLen = 1 
db = 256 
maxMsgLenBytes = 170 
bufferLenBits = 1624 
bufferLenTrits = 1086 
dm0 = 120 
MGF-TP-1 with 
        SHA-256 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-256 (IGF) 
        dr = 120 
        c = 13 
        minCallsR = 25 
        minCallsMask = 14 
OID = 00 06 03 
pkLen = 256 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–216.45. 

A.6.2 Cost-optimized 

These parameter sets are optimized to give the lowest value of (operation time)2 × size. 

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std 1363.1- 2008 
IEEE Standard Specification for Public Key Cryptographic Techniques Based on 

 Hard Problems over Lattices 

58 
Copyright © 2009 IEEE. All rights reserved. 

A.6.2.1 ees541ep1 

This parameter set is suitable for use at the 112-bit security level (see Table A.6). 

Table A.6—ees541ep1 
N = 541 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 49 
        dg = 180 
lLen = 1 
db = 112 
maxMsgLenBytes = 86 
bufferLenBits = 808 
bufferLenTrits = 540 
dm0 = 49 
MGF-TP-1 with  
        SHA-1 (MGF) 
BPGM3 with 
        IGT-MGF-1 with SHA-1 (IGF) 
        dr = 49 
        c = 12 
        minCallsR = 15 
        minCallsMask = 11 
OID = 00 02 05 
pkLen = 112 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–133.39. 

A.6.2.2 ees613ep1 

This parameter set is suitable for use at the 128-bit security level (see Table A.7). 

Table A.7—ees613ep1 
N = 613 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 55 
        dg = 204 
lLen = 1 
db = 128 
maxMsgLenBytes = 97 
bufferLenBits = 912 
bufferLenTrits = 612 
dm0 = 55 
MGF-TP-1 with 
        SHA-1 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-1 (IGF) 
        dr = 55 
        c = 11 
        minCallsR = 16 
        minCallsMask = 13 
OID = 00 03 04 
pkLen = 128 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–151.78. 
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A.6.2.3 ees887ep1 

This parameter set is suitable for use at the 192-bit security level (see Table A.8). 

Table A.8—ees887ep1 
N = 887 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 81 
        dg = 295 
lLen = 1 
db = 192 
maxMsgByteLen = 141 
bufferLenBits = 1328 
bufferLenTrits = 886 
dm0 = 81 
MGF-TP-1 with 
        SHA-256 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-256 (IGF) 
        dr = 81 
        c = 10 
        minCallsR = 13 
        minCallsMask = 12 
OID = 00 05 04 
pkLen = 192 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–214.25. 

A.6.2.4 ees1171ep1 

This parameter set is suitable for use at the 256-bit security level (see Table A.9). 

Table A.9—ees1171ep1 
N = 1171 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 106 
        dg = 390 
lLen = 1 
db = 256 
maxMsgLenBytes = 186 
bufferLenBits = 1752 
bufferLenTrits = 1170 
dm0 = 106 
MGF-TP-1 with 
        SHA-256 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-256 (IGF) 
        dr = 106 
        c = 10 
        minCallsR = 20 
        minCallsMask = 15 
OID = 00 06 04 
pkLen = 256 

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–283.49. 
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A.6.3 Speed-optimized 

These parameter sets are optimized for speed at a given security level. 

A.6.3.1 ees659ep1 

This parameter set is suitable for use at the 112-bit security level (see Table A.10). 

Table A.10—ees659ep1 
N = 659 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 38 
        dg = 219 
lLen = 1 
db = 112 
maxMsgLenBytes = 108 
bufferLenBits = 984 
bufferLenTrits = 658 
dm0 = 38 
MGF-TP-1 with 
        SHA-1 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-1 (IGF) 
        dr = 38 
        c = 11 
        minCallsR = 11 
        minCallsMask = 14 
OID = 00 02 06 
pkLen = 112 

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–219.63. 
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A.6.3.2 ees761ep1 

This parameter set is suitable for use at the 128-bit security level (see Table A.11). 

Table A.11—ees761ep1 
N = 761 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 42 
        dg = 253 
lLen = 1 
db = 128 
maxMsgLenBytes = 125 
bufferLenBits = 1136 
bufferLenTrits = 760 
dm0 = 42 
MGF-TP-1 with 
        SHA-1 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-1 (IGF) 
        dr = 42 
        c = 12 
        minCallsR = 13 
        minCallsMask = 16 
OID = 00 03 05 
pkLen = 128 

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–258.64. 

A.6.3.3 ees1087ep1 

This parameter set is suitable for use at the 192-bit security level (see Table A.12). 

Table A.12—ees1087ep1 
N = 1087 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 63 
        dg = 362 
lLen = 1 
db = 192 
maxMsgLenBytes = 178 
bufferLenBits = 1624 
bufferLenTrits = 1086 
dm0 = 63 
MGF-TP-1 with 
        SHA-256 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-256 (IGF) 
        dr = 63 
        c = 13 
        minCallsR = 13 
        minCallsMask = 14 
OID = 00 05 05 
pkLen = 192 

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–357.90. 
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A.6.3.4 ees1499ep1 

This parameter set is suitable for use at the 256-bit security level (see Table A.13). 

Table A.13—ees1499ep1 
N = 1499 
p = 3 
q = 2048 
Key generation: KGP-3 with 
        df = 79 
        dg = 499 
lLen = 1 
db = 256 
maxMsgLenBytes = 247 
bufferLenBits = 2240 
bufferLenTrits = 1498 
dm0 = 79 
MGF-TP-1 with 
        SHA-256 (MGF) 
BPGM3 with 
        IGF-MGF-1 with SHA-256 (IGF) 
        dr = 79 
        c = 13 
        minCallsR = 17 
        minCallsMask = 19 
OID = 00 06 05 
pkLen = 256 

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this 
happening with a legitimately generated m’ is 2–440.09. 

A.7 Security levels of parameter sets 

A.7.1 Assumed security levels versus current knowledge 

These security considerations have noted several places where the assumptions used to generate the 
parameter sets are more cautious than the best attacks that are currently known. As a result of this, the 
parameter sets given in this standard for  use with a certain security level k would in fact have a security 
level k’ >k against an attacker using the best techniques known in July 2008. This section summarizes the 
assumptions that have been made that favor the attacker, and compares the known July 2008 security levels 
of the parameter sets with the security levels for which those parameter sets are recommended (see Table 
A.14 and Table A.15). 
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Table A.14—Assumptions used to generate parameters in this 
standard vs current best known attacks 

Area Current experimental strength Assumed strength 
Lattice reduction time t = 0.4750/ δ + 3 ln (1/ δ) – 123.58 t = 0.2/ δ + 3 ln (1/ δ) – 50 
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Table A.15—Strengths of recommended parameter sets in this 
standard vs best current attacks 

Parameter set Recommended  
security level 

N q df Known hybrid 
strength 

c Basic lattice 
strength 

ees401ep1 112 401 2048 113 154.88 2.02 139.5 
ees541ep1 112 541 2048 49 141.766 1.77 189.4 
ees659ep1 112 659 2048 38 137.861 1.74 231.5 
ees449ep1 128 449 2048 134 179.899 2.17 156.6 
ees613ep1 128 613 2048 55 162.385 1.88 215.1 
ees761ep1 128 761 2048 42 157.191 1.85 267.8 
ees677ep1 192 677 2048 157 269.93 2.50 239.0 
ees887ep1 192 887 2048 81 245.126 2.27 312.7 
ees1087ep1 192 1087 2048 63 236.586 2.24 384.0 
ees1087ep2 256 1087 2048 120 334.85 2.64 459.2   
ees1171ep1 256 1171 2048 106 327.881 2.60 494.8 
ees1499ep1 256 1499 2048 79 312.949 2.57 530.8 

A.7.2 Potential research 

As detailed above, the parameter sets in this standard are designed to be secure against incremental 
improvements in attack techniques. As these improvements occur, future versions of the standard will track 
the “current known” strength of each parameter set as it descends towards the recommended security level.  

There are potential breakthroughs in research that have not been considered in generating these parameter 
sets, because it is not clear that these breakthroughs will ever come. Such breakthroughs, which would 
require an in-depth re-evaluation of the security of the algorithm, include: 

⎯ Improvement in lattice reduction techniques for the hybrid case beyond the current extrapolation 
line 

⎯ A sub-exponential or otherwise massively improved attack on the whole NTRU lattice 

⎯ An improvement in the reduction step of the meet-in-the-middle phase of the hybrid attack that 
would allow an attacker to significantly increase ps 
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