
IEEE Std 1363.1™-2008

IEEE Standard Specification for Public
Key Cryptographic Techniques Based
on Hard Problems over Lattices

IEEE
3 Park Avenue
New York, NY 10016-5997, USA

10 March 2009

IEEE Computer Society
Sponsored by the
Microprocessor Standards Committee

13
63

.1
TM

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard Specification for Public
Key Cryptographic Techniques Based
on Hard Problems over Lattices

Sponsor
Microprocessors and Microcomputers Committee
of the
IEEE Computer Society

Approved 10 December 2008

IEEE-SA Standards Board

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

Abstract: Specifications of common public key cryptographic techniques based on hard
problems over lattices supplemental to those considered in IEEE Std 1363-2000 and IEEE Std
1363a-2004, including mathematical primitives for secret value (key) derivation, public key
encryption, identification and digital signatures, and cryptographic schemes based on those
primitives are provided. Also presented are specifications of related cryptographic parameters,
public keys, and private keys. Class of computer and communications systems is not restricted.
Keywords: encryption, lattice-based cryptography, public key cryptography

•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2009 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 10 March 2009. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-0-7381-5863-1 STD95858
Print: ISBN 978-0-7381-5864-8 STDPD95858

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the
Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote
fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy
of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific
purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents
are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change brought about through developments in the
state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least
every five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present
state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the
advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal consideration.
At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the formal
position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

iv
Copyright © 2009 IEEE. All rights reserved.

Introduction

This introduction is not part of IEEE Std 1363.1-2008, IEEE Standard Specification for Public Key Cryptographic
Techniques Based on Hard Problems over Lattices.

The IEEE P1363™ project started as the “Standard for Rivest-Shamir-Adleman, Diffie-Hellman, and
Related Public Key Cryptography” with its first meeting in January 1994, following a strategic initiative by
the Microprocessor Standards Committee to develop standards for cryptography. Over the next eight years,
the working group produced a broad standard reflecting the state of the art in public key cryptography,
including techniques from three major families of hard problems. In addition, the working group drafted an
addendum that provides additional techniques from those three major families. A more thorough history of
the IEEE P1363 working group and its contributions beyond IEEE Std 1363™-2000 are given in the
Introduction to IEEE Std 1363-2000.

At the same time, new cryptographic research was producing additional families of cryptographic
techniques such as the family of techniques based on hard problems over lattices. These techniques enjoy
operating characteristics that make them attractive in certain implementation environments, and thus they
have received considerable scrutiny and deployment.

As a result, the working group proposed a new project to standardize techniques from this family. This
project was approved by the Microprocessors and Microcomputers Standards Committee, and this current
standard is the result of this project.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this
document available for use and adoption by public authorities and private users, the IEEE does not waive
any rights in copyright to this document.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

v
Copyright © 2009 IEEE. All rights reserved.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association web site at
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL:
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL
for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity
or scope of Patents Claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable
or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further
information may be obtained from the IEEE Standards Association.

Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the P1363 Working
Group had the following membership:

William Whyte, Chair
Don Johnson, Vice Chair

Matthew Ball
Xavier Boyen
Mike Brenner
Daniel Brown
Mark Chimley

Andy Dancer
David Jablon
Satoru Kanno
David Kravitz
Michael Markowitz
Luther Martin

Jim Randall
Roger Schlafly
Ari Singer
Terence Spies
Yongge Wang

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

http://ieeexplore.ieee.org/xpl/standards.jsp�
http://standards.ieee.org/�
http://standards.ieee.org/reading/ieee/updates/errata/index.html�
http://standards.ieee.org/reading/ieee/interp/index.html�
http://standards.ieee.org/reading/ieee/interp/index.html�

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

vi
Copyright © 2009 IEEE. All rights reserved.

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Ed Addario
Butch Anton
Matthew Ball
H. Stephen Berger
Martin J. Bishop
Juan Carreon
Keith Chow
Kevin Coggins
Geoffrey Darnton
James Davis
Thomas Dineen
Andrew Fieldsend

Michael Geipel
Randall Groves
Werner Hoelzl
Atsushi Ito
Mark Jaeger
Susan Land
David J. Leciston
Daniel Lindberg
Edward McCall
Avygdor Moise
Michael S. Newman
Ulrich Pohl

Robert Robinson
Randall Safier
Bartien Sayogo
Thomas Starai
Walter Struppler
Gerald Stueve
Mark Sturza
Vincent Tume
William Whyte
Paul Work
Oren Yuen
Wenhao Zhu

When the IEEE-SA Standards Board approved this standard on 10 December 2008, it had the following
membership:

Robert M. Grow, Chair
Thomas Prevost, Vice Chair
Steve M. Mills, Past Chair
Judith Gorman, Secretary

Victor Berman
Richard DeBlasio
Andy Drozd
Mark Epstein
Alexander Gelman
William R. Goldbach
Arnold M. Greenspan
Kenneth S. Hanus

Jim Hughes
Richard H. Hulett
Young Kyun Kim
Joseph Koepfinger*
John Kulick
David J. Law
Glenn Parsons
Ronald C. Petersen

Chuck Powers
Narayanan Ramachandran
Jon Walter Rosdahl
Robby Robson
Anne-Marie Sahazizia
Malcolm V. Thaden
Howard L. Wolfman
Don Wright

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Michael Janezic, NIST Representative

Don Messina
IEEE Standards Program Manager, Document Development

Malia Zaman
IEEE Standards Program Manager, Technical Program Development

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

vii
Copyright © 2009 IEEE. All rights reserved.

Contents

1. Overview .. 1
1.1 Scope ... 1
1.2 Purpose .. 1

2. Normative references.. 2
3. Definitions, acronyms, and abbreviations .. 2

3.1 Definitions ... 2
3.2 Acronyms and abbreviations ... 9

4. Types of cryptographic techniques... 11
4.1 General model.. 11
4.2 Schemes... 11
4.3 Additional methods.. 12
4.4 Algorithm specification conventions ... 12

5. Mathematical notation .. 13
6. Polynomial representation and operations.. 15

6.1 Introduction ... 15
6.2 Polynomial representation ... 15
6.3 Polynomial operations ... 15

6.3.1 Polynomial multiplication.. 15
6.3.2 Reduction of a polynomial mod q .. 15
6.3.3 Inversion in (Z/qZ)[X]/(XN – 1).. 15

7. Data types and conversions .. 18
7.1 Bit strings and octet strings.. 18
7.2 Converting between integers and bit strings (I2BSP and BS2IP).. 18

7.2.1 Integer to bit string primitive (I2BSP) ... 18
7.2.2 Bit string to integer primitive (BS2IP)... 19

7.3 Converting between integers and octet strings (I2OSP and OS2IP).. 19
7.3.1 Integer to octet string primitive (I2OSP).. 19
7.3.2 Octet string to integer primitive (OS2IP)... 19

7.4 Converting between bit strings and right-padded octet strings (BS2ROSP and ROS2BSP) 20
7.4.1 Bit string to right-padded octet string primitive (BS2ROSP) .. 20
7.4.2 Right-padded octet string to bit string primitive (ROS2BSP).. 20

7.5 Converting between ring elements and bit strings (RE2BSP and BS2REP) 21
7.5.1 Ring element to bit string primitive (RE2BSP).. 21
7.5.2 Bit string to ring element primitive (BS2REP) .. 21

7.6 Converting between ring elements and octet strings (RE2OSP and OS2REP) 22
7.6.1 Ring element to octet string primitive (RE2OSP).. 22
7.6.2 Octet string to ring element primitive (OS2REP) .. 22

8. Supporting algorithms .. 22
8.1 Overview ... 22
8.2 Hash functions ... 23
8.3 Encoding methods ... 23

8.3.1 General... 23
8.3.2 Blinding polynomial generation methods (BPGM) ... 23

8.4 Supporting algorithms ... 24
8.4.1 Mask generation functions ... 24
8.4.2 Index generation function .. 25

9. Short vector encryption scheme (SVES) .. 28
9.1 Encryption scheme (SVES) overview ... 28
9.2 Encryption scheme (SVES) operations.. 28

9.2.1 Key generation ... 28
9.2.2 Encryption operation.. 29
9.2.3 Decryption operation.. 31
9.2.4 Key pair validation methods .. 33
9.2.5 Public key validation.. 33

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

viii
Copyright © 2009 IEEE. All rights reserved.

Annex A (informative) Security considerations ... 35
A.1 Lattice security: background... 35

A.1.1 Lattice definitions ... 35
A.1.2 Hard lattice problems .. 36
A.1.3 Theoretical complexity of hard lattice problems... 36
A.1.4 Lattice reduction algorithms.. 36
A.1.5 The Gaussian heuristic and the closest vector problem... 37
A.1.6 Modular lattices: definition ... 38
A.1.7 Modular lattices and quotient polynomial rings.. 38
A.1.8 Balancing CVP in modular lattices ... 38
A.1.9 Fundamental CVP ratios in modular lattices... 39
A.1.10 Creating a balanced CVP for modular lattices containing a short vector................................ 39
A.1.11 Modular lattices containing (short) binary vectors.. 40
A.1.12 Convolution modular lattices .. 41
A.1.13 Heuristic solution time for CVP in modular lattices ... 41
A.1.14 Zero-forcing .. 42

A.2 Experimental solution times for NTRU lattices—full key recovery... 42
A.2.1 Experimental solution times for NTRU lattices using BKZ reduction...................................... 42
A.2.2 Alternative target vectors .. 44

A.3 Combined lattice and combinatorial attacks on LBP-PKE keys and messages 44
A.3.1 Overview... 44
A.3.2 Lattice strength.. 44
A.3.3 Reduced lattices and the “cliff”... 45
A.3.4 Combinatorial strength.. 48
A.3.5 Summary ... 50

A.4 Other security considerations for LBP-PKE encryption... 50
A.4.1 Entropy requirements for key and salt generation... 50
A.4.2 Reduction mod q ... 50
A.4.3 Selection of N.. 50
A.4.4 Relationship between q and N... 50
A.4.5 Form of q... 50
A.4.6 Leakage of m’(1) ... 51
A.4.7 Relationship between p, q, and N .. 51
A.4.8 Adaptive chosen ciphertext attacks ... 51
A.4.9 Invertibility of g in Rq ... 52
A.4.10 Decryption failures.. 52
A.4.11 OID ... 52
A.4.12 Use of hash functions by supporting functions ... 53
A.4.13 Generating random numbers in [0, N – 1]... 53
A.4.14 Attacks based on variation in decryption times... 53
A.4.15 Choosing to attack r or m .. 54
A.4.16 Quantum computers .. 54
A.4.17 Other considerations.. 54

A.5 A parameter set generation algorithm... 54
A.6 Possible parameter sets ... 55

A.6.1 Size-optimized .. 55
A.6.2 Cost-optimized .. 57
A.6.3 Speed-optimized.. 60

A.7 Security levels of parameter sets... 62
A.7.1 Assumed security levels versus current knowledge .. 62
A.7.2 Potential research .. 63

Annex B (informative) Bibliography.. 64

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

1
Copyright © 2009 IEEE. All rights reserved.

IEEE Standard Specification for Public
Key Cryptographic Techniques Based
on Hard Problems over Lattices

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or
environmental protection in all circumstances. Implementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory
requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may be found
under the heading “Important Notice” or “Important Notices and Disclaimers Concerning
IEEE Documents.” They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This standard provides specifications of common public key cryptographic techniques based on hard
problems over lattices supplemental to those considered in IEEE Std 1363™-2000 [B47]1 and IEEE Std
1363a™-2004 [B48], including mathematical primitives for secret value (key) derivation, public key
encryption, identification and digital signatures, and cryptographic schemes based on those primitives.
Specifications of related cryptographic parameters, public keys, and private keys are also presented. Class
of computer and communications systems is not restricted.

1.2 Purpose

The transition from paper to electronic media brings with it the need for electronic privacy and authenticity.
Public key cryptography offers fundamental technology addressing this need. Many alternative public key
techniques have been proposed, each with its own benefits. IEEE Std 1363-2000 [B47] and IEEE Std
1363a-2004 [B48] have produced a comprehensive reference defining a range of common public key

1 The numbers in brackets correspond to those of the bibliography in Annex B.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/IPR/disclaimers.html�

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

2
Copyright © 2009 IEEE. All rights reserved.

techniques covering key agreement, public key encryption, and digital signatures from several families,
namely the discrete logarithm, integer factorization, and elliptic curve families.

This standard specifies cryptographic techniques based on hard problems over lattices. These techniques
may offer tradeoffs in operating characteristics when compared with the methods already specified in IEEE
1363-2000 and IEEE Std 1363a-2004. This standard also provides a second-generation framework for the
description of cryptographic techniques, as compared to the initial framework provided in IEEE Std 1363-
2000 and IEEE Std 1363a-2004.

It is not the purpose of this project to mandate any particular set of public key techniques or security
requirements (including key sizes) for this or any family. Rather, the purpose of this standard is to provide
the following:

a) A reference for specification of a variety of techniques from which applications may select

b) The relevant number-theoretic background

c) Extensive discussion of security and implementation considerations so that a solution provider can
choose appropriate security requirements for itself

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

FIPS 180, Secure Hash Standard, Federal Information Processing Standards Publication 180, U.S.
Department of Commerce/National Institute of Standards and Technology, National Technical Information
Service, Springfield, Virginia.2

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards [B46] should be referenced for terms not defined in this clause.

3.1.1 algorithm: A clearly specified mathematical process for computation; a set of rules that, if
followed, give a prescribed result.

3.1.2 asymmetric cryptographic algorithm: A cryptographic algorithm that uses two related keys, a
public key and a private key; the two keys have the property that, given the public key, it is
computationally infeasible to derive the private key.

3.1.3 authentication (of a message): The act of determining that a message has not been changed since
leaving its point of origin. The identity of the originator is implicitly verified.

2FIPS 180 current version as of 2008 is FIPS 180-2, August 26, 2002, available at http://csrc.nist.gov/CryptoToolkit/Hash.html.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

3
Copyright © 2009 IEEE. All rights reserved.

3.1.4 authentication of ownership: The assurance that a given, identified party intends to be
associated with a given public key. May also include assurance that the party possesses the
corresponding private key (see IEEE Std 1363-2000, Annex D.3.2, for more information).

3.1.5 big modulus: The big modulus q is used to define the larger polynomial ring. The modulus q can
generally be taken to be any value that is relatively prime in the ring to the small modulus p.

3.1.6 birthday paradox: For a category size of 365 (the days in a year), after only 23 people are
gathered, the probability is greater than 0.5 that at least two people have a common birthday
(month and day). The reason is that among 23 people, there are 23 × (23 – 1)/2 = 253 pairs of
people, each with a 1/365 chance of having matching birthdays. The chance of no matching
birthday is therefore (364/365)253 ~ 0.4995. In general, any case where the criterion for success is
to find a collision (two matching values) rather than a hit (one value that matches a pre-selected
one) displays this pairing property, so that the size of the space to be searched for success is about
the square root of the size of the space of all possible value.

3.1.7 bit length: See: length.

3.1.8 bit string: An ordered sequence of zeroes and ones. The left-most bit is the most-significant bit of
the string. The right-most bit is the least-significant bit of the string. A bit and a bit string of length
1 are equivalent for all purposes of this standard.

3.1.9 blinding polynomial: In this standard, the ciphertext e is generated according to the equation e =
r × h + m’, where h is the public key, m’ is the message representative, and r is a pseudorandomly
generated blinding polynomial.

3.1.10 blinding polynomial generation methods: In the encryption schemes in this document, a
blinding polynomial generation method (LBP-BPGM) is used to generate a blinding polynomial r
from the padded message pm in order to provide plaintext awareness.

3.1.11 blinding polynomial space: The space that a LBP-BPGM selects from. Usually defined implicitly
by the definition of the LBP-BPGM.

3.1.12 certificate: The public key and identity of an entity together with some other information rendered
unforgeable by signing the certificate with the private key of the certifying authority, which issued
that certificate.

3.1.13 ciphertext: The result of applying encryption to a message. Contrast: plaintext. See also:
encrypt.

3.1.14 composite: An integer that has at least two prime factors.

3.1.15 confidentiality: The property that information is not made available or disclosed to unauthorized
individuals, entities, or processes.

3.1.16 conformance region: A set of inputs to a primitive or a scheme operation for which an
implementation operates in accordance with the specification of the primitive or scheme operation

3.1.17 cryptographic family: A set of cryptographic techniques in similar mathematical settings. For
example, this standard presents a single family of techniques based on the underlying hard
problems of finding a short vector and a close vector in a lattice.

3.1.18 cryptographic hash function: See: hash function.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

4
Copyright © 2009 IEEE. All rights reserved.

3.1.19 cryptographic key (key): A parameter that determines the operation of a cryptographic function
such as: the transformation from plain text to cipher text and vice versa; synchronized generation
of keying material; digital signature computation, or validation.

3.1.20 cryptography: The discipline that embodies principles, means, and methods for the
transformation of data in order to hide its information content, prevent its undetected modification,
prevent its unauthorized use, or a combination thereof.

3.1.21 data integrity: A property whereby data has not been altered or destroyed.

3.1.22 decrypt: To produce plaintext (readable) from ciphertext (unreadable). Contrast: encrypt. See
also: ciphertext; encrypt; plaintext.

3.1.23 dimension: The dimension N identifies the dimension of the convolution polynomial ring used.
The dimension of the associated lattice problem is 2N. Elements of the ring are represented as
polynomials of degree N – 1.

3.1.24 domain parameters: A set of mathematical objects, such as fields or groups, and other
information, defining the context in which public/private key pairs exist. More than one key pair
may share the same domain parameters. Not all cryptographic families have domain parameters.
See also: public/private key pair; valid domain parameters.

3.1.25 domain parameter validation: The process of ensuring or verifying that a set of domain
parameters is valid. See also: domain parameters; key validation; valid domain parameters.

3.1.26 encrypt: To produce ciphertext (unreadable) from plaintext (readable). Contrast: decrypt. See
also: ciphertext; encrypt; plaintext.

3.1.27 encryption primitives: An operation that converts a plaintext to a ciphertext, providing security
according to the difficulty of solving an underlying hard problem, against a ciphertext-only attack
by a passive attacker who only has a single non-chosen ciphertext. A building block for encryption
schemes.

3.1.28 encryption scheme: A means for providing encryption, based on an encryption primitive, that is
secure against both active and passive attackers. A secure encryption scheme typically provides
semantic security (an attacker who knows that one of two messages has been encrypted will find it
computationally infeasible to determine which) against an attacker who can make polynomially
many queries to a decryption oracle.

3.1.29 entity: A participant in any of the schemes in this standard. The words “entity” and “party” are
used interchangeably. This definition may admit many interpretations: it may or may not be
limited to the necessary computational elements; it may or may not include or act on behalf of a
legal entity. The particular interpretation chosen does not affect operation of the key agreement
schemes.

3.1.30 exclusive OR (XOR): A mathematical bit-wise operation, symbol ⊕ , defined as:
 0 ⊕ 0 = 0,
 0 ⊕ 1 = 1,
 1 ⊕ 0 = 1, and
 1 ⊕ 1 = 0.
Equivalent to binary addition without carry. May also be applied to bit strings: the XOR of two bit
strings of equal length is the concatenation of the XORs of the corresponding elements of the bit
strings.

3.1.31 family: See: cryptographic family.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

5
Copyright © 2009 IEEE. All rights reserved.

3.1.32 field: A setting in which the usual mathematical operations (addition, subtraction, multiplication,
and division by nonzero quantities) are possible and obey the usual rules (such as the
commutative, associative, and distributive laws).

3.1.33 finite field: A field in which there are only a finite number of quantities.

3.1.34 first bit: The leading bit of a bit string or an octet. For example, the first bit of 0110111 is 0.
Contrast: last bit. Syn: most significant bit; leftmost bit. See also: bit string; octet.

3.1.35 first octet: The leading octet of an octet string. For example, the first octet of 1c 76 3b e4 is 1c.
Contrast: last octet. Syn: most significant octet; leftmost octet. See also: octet; octet string.

3.1.36 hash function: A function that maps a bit string of arbitrary length to a fixed-length bit string and
satisfies the following properties:

1. It is computationally infeasible to find any input that maps to any pre-specified output;

2. It is computationally infeasible to find any two distinct inputs that map to the same
output.

3.1.37 hash value: The result of applying a hash function to a message.

3.1.38 index generation function (IGF): An IGF is a function that is seeded once, can be called multiple
times, and produces statistically independent integers modulo some number m on each call.

3.1.39 key: See: cryptographic key.

3.1.40 key confirmation: The assurance of the legitimate participants in a key establishment protocol
that the intended recipients of the shared key actually posses the shared key.

3.1.41 key derivation: The process of deriving one or more session keys from a shared secret and
(possibly) other, public information. Such a function can be constructed from a one-way hash
function such as SHA-1.

3.1.42 key encrypting key (KEK): A key used exclusively to encrypt and decrypt keys.

3.1.43 key establishment: A protocol that reveals a secret key to its legitimate participants for
cryptographic use.

3.1.44 key generation primitive: A method used to generate a key pair.

3.1.45 key management: The generation, storage, secure distribution, and application of keying material
in accordance with a security policy.

3.1.46 key pair: When used in public key cryptography, a private key and its corresponding public key.
The public key is commonly available to a wide audience and can be used to encrypt messages or
verify digital signatures; the private key is held by one entity and not revealed to anyone--it is used
to decrypt messages encrypted with the public key and/or produce signatures that can verified with
the public key. A public/private key pair can also be used in key agreement. In some cases, a
public/private key pair can only exist in the context of domain parameters. See also: digital
signature; domain parameters; encryption; key agreement; public key cryptography; valid
key; valid key pair.

3.1.47 key transport: A key establishment protocol under which the secret key is determined by the
initiating party.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

6
Copyright © 2009 IEEE. All rights reserved.

3.1.48 key validation: the process of ensuring or verifying that a key conforms to the arithmetic
requirements for such a key in order to thwart certain types of attacks. See also: domain
parameter validation; public/private key pair; valid key; valid key pair.

3.1.49 keying material: The data (e.g., keys, certificates and initialization vectors) necessary to establish
and maintain cryptographic keying relationships.

3.1.50 known-key security: Known-key security for Party U implies that the key agreed upon will not
be compromised by the compromise of the other session keys. If each ephemeral key is used only
to compute a single session key, then known-key security may be achieved.

3.1.51 last bit: The trailing bit of a bit string or an octet. For example, the last bit of 0110111 is 1.
Contrast: first bit. Syn: least significant bit; rightmost bit. See also: first bit; octet.

3.1.52 last octet: The trailing octet of an octet string. For example, the last octet of 1c 76 3b e4 is e4.
Contrast: first octet. Syn: least significant octet; rightmost octet. See also: octet; octet string.

3.1.53 lattice-based polynomial public key encryption: An encryption mechanism where operations
are based on polynomial multiplication and the security is based on the difficulty of performing
high-dimension lattice reduction.

3.1.54 least significant: See: last bit; last octet.

3.1.55 leftmost bit: See: first bit.

3.1.56 leftmost octet: See: first octet.

3.1.57 length: (1) Length of a bit string is the number of bits in the string. (2) Length of an octet string is
the number of octets in the string. (3) Length in bits of a nonnegative integer n is ⎣log2 (n + 1)⎦
(i.e., the number of bits in the integer’s binary representation). (4) Length in octets of a
nonnegative integer n is ⎣log256 (n + 1)⎦ (i.e., the number of digits in the integer’s representation
base 256). For example, the length in bits of the integer 500 is 9, and its length in octets is 2.

3.1.58 mask generation function (MGF): An MGF is a construction built around a hash function that
produces an arbitrary-length output string, possibly longer than the output of the underlying hash
function.

3.1.59 message authentication code (MAC): A cryptographic value that is the results of passing a
financial message through the message authentication algorithm using a specific key.

3.1.60 message length encoding length: In SVES, the length of the message that is to be encrypted is
encoded in the padded message. The length of the field that represents the length of the message,
called the message length encoding length, is represented by the parameter lLen. For all parameter
sets in this standard, lLen is set to 1.

3.1.61 message representative: A mathematical value for use in a cryptographic primitive, computed
from a message that is input to an encryption or a digital signature scheme and uniquely linked to
that message. See also: encryption scheme; digital signature scheme.

3.1.62 modular lattice: A lattice in which (among other things) all values are integers reduced mod q.

3.1.63 most significant: See: first bit; first octet.

3.1.64 norm: A measure of the “size” of a vector or polynomial.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

7
Copyright © 2009 IEEE. All rights reserved.

3.1.65 octet: A bit string of length 8. An octet has an integer value between 0 and 255 when interpreted
as a representation of an integer in base 2. An octet can also be represented by a hexadecimal
string of length 2, where the hexadecimal string is the representation of its integer value base 16.
For example, the integer value of the octet 10011101 is 157; its hexadecimal representation is 9d.
Also commonly known as a byte. See also: bit string.

3.1.66 octet string: An ordered sequence of octets. See also: octet.

3.1.67 owner: The entity whose identity is associated with a key pair.

3.1.68 parameters: See: domain parameters.

3.1.69 plaintext: A message before encryption has been applied to it; the opposite of ciphertext.
Contrast: ciphertext. See also: encryption.

3.1.70 polynomial index generation constant: A value used when generating a random number in the
range [0, N – 1], to eliminate bias without impacting efficiency.

3.1.71 prime number: An integer that is greater than 1 and divisible only by 1 and itself.

3.1.72 primitives: Cryptographic primitives used in the SVES encryption scheme include key generation
primitives, encryption primitives, and decryption primitives.

3.1.73 private key: The private element of the public/private key pair. See also: public/private key
pair; valid key.

3.1.74 private key space: The space from which a key generation primitive selects the private key.

3.1.75 public key: The public element of the public/private key pair. See also: public/private key pair;
valid key.

3.1.76 public key cryptography: Methods that allow parties to communicate securely without having
prior shared secrets through the use of public/private key pairs. Contrast: symmetric
cryptography. See also: public/private key pair.

3.1.77 public key space: The space from which a key generation primitive selects the public key.

3.1.78 public key validation: See: key validation.

3.1.79 public/private key pair: See: key pair.

3.1.80 rightmost bit: See: last bit.

3.1.81 rightmost octet: See: last octet.

3.1.82 ring: A setting in which addition, subtraction, and multiplication are possible, and division by a
given nonzero quantity may or may not be possible. A field is a special case of a ring. See also:
field.

3.1.83 ring element: In general, an element in a ring. In the context of this standard, a binary N-ring
element refers to an element in the ring (Z/2Z)[X]/(XN – 1), which is to say a binary polynomial of
degree N-1 or an array of N binary elements. A (q, N)-ring element refers to an element in the ring
(Z/qZ)[X]/(XN – 1), which is to say a polynomial of degree N – 1 with coefficients reduced mod q
or an array of N elements each taken mod q.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

8
Copyright © 2009 IEEE. All rights reserved.

3.1.84 salt: Random bits that are used to pad the message during encryption, to provide for semantic
security.

3.1.85 salt size: The size of the salt. This can be expressed in bits or octets.

3.1.86 scheme options: Scheme options consist of parameters and algorithms that do not affect the key
space (i.e., that are not domain parameters), but that shall be agreed upon in order to implement
the encryption scheme.

3.1.87 secret key: A key used in symmetric cryptography; needs to be known to all legitimate
participating parties involved, but cannot be known to an adversary. Contrast: public/private key
pair. See also: key agreement; shared secret key; symmetric cryptography.

3.1.88 secret value: A value that can be used to derive a secret key, but typically cannot by itself be used
as a secret key. See also: secret key.

3.1.89 shared secret key: A secret key shared by two parties, usually derived as a result of a key
agreement scheme. See also: key agreement; secret key.

3.1.90 shared secret value: A secret value shared by two parties, usually during a key agreement
scheme. See also: key agreement; secret value.

3.1.91 short vector encryption scheme (SVES): The encryption scheme defined in IEEE Std 1363.1-
2008.

3.1.92 signature: See: digital signature.

3.1.93 small modulus: In LBP-PKE, the small modulus p is used for key generation and for modular
reduction during decryption.

3.1.94 statistically unique: For the generation of n-bit quantities, the probability of two values repeating
is less than or equal to the probability of two n-bit random quantities repeating. More formally, an
element chosen from a finite set S of n elements is said to be statistically unique if the process that
governs the selection of this element is such that, for any integer L ≤ n, the probability that all of
the first L selected elements are different is no smaller than the probability of this happening when
the elements are drawn uniformly randomly from S.

3.1.95 symmetric cryptographic algorithm: A cryptographic algorithm that uses one cryptographic
key. Anyone who knows the key can both encrypt and decrypt a message, and can calculate a
Message Authentication Code using that key.

3.1.96 symmetric cryptography: Methods that allow parties to communicate securely only when they
already share some prior secrets, such as the secret key. Contrast: public key cryptography. See
also: secret key.

3.1.97 symmetric key: A cryptographic key that is used in symmetric cryptographic algorithms. The
same symmetric key that is used for encryption is also used for decryption.

3.1.98 user: A party that uses a public key.

3.1.99 valid domain parameters: A set of domain parameters that satisfies the specific mathematical
definition for the set of domain parameters of its family. While a set of mathematical objects may
have the general structure of a set of domain parameters, it may not actually satisfy the definition
(for example, it may be internally inconsistent) and thus not be valid. See also: domain
parameters; public/private key pair; valid key; valid key pair; validation.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

9
Copyright © 2009 IEEE. All rights reserved.

3.1.100 valid key: A key (public or private) that satisfies the specific mathematical definition for the keys
of its family, possibly in the context of its set of domain parameters. While some mathematical
objects may have the general structure of keys, they may not actually lie in the appropriate set (for
example, they may not lie in the appropriate subgroup of a group or be out of the bounds allowed
by the domain parameters) and thus not be valid keys. See also: domain parameters;
public/private key pair; valid domain parameters; valid key pair; validation.

3.1.101 valid key pair: A public/private key pair that satisfies the specific mathematical definition for the
key pairs of its family, possibly in the context of its set of domain parameters. While a pair of
mathematical objects may have the general structure of a key pair, the keys may not actually lie in
the appropriate sets (for example, they may not lie in the appropriate subgroup of a group or be out
of the bounds allowed by the domain parameters) or may not correspond to each other; such a pair
is thus not a valid key pair. See also: domain parameters; public/private key pair; valid
domain parameters; valid key; validation.

3.1.102 validation: See: domain parameter validation; key validation.

3.1.103 verify: In relation to a Digital Signature means to determine accurately: (1) that the Digital
Signature was created during the operational period of a valid Certificate by the private key
corresponding to the public key listed in the Certificate; and (2) the message has not been altered
since its Digital Signature was created.

3.2 Acronyms and abbreviations

BS2IP bit string to integer conversion primitive

BS2REP bit string to ring element conversion primitive

BS2ROSP bit string to right-padded octet string conversion primitive

BPGM blinding polynomial generation method

DP decryption primitive

ES encryption scheme

I2BSP integer to bit string conversion primitive

I2OSP integer to octet string conversion primitive

IGF index generation function

IGF-MGF1 index generation function based on mask generation function 1

KGP key generation primitive

LBP-BPGM1 blinding polynomial generation method for generating binary blinding polynomials

LBP-BPGM2 blinding polynomial generation method for generating product-form blinding
polynomials

LBP-DP1 decryption primitive for use with lattice-based polynomial public key decryption

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

10
Copyright © 2009 IEEE. All rights reserved.

LBP-KGP1 lattice-based polynomial key generation primitive

LBP-PKE lattice-based polynomial public key encryption

MAC message authentication code.

MGF mask generation function

MPM message padding method

MRGM message representative generation method

OS2IP octet string to integer conversion primitive

OS2REP octet string to ring element conversion primitive

RE2BSP ring element to bit string conversion primitive

RE2OSP ring element to octet string conversion primitive

ROS2BSP right-padded octet string to bit string conversion primitive

SVDP short vector decryption primitive

SVES short vector encryption scheme

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

11
Copyright © 2009 IEEE. All rights reserved.

4. Types of cryptographic techniques

4.1 General model

As stated in Clause 1, the purpose of this standard is to provide a reference for specifications of a variety of
common public key cryptographic techniques from which applications may select. Different types of
cryptographic techniques can be viewed abstractly according to the following three-level general model:

⎯ Primitives: Basic mathematical operations. Historically, they were discovered based on number-
theoretic hard problems. Primitives are not meant to achieve security just by themselves, but they
serve as building blocks for schemes.

⎯ Schemes: A collection of related operations combining primitives and additional methods (see
4.4). Schemes can provide complexity-theoretic security that is enhanced when they are
appropriately applied in protocols.

⎯ Protocols: Sequences of operations to be performed by multiple parties to achieve some security
goal. Protocols can achieve desired security for applications if implemented correctly.

From an implementation viewpoint, primitives can be viewed as low-level implementations (e.g.,
implemented within cryptographic accelerators, or software modules), schemes can be viewed as medium-
level implementations (e.g., implemented within cryptographic service libraries), and protocols can be
viewed as high-level implementations (e.g., implemented within entire sets of applications).

This standard contains only specifications of schemes.

4.2 Schemes

Schemes in this standard are presented in a general form based on certain primitives and additional
methods. For example, the encryption scheme defined in this standard is based on a key generation
primitive, a decryption primitive, and a blinding polynomial generation method.

Schemes also include key management operations, such as selecting a private key or obtaining another
party’s public key. For proper security, a party needs to be assured of the true owners of the keys and
domain parameters and of their validity. Generation of domain parameters and keys needs to be performed
properly, and in some cases validation also needs to be performed. While outside the scope of this standard,
proper key management is essential for security.

This standard defines one type of scheme, as follows:

⎯ Encryption schemes (ESs), in which any party can encrypt a message using a recipient’s public
key, and only the recipient can decrypt the message by using its corresponding private key.
Encryption schemes may be used for establishing secret keys to be used in symmetric
cryptography.

An encryption scheme is specified by providing the following:

⎯ Name

⎯ Type (e.g., asymmetric public key encryption scheme)

⎯ Options (key type, primitives, parameters)

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

12
Copyright © 2009 IEEE. All rights reserved.

⎯ Operations

⎯ Key pair generation

⎯ Key pair validation

⎯ Public key validation

⎯ Encryption operation

⎯ Input
⎯ Output

⎯ Decryption operation
⎯ Input
⎯ Output

An encryption scheme specification may also include the following:

⎯ Security considerations

⎯ Implementation considerations

⎯ Related standards

The specifications are functional specifications, not interface specifications. As such, the format of inputs
and outputs and the procedure by which an implementation of a scheme is invoked are outside the scope of
this standard.

4.3 Additional methods

This standard specifies the following additional methods:

⎯ Blinding polynomial generation methods, which are components of encryption schemes.

⎯ Auxiliary Functions, which are building blocks for other additional methods.

⎯ Index generation functions

⎯ Mask generation functions

⎯ Hash functions, which are used as the core of index generation functions and of mask
generation functions.

The specified additional methods are required for conformant use of the schemes. The use of an inadequate
message encoding method, key derivation function, or auxiliary function may compromise the security of
the scheme in which it is used. Therefore, any implementation that chooses not to follow the recommended
additional methods for a particular scheme should perform its own thorough security analysis of the
resulting scheme.

4.4 Algorithm specification conventions

When specifying an algorithm or method, this standard uses four parts to specify different aspects of the
algorithm. They are as follows:

a) Components, such as choice of index generation function (IGF), are parameters that are specified
before the beginning of the operation and that are not specific to the particular algorithm call.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

13
Copyright © 2009 IEEE. All rights reserved.

Components tend to be kept fixed for multiple users and multiple instances of the algorithm call
and need not be explicitly specified if they are implicitly known [e.g., if they are defined within a
selected object identifier (OID)].

b) Inputs, such as keys and messages, are values that shall be specified for each algorithm call.

c) Outputs, such as ciphertext, are the result of transformations on the inputs.

d) Operations specify the transformations that are performed on the data to arrive at the output.
Throughout the standard, the operations are defined as a sequence of steps. A conformant
implementation may perform the operations using any sequence of steps that consistently produces
the same output as the sequence in this standard. Caution should be taken to ensure that
intermediate values are not revealed, however, as they may compromise the security of the
algorithms.

5. Mathematical notation

When referring to mathematical objects and data objects in this standard, the following notation in Table 1
is used. Throughout the document, numbers at the end of variable names are used to distinguish different,
but related values (df1, df2, df3 or Dmin1, Dmin2, etc.).

Table 1—Mathematical notation

0 Denotes the integer 0, the bit 0, or the additive identity (the element zero) of a ring.

1 Denotes the integer 1, the bit 1, or the multiplicative identity (the element one) of a ring.

 × Indicates the convolution product of two polynomials and is also used to indicate multiplication
of integers.

⊕ or XOR Exclusive OR function.

|| Concatenation. A||B is the concatenation of the octet strings A and B where the leading octet of
A is the leading octet of A||B and the trailing octet of B is the trailing octet of A||B.

:= Initialization. a := b means initialize or set the value of a equal to the value of b.

A Lower-bound decryption coefficient, used in decryption process to reduce into correct interval.

ceil[.] or ⎡.⎤ Ceiling function (i.e., the smallest integer greater than or equal to the contents of [.]).

db The number of random bits used as input for encryption.

df An integer specifying the number of ones in the polynomials that comprise the private key
value f (also specified as df1, df2, and df3, or as dF).

dg An integer specifying the number of ones in the polynomials that comprise the temporary
polynomial g (often specified as dG).

dr An integer specifying the number of ones in the blinding polynomial r in SVES. (Also specified
as dr1, dr2, and dr3.)

e Encrypted message representative, a polynomial, computed by an encryption primitive.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

14
Copyright © 2009 IEEE. All rights reserved.

E Encrypted message, an octet string.

ES (Asymmetric) encryption scheme.

f Private key in SVES.

F In SVES, a polynomial that is used to calculate the value f when f = 1 + pF.

floor[.] or ⎣.⎦ Floor function (i.e. the largest integer less than or equal to the contents of [.]).

g In SVES, a temporary polynomial used in the key generation process.

GCD(a, b) Greatest Common Divisor of two non-negative integers a and b.

h Public key.

Hash() A cryptographic hash function computed on the contents of ().

hLen Length in octets of a hash value.

i An integer.

k Security level in bits.

m The message, an octet string, which is encrypted in SVES.

M In SVES, the padded and formatted message representative octet string used during encryption
and decryption.

m’ The message representative polynomial that is submitted to the encryption primitive in the
SVES encryption scheme.

mod q Used to reduce the coefficients of a polynomial into some interval of length q.

mod p Used to reduce a polynomial to an element of the polynomial ring mod p.

N Dimension of the polynomial ring used (i.e., polynomials are up to degree N – 1).

p “Small” modulus, an integer or a polynomial.

q “Big” modulus, usually an integer.

r In LBP-PKE, the encryption blinding polynomial (generated from the hash of the padded
message M in SVES).

x The integer input to or output from integer conversion primitives.

X The indeterminate used in polynomials.

Z The ring of integers.

Zq The ring of integers mod q.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

15
Copyright © 2009 IEEE. All rights reserved.

6. Polynomial representation and operations

6.1 Introduction

The cryptographic techniques specified in this standard require arithmetic in quotient polynomial rings,
also called convolution polynomial rings. Intuitively, these algebraic objects consist of polynomials with
integer coefficients. Manipulation of these ring elements is accomplished by polynomial arithmetic modulo
a fixed polynomial: XN – 1 in this standard.

6.2 Polynomial representation

Typically in mathematical literature, a polynomial a in X is denoted a(X). In this standard, when the
meaning is clear from the context, polynomials a in the variable X are simply denoted by a. Further, all
polynomials used in this standard have degree N – 1, unless otherwise noted. In addition, given a
polynomial a, a variable denoted ai, where i is an integer, represents the coefficient of a of degree i. In
other words, the polynomial denoted a represents the polynomial a(X) = a0 + a1X + a2X2 + a3X3 + …+ aiXi +
… + aN–1 XN – 1, unless otherwise specified.

6.3 Polynomial operations

6.3.1 Polynomial multiplication

Let Z be the ring of integers. The polynomial ring over Z, denoted Z[X], is the set of all polynomials with
coefficients in the integers. The convolution polynomial ring (over Z) of degree N is the quotient ring
Z[X]/(XN – 1). The product c of two polynomials a,b ε Z[X]/(XN – 1) is given by Equation (1).

)()()(XbXaXc ×= with ∑
≡+

=
)(mod Nkji

jik bac (1)

All multiplications of polynomials a and b, represented as a × b, are taken to occur in the ring Z[X]/(XN – 1)
unless otherwise noted.

6.3.2 Reduction of a polynomial mod q

Throughout the document, polynomials are taken mod q, where q is an integer. To reduce a polynomial
mod q, one simply reduces each of the coefficients independently mod q into the appropriate (specified)
interval.

6.3.3 Inversion in (Z/qZ)[X]/(XN – 1)

For certain cryptographic operations such as key generation, it is necessary to take the inverse of a
polynomial in (Z/qZ)[X]/(XN – 1). This clause describes the algorithms necessary for inversion in this ring.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

16
Copyright © 2009 IEEE. All rights reserved.

6.3.3.1 Polynomial division algorithm in Zp[X]

This algorithm divides one polynomial by another polynomial in the ring of polynomials with integer
coefficients modulo a prime p. All convolution operations occur in the ring Zp[X] in this algorithm (i.e.,
there is no modular reduction of the powers of the polynomials).

Input: A prime p, a polynomial a in Zp[X] and a polynomial b in Zp[X] of degree N – 1 whose leading
coefficient bN is not 0.

Output: Polynomials q and r in Zp[X] satisfying a = b × q + r and deg r < deg b.

Operation: Polynomial division algorithm in Zp[X] shall be computed by the following or an equivalent
sequence of steps:

a) Set r := a and q := 0

b) Set u := bN
–1 mod p

c) While deg r ≥ N do

1) Set d := deg r(X)

2) Set v := u × rd × X(d–N)

3) Set r := r – v × b

4) Set q := q + v

d) Return q, r

6.3.3.2 Extended Euclidean Algorithm in Zp[X]

The Extended Euclidean Algorithm finds a greatest common divisor d (there may be more than one that are
constant multiples of each other) of two polynomials a and b in Zp[X] and polynomials u and v such that a
× u + b × v = d. All convolution operations occur in the ring Zp[X] in this algorithm (i.e., there is no
modular reduction of the powers of the polynomials).

Input: A prime p and polynomials a and b in Zp[X] with a and b not both zero.

Output: Polynomials u, v, d in Zp[X] with d = GCD(a, b) and a × u + b × v = d.

Operation: Extended Euclidean Algorithm in Zp[X] shall be computed by the following or an equivalent
sequence of steps:

a) If b = 0 then return (1, 0, a)

b) Set u := 1

c) Set d := a

d) Set v1 := 0

e) Set v3 := b

f) While v3 ≠ 0 do

1) Use the division algorithm (6.3.3.1) to write d = v3 × q + t3 with deg t3 < deg v3

2) Set t1 := u – q × v1

3) Set u := v1

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

17
Copyright © 2009 IEEE. All rights reserved.

4) Set d := v3

5) Set v1 := t1

6) Set v3 := t3

g) Set v := (d – a × u)/b [This division is exact, i.e., the remainder is 0]

h) Return (u, v, d)

6.3.3.3 Inverses in Zp[X]/(XN – 1)

The Extended Euclidean Algorithm may be used to find the inverse of a polynomial a in Zp[X]/(XN – 1) if
the inverse exists. The condition for the inverse to exist is that GCD(a, XN – 1) should be a polynomial of
degree 0 (i.e., a constant). All convolution operations occur in the ring Zp[X]/(XN – 1) in this algorithm.

Input: A prime p, a positive integer N and a polynomial a in Zp[X]/(XN – 1).

Output: A polynomial b satisfying a × b = 1 in Zp[X]/(XN – 1) if a is invertible in Zp[X]/(XN – 1), otherwise
FALSE.

Operation: Inverses in Zp[X]/(XN – 1) shall be computed by the following or an equivalent sequence of
steps:

a) Run the Extended Euclidean Algorithm (6.3.3.2) with input a and (XN – 1). Let (u, v, d) be the
output, such that a × u + (XN – 1) × v = d = GCD(a, (XN – 1)).

b) If deg d = 0.

c) Return b = d–1 (mod p) × u.

d) Else return FALSE.

6.3.3.4 Inverses in Zp^r[X]/(XN – 1)

For key generation in this standard it is necessary to calculate inverses in Za[X]/(XN – 1), where q is a power
of 2. In this case, the inversion algorithm (6.3.3.3) may be used to find the inverse of a(X) in the quotient
ring (R/2R)[X]/(M(X)). Then the following algorithm may be used to lift it to an inverse of a(X) in the
quotient ring (R/peR)[X]/(M(X)) with higher powers of the prime 2 (or any prime p).

Input: A prime p in a Euclidean ring R, a monic polynomial M(X) ε R[X], a polynomial a(X) ε R[X], and an
exponent e.

Output: An inverse b(X) of a(X) in the ring (R/peR)[X]/(M(X)) if the inverse exists, otherwise FALSE.

a) Use the inversion algorithm 6.3.3.4 to compute a polynomial b(X) ε R[X] that gives an inverse of
a(X) in (R/pR)[X]/(M(X)). Return FALSE if the inverse does not exist. [The inversion algorithm
may be applied here because R/pR is a field, and so (R/pR)[X] is a Euclidean ring.]

b) Set n 2

c) While e > 0 do

d) b(X) 2 × b(X) – a(X) × b(X)2 (mod M(X)), with coefficients computed modulo pn

e) Set e ⎣ e/2 ⎦

f) Set n 2 × n

g) Return b(X) mod M(X) with coefficients computed modulo pe

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

18
Copyright © 2009 IEEE. All rights reserved.

7. Data types and conversions

7.1 Bit strings and octet strings

As usual, a bit is defined to be an element of the set {0, 1}. A bit string is defined to be an ordered array of
bits. A byte (also called an octet) is defined to be a bit string of length 8. A byte string (also called an
octet string) is an ordered array of bytes. The terms first and last, leftmost and rightmost, most
significant and least significant, and leading and trailing are used to distinguish the ends of these
sequences (first, leftmost, most significant, and leading are equivalent; last, rightmost, least significant,
and trailing are equivalent). Within a byte, this standard additionally refers to the high-order and low-
order bits, where high-order is equivalent to first and low-order is equivalent to last.

Note that when a string is represented as a sequence, it may be indexed from left to right or from right to
left, starting with any index. For example, consider the octet string of two octets: 2a 1b. This corresponds to
the bit string 0010 1010 0001 1011. No matter what indexing system is used, the first octet is still 2a, the
first bit is still 0, the last octet is still 1b, and the last bit is still 1. The high-order bit of the second octet is 0;
the low-order bit of the second octet is 1.

When a bit string or a octet string is being encoded into a polynomial with coefficients reduced mod q (a
“ring element”), where q is usually either 128 or 256, the integer coefficients are mapped individually to bit
or octet strings, which are then concatenated. This mapping and its reverse are described in the conversion
primitives OS2REP, BS2REP, RE2OSP, and RE2BSP in 7.5 and 7.6.

This standard does not specify a single algorithm for converting from bit/octet strings to ternary
polynomials in an unbiased and reversible fashion. Instead, the standard uses two algorithms, which are
defined inline in the techniques that use them. One algorithm is reversible but biased; the other is unbiased
but non-reversible.

7.2 Converting between integers and bit strings (I2BSP and BS2IP)

7.2.1 Integer to bit string primitive (I2BSP)

I2OSP converts a nonnegative integer to a bit string of a specified length.

Input: i, nonnegative integer to be converted; bLen, intended length of the resulting bit string

Output: B, corresponding bit string of length bLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If x ≥ 2 xLen, output “integer too large” and stop.

b) Write the integer x in its unique xLen-bit representation in base 2 as follows:
 x = xxLen–1 × 2 xLen–1 + xxLen–2 × 2 xLen–2 + … + x1 × 2 + x0
where xi = 0 or 1 (note that one or more leading bits will be zero if x is less than 2 xLen–1).

c) Output the bit string xxLen–1 xxLen–2 … x1 x0.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

19
Copyright © 2009 IEEE. All rights reserved.

7.2.2 Bit string to integer primitive (BS2IP)

BS2IP converts a bit string to a nonnegative integer.

Input: B, bit string to be converted (bLen is used to denote the length of B)

Output: x, corresponding nonnegative integer

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If B is of length 0, output 0.

b) Let bbLen–1 bbLen–2 … b1 b0 be the bits of B from leftmost to rightmost.

c) Let x = bbLen–1 × 2 bLen–1 + bbLen–2 × 2 bLen–2 + … + b1 × 2 + b0.

d) Output x.

7.3 Converting between integers and octet strings (I2OSP and OS2IP)

7.3.1 Integer to octet string primitive (I2OSP)

I2OSP converts a nonnegative integer to an octet string of a specified length.

Input: x, nonnegative integer to be converted; oLen, intended length of the resulting octet string

Output: O, corresponding octet string of length oLen

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If x ≥ 256 oLen, output “integer too large” and stop.

b) Write the integer x in its unique oLen-digit representation in base 256:
 x = ooLen–1 × 256 oLen–1 + ooLen–2 × 256 oLen–2 + … + o1 × 256 + o0

where 0 ≤ oi < 256 (note that one or more leading digits will be zero if o is less than 256oLen–1).

c) For 1 ≤ x ≤ oLen, let the octet Oi be the concatenation of the bits in the integer representation of
ooLen-i, where left-most bit of the octet is the high order bit of the binary representation. Output the
octet string O = O1 O2 … OoLen .

NOTE—As an example, the integer 944 has the three-digit representation 944 = 0 × 256 2 + 3 × 256 + 178. The
corresponding octet string, expressed in integer values, is 0 3 178; as binary values, it is

 00000000 00000011 10110010

and in hexadecimal it is 00 03 b2.3

7.3.2 Octet string to integer primitive (OS2IP)

OS2IP converts an octet string to a nonnegative integer.

3 Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

20
Copyright © 2009 IEEE. All rights reserved.

Input: x, nonnegative integer to be converted; oLen, intended length of the resulting octet string.

Output: O, corresponding octet string of length oLen.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If O is of length 0, output 0.

b) Let O1 O2 … OoLen be the octets of O from first to last, and let ooLen–j be the integer value of the
octet Oj for 1 ≤ j ≤ oLen, where the integer value is represented as an octet (i.e., an eight-bit string)
most significant bit first.

c) Output x = ooLen–1 × 256 oLen–1 + ooLen–2 × 256 oLen–2 + … + o1 × 256 + o0.

7.4 Converting between bit strings and right-padded octet strings (BS2ROSP and
ROS2BSP)

This clause gives the primitives used to convert between bit strings and right-padded octet strings.

7.4.1 Bit string to right-padded octet string primitive (BS2ROSP)

Input: B: bit string to be converted; oLen: intended length of the resulting octet string.

Output: O, corresponding octet string of length oLen.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) Set bLen equal to the length of x in bits.

b) If bLen > 8 × oLen, output “input too long” and stop.

c) Append (8 × oLen – bLen) zero bits to the end of x.

d) Let b0 b1 … bxLen–2 bxLen–1 be the bits of B from first to last. For 0 ≤ i < oLen – 1, let the octet Oi =
b8i b8i+1 … b8i+7. Output the octet string

 O = O0 O1 … OoLen-1

7.4.2 Right-padded octet string to bit string primitive (ROS2BSP)

ROS2BSP converts an octet string to a bit string of a specified length.

Input: O: octet string to be converted; bLen: intended length of the resulting bit string.

Output: B: corresponding bit string of length bLen.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) Set oLen equal to the length of O in octets.

b) If bLen > 8 × oLen, output “input too short” and stop.

c) For 0 ≤ i < oLen – 1, consider the octet Oi to be the bits b8i b8i + 1 … b8 i+ 7.

d) If any of the bits bbLen –1 … b8 × oLen –1 are non-zero, output “non-zero bits found after end of bit
string” and stop.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

21
Copyright © 2009 IEEE. All rights reserved.

e) Output the bit string

 B = b0 b1 … bbLen-1

7.5 Converting between ring elements and bit strings (RE2BSP and BS2REP)

While octet string representation may be most convenient for ring element arithmetic in a microprocessor,
ring elements may be more compactly stored and transmitted as bit strings. This clause provides the
appropriate conversion primitives.

7.5.1 Ring element to bit string primitive (RE2BSP)

RE2OSP converts a ring element to a bit string.

Input: a: ring element to be converted, equal to a0 + a1 X + a2 X2 + … + aN–1 XN–1; N: dimension of ring; q:
larger modulus: all coefficients of the ring element are between 0 and q – 1.

Output: B: resulting bit string.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) For j = 0 to N – 1:

1) Set Aj equal to the smallest positive representation of aj mod q.

2) Set Bj = I2BSP (Aj, ceil[log2 q]). If the call to I2BSP outputs an error, output that error and
stop.

b) Output the bit string B = B0 || B1 || … || BN – 1.

NOTE—As an example, if q = 128 and N = 5, the polynomial

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4

is represented by the bit string 0101101 0000010 1001101 1100111 0001010. (If this were subsequently to be
converted to an octet string using BS2ROSP, it would become first the bit string 0101 1010 0000 1010 0110 1110 0111
0001 0100 0000, and then the octet string 5a 0a 6e 71 40.)

7.5.2 Bit string to ring element primitive (BS2REP)

BS2REP converts a bit string to a ring element.

Input: B: bit string to be converted; N: dimension of ring; q: larger modulus: all coefficients of the ring
element are between 0 and q – 1.

Output: a: resulting ring element, equal to a0 + a1 X + a2 X2 + … + aN–1 XN – 1.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If the length of B is not equal to N × ceil[log2 q], output “bit string incorrect length” and stop.

b) Consider B to be the series of bit strings B = B0 B1 … BN–1., where each Bj is of length ceil[log2 q]
bits.

c) For j = 0 to N – 1, set aj = BS2IP (Bj). If BS2IP outputs an error, output “error.”

d) Output a = a0 + a1 X + a2 X2 + … + aN–1 XN – 1.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

22
Copyright © 2009 IEEE. All rights reserved.

7.6 Converting between ring elements and octet strings (RE2OSP and OS2REP)

This clause gives the primitives for converting between ring elements and octet strings.

7.6.1 Ring element to octet string primitive (RE2OSP)

RE2OSP converts a ring element to an octet string.

Input: a: ring element to be converted, equal to a0 + a1 X + a2 X2 + … + aN–1 XN–1; N: dimension of ring; q:
larger modulus to be passed to RE2BSP: all coefficients of the ring element are between 0 and q–1.

Output: O: corresponding octet string.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) Convert the ring element a to a bit string bA using RE2BSP.

b) Convert the bit string bA to the octet string O using BS2ROSP.

c) Output O.

7.6.2 Octet string to ring element primitive (OS2REP)

OS2REP converts an octet string to a ring element.

Input: O: octet string to be converted; N: dimension of ring; q: larger modulus: all coefficients of the ring
element are between 0 and q – 1.

Output: a: resulting ring element, equal to a0 + a1 X + a2 X2 + … + aN–1 XN – 1.

Operation: The output shall be computed by the following or an equivalent sequence of steps:

a) If the length of O is not equal to N × ceil[log256 q], output “octet string incorrect length” and stop.

b) Convert the octet sting O to the bit string bA using ROS2BSP.

c) Convert the bit string bA to the ring element a using BS2REP.

d) Output a.

8. Supporting algorithms

8.1 Overview

In order to perform the operations securely, implementers shall choose supporting algorithms that satisfy
the security needs of the schemes. The security level of the supporting algorithm typically depends on the
desired security level of the scheme (e.g., for a desired security level of 80 bits, the SHA-1 hash algorithm
described in FIPS 180 is typically chosen). This clause defines the algorithms that shall be used to meet this
standard.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

23
Copyright © 2009 IEEE. All rights reserved.

8.2 Hash functions

Hash functions are used in two distinct situations in this standard: as the core of a mask generation
function, and as the core of a pseudo-random bit generator. For security purposes, the hash function should
be chosen at a strength that is commensurate to the desired security level. The recommended parameter sets
in this document specify hash functions appropriate to their security levels.

The only currently supported hash functions for use within this standard are SHA-1 and SHA-256 (see
FIPS 180).

All hash functions in this standard take an octet string as an input and produce an octet string as an output.
For compatibility with other standards that specify input and output as bit strings, the conversion primitives
ROS2BSP and BS2ROSP (7.4.1 and 7.4.2) may be used.

8.3 Encoding methods

8.3.1 General

Before a message is encrypted, it shall be processed to provide certain desirable security properties such as
semantic security. In this clause, the auxiliary methods for manipulating data for the encryption scheme are
listed. These currently consist of specific methods for generating the blinding polynomial r.

8.3.2 Blinding polynomial generation methods (BPGM)

8.3.2.1 General

In order to provide plaintext awareness, a blinding polynomial generation method (BPGM) shall be used to
generate a blinding polynomial r from the padded message pm. This clause contains two BPGMs. The first
utilizes the standard polynomial convolution method, and the second utilizes the optimized polynomial
convolution method.

8.3.2.2 lbp-bpgm-3

The blinding polynomial r shall be generated deterministically from the message m and the random value b
using a pseudo-random number generator.

Components: The parameters N and dr, the chosen index generation function IGF(), the hash function
Hash() chosen to parameterize IGF(), the polynomial index generation constant c, and the minimum
number of hash calls for the IGF to make, minCallsR.

Input: The seed, which is an octet string seed.

Output: The blinding polynomial, which is a polynomial r.

Operation: The blinding polynomial shall be computed by the following or an equivalent sequence of
steps:

a) Call the IGF with hash function Hash() and input seed, N, c, minCallsR to obtain the IGF state s.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

24
Copyright © 2009 IEEE. All rights reserved.

b) Set r := 0

c) Set t := 0

d) While t < dr do

1) Call the IGF with input s to obtain an integer i mod N.

2) If ri = 0

i) Set ri := 1

ii) Set t := t + 1

e) Set t := 0

f) While t < dr do

1) Call the IGF with input s to obtain an integer i mod N and the updated state s. If the IGF
outputs “error”, output “error.”

2) If ri = 0

i) Set ri := –1

ii) Set t := t + 1

g) Return r

8.4 Supporting algorithms

In order to perform the operations securely, implementers shall choose supporting algorithms that satisfy
the security needs of the schemes. The security level of the supporting algorithm typically depends on the
desired security level of the scheme [e.g., for a desired security level of 80 bits, the SHA-1 hash algorithm
(see FIPS 180) is typically chosen]. This clause defines the algorithms that shall be used to meet this
standard.

8.4.1 Mask generation functions

Mask generation functions (MGFs) are functions similar to hash functions, except that instead of producing
a fixed-length output they produce an output of arbitrary length.

All mask generation functions are parameterized by the choice of a core hash function. The only hash
functions supported for use with the MGFs in this standard are SHA-1 and SHA-256 (see FIPS 180).

This standard only permits the use of one mask generation function, MGF-TP-1. This function takes as
input an octet string and the desired degree of the output, and produces a ternary polynomial of the
appropriate degree. The only hash functions supported for use with this mask generation function are SHA-
1 and SHA-256 (see FIPS 180).

8.4.1.1 Mask generation function for ternary polynomials (MGF-TP-1)

Components: A hash function Hash with output length hLen octets.

Input: an octet string seed of length seedLen octets; the degree N, an integer; an argument hashSeed, taking
the values “yes” or “no”; and the minimum number of calls minCallsMask, an integer.

Output: An polynomial i of degree N – 1; or “error.”

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

25
Copyright © 2009 IEEE. All rights reserved.

Operation: The integer and state shall be produced by the following or an equivalent sequence of steps:

a) If seedLen+4 exceeds any input length limitation on the hash function Hash, output “error” and
exit.

b) If minCallsMask exceeds 232, output “error” and exit.

c) Check the value of hashSeed.

1) If hashSeed = “yes,” set the octet string Z to Hash(seed) and the integer zLen to hLen.

2) If hashSeed = “no,” set the octet string Z to seed and the integer zLen to seedLen.

d) Initialize the octet string buf to be a zero-length octet string.

e) Initialize counter:= 0.

f) Initialize N and c with the provided values. Set cLen = ceil (c/8).

g) While counter < minCallsR do

1) Convert counter to an octet string C of length 4 octets using I2OSP.

2) Compute Hash(Z || C) with the selected hash function to produce an octet string H of length
hLen octets.

3) Let buf = buf || H.

4) Increment counter by one.

h) Initialize i to be the null polynomial and cur, a pointer to the current coefficient of i, to be 0.

i) For each octet o in buf:

1) Convert o to an integer O using OS2IP.

2) If O ≥ 243 (= 35) discard O, move to the next octet, and go to step d)1).

3) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

4) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

5) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

6) Set icur = O mod 3; if cur = N output i; set cur = cur + 1; set O = (O – O mod 3) / 3.

7) Set icur = O; if cur = N output i; set cur = cur + 1.

j) If cur < N:

1) Convert counter to an octet string C of length 4 octets using I2OSP.

2) Compute Hash(Z || C) with the selected hash function to produce an octet string H of length
hLen octets.

3) Let buf = H.

4) Increment counter by one.

5) Return to step i).

k) Output i.

8.4.2 Index generation function

The term “index generation function,” (IGF) as used in this standard, applies to functions that are initialized
with a seed in the form of an octet string and may then be called repeatedly, producing an integer in a
specified range on each call.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

26
Copyright © 2009 IEEE. All rights reserved.

An IGF may be deterministic or non-deterministic. A deterministic IGF is parameterized by a hash
function; the only hash functions supported for use with the IGFs in this standard are SHA-1 and SHA-256
(see FIPS 180). On initialization, it takes as input a seed, which is an octet string; a modulus N; an index
generation constant c; and the desired minimum number of calls to the underlying hash function,
minCallsR. It outputs an integer in the range [0, N – 1] and the internal state s. On subsequent calls, it takes
as input the current state s and outputs an octet string of length oLen and the updated internal state s.

This standard permits the use of a deterministic index generation function based on a hash function and a
nondeterministic index generation function based on a random bit generator.

8.4.2.1 Index generation function (IGF-2)

Components: A hash function Hash with output length hLen octets.

Input:
EITHER: an octet string seed of length seedLen octets; the modulus N, an integer; an argument
hashSeed, taking the values “yes” or “no”; the index generation constant c, an integer; and the minimum
number of calls minCallsR, an integer.

OR: the state s.

Output: An integer i and the state s; or “error.”

Operation: The integer and state shall be produced by the following or an equivalent sequence of steps:

a) If s is not provided:

1) If seedLen+4 exceeds any input length limitation on the hash function Hash, output “error”
and exit

2) If minCallsR exceeds 232, output “error” and exit.

3) Check the value of hashSeed.

i) If hashSeed = "yes", set the octet string Z to Hash(seed) and the integer zLen to hLen.

ii) If hashSeed = "no", set the octet string Z to seed and the integer zLen to seedLen.

4) Intialize remLen to 0.

5) Initialize the bit string buf to be a zero-length bit string.

6) Initialize counter:= 0.

7) Initialize N and c with the provided values.

8) While counter < minCallsR do

i) Convert counter to an octet string C of length 4 octets using I2OSP.

ii) Compute Hash(Z || C) with the selected hash function to produce an octet string H of
length hLen octets.

iii) Let buf = buf || OS2BSP(H).

iv) Increment counter by one.

9) Set remLen = minCallsR × 8 × hLen.

b) Otherwise (if s is provided):

3) Extract the values Z, remLen, buf, counter, N, c from the state s. (The details of how they are
stored in s may be determined by the implementer).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

27
Copyright © 2009 IEEE. All rights reserved.

c) If remLen < c

1) Let the bit string M be the trailing remLen bits in buf.

2) Let tmpLen:=c – remLen.

3) Let cThreshold = counter + ceil[tmpLen/hLen].

4) While counter < cThreshold do

i) Convert counter to an octet string C of length 4 octets using I2OSP.

ii) Compute Hash(Z || C) with the selected hash function to produce an octet string H of
length hLen octets.

iii) Let M = M || OS2BSP(H).

iv) Increment counter by one. Increment remLen by 8 × hLen.

v) If counter = 232, output “error” and exit.

5) Set buf:=M.

e) Set the bit string b to the leading c bits in buf.

f) Convert b to an integer i using OS2IP.

g) If i ≥ 2c – (2c mod N) go back to step c).

h) Store the values Z, remLen, counter, N, cLen and c in the state s. (The details of how they are stored
in s may be determined by the implementer).

i) Output i mod N and s.

8.4.2.2 Index generation function (IGF-RBG)

This IGF is based on any approved random bit generator.

Components: An approved random bit generator RBG.

Input: The modulus N, an integer; the index generation constant c, an integer.

Output: An integer i.

Operation: The integer i shall be produced by the following or an equivalent sequence of steps:

a) Set cLen = ceil (c/8).

b) Obtain a bit string b of length 8 × cLen bits from RBG.

c) Convert b to an octet string o using BS2OSP.

d) Set the leftmost 8cLen – c bits of o to 0.

e) Convert o to an integer i using OS2IP.

f) If i ≥ 2c – (2c mod N) go back to step b)

g) Output i mod N.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

28
Copyright © 2009 IEEE. All rights reserved.

9. Short vector encryption scheme (SVES)

The following clause defines the supported encryption schemes. The only encryption scheme currently
supported is SVES. SVES stands for short vector encryption scheme.

9.1 Encryption scheme (SVES) overview

The general encryption scheme is a sequence of operations that are performed based on the choices of the
parameters, primitives, encoding functions, and supporting algorithms. In order to perform all of the SVES
encryption scheme operations, all of the components shall be specified.

9.2 Encryption scheme (SVES) operations

The SVES encryption scheme consists of the five operations key generation, key pair validation, public key
validation, encryption, and decryption. These operations are defined generally in this clause without
assuming any specific choices of the components listed in 9.1.

9.2.1 Key generation

A key pair shall be generated using the following or a mathematically equivalent set of steps. Note that the
algorithm below outputs only the values f and h. In some applications it may be desirable to store the values
f –1 and g as well. This standard does not specify the output format for the key as long as it is unambiguous.

Components: The parameters N, q, p, dF, dg; EITHER an Approved random number generator capable of
generating unbiased output in the range (0, N – 1) OR an index generation function IGF that takes an
Approved random bit generator RBG and the polynomial index generation constant c used by the IGF.

Input: None

Output: An key pair consisting of the private key f and the public key h.

Operation: The key pair shall be computed by the following or an equivalent sequence of steps:

a) Set the polynomial F := 0.

b) Set t := 0.

c) While t < dF do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N.

2) If Fi = 0

i) Set Fi := 1

ii) Set t := t + 1

d) Set t:=0 While t < dF do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N.

2) If Fi = 0

i) Set Fi := –1

ii) Set t := t + 1

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

29
Copyright © 2009 IEEE. All rights reserved.

e) Compute the polynomial f := 1 + p × F in (Z/qZ)[X]/(XN – 1)

f) Compute the polynomial f –1 (i.e., the polynomial f –1 such that f –1 × f = f × f –1 = 1) in
(Z/qZ)[X]/(XN – 1). If f –1 does not exist, go to step a).

g) Set the polynomial g := 0.

h) Set t := 0

i) While t < dg + 1 do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N.

2) If gi = 0

i) Set gi := 1

ii) Set t := t + 1

j) Set t := 0

k) While t < dg do

1) Call EITHER the RNG OR the IGF with input N, c, RBG to obtain an integer i mod N.

2) If gi = 0

i) Set gi := –1

ii) Set t := t + 1

l) Check that g is invertible mod q. If it is not, go back to step g).

m) Compute the polynomial h := f –1 × g × p in (Z/qZ)[X]/(XN – 1).

n) Output f, h.

9.2.2 Encryption operation

This clause defines the encryption operation. Note that within the definition of the spaces there may be
definitions of additional variables (e.g., when defining Dr, the values dr1, dr2 and dr3 may be specified as
well as the appropriate method of combining them).

Components:

⎯ The length of the encoded length lLen.

⎯ The number of bits of random data db, which shall be a multiple of 8.

⎯ The chosen mask generation function and associated parameters.

⎯ The chosen blinding polynomial generation method and the associated parameters.

⎯ The OID, an octet string

⎯ The number of bits of public key to hash, pkLen.

⎯ The minimum message representative weight, dm0.

⎯ The minimum number of calls to generate the masking polynomial, minCallsMask.

⎯ The maximum message length maxMsgLenBytes.

⎯ The minimum number of calls to generate the blinding polynomial, minCallsR.

⎯ The length of the encoding buffer, bufferLenBits.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

30
Copyright © 2009 IEEE. All rights reserved.

Inputs:

⎯ The message m, which is an octet string of length l octets.

⎯ The public key h.

Output: The ciphertext e, which is a ring element, or “message too long.”

Operation: The ciphertext e shall be calculated by the following or an equivalent sequence of steps:

a) Calculate octL = the lLen-octet-long encoding of the message length l.

b) If l > maxLen, output “message too long” and stop.

c) Randomly select an octet string b of length bLen using a random number generator with at least 8 ×
bLen bits of entropy content.

d) Form the octet string p0, consisting of the 0 byte repeated (maxMsgLenBytes + 1 – l) times.

e) Form the octet string M of length bufferLenBits/8 as b || octL || m || p0.

f) Convert M to a bit string Mbin using OS2BSP.

g) If Mbin is not a multiple of three bits long, append 0 bits to bring it up to a multiple of three.

h) Convert Mbin to a ternary polynomial of degree N – 1 as follows. Treat Mbin as a concatenation of
3-bit quantities. Convert each three-bit quantity to two ternary coefficients as follows, and
concatenate the resulting ternary quantities to obtain Mtrin.

⎯ {0, 0, 0} is converted to {0, 0}

⎯ {0, 0, 1} is converted to {0, 1}

⎯ {0, 1, 0} is converted to {0, –1}

⎯ {0, 1, 1} is converted to {1, 0}

⎯ {1, 0, 0} is converted to {1, 1}

⎯ {1, 0, 1} is converted to {1, –1}

⎯ {1, 1, 0} is converted to {–1, 0}

⎯ {1, 1, 1} is converted to {–1, 1}

i) Convert the public key h to a bit string bh using RE2BSP (7.5.1). Form the bit string bhTrunc by
taking the first pkLen bits of bh. Convert bhTrunc to the octet string hTrunc, of length pkLen/8
using BS2OSP. Form sData as the octet string

 OID || m || b || hTrunc

j) Use the chosen blinding polynomial generation method with the seed sData and the chosen
parameters to produce r. IF the blinding polynomial generation method outputs “error,” output
“error.”

k) Calculate R = r × h mod q.

l) Calculate R4 = R mod 4.

m) Convert R4 to the octet string oR4 using RE2OSP, using q = 4 within RE2OSP.

n) Generate a masking polynomial mask by calling the given MGF with inputs (oR4, N,
minCallsMask).

o) Form m’ by polynomial addition of M and mask mod p.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

31
Copyright © 2009 IEEE. All rights reserved.

p) If the number of 1s, or –1s, or 0s in m’ is less than dm0, discard m’ and return to step c).

q) Calculate the ciphertext as e = R + m’ mod q.

r) Output e.

Graphically, the encryption operation may be represented as follows in Figure 1.

MGFXOR

+

e

BVGM

r

mb

m’

r*h

mLen 00… ID

OS2BEP

RE2OSP

Figure 1—Encryption operation

9.2.3 Decryption operation

This clause defines the decryption operation. Note that within the definition of the spaces there may be
definitions of additional variables (e.g., when defining Dr, the values dr1, dr2 and dr3 may be specified as
well as the appropriate method of combining them).

Components:

⎯ The LBP-PKE decryption primitive to use.

⎯ The length of the encoded length lLen.

⎯ The number of bits of random data db, which shall be a multiple of 8.

⎯ The chosen mask generation function and hash function.

⎯ The chosen blinding polynomial generation method and the associated parameters.

⎯ The OID, an octet string.

⎯ The number of bits of public key to hash, pkLen.

⎯ The lower bound A.

⎯ The minimum message representative weight dm0.

⎯ The maximum message length maxMsgLenBytes.

Inputs:

⎯ The ciphertext e, which is a polynomial of degree N – 1.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

32
Copyright © 2009 IEEE. All rights reserved.

⎯ The private key f or (f, fp).

⎯ The public key h
Output: The message m, which is an octet string, or “fail.”

Operation: The message m shall be calculated by the following or an equivalent sequence of steps:

a) Calculate:

1) nLen = ceil [N/8], the number of octets required to hold N bits.

2) bLen = db/8, the length in octets of the random data.

3) maxLen = nLen – 1 – lLen – bLen, the maximum message length.

b) Decrypt the ciphertext e using the selected NTRU decryption primitive with inputs e and f to get the
candidate decrypted polynomial ci.

c) If the number of 1s, or –1s, or 0s in ci is less than dm0, set “fail” to 1.

d) Calculate the candidate value for r × h, cR = e – ci.

e) Calculate cR4 = cR mod 4.

s) Convert cR4 to the octet string coR4 using RE2OSP, using q = 4 within RE2OSP.

f) Generate a masking polynomial mask by calling the given MGF with inputs (coR4, N,
minCallsMask).

g) Form cMTrin by polynomial subtraction of cm’ and mask mod p.

h) Convert cMTrin to a bit string as follows. Treat cMTrin as a concatenation of polynomials each
containing 2 ternary coefficients. Convert each set of two ternary coefficients to three bits as
follows, and concatenate the resulting bit quantities to obtain cMBin.

⎯ {0, 0} is converted to {0, 0, 0}

⎯ {0, 1} is converted to {0, 0, 1}

⎯ {0, -1} is converted to {0, 1, 0}

⎯ {1, 0} is converted to {0, 1, 1}

⎯ {1, 1} is converted to {1, 0, 0}

⎯ {1, –1} is converted to {1, 0, 1}

⎯ {–1, 0} is converted to {1, 1, 0}

⎯ {–1, 1} is converted to {1, 1, 1}

⎯ {–1, –1} is converted to set “fail” to 1 and set bit string to {1, 1, 1}

i) If cMBin is not a multiple of 8 bits long, remove the final (length – length mod 8) bits.

j) Convert cMBin to an octet string cM using BS2OSP.

k) Parse cM as follows.

1) The first bLen octets are the octet string cb.

2) The next lLen octets represent the message length. Convert the value stored in these octets to
the candidate message length cl. If cl > maxMsgLenBytes, set fail = 1 and set cl = maxL.

3) The next cl octets are the candidate message cm. the remaining octets should be 0. If they are
not, set fail = 1.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

33
Copyright © 2009 IEEE. All rights reserved.

l) Convert the public key h to a bit string bh using RE2BSP (7.5.1). Form the bit string bhTrunc by
taking the first pkLen bits of bh. Convert bhTrunc to the octet string hTrunc, of length pkLen/8
using BS2OSP. Form sData as the octet string

 OID || m || b || hTrunc

m) Use the chosen blinding polynomial generation method with the seed sData and the chosen
parameters to produce cr.

n) Calculate cR' = h × cr mod q.

o) If cR' != cR, set fail = 1.

p) If fail = 1, output “fail.” Otherwise, output cm as the decrypted message m.

9.2.4 Key pair validation methods

A key pair validation method determines whether a candidate LBP-PKE public key/private key pair meets
the constraints for key pairs produced by a particular key generation method.

9.2.4.1 kpv3: key pair validation for ternary keys

This key validation method corresponds to the key generation operation in 9.2.1.

Components: The parameters N, q, dF, dg,

Input: The private key component F and the public key h.

Output: “valid” or “invalid.”

Operation:

a) Check that F and h are polynomials of degree no greater than N – 1. If either of them has greater
degree, output “invalid” and stop.

b) Check that all of the coefficients of h lie in the range [0, q – 1]. If any coefficients lie outside this
range, output “invalid” and stop.

c) Check that F is ternary with exactly dF 1s and dF –1s. If it is not, output “invalid” and stop.

d) Set f = 1 + 3F mod q.

e) Set g = f × h × 3–1 mod q.

f) Check that g is ternary with exactly dg + 1 1s and dg –1s. If it is not, output “invalid” and stop.

g) Output “valid.”

9.2.5 Public key validation

9.2.5.1 Full public key validation

A full public key validation method determines whether a candidate public key satisfies the definition of a
public key and meets any additional constraints imposed by a given key pair generator. Such methods

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

34
Copyright © 2009 IEEE. All rights reserved.

provide the highest assurance to a relying party. For example, for keys generated using the key generation
operation in 9.2.1, full public key validation would prove that h = f–1g mod q, where f = 1 + pF and F, g
have dF, dg 1s respectively. Currently there are no known methods that provide full public key validation
for the LBE-PKE schemes in this standard.

9.2.5.2 Partial public key validation and plausibility tests

9.2.5.2.1 Overview

A partial public key validation method determines, with some level of assurance, whether a candidate
public key meets some of the properties of a public key. As with full public key validation methods, partial
public key validation methods may be interactive or non-interactive. This standard supports only non-
interactive methods.

Non-interactive methods for LBP-PKE public keys that do not require a witness are called plausibility tests.
The name reflects the fact that, while examining only the public key, the tests only determine whether the
public key is plausible, not necessarily whether it is valid. Plausibility tests can detect unintentional errors
with reasonable probability, though not with certainty. (See the note below.)

This is still an active research area; further methods may be described in future versions of this standard.

NOTE—There are other ways to detect unintentional errors; a checksum on the key can be used to detect storage and
transmission errors, and the signature on a certificate will likely fail verification if the public key is modified. The
checks in this clause provide an additional level of assurance beyond the other methods, or an alternative when they are
not available.

9.2.5.2.2 Example suite of plausibility tests

The following is an example of a plausibility test, corresponding to the key generation operation in 9.2.1.

a) Check that h(1) = g(1)/(1 + pF(1)) mod q. [For binary polynomials, F(1) = dF; for product-form
polynomials, F(1) = df1 × df2+df3. In both cases, g(1) = dg.] If it is not, output “invalid” and stop.

b) For t = 0 to q – 1, reduce h into the range [t, t + q – 1].

c) Calculate the centered norm ||h|| for h reduced into this range.

d) Set ||h||min equal to the minimum value of ||h|| obtained in the previous step.

e) Set ||r|| = √ [2 dr].

f) If ||h||min > q (√N) / (3 ||r||), output “plausible public key” and stop. Otherwise, output “invalid” and
stop.

Steps b)–e) are motivated by the considerations of A.4.2: for a valid public key h, the calculation of h × r
mod q involves a large number of reductions mod q. The test checks that ||h × r|| > q√(N)/2, in other words
that the centered norm of h × r is with high likelihood greater than the centered norm of a polynomial
consisting of N/2 coefficients with the value q/2 and N/2 coefficients with the value –q/2 (this calculation
uses the pseudo-multiplicative property of the centered norm defined in A.1.1). For genuine h, the typical
value of ||h||min is slightly under q √(N/12). For binary polynomials, the centered norm ||r|| is √(2dr), which
is considerably greater than √(3) for all parameter sets in this standard. A valid h therefore passes this test
with high probability.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

35
Copyright © 2009 IEEE. All rights reserved.

Annex A

(informative)

Security considerations

A.1 Lattice security: background

This subclause provides an overview of the properties of lattices, as a necessary preliminary to considering
the security of cryptosystems based on hard lattice problems.

A.1.1 Lattice definitions

A lattice of dimension n is a maximal discrete subgroup of real n-dimensional space Rn. A lattice L may be
specified by a spanning set of n linearly independent vectors {b1,…,bn} called a basis for L, in which case L
is the set of vectors shown in Equation (A.1).

L = { x1b1 + … + xnbn : x1,…,xn ε Z } (A.1)

A lattice has many bases. A lattice is called integral if it is contained in Zn and it is called rational if it is
contained in Qn. A (row) matrix for L is a matrix whose rows form a basis for L. The discriminant of L,
denoted Disc(L), is the determinant of any matrix for L; the value is independent of the choice of basis. The
discriminant is also characterized as the volume of a fundamental domain for the quotient space Rn/L, so it
is also sometimes called the volume (really co-volume) of L.

The L2-norm and the centered L2-norm of a vector a are given by the respective formulas [see Equation
(A.2) and Equation (A.3)].

∑
−

=

=
1

0

2
2||)(||

N

i
iaXa (A.2)

21

0

1

0

2
,2

1||)(|| ⎟
⎠
⎞

⎜
⎝
⎛−= ∑∑

−

=

−

=

N

i
i

N

i
ictr a

N
aXa (A.3)

Let aavg be the vector whose coordinates are all equal to (a0+a1+…+aN – 1)/N, the average of the coordinates
of a. Then the centered L2-norm of a may also be defined by ||a||2,ctr = ||a – aavg||2.

A vector a is said to be centered if a0 + a1 +…+ aN–1 = 0, that is, if the average of its coordinates is 0. (If the
vectors a and b represent polynomials, the sum a(X) + b(X) and the product a(X) × b(X) of centered
polynomials a(X) and b(X) are themselves centered.)

The L2-norm of the (convolution) product of two independent centered polynomials a(X) and b(X) may be
estimated by Equation (A.4).

||a(X) × b(X)||2 ≈ ||a(X)||2 × ||b(X)||2 (A.4)

This is known as the pseudo-multiplicative property of the centered norm.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

36
Copyright © 2009 IEEE. All rights reserved.

The first minimum of L, denoted λ(L) or λ1(L), is the length of the smallest nonzero vector in L. More
generally, for each 1 ≤ i ≤ n, the ith successive minimum of L, denoted λi(L), is the infimum of all numbers λ
such that L contains i linearly independent vectors of length at most λ. Hermite’s constant γn is the infimum
of the ratio λ1(L)2/Disc(L)2/n as L runs over all lattices of dimension n. It is known that γn θ(n), although the
exact value of γn is only known for 1 ≤ n ≤ 8.

Let a ε Rn. The distance from a to L, denoted λ(L,a), is the distance from a to the closest vector in L.

A.1.2 Hard lattice problems

The shortest vector problem (SVP) for a lattice L is to find a vector v ε L satisfying ||v|| = λ1(L), that is, to
find a vector of shortest nonzero length. The approximate short vector problem (apprSVP) is to find a
vector v ε L satisfying ||v|| ≤ f(n)λ1(L) for some (slowly growing) function f of the dimension n.

The closest vector problem (CVP) for a lattice L and vector a ε Rn is the problem of finding a vector v ε L
satisfying ||v – a|| = λ(L,a), i.e., minimizing the distance ||v – a||. The approximate closest vector problem
(apprCVP) is to find a vector v ε L satisfying ||v – a|| ≤ f(n)λ(L,a) for some (slowly growing) function f of
the dimension n.

The smallest basis problem (SBP) for a lattice L has many different formulations depending on how one
measures the “smallness” of a basis. A common definition is to minimize the length of the longest element
of the basis. Another common definition is to minimize the product of the lengths of the elements in the
basis.

A.1.3 Theoretical complexity of hard lattice problems

It is known that SVP is NP-hard under randomized reductions (Ajtai [B1]), and the same is true for
apprSVP with approximating factor √2 (Miciancio [B75]). It is known that CVP is NP-hard (van Emde
Boas [B101]). Although CVP appears to be somewhat harder than SVP, it is known that an algorithm to
solve apprSVP with approximating function f(n) can be used to solve apprCVP with approximating
function n3/2f(n) (Kannan [B60]), so the two are polynomially equivalent. In practice, a CVP in dimension n
can often be solved by transforming it into an SVP in dimension n + 1. In the other direction, it is very
unlikely that apprSVP or apprCVP is NP-hard for the approximating function f(n) ≈ (n/log n)1/2 (Goldreich
and Goldwasser [B23]).

A.1.4 Lattice reduction algorithms

Let L be an integral (or rational) lattice of dimension n. An exhaustive search can be used to solve SVP or
CVP, with expected running time exponential in n. There are algorithms for solving apprSVP and apprCVP
with polynomial (in n) running time and (slightly better than) exponential approximating factor f(n). More
precisely, the LLL algorithm (Lenstra, et al. [B69]) runs in polynomial time and returns a nonzero vector
v ε L satisfying ||v|| ≤ 2n/2λ1(L); the approximating factor can be improved to 2O(n(log log n)2/log n) (Schnorr
[B89]). More generally, Schnorr [B89], Schnorr and Euchner [B90], and Schnorr and Hoerner [B91]
describe block variants of the LLL algorithm called BKZ-LLL whose running time and approximating
factor depend on the choice of a block size β. Larger values of β lead to better results and longer running
times. The BKZ-LLL algorithm with block size β finds a nonzero vector v ε L satisfying Equation (A.5).

||v|| ≤ (2.45β)n/β λ1(L) in time at most O(n2(ββ/2+o(β) + n2)) (A.5)

Thus in order to obtain a provable polynomial approximation factor, the block size β must be proportional
to the dimension n, in which case the running time is (at least) exponential in the dimension.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

37
Copyright © 2009 IEEE. All rights reserved.

In practice, the LLL algorithm and its BKZ-LLL variants tend to return answers that are somewhat better
than the upper bounds given by theory. However, also in practice, the shortest vector returned by BKZ-LLL
tends to be considerably longer than λ1(L) until the block size β is an appreciable fraction of the dimension
n. Also in practice, the running time of BKZ-LLL is (at least) exponential in the block size β. In other
words, even in practice, BKZ-LLL is unlikely to find a vector as short as cn/β in time less than O(n2ββ/2).

Recent research (Schnorr [B92]) suggests another block-based algorithm known as Random Sampling
Reduction (RSR), which is guaranteed to find a nonzero vector v ε L satisfying Equation (A.6).

||v|| ≤ (k/6)n/2k λ1(L) in time approximately O(n3(k/6)k/4) (A.6)

For exact solutions to SVP and CVP, there are superexponential algorithms (Kannan [B59][B61]) with
running time 2O(n log n) and a more recent algorithm with exponential running time (Ajtai, et al. [B3]). Other
lattice reduction algorithms are described in LaMacchia [B68], Villard [B102], Buchmann and Ludwig
[B13], Nguyen and Stehle [B82]. The review in Howgrave-Graham [B38] considers known lattice attacks
and concludes that no better attack is currently known than straightforward BKZ.

For solving a CVP of dimension n, the best method in practice is to embed it into an SVP of one higher
dimension (Goldreich [B24] and Nguyen [B80]. Let (L,a) be a CVP. Then one takes a basis {b1,…,bn} for
L, forms the lattice L × in Rn+1 with basis {[b1,0],…,[bn,0],[a,c]} for an appropriate constant c and hopes
that a shortest vector in L × has the form [u,c], in which case the vector a + u is in L and is likely to be a
closest vector to a.

A.1.5 The Gaussian heuristic and the closest vector problem

Let L be a lattice and let a ε Rn be a vector. The Gaussian heuristic says that all other things being equal,
the distance from a to the closest vector in L is probably approximately equal to the value of R specified by
following condition:

Volume of a ball of radius R around a > Discriminant of L

The intuition underlying the Gaussian heuristic is that all of Rn can be covered by disjoint n-dimensional
parallelopipeds of volume Disc(L) centered at the points of L, so any nicely shaped region with the same
volume is likely to contain a point of L. Using the formula πn/2/(n/2)! for the volume of an n dimensional
ball (n even) and using Stirling’s formula to approximate factorials as k! ≈ (k/e)k(2πk)1/2, the Gaussian
heuristic says that in a lattice of large dimension n, the critical radius is given by Equation (A.7).

Rcrit(L) = (n/2πe)1/2 Disc(L)1/dim(L) (A.7)

If R is somewhat larger than Rcrit(L), then the Gaussian heuristic predicts that there are many vectors of L
that are within a distance R of a; while if R is smaller than Rcrit(L), then the Gaussian heuristic predicts that
there are few or no vectors of L that are within a distance R of a.

Let L be a lattice of dimension n and let a ε Rn. In many situations of cryptographic interest, one hides a
vector v ε L that is a known (short) distance δ from the known vector a. Thus the lattice L, the vector a, and
the distance δ are public knowledge, while the vector v is the private information. The Gaussian heuristic
can be used to predict if v is likely to be a closest vector to a, in which case recovery of the private
information is probably equivalent to solution of the CVP for (L,a). More precisely, the Gaussian heuristic
says that if δ = ||v – a|| is significantly smaller than (n/2πe)1/2 Disc(L)1/n, say less than ½ or ⅓ of this
quantity, then v is probably a solution to the CVP for (L,a) and δ = λ(L,a).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

38
Copyright © 2009 IEEE. All rights reserved.

A.1.6 Modular lattices: definition

A modular lattice (ML) with dimension parameter n = 2N and modulus parameter q is a lattice of
dimension n generated by the rows of an n-by-n matrix of the form shown in Equation (A.8).

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

q

q
hh

hh

b

b

NNN

N

L

MOM

L

L

MOM

L
L

MOM

L

L

MOM

L

0

0

00

00
0

0

1

111

 (A.8)

The entries of the ML matrix are integers. Without loss of generality, it may be assumed that the integers hij
all satisfy |hij| ≤ q/2, since this may be achieved by subtracting appropriate multiples of the bottom N rows
from the top N rows. The integer b is called the balancing constant. It is selected to balance the two halves
of the target vector.

It is often convenient to write an ML matrix in abbreviated form as ⎥
⎦

⎤
⎢
⎣

⎡
qI
hbI

0
, where I denotes an N-by-N

identity matrix, 0 denotes an N-by-N zero matrix, and h denotes an N-by-N matrix with integer entries.

A.1.7 Modular lattices and quotient polynomial rings

It is convenient to identify a polynomial F(X) = F0 + F1X + F2X2 + … + FN–1XN–1 of degree less than N with
its vector of coefficients F = [F0, F1, F2, …, FN–1]. If F(X) and G(X) are two polynomials, let [F, G] be the
vector of dimension 2N formed by concatenating their coefficients.

Let M(X) ε Zq[X] be a monic polynomial of degree N. Then each polynomial h(X) in the quotient ring
Zq[X]/(M(X)) can be used to form a modular lattice Lh as follows in Equation (A.9).

Lh = { [F, G] : F(X) × h(X) = G(X) in Zq[X]/(M(X)) } (A.9)

In other words, the lattice Lh is formed from all polynomials F(X),G(X) ε Z[X] satisfying Equation (A.10).

F(X) × h(X) ≡ G(X) (modulo q and M(X)) (A.10)

The ith row of the N-by-N upper righthand block of the matrix for Lh is formed from the coefficients of the
remainder when Xih(X) is divided by M(X). In the important case that M(X) = XN – 1, this block is the
circulant matrix formed from the coefficients of h(X) (see A.1.12).

The following procedure creates a modular lattice containing a preselected vector [f, g]. Choose h(X) to
satisfy h(X) ≡ f(X)–1 × g(X) (modulo q and M(X)). [This assumes that f(X) has an inverse in the ring
Zq[X]/(M(X)).]

A.1.8 Balancing CVP in modular lattices

Let (L,a) be a closest vector problem in a modular lattice L and let v ε L be a solution. Write a as a =
[a1,a2], so a1 and a2 each have N coordinates, and similarly write v as v = [v1,v2]. If the balancing constant b
(see A.1.8) in the matrix of L is replaced by a new balancing constant bnew to form a new modular lattice

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

39
Copyright © 2009 IEEE. All rights reserved.

Lnew, then the closest vector problem (Lnew,anew) has the solution vnew, where anew = [(bnew/b)a1,a2] and vnew =
[(bnew/b)v1,v2]. (More precisely, vnew is very close to anew and the Gaussian heuristic can be used to verify
that it is likely to be a closest vector.) Thus for any given modular lattice closest vector problem (L,a), one
solves the problem by choosing a balancing constant b and modified lattice and vector a that make the
problem easiest.

In practice, it is easiest to solve a modular lattice closest vector problem (L,a) if the two halves of the
problem have approximately equal length. A ML CVP is said to be balanced if a solution v = [v1,v2] ε L to
the CVP satisfies Equation (A.11).

|| v1 – a1 || ≈ || v2 – a2 || (A.11)

It is often possible to use general knowledge about the form of the solution vector v to determine a
balancing constant that makes the problem balanced. (For example, one might know that v1 is a binary
vector with d1 ones and that v2 is a binary vector with d2 ones.) Thus, in analyzing the difficulty of solving
the CVP, it is advisable to always assume that the attacker knows how to balance the problem.

An equivalent definition of a balanced closest vector problem says that among all choices of balancing
constant b, the ratio of the target distance ||v – a|| to the root-discriminant Disc(L)1/dim(L) = (bq)1/2 is
minimized. Thus in order to balance a closest vector problem, it is only necessary to know (approximately)
the distance from a closest vector to a. It is not necessary to actually know a closest vector.

A.1.9 Fundamental CVP ratios in modular lattices

If the lattice L were to have a basis consisting of n equal length, pairwise orthogonal vectors, then those n
basis vectors would each have length equal to the root-discriminant Disc(L)1/dim(L). Lattices that have such a
basis are particularly easy to work with. For a closest vector problem (L,a) in which the target vector is
quite close to a (i.e., closer than predicted by the Gaussian heuristic), the ratio of the root-discriminant to
the target distance is one measure of the difficulty of solving the problem. This ratio is denoted by Equation
(A.12).

ρ = ρ (L,a) = λ(L,a)/Disc(L)1/dim(L) (A.12)

In general, the smaller the value of ρ (L,a), the easier it is to find a closest vector to a. This is true because a
small value of ρ means that the target vector v is probably much closer to a than it is to any other vector in
L, so a lattice search algorithm will have an easier time distinguishing v from the other vectors in L.

Experimentally in Hoffstein, et al. [B35], it is observed that a more useful quantity to hold constant as the
dimension increases is not σ, but rather the related quantity c = ρ × √(2N).

Let L be a modular lattice L of dimension n = 2N and modulus q. A second quantity that affects the
difficulty of solving a closest vector problem in L is the ratio of the dimension to the modulus. This ratio is
denoted by Equation (A.13).

a = a(L) = N/q (A.13)

Experiments have suggested that holding a constant and increasing c increases lattice breaking times
considerably, and that holding c constant and increasing a decreases lattice breaking times very slightly.

A.1.10 Creating a balanced CVP for modular lattices containing a short vector

A typical problem of cryptographic interest is to find a short target vector v = [v1,v2] in a given modular
lattice L of dimension 2N, modulus q, and balancing constant b = 1. Assuming that v is actually a shortest

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

40
Copyright © 2009 IEEE. All rights reserved.

vector in L, it can be found by solving the SVP for L, but one frequently knows some additional
information about v1 and v2 that allows an easier CVP to be solved.

Write v1 = [v11,v12,…,v1N] and v2 = [v21,v22,…,v2N]. In many situations, one knows (or can approximate) the
quantities as shown in Equation (A.14).

γ1 = v11 + v12 + … + v1N δ1 = v11
2 + v12

2 + … +v1N
2

γ2 = v21 + v22 + … + v2N δ2 = v21
2 + v22

2 + … +v2N
2 (A.14)

Example. If v1 and v2 are binary vectors with a specified number of zeros and ones, then it is
easy to compute γ1,δ1,γ2,δ2.] The length ||v|| is larger than the distance from v to the known vector
d = [d1,a2] = [γ1/N, γ1/N, …,γ1/N, γ2/N, γ2/N, …,γ2/N], so it will generally be easier to find v by solving the
CVP for (L,d) than it is by solving SVP for L. The precise formulas for the relevant distances are shown in
Equation (A.15) and Equation (A.16).

||v||2 = δ1 + δ2 (A.15)

||v – d||2 = δ1 – γ1
2/N + δ2 – γ2

2/N (A.16)

In order to balance the problem, one uses the balancing constant b = ||v2 – d2||/||v1 – d1|| for L. Then the
closest vector to [bd1,d2] is probably the vector [bv1,v2]. The ρ parameter for this balanced CVP is shown in
Equation (A.17).

ρ = [2(δ1 – γ1
2/N)1/2(δ2 – γ2

2/N)1/2/q]1/2 (A.17)

The Gaussian heuristic predicts that the balanced CVP has a unique solution (up to obvious symmetries of
the lattice) provided that the value of ρ is significantly smaller than (N/2πe)1/2, which implies that the value
of c is significantly smaller than N/√(πe).

A.1.11 Modular lattices containing (short) binary vectors

Let BN(d) = { binary vectors of dimension N with d ones and N – d zeros }.

For example, B4(2) = { [0,0,1,1], [0,1,0,1], [0,1,1,0], [1,0,0,1], [1,0,1,0], [1,1,0,0] }. In general, the set
BN(d) has N!/d!(N-d)! elements.

Let L be a modular lattice of dimension 2N and modulus q and balancing constant b = 1, and suppose
that it is known that L contains a vector v = [v1,v2] with v1 ε BN(d1) and v2 ε BN(d2). Then it is known that
γ1 = d1, δ1 = d1, γ2 = d2, δ2 = d2.

The best method to search for v is to solve a balanced CVP with fundamental ratios as shown in Equation
(A.18).

ρ = (2/q)1/2(d1(1 – d1/N)d2(1 – d2/N))1/4 and a = N/q (A.18)

If d1 = d2 = d, then the CVP is already balanced and the formulas for the fundamental ratios simplify to
Equation (A.19).

ρ = (2d(1 – d/N)/q)1/2 and a = N/q (A.19)

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

41
Copyright © 2009 IEEE. All rights reserved.

A.1.12 Convolution modular lattices

A Convolution (or Circulant) Modular Lattice (CML) is a modular lattice in which the matrix h is a
circulant matrix, that is, h is a matrix of the form shown in Equation (A.20).

h =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

021

201

110

hhh

hhh
hhh

NN

N

L

MOMM

L

L

 (A.20)

where h0,…,hN-1 are integers, taken without loss of generality to satisfy |hi| ≤ q/2.

A simple way to generate a convolution modular lattice containing a short vector of a specified length is to
use the convolution ring Rq = Zq[X]/(XN–1). First choose two polynomials f(X),g(X) ε Rq whose vectors of
coefficients are short. For example, f(X) might have binary coefficients with d1 ones and g(X) might have
binary coefficients with d2 ones. Then find a solution h(X) ε Rq to the equation f(X) × h(X) = g(X). A
solution generally exists provided gcd(h(1),q) = 1; and if a solution exists, it is easily computed using the
Euclidean algorithm and (if q is composite) the Chinese Remainder Theorem and Hensel’s Lemma. If the
coefficients of h(X) = h0+h1X+h2X2+…+hN-1XN-1 are used as the upper righthand quadrant of a convolution
modular lattice Lh, then the lattice Lh contains the vector shown in Equation (A.21).

[f0, f1, f2, …, fN–1, g0, g1, g2, …, gN–1] ε BN(d1) × BN(d2) (A.21)

The cyclic nature of a convolution lattice L means that for every vector

v = [a0, a1, a2, …, aN-1, b0, b1, b2, …, bN-1] ε L,

all of the vectors obtained by cyclically shifting the two halves of v are in L. In other words, the vectors

[ak, ak+1, ak+2, …, ak–1, bk, bk+1, bk+2, …, bk–1], k = 1, 2, 3, …, N – 1,

are also in L.

A.1.13 Heuristic solution time for CVP in modular lattices

Let L be a modular lattice of dimension n = 2N and modulus q, and let (L,v) be a balanced closest vector
problem. Then experimental evidence in Hoffstein et al. [B35] and Howgrave-Graham, et al. [B43]
suggests that the average time T to solve the closest vector problem (L,a) is exponential in the dimension,
with constants depending on the quantities c(L,a) and a(L) introduced in A.1.9. In other words,

log(T) ≈ α N + β

where

α = α(c, a)

β = β(c, a) depend on c = c(L, v) and a = a (L)

This heuristic allows experimental determination of the constants α and β for given values of c and a. After
α and β are determined, then the formula log(T) ≈ α N + β can be used to extrapolate the time needed to
solve a balanced closest vector problem (L*,v*) whose dimension 2N* is too large to solve directly. Thus,
the following steps can be used to estimate the time to solve a modular lattice CVP:

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

42
Copyright © 2009 IEEE. All rights reserved.

a) Replace (L*,a*) by an associated balanced CVP if it is not already balanced.

b) Compute the c and a constants c* = c(L*,v*) and μ* = μ(L*) for the given CVP.

c) Perform experiments to solve many balanced ML CVPs (L,v) whose c and a constants satisfy c(L,a)
= c* and a(L) = a*. Do this for many different problems in each of many different dimensions 2Ni, i
= 1,2,3,…. Record the average time Ti to solve the problems in each dimension.

d) Plot the points (Ni,log(Ti)), i = 1,2,3,…, and compute the regression line Y = α X + β.

e) Extrapolate the solution time T* for the original problem by the formula log(T*) ≈ α N* + β.

A.1.14 Zero-forcing

If f or g have a large number of zero entries, then the zero-forcing algorithms of May [B72] and May and
Silverman [B73] for modular convolution lattices may allow reduction of the lattice dimension. In the case
that f has d ones and N – d zeroes, the speedup in performing an r-fold zero-force is approximately as
shown Equation (A.22).

() 2/
1

0

2111 r
Nd

i
iN

r α

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−− ∏
−

=
− (A.22)

where the running time for the given class of lattices is T ≈ 2αN + β. The optimal value of r may be
determined using this formula. If g has more zeroes than f, an attacker may invert h mod q and attempt
zero-forcing in the lattice defined by h–1 to recover (g, f). For all the parameter sets in this standard, f has
more zeroes than g, so this approach does not advantage the attacker.

A.2 Experimental solution times for NTRU lattices—full key recovery

A.2.1 Experimental solution times for NTRU lattices using BKZ reduction

A private key consists of a pair of (f(X),g(X)). The associated LBP-PKE public key h(X) is formed via the
relation shown in Equation (A.23).

f(X) × h(X) ≡ p × g(X) (mod q) (A.23)

The associated CML CVP formed from the coefficients of h(X)/p mod q has target vector v = [v1,v2] formed
from the coefficients of [f(X),g(X)]. The selection of f(X) and g(X) should follow the guidelines described in
this Annex for the selection of target vectors for ML CVPs. In the case that f(X) has the form f0(X) + p ×
F(X) for a known polynomial f0(X) (e.g., f0(X) = 1), then the CML CVP target vector is the vector
[F(X),g(X)]. The security is computed using the smaller norm bound associated to [F(X),g(X)].

The CML formed using the coefficients of the public key h(X) may also be used to formulate a CVP in
which the target vector v = [v1,v2] is formed from the coefficients of [r(X),m(X)]. This lattice problem can
also be described in terms of the values a and c. For the parameter sets given in this standard, the message-
recovery lattice problem is slightly easier than the key-recovery lattice problem.

Table A.1gives the relationship between N and lattice security levels in bits as determined experimentally
for convolution modular lattices. Experiments were run using Victor Shoup’s NTL library [B95]. Lattices
with the given values of c and a were successfully reduced at low dimension, and the figures given below
were obtained by a least-squares fit to the points corresponding to the values of N that required more than
35 bits of effort to reduce (this value varied depending on c and a). It was observed that holding a constant

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

43
Copyright © 2009 IEEE. All rights reserved.

and increasing c increased lattice breaking times considerably, and that holding c constant and increasing a
decreased lattice breaking times very slightly [see Equation (A.24)].

c = √(4πe ||F|| ||g|| / q) (A.24)

The experiments were run on 400 MHz Celeron machines, and the time in seconds converted to the time in
MIPS-years by first multiplying by 400 (to account for the 400 MHz machines) and then dividing by
31557600, which is the number of seconds in a year. Breaking times were converted to bit security using
the identification of 80-bit security with 1012 MIPS-years Lenstra and Verheul [B70] (see Table A.1).

Table A.1—Lattice security
c a Bit security

1.73 0.53 0.3563N – 2.263
2.6 0.8 0.4245N – 3.440
3.7 2.7 0.4512N + 0.218
5.3 1.4 0.6492N – 5.436

For the parameter sets in this standard, the value of c is between 1.74 and 3.03 (see Figure A.1).

Figure A.1—Lattice breaking times and linear extrapolations

There is some variation among published estimates of running time due to the particular definition of a
MIPS-Year and to the difficulty of estimating actual processor utilization. (How many arithmetic
instructions a modern processor performs in a second when running an actual piece of code depends
heavily not only on the clock rate, but also on the processor architecture, the amount and speeds of caches
and RAM, and the particular piece of code.) Thus, the estimates given here may differ from others in the
literature, although the relative order of growth remains the same. The current estimates of lattice strength
allow a large margin for error and for improvements in lattice reduction techniques.

0

10

20

30

40

50

60

70

80

90

1 00

0 50 100 150 200 250

N

c = 1. 73, a = 0.53
c = 2. 6, a = 0.8
c ~ = 3. 7, a ~= 2.7
c = 5. 3, a = 1.4
Li nea r (c = 2.6, a = 0.8)
Li nea r (c = 5.3, a = 1.4)
Linear (c ~ = 3.7, a ~= 2.7)
Linear (c = 1.73, a = 0.53)

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

44
Copyright © 2009 IEEE. All rights reserved.

NOTE—The strength of any cryptographic algorithm relies on the best methods that are known to solve the hard
mathematical problem that the cryptographic algorithm is based upon. The discovery and analysis of the best methods
for any hard mathematical problem is a continuing research topic. Users of LBP-PKE should monitor the state of the art
in lattice reduction, as it is subject to change.

A.2.2 Alternative target vectors

Examination of the NTRU decryption process reveals that any sufficiently small (f’, g’), with the property
that f’ × h = p × g’ mod q, allows decryption. Coppersmith and Shamir [B19] observes that, with slightly
longer vectors, it might be possible to decrypt with sufficient accuracy to allow an attacker to complete the
decryption by brute force. Neither of these attacks appears to be feasible. Although NTRUSign [B31]
makes use of the existence of short vectors that are linearly independent of f and g, it has been observed
experimentally in Hirschhorn et al. [B29] and [B35] that lattice reduction techniques that find any vector
shorter than q in fact terminates with (f, g) or one of its trivial “rotations” (f × Xk, g × Xk). Thus, there is not
currently known to be an attacker who can mount an attack based on slightly longer short vectors but does
not know the short vectors themselves.

A.3 Combined lattice and combinatorial attacks on LBP-PKE keys and messages

A.3.1 Overview

Howgrave-Graham [B38] presents a method for combining lattice reduction and combinatorial attacks. We
refer to this attack as a “hybrid” attack. In this approach, an attacker performs a certain amount of work to
reduce the central part of an NTRU lattice. Following the reduction, rows 1 to y1 –1, y1 < N, are unreduced,
rows y1 to y2, N < y2 < 2N, are reduced, and rows y2 + 1 to 2N are unreduced. Let K = 2N – y2 be that part of
the lattice containing the private key f that remains unreduced. The attacker can perform a combinatorial
search for the part of the key contained in the K-dimensional subspace. The attacker guesses the
coefficients of the part of f in this subspace and sums the lower K rows of the lattice to construct a
2N-dimensional vector. If the guess is correct, the first y2 entries in the vector are very close to a point in
the y2-dimensional transformed lattice that was output by the original reduction process.

The attack thus has two stages: the lattice reduction stage and the combinatorial stage. The total time for the
attack is the sum of the time for these stages. This standard requires that for a security level k, both of these
stages shall take more than k bits of work.

A.3.2 Lattice strength

In a hybrid attack, the lattice is not completely reduced. Instead, the attacker selects a sublattice of the main
lattice and applies a lattice reduction algorithm to that sublattice. With high probability, this sublattice does
not include any vector with length shorter than the Gaussian value discussed in A.1.5. The lattice running
times given in A.2 are for full key recovery; in this case, a short vector is present, and this reduces lattice
reduction times. In the hybrid case, where no short vector is present, the experiments of A.2 no longer
apply and, rather than measuring the running times necessary to recover the short vector, the new
experiments measure the amount of reduction that can be performed in a given amount of time. In this case,
the amount of reduction is measured by the number of diagonal entries bi in the lattice that can be altered
by the reduction process so they take a value other than q or 1.

Figure A.2 presents the results of a number of lattice experiments for q = 2048, also presented in
Hirschhorn, et al. [B29]. The experimental results fall into three clusters corresponding to three different
experimental techniques: standard BKZ, given by the points in the bottom left corner; the isodual technique
described in Howgrave-Graham [B38], given by the points in the top half of the graph around the middle;
and a refinement of the isodual technique in which the output from each blocksize (where blocksize is a

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

45
Copyright © 2009 IEEE. All rights reserved.

fundamental tuning parameter) is used as the input into the next blocksize rather than running each
blocksize on the original, unreduced lattice (Hirschhorn, et al. [B29]). As demonstrated by Figure A.2, this
final technique is the best one known to date.

Figure A.2—Time to remove x q vectors by different lattice reduction
techniques, experimentally determined

Based on this data, it appears the running time t to remove a given number Nq of q-vectors using the best
currently known method is given by Equation (A.25).

t = 0.9501Nq – 3 ln (2 Nq) – 123.58 (A.25)

A.3.3 Reduced lattices and the “cliff”

A.3.3.1 Running time to obtain a given profile

An attacker’s chance of successfully recovering the private key depends on the values on the diagonal
entries of the reduced lattice. We refer to the set of the logs of these values as the lattice’s “profile.” For
convenience we take logs base q, so a profile goes from 1 to 0. Figure A.3 presents a set of reduced
profiles. If a profile does not go continuously to 0, we say it has a “cliff” of height α.

The running time to obtain a slope δ if there is no cliff can be related straightforwardly to the time to
remove Nq q-vectors: if there is no cliff, the reduction is symmetric about N (in order to keep the
determinant constant) so the slope δ = 1/(y2 – y1) = 1/2Nq.

The time to obtain a cliff of height α, occurring at location N < y2 < 2N in the profile, is related to the time
to obtain a slope δ with no cliff as follows in Equation (A.26) and Equation (A.27) (Hirschhorn, et al.
[B29]).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

46
Copyright © 2009 IEEE. All rights reserved.

If

cmt ++=)/1ln(3/)(log 2 δδ , where in this case t = 0.4750/ δ + 3 ln (1/ δ) – 123.58, (A.26)

then

cyyNymt +−+
−
−=)ln(3

)1(
)(2)(log 122

2
2 α

 (A.27)

Since lattice attacks are continually improving, the parameter sets in this standard are generated by
assuming the extrapolation line shown in Equation (A.28).

t = 0.2/ δ – 3 ln (1/ δ) – 50 (A.28)

This grants the attacker considerably more power than they are currently known to have.

A.3.3.2 The cliff height α and ps

For a given amount of work, the attacker may choose from a range of (y2, α) pairs.

Figure A.3—Lattice profiles
Having performed the reduction, the attacker has the view of the lattice shown in Figure A.4. The middle
section of the lattice contains some rotation of a part of g and a part of f. The attack consists of an
enumeration through the substring of f in the unreduced part of the lattice on the right, combined with
reduction against the reduced part of the lattice in the middle and the unreduced part on the left. The
enumeration of the substring of f is speeded up using meet-in-the-middle techniques.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

47
Copyright © 2009 IEEE. All rights reserved.

Figure A.4—The attacker’s view of the lattice following reduction

If the attacker has correctly guessed f’ and f’’ such that f’ + f’’ makes up the part of the key f that lies in the
unreduced section y2 < i < 2N, they can confirm this guess by reducing against the rest of the lattice, 0 < i <
y2. The most efficient way of carrying out this reduction is by using Babai’s method [B9], which has a
running time of about N2. However, this reduction method has a chance of failing: if any term in the part of
the key that lies in the reduced area is greater than the corresponding diagonal term, the Babai reduction
will not be successful. Figure A.5 gives an example where the Babai reduction fails. This illustrates that if
there is a “cliff” in the profile, the Babai reduction is much more likely to succeed.

Figure A.5—A case where Babai reduction fails

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

48
Copyright © 2009 IEEE. All rights reserved.

The probability of success at this stage, given an f’ and f’’ that should make f, is denoted by ps. This value
ps depends on N, q, the height of the cliff α, and the boundaries of the reduced area (y1, y2), and is given by
Equation (A.29) (Hirschhorn, et al. [B29]).

∏
−

=

−
−+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

12
12

121

0

)1()(

,1
3
21

yy

i

yy
iyyy

s qf
q

p σ
αα

∏
−

−

=

−
−+−−

+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

α ααα
α

σ
1

)(2

0

)(2
)1()(21

)1(2 2

2

2
2

2

,1
3
21

Ny

i

Ny
iNy

yN

qf
q

 (A.29)

where

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−
12

2
erfc),(2

2

2σ

π
σ

σ
σ

D

e
D

DDf

A.3.4 Combinatorial strength

This subclause considers the effort required of the attacker in the combinatorial phase of the combined
attack.

A.3.4.1 Combinatorial attacks on LBP-PKE keys and messages

An exhaustive search algorithm tries all allowable values for v1, computes the value of v2 = v1 × h, and
checks if v2 is an allowable value. Let S1 denote the sample space for v1. The exhaustive search method has
average running time ½|S1| for general modular lattices and average running time (1/2N)|S1| for convolution
modular lattices (since a convolution modular lattice generally has N target vectors). An exhaustive search
algorithm has no storage requirements.

A collision search algorithm of Odlyzko is described in Howgrave-Graham, et al. [B42][B43].

If S1 = BN(d) is the space of binary vectors of dimension N with d ones, then the running time of the
collision search method is approximately d1/2C(N/2,d/2) operations. [Here C(n,k) = n!/k!(n–k)! is the usual
combinatorial symbol.] The storage requirement is approximately 2C(N/2,d/2).

If S1 = TN(d) is the space of ternary vectors of dimension N with d 1s and d – 1s, then the running time of
the collision search method is approximately d1/2C(N,d) operations. The storage requirement is
approximately 2C(N,d).

It is not known if there is a collision search method that does not require substantial storage, but it is
recommended that security be computed under the assumption that storage requirements are not an issue (a
contrary view is given in Silverman [B99]).

A.3.4.2 Combinatorial strength in the hybrid case

In the hybrid case the attacker is searching a space of size K for a ternary polynomial with c1 +1s and c2 –
1s. The amount of work that is typically required to search this space using a standard collision search
method is as shown in Equation (A.30):

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

2/2/

2/
2/

2/

2

2

1

1

2

1

1

c
c

c
c

c
cK

c
K

Wsearch
 (A.30)

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

49
Copyright © 2009 IEEE. All rights reserved.

Wagner’s generalized birthday paradox search (Wagner [B103]) presents an attack that may potentially
improve the running time of this stage to Equation (A.31).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

2/2/

2/
2/

2/

2

2

1

1

2

1

1

c
c

c
c

c
cK

c
K

Wsearch
 (A.31)

It is not clear exactly how this attack would be implemented against the current form of LBP-PKE.
Nevertheless, the parameter sets presented in this standard for a given security level k assume the attacker
can mount this generalized birthday paradox attack and so use the second form for Wsearch.

Wsearch contributes to the full security level of the combinatorial search phase. Two additional contributions
to this security level are: first, the chance that the search is not successful; second, the cost of performing
the reduction against the rest of the lattice.

The chance that the search is not successful depends on the following two quantities:

a) The chance that the lattice reduction allows a correct guess to be confirmed, ps. The value for ps is
given above. For the standard attack, the search work becomes Wsearch / √ ps. For the generalized
attack, the search work becomes Wsearch / ps. The total search work is therefore Wsearch × Wps.

b) The chance that the attacker has guessed the right values for c1, c2, Psplit (c1, c2; N, K, d1, d2). Here
the analysis is complicated by the fact that the lattice in fact contains N rotations of the private key.
The chance that the attacker has guessed the right values for c1 and c2 for a single rotation of the
key is shown in Equation (A.32).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

2

1

1

2

1

122

11

11
1,

)(

c
cN

c
N

c
cK

c
K

cd
cdKN

cd
KN

Psplit
 (A.32)

If the attacker can take advantage of the fact that the lattice contains N rotations of the key, Psplit improves
to become Psplit,N = 1 – (1 – Psplit,1)N.

It is currently believed that the form of the private key, f = 1 = pF, requires the attacker to solve a CVP
problem that “locks in” a single rotation of the key, and so the appropriate measure of Psplit is Psplit, 1.
However, to protect against an improved reduction algorithm that would let an attacker search against all
rotations of the key, the parameters in this standard were generated with Psplit = Psplit, N.

Finally, in the specific setting of the hybrid attack, the reduction using Babai’s method involves multiplying
by a 2N × 2N transformation matrix; experimentally it is found that this multiplication has bit security
about Wreduction = N2/21.06.

Since the matrix is the same in all cases, this security level can probably be optimized, and for purposes of
estimating security it is taken to have the value Wreduction = N/21.06.

This time, multiplied by the search time of the meet-in-the-middle part of the attack, gives the full running
time of this phase of the hybrid attack.

The total expected work of this phase for a given choice of c1, c2, given the values K, α, y1, and y2 that
resulted from the lattice reduction phase, is therefore Wmitm (c1, c2) = Wreduction × Wsearch × Wps / Psplit.

Finally, the security level due to this phase is taken to be Wmitm = minc1, c2 Wmitm (c1, c2).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

50
Copyright © 2009 IEEE. All rights reserved.

A.3.5 Summary

A hybrid attack involves the lattice reduction work, Wlatt, and the meet-in-the-middle work, Wmitm. The
optimal strategy for an attacker is to balance these two phases so that they take equal amounts of time. A
parameter set has a strength of greater than k bits if, for all profiles produced by performing k bits of lattice
reduction, the value of Wmitm > k.

A.4 Other security considerations for LBP-PKE encryption

A.4.1 Entropy requirements for key and salt generation

The security of a parameter set does not meet the claimed level if an attacker can guess either the key or the
random padding with less effort than a brute-force search. One means of doing this would be for the
attacker to guess the internal state of the random number generator used in key generation and salt
generation. These RNGs shall be seeded with the appropriate amount of entropy, which is k + 64 for a
claimed security level k.

A.4.2 Reduction mod q

If the calculation of rh mod q involves little or no reduction mod q, an attacker can attempt to use their
knowledge of h to solve e = rh + m’ using linear algebra. For the parameter sets in this standard, this is
vanishingly unlikely to occur if h is a valid public key. The public key partial validation method given in
9.2.5.2.2 checks that it is highly likely that the calculation of r × h involves significant reduction mod q.

A.4.3 Selection of N

It is required that the security parameter N be prime (i.e., the dimension n of the lattice be twice a prime).
If N is highly composite (e.g., if N is a power of 2), then Gentry [B22] has shown that a folding method
allows the private key and plaintext to be recovered from a lattice of dimension much smaller than N.

A.4.4 Relationship between q and N

It is recommended that for each prime divisor q0 of q, the polynomial XN – 1 modulo q0 should have no
factors of small degree (aside from the obvious factor X – 1). If N is prime, then XN – 1 modulo q0 factors as
(X – 1)A1(X)…Ae(X), where each Ai(X) has degree equal to the multiplicative order of q0 modulo N. If h(X)
or r(X) is zero in the field mod Ai(X), it leaks the value of m’(X) in this field. If Ai(X) has degree t, the
probability that h(X) or r(X) is divisible by Ai(X) is presumably 1 = qt. To avoid attacks based on the
factorization of h or r, this standard requires that for each prime divisor P of q, the order of P (mod N) shall
be N – 1 or (N – 1)/2. This requirement has the useful side-effect of increasing the probability that a
randomly chosen f is invertible in Rq.

A.4.5 Form of q

So long as the factors of q have sufficient order mod N (A.4.5), there are no known security issues with the
form of q: it may be chosen to be either prime or composite. This standard selects q to be 2l for some l to
increase the efficiency of the modular reduction operations.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

51
Copyright © 2009 IEEE. All rights reserved.

A.4.6 Leakage of m’(1)

Because XN – 1 is always divisible by X – 1, the mapping f(X) f(1) is a ring homomorphism, i.e.,
(f × g) (1) = f(1)g(1).

Note that f(1) is simply the sum of the coefficients of f. Since an attacker can calculate h(1), and since r(1)
is part of the parameter set, this means that an attacker can recover m’(1) from e = r × h + m’. The attacker
could potentially distinguish between two m’s by their Hamming weight. This is addressed by the masking
process, which ensures that m’(1) does not leak information about m(1); see A.4.8 for further details.

For binary keys, m'(1) reveals the number of 1s in m'. Since lattice and combinatorial attacks on (r, m’) get
easier as m’ gets more unbalanced (in other words, as the number of 1s gets further and further from N/2),
an attacker can select (r, m’) pairs that are more vulnerable to these attacks based on the revealed value of
m’(1). However, for ternary keys and messages (including product-form ternary keys), m'(1) is simply the
number of 1s minus the number of –1s and does not directly reveal information about more versus less
vulnerable message representatives.

A.4.7 Relationship between p, q, and N

If the smaller modulus p divides the large modulus q, then reduction modulo p of an expression p × r × h +
m modulo q immediately recovers m. More generally, if p and q are not relatively prime in the ring
Z[X]/(XN – 1), then reduction modulo a common factor reveals information about m. For this reason it is
required that the large modulus q and the smaller modulus p be relatively prime in the ring Z[X]/(XN – 1).
This is equivalent to the condition that the three quantities q, p, and XN – 1 generate the unit ideal in the
ring Z[X].

The large modulus q is required to be in Z, but the smaller modulus p need not be in Z. For example, if N is
odd and if q is a power of 2, then p could equal X + 2 or X – 2, since the three quantities XN – 1, 2k, and
X ± 2 generate the unit ideal in the ring Z[X].

A.4.8 Adaptive chosen ciphertext attacks

If the same r is used to encrypt two different message representatives m’1 and m’2 under the same key, then
the difference of the two ciphertexts e1 – e2 ≡ m’1 – m’2 (mod q) reveals a large portion of m’1 and m’2.
With the encryption schemes in this standard, m’ = M ⊕ MGF(r × h) = M + MGF(r × h) mod 2, so e1 – e2
(mod q)(mod 2) = M1 ⊕ M2. With the key establishment schemes in this standard, there are two ways that
an r could be repeated. They are as follows:

a) The same message m could be encrypted twice with the same salt b.

b) Two different (m, b) pairs could produce the same r.

If the same message m is encrypted twice with the same salt b, an attacker can determine that this has
happened but will not obtain any additional information about m or b. Since this standard is a key
establishment standard and the m should therefore be chosen at random for each message sent, the chance
that an (m, b) pair is used twice should be the chance of a collision in the entire (m, b) space, which requires
the sending of about 2N/2 messages.

The chance that two different (m, b) pairs produce the same r is the chance of a collision when selecting
from the space of all possible blinding polynomials, Dr. In order to have a significant chance of a collision,
the attacker must observe about √(# Dr) messages, or √(C(N,d)/N), where C is the usual combinatorial
symbol. For the parameter sets in this document, this number of messages is always greater than the stated
security level of that parameter set.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

52
Copyright © 2009 IEEE. All rights reserved.

A single message element m(X) should not be encrypted using two different blinding elements. If m(X) is
encrypted using r1(X) and r2(X), then the quantity (ph(X))–1(e1(X) – e2(X)) ≡ r1(X) – r2(X) (mod q) reveals a
large portion of r1(X) and r2(X). [Even if h(X)–1 mod q does not exist, one may still gain considerable
information using a partial inverse.]

In general, as with all public key cryptosystems, the LBP-PKE primitives shall be within an appropriate
encryption scheme to provide security against chosen plaintext, chosen ciphertext and adaptive chosen
ciphertext attacks (Hong, et al. [B36], Howgrave-Graham, et al. [B44] Jaulmes and Joux, [B57], and
Nguyen and Pointcheval [B81]). The scheme used in this standard has a proof of security in the random
oracle model presented in Howgrave-Graham, et al. [B44]. In this model, the salt b that is added to the
message before encryption is not vulnerable to birthday paradox-type attacks, but only to exhaustive
search-type attacks. For a k-bit security level, it is therefore appropriate to take the salt length db to be k
bits.

A.4.9 Invertibility of g in Rq

The proof of security in Howgrave-Graham, et al. [B44] requires h, and therefore g, to be invertible in Rq.
This is the reason for the check in step j) of the key generation operation in 9.2.1. There are no specific
known attacks that apply only if g is not invertible. Note that, even if h is not invertible, there is often a
“pseudo-inverse” that plays the same role (Nguyen and Pointcheval [B81]); this is not taken into account in
the proof in Howgrave-Graham, et al. [B44].

A.4.10 Decryption failures

On decryption, the decrypter calculates Equation (A.33) as follows:

a = f × e mod q = prg + m’ + pFm’ mod q (A.33)

Decryption depends on this equality holding over the integers, not simply mod q. Presentations of LBP-
PKE in other for a in the past have used parameter sets for which the value of q or the mod q reduction
method would not always make it possible to satisfy this equality. Therefore, decryption would
occasionally fail. An attacker who observed decryption failures could recover the private key (Howgrave-
Graham [B40], Jaulmes and Joux [B57], Meskanen and Renvall [B74], Proos[B85], Silverman and Whyte
[B97]) even if the underlying encryption scheme was CCA2-secure in the absence of decryption failures.

For ternary polynomials with d +1s and the same number of –1s, the chance of a decryption failure is given
by Equation (A.34) (Hirschhorn, et al. [B29]):

Prob(q, d, N)(Decryption fails) = P(d, N)((q – 2)/6) (A.34)

where

P(d, N)(c) = N × erfc (c / (σ√[2N]))

σ(d, N) = √(8d/3N)

A.4.11 OID

The OID is included in step j) of encryption and step m) of decryption to give an assurance that encrypters
are using the encryption scheme specified in this document. This protects against modified parameter
attacks (Howgrave-Graham, et al. [B41]), in which an attacker persuades an encrypter to encrypt with an
encryption scheme other than the one the decrypter specifies use with that key. Under certain

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

53
Copyright © 2009 IEEE. All rights reserved.

circumstances, modified parameter attacks can recover information about the ciphertext. The inclusion of
the OID ensures that a message will only decrypt correctly if it was encrypted with the exact parameter set
expected by the receiver.

A.4.12 Use of hash functions by supporting functions

The security requirements on a hash function when used as the core of a random bit string generator are
different from those on a fixed-length hash function. This standard follows common practice in using
SHA-1 (see FIPS 180) in random bit generators at security levels up to k = 128, and SHA-256 (see FIPS
180) at security levels up to k = 256.

A.4.13 Generating random numbers in [0, N – 1]

The BPGM method (8.3.2.2) converts a random bit or byte stream to a series of integers. These integers are
uniformly distributed in the range [0, N – 1]. If they were not, an attacker could exploit the bias to speed up
an attack based on guessing r. The method given in this document ensures that the numbers are unbiased by

⎯ Selecting a set of bits.

⎯ Converting the bits to an integer.

⎯ Only reducing the integer mod N if it falls into a range [0, kN – 1] for some parameter-set-specific
value k, and otherwise selecting a fresh set of r random bits.

The output of the random bit string generator shall be statistically random; there should be no simple (e.g.,
linear) relationship between the sets of bits chosen for reduction.

The number of bytes chosen pre-reduction is the minimum number necessary to hold N. The number of bits
chosen from these bytes (denoted by c in the parameter sets) is selected to give the minimum value of (2c
mod N). There are no known security implications to the choice of c, so long as 2c > N.

A.4.14 Attacks based on variation in decryption times

The paper Silverman and Whyte [B98] demonstrates that a naïve implementation of the BPGMs in this
standard (without the minimum IGF output parameter minCallsR) leaks private key information because
the decryption time depends on the ciphertext. To prevent these attacks, it is necessary to ensure that
decryption takes constant time (or at least that variations in time occur with negligible probability).

Silverman and Whyte [B98] suggests that effectively constant decryption times can be obtained by
choosing oLenMin such that the chance that more than oLenMin octets of output are needed is less than 2–k,
where k is the security parameter and oLenMin = minCallsR × hLen, hLen the length in octets of output
from the hash function. The chance that greater than oLenMin individual octets are needed is given by
Equation (A.35).

∑
<<

−
'/

,,2
),'/(1

coLenMinddr
nN

dcoLenMinP c
 (A.35)

where

PC,N,N(L,d) is determined by the recursive formula

⎟
⎠
⎞

⎜
⎝
⎛ −−⋅−+⎟

⎠
⎞

⎜
⎝
⎛ +−⋅−−=

C
dNndLP

C
dNndLPdLP nNCnNCnNC

)(1),1()1()1,1(),(,,,,,,

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

54
Copyright © 2009 IEEE. All rights reserved.

0),(,, =dLP nNC if L < d

L

nNC C
nNLP ⎟

⎠
⎞

⎜
⎝
⎛ −= 1)0,(,,

 C = 2c, c’ = ceil[c/8]

minCallsR should be taken to be the smallest integer such that the chance that more than oLenMin octets of
output are needed is less than 2–k.

A.4.15 Choosing to attack r or m

An attacker may choose to mount an attack on a ciphertext to recover either r or i; recovering one of these
trivially recovers the other. The attacker’s best strategy is to attack whichever is thinner. Since i is chosen
at random from the space of ternary polynomials, if r is thick (as is the case for the size-optimized
parameters in this standard), i is general thinner and may be easier to recover than the intended security
level.

To mitigate this risk, the encryption scheme in this standard requires that an sender discards an encrypted
message if the message representative i has fewer than dr + 1s, –1s, or 0s. If the sender generates such a
message representative, they shall discard that message representative and restart the encryption process
with a different salt b. If the receiver receives a ciphertext that decrypts to a message representative i with
fewer than dr +1s, –1s, or 0s, the receiver shall treat the decryption as having failed (though the receiver
should complete all the stages of decryption in order to avoid leaking timing information about the cause of
the decryption failure).

A.4.16 Quantum computers

All cryptographic systems based on the problems of integer factorization, discrete log, and elliptic curve
discrete log are potentially vulnerable to the development of an appropriately sized quantum computer, as
algorithms for such a computer are known that can solve these problems in time polynomial in the size of
the inputs. For LBP-PKE (Ludwig [B71]), proposes a quantum lattice reduction algorithm that may
improve reduction speeds while remaining exponential-time. Regev [B86] and [B87], Tatsuie and Hiroaki
[B100], Kuperberg [B66], and Hughes, et al. [B45] consider potential sub-exponential algorithms for
certain lattice problems. However, these algorithms depend on a subexponential number of coset samples
to obtain a polynomial approximation to the shortest vector, and no method is currently known to produce a
subexponential number of samples in subexponential time.

A.4.17 Other considerations

The private key representation does not affect security in general, although the effectiveness of physical
attacks may vary according to the representation. The private key should be stored securely, and the
encryption blinding polynomial should be erased after use. The domain parameters should be protected
from unauthorized modification.

A.5 A parameter set generation algorithm

This subclause describes an algorithm that may be used to generate parameter sets with a desired level of
security.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

55
Copyright © 2009 IEEE. All rights reserved.

a) Set a desired security level k.

b) Set q = 2048.

c) Choose a performance metric. Possible metrics include size = N × log2(q); operation time = N × d;
or some combination of the two, such as speed2 × size.

d) Set N equal to the first prime greater than k such that the order of 2 mod N is (N – 1) or (N – 1)/2
and enter the following loop

1) For each d, 1 < d < N/3:

i) For each possible N < y2 < 2N:

i) For each 0 < y1 < N:

⎯ Calculate the profile produced by k bits of lattice reduction for that y2 y1.

⎯ If such a profile exists, calculate Wmitm using the formula given in A.3.4.2.

⎯ If Wmitm < k, that value of d does not give sufficient security. Increment d by
one and re-enter the y2 loop.

ii) We have now obtained the minimum value of d for the given N that gives k bits of
security. Check that the value of d in question has a decryption failure probability of
< 2–k using the formula given in A.4.10.

iii) If the decryption failure probability is > 2–k, increase N to the next prime such that the
order of 2 mod N is (N – 1) or (N – 1)/2 and re-enter the d loop

iv) Return d.

2) Calculate the “goodness” of the parameter set (N, d, q) using the chosen metric.

3) Increase N to the next prime such that the order of 2 mod N is (N – 1) or (N – 1)/2 and re-enter
the d loop

e) Output the stored (N, d, q) that give the best score under the chosen metric.
The parameter sets in this standard were generated to minimize running time and to minimize size. With
this parameter generation algorithm it is possible to generate parameters that satisfy arbitrary performance
criteria, such as “the fastest operations with a key size of less than 5000 bits.”

A.6 Possible parameter sets

This subclause defines specific sets of parameters for the encryption scheme (SVES) that give a specific
level of security according to the metrics in this standard.

A.6.1 Size-optimized

These parameter sets are optimized for size at a given security level.

A.6.1.1 ees401ep1

This parameter set is suitable for use at the 112-bit security level (see Table A.2.).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

56
Copyright © 2009 IEEE. All rights reserved.

Table A.2—ees401ep1
N = 401
p = 3
q = 2048
Key generation: KGP-3 with
 df = 113
 dg = 133
lLen = 1
db = 112
maxMsgLenBytes = 60
bufferLenBits = 600
bufferLenTrits = 400
dm0 = 113
MGF-TP-1 with
 SHA-1 (MGF)
BPGM2 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 113
 c = 11
 minCallsR = 32
 minCallsMask = 9
OID = 00 02 04
pkLen = 114

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 0.023276.

A.6.1.2 ees449ep1

This parameter set is suitable for use at the 128-bit security level (see Table A.3).

Table A.3—ees449ep1
N = 449
p = 3
q = 2048
Key generation: KGP-3 with
 df = 134
 dg = 149
lLen = 1
db = 128
maxMsgLenBytes = 67
bufferLenBits = 672
bufferLenTrits = 448
dm0 = 134
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 134
 c = 9
 minCallsR = 31
 minCallsMask = 9
OID = 00 03 03
pkLen = 128

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 0.10411.

A.6.1.3 ees677ep1

This parameter set is suitable for use at the 192-bit security level (see Table A.4).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

57
Copyright © 2009 IEEE. All rights reserved.

Table A.4—ees677ep1
N = 677
p = 3
q = 2048
Key generation: KGP-3 with
 df = 157
 dg = 225
lLen = 1
db = 192
maxMsgLenBytes = 101
bufferLenBits = 1008
bufferLenTrits = 676
dm0 = 157
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 157
 c = 11
 minCallsR = 27
 minCallsMask = 9
OID = 00 05 03
pkLen = 192

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–27.29.

A.6.1.4 ees1087ep2

This parameter set is suitable for use at the 256-bit security level (see Table A.5).

Table A.5—ees1087ep2
N = 1087
p = 3
q = 2048
Key generation: KGP-3 with
 df = 120
 dg = 362
lLen = 1
db = 256
maxMsgLenBytes = 170
bufferLenBits = 1624
bufferLenTrits = 1086
dm0 = 120
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 120
 c = 13
 minCallsR = 25
 minCallsMask = 14
OID = 00 06 03
pkLen = 256

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–216.45.

A.6.2 Cost-optimized

These parameter sets are optimized to give the lowest value of (operation time)2 × size.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

58
Copyright © 2009 IEEE. All rights reserved.

A.6.2.1 ees541ep1

This parameter set is suitable for use at the 112-bit security level (see Table A.6).

Table A.6—ees541ep1
N = 541
p = 3
q = 2048
Key generation: KGP-3 with
 df = 49
 dg = 180
lLen = 1
db = 112
maxMsgLenBytes = 86
bufferLenBits = 808
bufferLenTrits = 540
dm0 = 49
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGT-MGF-1 with SHA-1 (IGF)
 dr = 49
 c = 12
 minCallsR = 15
 minCallsMask = 11
OID = 00 02 05
pkLen = 112

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–133.39.

A.6.2.2 ees613ep1

This parameter set is suitable for use at the 128-bit security level (see Table A.7).

Table A.7—ees613ep1
N = 613
p = 3
q = 2048
Key generation: KGP-3 with
 df = 55
 dg = 204
lLen = 1
db = 128
maxMsgLenBytes = 97
bufferLenBits = 912
bufferLenTrits = 612
dm0 = 55
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 55
 c = 11
 minCallsR = 16
 minCallsMask = 13
OID = 00 03 04
pkLen = 128

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–151.78.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

59
Copyright © 2009 IEEE. All rights reserved.

A.6.2.3 ees887ep1

This parameter set is suitable for use at the 192-bit security level (see Table A.8).

Table A.8—ees887ep1
N = 887
p = 3
q = 2048
Key generation: KGP-3 with
 df = 81
 dg = 295
lLen = 1
db = 192
maxMsgByteLen = 141
bufferLenBits = 1328
bufferLenTrits = 886
dm0 = 81
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 81
 c = 10
 minCallsR = 13
 minCallsMask = 12
OID = 00 05 04
pkLen = 192

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–214.25.

A.6.2.4 ees1171ep1

This parameter set is suitable for use at the 256-bit security level (see Table A.9).

Table A.9—ees1171ep1
N = 1171
p = 3
q = 2048
Key generation: KGP-3 with
 df = 106
 dg = 390
lLen = 1
db = 256
maxMsgLenBytes = 186
bufferLenBits = 1752
bufferLenTrits = 1170
dm0 = 106
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 106
 c = 10
 minCallsR = 20
 minCallsMask = 15
OID = 00 06 04
pkLen = 256

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–283.49.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

60
Copyright © 2009 IEEE. All rights reserved.

A.6.3 Speed-optimized

These parameter sets are optimized for speed at a given security level.

A.6.3.1 ees659ep1

This parameter set is suitable for use at the 112-bit security level (see Table A.10).

Table A.10—ees659ep1
N = 659
p = 3
q = 2048
Key generation: KGP-3 with
 df = 38
 dg = 219
lLen = 1
db = 112
maxMsgLenBytes = 108
bufferLenBits = 984
bufferLenTrits = 658
dm0 = 38
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 38
 c = 11
 minCallsR = 11
 minCallsMask = 14
OID = 00 02 06
pkLen = 112

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–219.63.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

61
Copyright © 2009 IEEE. All rights reserved.

A.6.3.2 ees761ep1

This parameter set is suitable for use at the 128-bit security level (see Table A.11).

Table A.11—ees761ep1
N = 761
p = 3
q = 2048
Key generation: KGP-3 with
 df = 42
 dg = 253
lLen = 1
db = 128
maxMsgLenBytes = 125
bufferLenBits = 1136
bufferLenTrits = 760
dm0 = 42
MGF-TP-1 with
 SHA-1 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-1 (IGF)
 dr = 42
 c = 12
 minCallsR = 13
 minCallsMask = 16
OID = 00 03 05
pkLen = 128

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–258.64.

A.6.3.3 ees1087ep1

This parameter set is suitable for use at the 192-bit security level (see Table A.12).

Table A.12—ees1087ep1
N = 1087
p = 3
q = 2048
Key generation: KGP-3 with
 df = 63
 dg = 362
lLen = 1
db = 192
maxMsgLenBytes = 178
bufferLenBits = 1624
bufferLenTrits = 1086
dm0 = 63
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 63
 c = 13
 minCallsR = 13
 minCallsMask = 14
OID = 00 05 05
pkLen = 192

NOTE—If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–357.90.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

62
Copyright © 2009 IEEE. All rights reserved.

A.6.3.4 ees1499ep1

This parameter set is suitable for use at the 256-bit security level (see Table A.13).

Table A.13—ees1499ep1
N = 1499
p = 3
q = 2048
Key generation: KGP-3 with
 df = 79
 dg = 499
lLen = 1
db = 256
maxMsgLenBytes = 247
bufferLenBits = 2240
bufferLenTrits = 1498
dm0 = 79
MGF-TP-1 with
 SHA-256 (MGF)
BPGM3 with
 IGF-MGF-1 with SHA-256 (IGF)
 dr = 79
 c = 13
 minCallsR = 17
 minCallsMask = 19
OID = 00 06 05
pkLen = 256

NOTE— If a message representative m’ has fewer than dm0 1s, –1s, or 0s, it shall be rejected. The chance of this
happening with a legitimately generated m’ is 2–440.09.

A.7 Security levels of parameter sets

A.7.1 Assumed security levels versus current knowledge

These security considerations have noted several places where the assumptions used to generate the
parameter sets are more cautious than the best attacks that are currently known. As a result of this, the
parameter sets given in this standard for use with a certain security level k would in fact have a security
level k’ >k against an attacker using the best techniques known in July 2008. This section summarizes the
assumptions that have been made that favor the attacker, and compares the known July 2008 security levels
of the parameter sets with the security levels for which those parameter sets are recommended (see Table
A.14 and Table A.15).

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

63
Copyright © 2009 IEEE. All rights reserved.

Table A.14—Assumptions used to generate parameters in this
standard vs current best known attacks

Area Current experimental strength Assumed strength
Lattice reduction time t = 0.4750/ δ + 3 ln (1/ δ) – 123.58 t = 0.2/ δ + 3 ln (1/ δ) – 50

Combinatorial search time
for c1 1s, c2 –1s in a space of

size K

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2/2/

2/
2/

2/

2

2

1

1

2

1

1

c
c

c
c

p

c
cK

c
K

s

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2/2/

2/
2/

2/

2

2

1

1

2

1

1

c
c

c
c

p

c
cK

c
K

s

Time to perform Babai
reduction

N2 N

Psplit

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

2

1

1

2

1

122

11

11
1,

)(

c
cN

c
N

c
cK

c
K

cd
cdKN

cd
KN

Psplit

Psplit,N = 1 – (1 – Psplit,1)N

Table A.15—Strengths of recommended parameter sets in this
standard vs best current attacks

Parameter set Recommended
security level

N q df Known hybrid
strength

c Basic lattice
strength

ees401ep1 112 401 2048 113 154.88 2.02 139.5
ees541ep1 112 541 2048 49 141.766 1.77 189.4
ees659ep1 112 659 2048 38 137.861 1.74 231.5
ees449ep1 128 449 2048 134 179.899 2.17 156.6
ees613ep1 128 613 2048 55 162.385 1.88 215.1
ees761ep1 128 761 2048 42 157.191 1.85 267.8
ees677ep1 192 677 2048 157 269.93 2.50 239.0
ees887ep1 192 887 2048 81 245.126 2.27 312.7
ees1087ep1 192 1087 2048 63 236.586 2.24 384.0
ees1087ep2 256 1087 2048 120 334.85 2.64 459.2
ees1171ep1 256 1171 2048 106 327.881 2.60 494.8
ees1499ep1 256 1499 2048 79 312.949 2.57 530.8

A.7.2 Potential research

As detailed above, the parameter sets in this standard are designed to be secure against incremental
improvements in attack techniques. As these improvements occur, future versions of the standard will track
the “current known” strength of each parameter set as it descends towards the recommended security level.

There are potential breakthroughs in research that have not been considered in generating these parameter
sets, because it is not clear that these breakthroughs will ever come. Such breakthroughs, which would
require an in-depth re-evaluation of the security of the algorithm, include:

⎯ Improvement in lattice reduction techniques for the hybrid case beyond the current extrapolation
line

⎯ A sub-exponential or otherwise massively improved attack on the whole NTRU lattice

⎯ An improvement in the reduction step of the meet-in-the-middle phase of the hybrid attack that
would allow an attacker to significantly increase ps

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

64
Copyright © 2009 IEEE. All rights reserved.

Annex B

(informative)

Bibliography

[B1] Ajtai, M., The shortest vector problem in L2 is NP-hard for randomized reductions, in Proc. of 30th
STOC, ACM, 1998.

[B2] Ajtai, M., and Dwork, C., A public-key cryptosystem with worst case/average case equivalence. In
Proc. 29th ACM Symposium on Theory of Computing, 1997, 284–293.

[B3] Ajtai, M., Kumar, R., and Sivakumar, D., A sieve algorithm for the shortest lattice vector problem,
33rd ACM Symposium on Theory of Computing, 2001.

[B4] ANSI INCITS 4-1986 (R2002), Information Systems—Coded Character Sets—7-Bit American
National Standard Code for Information Interchange (7-Bit ASCII).

[B5] ANS X9.42-2001, Public Key Cryptography for the Financial Services Industry: Agreement of
Symmetric Keys Using Discrete Logarithm Cryptography.

[B6] ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

[B7] ANS X9.63-2002, Public Key Cryptography for the Financial Services Industry: Key Agreement and
Key Transport Using Elliptic Curve Cryptography.

[B8] ANS X9.71-2000, Keyed Hash Message Authentication Code (MAC).

[B9] Babai, L., On Lovasz lattice reduction and the nearest lattice point problem, Combinatorica, vol.~6,
1986, 1–13.

[B10] Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P., Relations among Notions of Security for
Public-Key Encryption Schemes. In H. Krawczyk, editor, Advances in Cryptology—Crypto ’98, pp. 26–45.
Springer Verlag, 1998.

[B11] Blake-Wilson, S. and Menezes, Alfred, Authenticated Diffie-Hellman key agreement protocols
Proceedings of the 5th Annual Workshop on Selected Areas in Cryptography (SAC '98), Lecture Notes in
Computer Science, 1556 (1999), 339–361.

[B12] Blömer, J., and Seifert, J.-P., On the Complexity of Computing Short Linearly Independent Vectors
and Short Bases in a Lattice, STOC '99.

[B13] Buchmann, J., and Ludwig, C., Cryptology ePrint Archive Report 2005/072: Practical Lattice Basis
Sampling Reduction.

[B14] Cai, J.-Y., “Some recent progress on the complexity of lattice problems,” in Proc. FCRC, 1999.

[B15] Cai, J.-Y., The complexity of some lattice problems, in Algorithmic Number Theory—Proceedings
of ANTS IV, Leiden, W. Bosma, ed., Lecture Notes in Computer Science, Springer-Verlag.

[B16] Cai, J.-Y., and Cusick, T. W., “A lattice-based public key cryptosystem,” Information and
Computation 151 (1999), 17–31.

[B17] Cai, J.-Y, and Nerukar, A. P., “An improved worst-case to average-case reduction for lattice
problems,” Proc. 38th Symposium on Foundations of Computer Science, 1997, 468–477.

[B18] Consortium for Efficient Embedded Security, Efficient Embedded Security Standard (EESS) #1
(http://www.ceesstandards.org).

[B19] Coppersmith, D. and Shamir, A., “Lattice Attacks on NTRU,” Advances in Cryptology—Eurocrypt
'97, Lecture Notes in Computer Science 1233, Springer-Verlag, 1997, 52–61.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

65
Copyright © 2009 IEEE. All rights reserved.

[B20] Dinur,I., Kindler, G., and Safra, S., Approximating CVP to within almost-polynomial factors is NP-
hard, Proc. 39th Symposium on Foundations of Computer Science, 1998, 99–109.

[B21] Fischlin, Roger and Seifert, Jean-Pierre, “Tensor-based trapdoors for CVP and their applications to
public key cryptography,” in Cryptography and Coding, Lecture Notes in Computer Science 1746, Spring-
Verlag, 1999, 244–257.

[B22] Gentry, C., “Key Recovery and Message Attacks on NTRU-Composite,” Proc. EUROCRYPT 2001,
Lecture Notes in Computer Science, Springer-Verlag, 2001.

[B23] Goldreich, O., and Goldwasser, S., “On the limits of non-approximability of lattice problems,” Proc.
39th Symposium on Foundations of Computer Science, 1998, 1–9.

[B24] Goldreich, O., Goldwasser, S., and Halvei, S., “Public-key cryptography from lattice reduction prob-
lems.” In Proc. CRYPTO'97, Lect. Notes in Computer Science 1294, Springer-Verlag, 1997, 112–131.

[B25] Goldreich, O., Micciancio, D., Safra, S., and Seifert, J.-P., “Approximating shortest lattice vectors is
not harder than approximating closest lattice vectors,” Electronic Colloquium on Computational
Complexity, TR99-002, 1999.

[B26] Gruber, M., and Lekkerkerker, C. G., Geometry of Numbers, North-Holland, 1987.

[B27] Håstad, J., “Solving Simultaneous Modular Equations of Low Degree,” SIAM Journal of Computing,
17, pp. 336–341. 1988.

[B28] Heckler, C., and Thiele, L., “Complexity analysis of a parallel lattice basis reduction algorithm,”
Siam J. Comput. 27 (1998), 1295–1302.

[B29] Hirschhorn, P., Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J. H., and Whyte, W.,
“Hybrid Lattice reduction and Meet in the Middle Resistant Parameter Selection for NTRUEncrypt,”
preprint.

[B30] Hoffstein, J.,, Pipher, J., and Silverman, J. H., “NTRU: A new high speed public key cryptosystem,”
Algorithmic Number Theory (ANTS III), Portland, OR, June 1998, Lecture Notes in Computer Science
1423, J.P. Buhler (ed.), Springer-Verlag, Berlin, 1998, 267–288.

[B31] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J. H., and Whyte, W., “NTRUSign:
Digital Signatures in the NTRU Lattice,” CT-RSA 2003.

[B32] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J. H., Whyte, W., “Hybrid lattice
reduction and meet-in-the-middle resistant parameter selection for NTRU.” Preprint, available from
http://grouper.ieee.org/groups/1363/lattPK/submissions.html#2007-02.

[B33] Hoffstein, J., and Silverman, J. H., Optimizations for NTRU, Public-Key Cryptography and
Computational Number Theory (Warsaw, September 11–15, 2000), DeGruyter, to appear.

[B34] Hoffstein, J., and Silverman, J. H., Random Small Hamming Weight Products with Applications to
Cryptography, Com2MaC Workshop on Cryptography (Pohang, Korea, June 2000), Discrete Mathematics,
to appear.

[B35] Hoffstein, J., Silverman, J. H., and Whyte, W., NTRU Technical Report #12, v2, “Estimating
Breaking Times for NTRU Lattices.” Available from http://www.ntru.com/cryptolab/tech_notes.htm#012.

[B36] Hong, J., Han, J. W., Kwon, D., and Han, D., “Chosen-Ciphertext Attacks on Optimized NTRU,”
available from http://eprint.iacr.org/2002/188/.

[B37] Howgrave-Graham, N., “A Hybrid lattice reduction and meet-in-the-middle-attack against NTRU,”
Crypto 2007.

[B38] Howgrave-Graham, N., “Isodual Reduction of Lattices,” Preprint, available from
http://eprint.iacr.org/2007/105.

[B39] Howgrave-Graham, N., Hoffstein, J., Pipher, J., and Whyte, W., “On estimating the lattice security
of NTRU,” available from http://www.ntru.com/cryptolab/articles.htm and http://eprint.iacr.org/2005/104.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

66
Copyright © 2009 IEEE. All rights reserved.

[B40] Howgrave-Graham, N., Nguyen, P., Pointcheval, D., Proos, J., Singer, A., and Whyte, W., “The
Impact of Decryption Failures on the Security of NTRU Encryption,” available from
http://www.ntru.com/cryptolab/articles.htm.

[B41] Howgrave-Graham, N., Silverman, J. H., Singer, A., and Whyte, W., “Modified Parameter Attacks:
Practical Attacks Against CCA2 Secure Cryptosystems, and Countermeasures.” Preprint available from
http://eprint.iacr.org.

[B42] Howgrave-Graham, N., Silverman, J. H., and Whyte, W.,, “A meet-in-the-middle attack on an
NTRU private key,” NTRU Technical Report 004, version 2, 2003. Available from
http://www.ntru.com/cryptolab/tech_notes.htm#004.

[B43] Howgrave-Graham, N., Silverman, J. H., Whyte, W., “Choosing Parameter Sets for NTRUEncrypt
with SVES-3 and NAEP,” CT-RSA 2005.

[B44] Howgrave-Graham, N., Silverman, J. H., Singer, A., and Whyte, W., “Decryption Failures and
Provability: SAEP+, NAEP, and NTRU,” available from http://www.ntru.com/cryptolab/articles.htm.

[B45] Hughes, Richard, et al., “A Quantum Information Science and Technology Roadmap, Part 1:
Quantum Computation,” Report of the Quantum Information Science and Technology Experts Panel,
Version 2.0, April 2, 2004, Advanced Research and Development Activity,
http://qist.lanl.gov/pdfs/qc_roadmap.pdf.

[B46] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, New York,
Institute of Electrical and Electronics Engineers, Inc.

[B47] IEEE Std 1363™-2000, IEEE Standard Specifications for Public Key Cryptography.

[B48] IEEE Std 1363a™-2004, IEEE Standard Specifications for Public Key Cryptography: Additional
Techniques.

[B49] ISO/IEC 8824-1:2002. Information technology—Abstract Syntax Notation One (ASN.1):
Specification of basic notation. Also published as ITU-T Recommendation X.680 (2002).

[B50] ISO/IEC 8824-2:2002, Information technology—Abstract Syntax Notation One (ASN.1):
Information object specification. Also published as ITU-T Recommendation X.681 (2002).

[B51] ISO/IEC 8824-3:2002, Information technology—Abstract Syntax Notation One (ASN.1): Constraint
specification. Also published as ITU-T Recommendation X.682 (2002).

[B52] ISO/IEC 8824-4:2002, Information technology—Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications. Also published as ITU-T Recommendation X.683 (2002).

[B53] ISO/IEC 8825-1:2002, Information technology—ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER). Also
published as ITU-T Recommendation X.690 (2002).

[B54] ISO/IEC 8825-2:2002, Information technology—ASN.1 encoding rules: Specification of Packed
Encoding Rules (PER). Also published as ITU-T Recommendation X.691 (2002).

[B55] ISO/IEC 8825-3:2002, Information technology—ASN.1 encoding rules: Specification of Encoding
Control Notation (ECN). Also published as ITU-T Recommendation X.692 (2002).

[B56] ISO/IEC 8825-4:2002, Information technology—ASN.1 encoding rules: XML Encoding Rules
(XER). Also published as ITU-T Recommendation X.693 (2002).

[B57] Jaulmes, É. and Joux, A., “A chosen-ciphertext attack against NTRU,” Advances in Cryptology-
CRYPTO 2000, Lecture Notes in Computer Science, Springer-Verlag, 2000.

[B58] Joux, A., and Stern, J., “Lattice reduction: A toolbox for the cryptanalyst,” Journal of Cryptology 11,
(1998), 161–185.

[B59] Kannan, R., “Improved algorithms for integer programming and related lattice problems,” in Proc. of
15th STOC, 1983, ACM, 193–206.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

67
Copyright © 2009 IEEE. All rights reserved.

[B60] Kannan, R., “Algorithmic geometry of numbers,” Annual review of computer science 2 (1987), 231–
267.

[B61] Kannan, R., “Minkowski’s convex body theorem and integer programming,” Math. Oper. Res. 12
(1987), 415–440.

[B62] Klein, P., “Finding the closest lattice vector when it’s unusually close,” in Proc. of SODA 2000,
ACM-SIAM, 2000.

[B63] Koy, H., and Schnorr, C. P Segment LLL-reduction of lattice bases, Proceedings of Cryptography
and Lattices Conference (CaLC 2001), Lecture Notes in Computer Science, Springer-Verlag.

[B64] Koy, H., and Schnorr, C. P., Segment LLL-reduction with floating point orthogonalization,
Proceedings of Cryptography and Lattices Conference (CaLC 2001), Lecture Notes in Computer Science,
Springer-Verlag.

[B65] Krawczyk, H., Bellare, M., and Canetti, R., IETF RFC 2104: HMAC: Keyed-Hashing for Message
Authentication. February 1997.

[B66] Kuperberg, Greg, “A sub-exponential-time quantum algorithm for the dihedral hidden subgroup
problem,” 2003, http://arxiv.org/abs/quant-ph/0302112.

[B67] J. Lagarias, H.W. Lenstra, C.P. Schnorr, Korkin-Zolotarev bases and successive minima of a lattice
and its reciprocal lattice, Combitorica 10 (1990), 333–348.

[B68] LaMacchia, B., PhD Thesis, MIT, 1996.

[B69] Lenstra, A. K., Lenstra, H. W., and Lovasz, L., “Factoring polynomials with polynomial
coefficients,” Math. Annalen 261 (1982) 515–534.

[B70] Lenstra, A. K., and Verheul, E. R., “Selecting Cryptographic Key Sizes,” Journal of Crytology vol.
14, no. 4, 2001, 255–293.

[B71] Ludwig, C., “A Faster Lattice Reduction Method Using Quantum Search,” TU-Darmstadt
Cryptography and Computeralgebra Technical Report No. TI-3/03, revised version published in Proc. of
ISAAC 2003.

[B72] May, A., Auf Polynomgleichungen basierende Public-Key-Kryptosysteme, Johann Wolfgange
Goethe-Universitat, Frankfurt am Main, Fachbereich Informatik. (Masters Thesis in Computer Science, 4
June 1999; Thesis advisor, Dr. C.P. Schnorr.) Available at: www.mi.informatik.uni-
frankfurt.de/research/mastertheses.html.

[B73] May, A. and Silverman, J. H., “Dimension reduction methods for convolution modular lattices,”
Cryptography and Lattices Conference (CaLC 2001), Lecture Notes in Computer Science 2146, Springer-
Verlag, 2001.

[B74] Meskanen, T., and Renvall, A., A Wrap Error Attack Against NTRUEncrypt,
University of Turku Technical Report TUCS 507, available from
http://www.tucs.fi/Research/Series/techreports/techrep.php?year=2003.

[B75] Miciancio, D., “The shortest vector in a lattice is NP-hard to approximate to within some constant,”
Proc. 39th Symposium on Foundations of Computer Science, 1998, 92–98.

[B76] Naslund, M., Shparlinski, I., and Whyte, W., On the Bit Security of NTRUEncrypt, Proc. Intern.
Workshop on Public Key Cryptography, PKC'03, Miami, USA, 2003, Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 2003, v.2567, 62–70. Available from http://www.ntru.com/cryptolab/articles.htm#004.

[B77] National Institute of Standards and Technology (NIST). AES Key Wrap Specification. Draft,
December 3, 2001. Available at http://csrc.nist.gov/encryption/kms/key-wrap.pdf.

[B78] NIST 800-56, Recommendation on Key Establishment Schemes. Draft 2.0, January 2003. Available
from http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html.

[B79] NIST 800-57, Recommendation for Key Management, Part 1: General Guideline. Draft, January
2003. Available from http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

68
Copyright © 2009 IEEE. All rights reserved.

[B80] Nguyen, P., Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto '97,
Advances in Cryptology—Proceedings of CRYPTO '99, (August 15–19, 1999, Santa Barbara, California),
M. Wiener (ed.), Lecture Notes in Computer Science, Springer-Verlag.

[B81] Nguyen, P., and Pointcheval, D., Analysis and Improvements of NTRU Encryption Paddings, Proc.
CRYPTO 2002, Lecture Notes in Computer Science, Springer-Verlag 2002.

[B82] Nguyen, P., and Stehle, D., “Floating-point LLL Revisited,” Proc. of EUROCRYPT ’05.

[B83] Nguyen, P., and Stern, J., Lattice Reduction in Cryptology: An Update, Conference on Lattices and
Cryptography (CaLC 2001), Lecture Notes in Computer Science 2146, Springer-Verlag.

[B84] Nguyen, P., and Stern, J., The orthogonal lattice: A new tool for the cryptanalyst, preprint 2001.

[B85] Proos, J., “Imperfect Decryption and an Attack on the NTRU Encryption Scheme,” available from
http://eprint.iacr.org/2003/002/.

[B86] Regev, O., “Quantum computation and lattice problems” Proceedings of the 43rd Annual
Symposium on the Foundations of Computer Science, (IEEE Computer Society Press, Los Alamitos,
California, USA, 2002), pp. 520–530. http://citeseer.ist.psu.edu/regev03quantum.html.

[B87] Regev, O., “A Sub-Exponential Time Algorithm for the Dihedral Hidden Subgroup Problem with
Polynomial Space,” June 2004, http://arxiv.org/abs/quant-ph/0406151.

[B88] Roch, J., and Villard, G., “Parallel gcd and lattice basis reduction,” in Proc. CONPAR92, Lyon,
Lecture Notes in Computer Science 634, Springer-Verlag, 1992, 557–564.

[B89] Schnorr, C. P., “A hierarchy of polynomial time lattice basis reduction algorithms,” Theoretical
Computer Science 53 (1987), 201–224.

[B90] Schnorr, C. P., and Euchner, M., Proc. Fundamentals of computation theory, LNCS 529, pages 68–
85, 1991.

[B91] Schnorr, C. P., and Hoerner, H. H., “Attacking the Chor-Rivest crypto-system by improved lattice
reduction,” Proc. Eurocrypt 1995, LNCS 921, 1–12, 1995.

[B92] Schnorr, C. P., “Lattice Reduction by Random Sampling and Birthday Methods,” Proceedings
STACS 2003, Eds. H. Alt, M. Habib, Springer-Verlag, LNCS 2607, pages 145–156.

[B93] Shoup, V., “OAEP Reconsidered.” In J. Kilian, editor, Advances in Cryptology—Crypto 2001, pp.
239–259. Springer Verlag, 2001.

[B94] Shoup, V., A Proposal for an ISO Standard for Public Key Encryption (Version 2.1). Manuscript,
December 20, 2001. Available from http://shoup.net/papers/.

[B95] Shoup, V., NTL: a Number Theory Library, available from http://www.shoup.net.

[B96] Silverman, J. H., “Invertibility in truncated polynomial rings,” NTRU Technical Report 009, 1998,
http://www.ntru.com.

[B97] Silverman, J. H., and Whyte, W., “Estimating Decryption Failure Probabilities for NTRUEncrypt,”
available from http://www.ntru.com/cryptolab/articles.htm.

[B98] Silverman, J. H., and Whyte, W. “Timing Attacks on NTRUEncrypt via variation in the number of
hash calls,” NTRU Technical Report 021, 2007, available from http://www.ntru.com/cryptolab/articles.htm.

[B99] Silverman, R. D., “A Cost-Based Security Analysis of Symmetric and Asymmetric Key Lengths,”
RSA Laboratories’ Bulletin No. 13, April 2000. Available from
http://www.rsasecurity.com.rsalabs/bulletins/.

[B100] Tatsuie, Tsukiji and Hiroaki, Kamiyama, “Efficient algorithm for the unique shortest lattice vector
problem using quantum oracle”, IEIC Technical Report (Institute of Electronics, Information, and
Communication Engineers), VOL.101; NO. 44(COMP2001 5-12); pp. 9–16 (2001).

[B101] van Emde Boas, P. “Another NP-complete problem and the complexity of computing short vectors
in a lattice,” Technical Report, Mathematische Instuut, University of Amsterdam, 1981.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.1- 2008
IEEE Standard Specification for Public Key Cryptographic Techniques Based on

 Hard Problems over Lattices

69
Copyright © 2009 IEEE. All rights reserved.

[B102] Villard, G. Parallel lattice basis reduction, Proc. International Symposium on Symbolic and
Algebraic Computation, Berkeley, ACM Press, 1992, 269–277.

[B103] Wagner, D., “A Generalized Birthday Problem,” In Proceedings of Crypto 2002. Available from
http://www.cs.berkeley.edu/~daw/papers/genbday.html.

Authorized licensed use limited to: Fachhochschule Nordwestschweiz. Downloaded on August 11,2018 at 05:19:06 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 1363.1-2008 Front Cover
	Title Page
	Introduction
	Notice to users
	Laws and regulations
	Copyrights
	Updating of IEEE documents
	Errata
	Interpretations
	Patents

	Participants
	CONTENTS
	Important Notice
	1. Overview
	1.1 Scope
	1.2 Purpose

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Types of cryptographic techniques
	4.1 General model
	4.2 Schemes
	4.3 Additional methods
	4.4 Algorithm specification conventions

	5. Mathematical notation
	6. Polynomial representation and operations
	6.1 Introduction
	6.2 Polynomial representation
	6.3 Polynomial operations
	6.3.1 Polynomial multiplication
	6.3.2 Reduction of a polynomial mod q
	6.3.3 Inversion in (Z/qZ)[X]/(XN – 1)

	7. Data types and conversions
	7.1 Bit strings and octet strings
	7.2 Converting between integers and bit strings (I2BSP and BS2IP)
	7.2.1 Integer to bit string primitive (I2BSP)
	7.2.2 Bit string to integer primitive (BS2IP)

	7.3 Converting between integers and octet strings (I2OSP and OS2IP)
	7.3.1 Integer to octet string primitive (I2OSP)
	7.3.2 Octet string to integer primitive (OS2IP)

	7.4 Converting between bit strings and right-padded octet strings (BS2ROSP and ROS2BSP)
	7.4.1 Bit string to right-padded octet string primitive (BS2ROSP)
	7.4.2 Right-padded octet string to bit string primitive (ROS2BSP)

	7.5 Converting between ring elements and bit strings (RE2BSP and BS2REP)
	7.5.1 Ring element to bit string primitive (RE2BSP)
	7.5.2 Bit string to ring element primitive (BS2REP)

	7.6 Converting between ring elements and octet strings (RE2OSP and OS2REP)
	7.6.1 Ring element to octet string primitive (RE2OSP)
	7.6.2 Octet string to ring element primitive (OS2REP)

	8. Supporting algorithms
	8.1 Overview
	8.2 Hash functions
	8.3 Encoding methods
	8.3.1 General
	8.3.2 Blinding polynomial generation methods (BPGM)

	8.4 Supporting algorithms
	8.4.1 Mask generation functions
	8.4.2 Index generation function

	9. Short vector encryption scheme (SVES)
	9.1 Encryption scheme (SVES) overview
	9.2 Encryption scheme (SVES) operations
	9.2.1 Key generation
	9.2.2 Encryption operation
	9.2.3 Decryption operation
	9.2.4 Key pair validation methods
	9.2.5 Public key validation

	Annex A (informative) Security considerations
	A.1 Lattice security: background
	A.1.1 Lattice definitions
	A.1.2 Hard lattice problems
	A.1.3 Theoretical complexity of hard lattice problems
	A.1.4 Lattice reduction algorithms
	A.1.5 The Gaussian heuristic and the closest vector problem
	A.1.6 Modular lattices: definition
	A.1.7 Modular lattices and quotient polynomial rings
	A.1.8 Balancing CVP in modular lattices
	A.1.9 Fundamental CVP ratios in modular lattices
	A.1.10 Creating a balanced CVP for modular lattices containing a short vector
	A.1.11 Modular lattices containing (short) binary vectors
	A.1.12 Convolution modular lattices
	A.1.13 Heuristic solution time for CVP in modular lattices
	A.1.14 Zero-forcing

	A.2 Experimental solution times for NTRU lattices—full key recovery
	A.2.1 Experimental solution times for NTRU lattices using BKZ reduction
	A.2.2 Alternative target vectors

	A.3 Combined lattice and combinatorial attacks on LBP-PKE keys and messages
	A.3.1 Overview
	A.3.2 Lattice strength
	A.3.3 Reduced lattices and the “cliff”
	A.3.3.1 Running time to obtain a given profile
	A.3.3.2 The cliff height α and ps

	A.3.4 Combinatorial strength
	A.3.4.1 Combinatorial attacks on LBP-PKE keys and messages
	A.3.4.2 Combinatorial strength in the hybrid case

	A.3.5 Summary

	A.4 Other security considerations for LBP-PKE encryption
	A.4.1 Entropy requirements for key and salt generation
	A.4.2 Reduction mod q
	A.4.3 Selection of N
	A.4.4 Relationship between q and N
	A.4.5 Form of q
	A.4.6 Leakage of m’(1)
	A.4.7 Relationship between p, q, and N
	A.4.8 Adaptive chosen ciphertext attacks
	A.4.9 Invertibility of g in Rq
	A.4.10 Decryption failures
	A.4.11 OID
	A.4.12 Use of hash functions by supporting functions
	A.4.13 Generating random numbers in [0, N – 1]
	A.4.14 Attacks based on variation in decryption times
	A.4.15 Choosing to attack r or m
	A.4.16 Quantum computers
	A.4.17 Other considerations

	A.5 A parameter set generation algorithm
	A.6 Possible parameter sets
	A.6.1 Size-optimized
	A.6.1.1 ees401ep1
	A.6.1.2 ees449ep1
	A.6.1.3 ees677ep1
	A.6.1.4 ees1087ep2

	A.6.2 Cost-optimized
	A.6.2.1 ees541ep1
	A.6.2.2 ees613ep1
	A.6.2.3 ees887ep1
	A.6.2.4 ees1171ep1

	A.6.3 Speed-optimized
	A.6.3.1 ees659ep1
	A.6.3.2 ees761ep1
	A.6.3.3 ees1087ep1
	A.6.3.4 ees1499ep1

	A.7 Security levels of parameter sets
	A.7.1 Assumed security levels versus current knowledge
	A.7.2 Potential research

	Annex B (informative) Bibliography

