
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

The Loopix Anonymity System
Ania M. Piotrowska and Jamie Hayes, University College London; Tariq Elahi, KU Leuven;

Sebastian Meiser and George Danezis, University College London

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska

The Loopix Anonymity System

Ania M. Piotrowska
University College London

Jamie Hayes
University College London

Tariq Elahi
KU Leuven

Sebastian Meiser
University College London

George Danezis
University College London

Abstract

We present Loopix, a low-latency anonymous commu-
nication system that provides bi-directional ‘third-party’
sender and receiver anonymity and unobservability.
Loopix leverages cover traffic and Poisson mixing—brief
independent message delays—to provide anonymity and
to achieve traffic analysis resistance against, including
but not limited to, a global network adversary. Mixes and
clients self-monitor and protect against active attacks via
self-injected loops of traffic. The traffic loops also serve
as cover traffic to provide stronger anonymity and a mea-
sure of sender and receiver unobservability. Loopix is
instantiated as a network of Poisson mix nodes in a strat-
ified topology with a low number of links, which serve to
further concentrate cover traffic. Service providers medi-
ate access in and out of the network to facilitate account-
ing and off-line message reception.

We provide a theoretical analysis of the Poisson mix-
ing strategy as well as an empirical evaluation of the
anonymity provided by the protocol and a functional im-
plementation that we analyze in terms of scalability by
running it on AWS EC2. We show that mix nodes in
Loopix can handle upwards of 300 messages per sec-
ond, at a small delay overhead of less than 1.5ms on
top of the delays introduced into messages to provide se-
curity. Overall message latency is on the order of sec-
onds – which is relatively low for a mix-system. Fur-
thermore, many mix nodes can be securely added to the
stratified topology to scale throughput without sacrific-
ing anonymity.

1 Introduction

In traditional communication security, the confidential-
ity of messages is protected through encryption, but this
exposes meta-data, such as who is sending messages to
whom, to network eavesdroppers. As illustrated by re-

cent leaks of extensive mass surveillance programs1, ex-
posing such meta-data leads to significant privacy risks.

Since 2004, Tor [20], a practical manifestation of
circuit-based onion routing, has become the most popu-
lar anonymous communication tool, with systems such
as Herd [33], Riposte [11], HORNET [10] and Vu-
vuzela [46] extending and strengthening this paradigm.
In contrast, message-based architectures, based on mix
networks, have become unfashionable due to perceived
higher latencies, that cannot accommodate real-time
communications. However, unless cover traffic is em-
ployed, onion routing is susceptible to traffic analysis at-
tacks [7] by an adversary that can monitor network links
between nodes. Recent revelations suggest that capabili-
ties of large intelligence agencies approach that of global
passive observers—the most powerful form of this type
of adversary.

It is not sufficient to provide strong anonymity against
such an adversary while providing low-latency commu-
nication. A successful system additionally needs to re-
sist powerful active attacks and use an efficient, yet se-
cure way of transmitting messages. Moreover, the sys-
tem needs to be scalable to a large number of clients,
which makes classical approaches based on synchro-
nized rounds infeasible.

For this reason we reexamine and reinvent mix-based
architectures, in the form of the Loopix anonymity sys-
tem. Loopix is resists powerful adversaries who are ca-
pable of observing all communications and performing
active attacks. We demonstrate that such a mix archi-
tecture can support low-latency communications that can
tolerate small delays, at the cost of using some extra
bandwidth for cover traffic. Message delay and the ra-
tio of cover to real traffic can all be flexibly traded-off
against each other to offer resistance to traffic analysis.
Loopix provides ‘third-party’ anonymity, namely it hides
the sender-receiver relationships from third parties, but

1See EFF’s guide at https://www.eff.org/files/2014/05/
29/unnecessary_and_disproportionate.pdf

USENIX Association 26th USENIX Security Symposium 1199

https://www.eff.org/files/2014/05/29/unnecessary_and_disproportionate.pdf
https://www.eff.org/files/2014/05/29/unnecessary_and_disproportionate.pdf

senders and recipients can identify one another. This
simplifies the design of the system, prevents abuse, and
provides security guarantees against powerful active ad-
versaries performing (n−1) attacks [41].

Loopix provides anonymity for private email or instant
messaging applications. For this reason, we adopt and
leverage an architecture by which users of Loopix are
associated with service providers that mediate their ac-
cess to a stratified anonymity system. Such providers are
only semi-trusted2, and are largely present to maintain
accounting, enforce rate limiting, and ensure messages
sent to off-line users can be retrieved at a later time. To
provide maximal flexibility, Loopix only guarantees un-
reliable datagram transmission and is carried over UDP.
Reliable transport is left to the application as an end-to-
end concern [39].

Contributions. In this paper we make the following con-
tributions:
• We introduce Loopix, a new message-based anony-

mous communication system. It allows for a tun-
able trade-off between latency and genuine and
cover traffic volume to foil traffic analysis.
• As a building block of Loopix we present the Pois-

son Mix, and provide novel theorems about its prop-
erties and ways to analyze it as a pool-mix. Pois-
son mixing does not require synchronized rounds,
can be used for low-latency anonymous communi-
cation, and provides resistance to traffic analysis.
• We analyze the Loopix system against a strong,

global passive adversary. Moreover, we show that
Loopix provides resistance against active attacks,
such as trickling and flooding. We also present a
methodology to empirically estimate the security
provided by particular mix topologies and other se-
curity parameter values.
• We provide a full implementation of Loopix and

measure its performance and scalability in a cloud
hosting environment.

Outline. The remainder of this paper is organized as
follows. In Section 2, we present a brief, high-level
overview of Loopix and define the security goals and
threat model. In Section 3, we detail the design of Loopix
and describe Poisson mixes, upon which Loopix is based
and introduce their properties. In Section 4, we present
the analysis of Loopix’s security properties and discuss
the resistance against traffic analysis and active attacks.
In Section 5, we discuss the implementation of Loopix
and evaluate its performance. In Section 6, we survey
related works and compare Loopix with recent designs
of anonymity systems. In Section 7, we discuss remain-
ing open problems and possible future work. Finally, we
conclude in Section 8.

2Details about the threat model are in Section 2.3

2 Model and Goals

In this section, we first outline the design of Loopix.
Then we discuss the security goals and types of adver-
saries that Loopix guarantees users’ privacy against.

2.1 High-level overview

Loopix is a mix network [8] based architecture allow-
ing users, distinguished as senders and receivers, to route
messages anonymously to each other using an infrastruc-
ture of mix servers, acting as relays. These mix servers
are arranged in a stratified topology [21] to ensure both
horizontal scalability and a sparse topology that concen-
trates traffic on a few links [13]. In a stratified topology,
mixes are arranged in a fixed number of layers. Each
mix, at any given time, is assigned to one specific layer.
Each mix in layer i is connected with every mix in layers
i−1 and i+1. Each user is allowed to access the Loopix
network through their association with a provider, a spe-
cial type of mix server. Each provider has a long-term
relationship with its users and may authenticate them,
potentially bill them, or discontinue their access to the
network. Each provider is connected to each mix in the
first layer, in order to inject packets into the mix net-
work, and also to every mix in the last layer, to receive
egress packets. The provider not only serves as an access
point, but also stores users’ incoming messages. In con-
trast to previous anonymous messaging designs [46, 11],
Loopix does not operate in deterministic rounds, but runs
as a continuous system. This means that incoming mes-
sages can be retrieved at any time, hence users do not
have to worry about lost messages when they are off-
line. Additionally, Loopix uses the Poisson mixing tech-
nique that is based on the independent delaying of mes-
sages, which makes the timings of packets unlinkable.
This approach does not require the synchronization of
client-provider rounds and does not degrade the usability
of the system for temporarily off-line clients. Moreover,
Loopix introduces different types of cover traffic to foil
de-anonymization attacks.

2.2 Threat Model

Loopix assumes sophisticated, strategic, and well-
resourced adversaries concerned with linking users to
their communications and/or their communication part-
ner(s). As such, Loopix considers adversaries with three
distinct capabilities, that are described next.

Firstly, a global passive adversary (GPA) is able to ob-
serve all network traffic between users and providers and
between mix servers. This adversary is able to observe
the entire network infrastructure, launch network attacks
such as BGP re-routing [4], or conduct indirect observa-

1200 26th USENIX Security Symposium USENIX Association

GPA Corrupt mixes Corrupt provider Insider
Sender-Recipient Third-Party Unobservability X X X X
Sender online unobservability X X X •
Sender anonymity X X X X
Receiver unobservability X X •
Receiver anonymity X X •

Table 1: The summary of security properties of the Loopix system in face of different threats. For the insider column we write • to
denote that this concept doesn’t apply to the respective notion.

tions such as load monitoring and off-path attacks [25].
Thus, the GPA is an abstraction that represents many dif-
ferent classes of adversaries able to observe some or all
information between network nodes.

Secondly, the adversary has the ability to observe all
of the internal state of some corrupted or malicious mix
relays. The adversary may inject, drop, or delay mes-
sages. She also has access to, and leverages, all se-
crets of those compromised parties. Furthermore, such
corrupted nodes may deviate from the protocol, or in-
ject malformed messages. A variation of this ability is
where the mix relay is also the provider node meaning
that the adversary additionally knows the mapping be-
tween clients and their mailboxes. When we say that a
provider node is corrupt, we restrict that node to being
honest but curious. In Loopix, we assume that a fraction
of mix/provider relays can be corrupted or are operated
by the adversary.

Finally, the adversary has the ability to participate in
the Loopix system as a compromised user, who may
also deviate from the protocol. We assume that the ad-
versary can control a limited number of such users—
effectively excluding Sybil attacks [22] from the Loopix
threat model—since we assume that honest providers are
able to ensure that at least a large fraction of their users
base are genuine users faithfully following all Loopix
protocols. Thus, the fraction of users controlled by the
adversary may be capped to a small known fraction of the
user base. We further assume that the adversary is able
to control a compromised user in a conversation with an
honest user, and become a conversation insider.

An adversary is always assumed to have the GPA ca-
pability, but other additional capabilities depend on the
adversary. We evaluate the security of Loopix in refer-
ence to these capabilities.

2.3 Security Goals
The Loopix system aims to provide the following secu-
rity properties against both passive and active attacks—
including end-to-end correlation and (n − 1) attacks.
These properties are inspired by the formal definitions
from AnoA [3]. All security notions assume a strong ad-
versary with information on all users, with up to one bit

of uncertainty. In the following we write {S→ R} to de-
note a communication from the sender S to the receiver
R, {S→} to denote that there is a communication from S
to any receiver and {S 6→} to denote that there is no com-
munication from S to any receiver (S may still send cover
messages). Analogously, we write {→ R} to denote that
there is a communication from any sender to the receiver
R and {6→ R} to denote that there is no communication
from any sender to R (however, R may still receive cover
messages).

Sender-Receiver Third-party Unlinkability. The
senders and receivers should be unlinkable by any unau-
thorized party. Thus, we consider an adversary that
wants to infer whether two users are communicating. We
define sender-receiver third party unlinkability as the in-
ability of the adversary to distinguish whether {S1→ R1,
S2 → R2} or {S1 → R2,S2 → R1} for any online honest
senders S1,S2 and honest receivers R1,R2 of the adver-
sary’s choice.

Loopix provides strong sender-receiver third-party un-
linkability against the GPA even in collaboration with
corrupt mix nodes. We refer to Section 4.1.3 for
our analysis of the unlinkability provided by individ-
ual mix nodes, Section 4.3 for a quantitative analysis
of the sender-receiver third-party unlinkability of Loopix
against the GPA and honest-but-curious mix nodes, and
Section 4.2 for our discussion on malicious mixes per-
forming active attacks.

Sender online unobservability. Whether or not senders
are communicating should be hidden from an unautho-
rized party. We define sender online unobservability as
the inability of an adversary to decide whether a specific
sender S is communicating with any receiver {S→} or
not {S 6→}, for any concurrently online honest sender S
of the adversary’s choice.

Loopix provides strong sender online unobservability
against the GPA and even against a corrupt provider. We
refer to Section 4.1.2 for our analysis of the latter.

Note, that sender online unobservability directly im-
plies the notion of sender anonymity where the adver-
sary tries to distinguish between two possible senders
communicating with a target receiver. Formally, {S1 →
R,S2 6→} or {S1 6→,S2→ R} for any concurrently online

USENIX Association 26th USENIX Security Symposium 1201

honest senders S1 and S2 and any receiver of the adver-
sary’s choice. Loopix provides sender anonymity even
in light of a conversation insider, i.e., against a corrupt
receiver.

Receiver unobservability. Whether or not receivers are
communicating should be hidden from an unauthorized
party. We define receiver unobservability as the inability
of an adversary to decide whether any sender is commu-
nicating with a specific receiver R {→ R} or not {6→ R},
for any online or offline honest receiver R of the adver-
sary’s choice.

Loopix provides strong receiver unobservability
against the GPA, under the condition of an honest
provider. We show in Section 4.1.2 how an honest
provider assists the receiver in hiding received messages
from third party observers.

Note, that receiver unobservability directly implies the
notion of receiver anonymity where the adversary tries to
distinguish between two possible receivers in communi-
cation with a target sender. Formally, {S→ R1, 6→ R2}
or {6→ R1,S→ R2} for any concurrently online honest
sender S and any two honest receivers R1,R2 of the ad-
versary’s choice. 3

Non-Goals. Loopix provides anonymous unreliable
datagram transmission and facilities replying to sent
messages (through add-ons). This choice allows for flex-
ible traffic management, cover traffic, and traffic shap-
ing. On the downside, higher-level applications using
Loopix need to take care of reliable end-to-end trans-
mission and session management. We leave the detailed
study of those mechanisms as future work.

The provider-based architecture supported by Loopix
aims to enable managed access to the network, anony-
mous blacklisting to combat abuse [27], and payments
for differential access to the network [2]. However, we
do not discuss these aspects of Loopix in this work, and
concentrate instead on the core anonymity features and
security properties described above.

3 The Loopix Architecture

In this section we describe the Loopix system in detail—
Figure 1 provides an overview. We also introduce the no-
tation used further in the paper, summarized in Table 2.

3.1 System Setup
The Loopix system consists of a set of mix nodes, N,
and providers, P. We consider a population of U users

3If the receiver’s provider is honest, Loopix provides a form of
receiver anonymity even in light of a conversation insider: a corrupt
sender that only knows the pseudonym of a receiver cannot learn which
honest client of a provider is behind the pseudonym.

Symbol Description

N Mix nodes
P Providers
λL Loop traffic rate (user)
λD Drop cover traffic rate (user)
λP Payload traffic rate (user)
l Path length (user)
µ The mean delay at mix Mi
λM Loop traffic rate (mix)

Table 2: Summary of notation

communicating through Loopix, each of which can act as
sender and receiver, denoted by indices Si, Ri, where i ∈
{1, . . . ,U} respectively. Each entity of the Loopix infras-
tructure has its unique public-private key pair (sk, pk). In
order for a sender Si, with a key pair (skSi , pkSi), to send
a message to a receiver R j, with a key pair (skR j , pkR j),
the sender needs to know the receiver’s Loopix network
location, i.e., the IP address of the user’s provider and
an identifier of the user, as well as the public encryption
key pkR j . Since it is out of scope for this work, we will
assume this information can be made available through a
privacy-friendly lookup or introduction system for initi-
ating secure connections [32].

3.2 Format, Paths and Cover Traffic

Message packet format. All messages in Loopix are
end-to-end encrypted and encapsulated into packets to be
processed by the mix network. We use the Sphinx packet
design [16], to ensure that intermediate mixes learn no
additional information beyond some routing information.
All messages are padded to the same length, which hides
the path length and the relay position and guarantees un-
linkability at each hop of the messages’ journey over the
network. The Sphinx packet format allows for detection
of tagging attacks and replay attacks.

Each message wrapped into the Sphinx packet consists
of a concatenation of two separate parts: a header, car-
rying the layered encryption of meta-data for each hop,
and the encrypted payload, which allows for confidential
message exchange. The header provides each mix server
on the path with confidential meta-data, which is neces-
sary to verify packet integrity and correctly process the
packet. The structure of the header consists of (I) a single
element of a cyclic group that is re-randomized at each
hop, (II) an onion-encrypted vector, with each layer con-
taining the routing information for one hop, and (III) the
message authentication code MACi, which allows header
integrity checking. The payload is encrypted using the
LIONESS cipher [1], which guarantees that in case the
adversary modifies the payload in transit, any informa-

1202 26th USENIX Security Symposium USENIX Association

Storage

Storage

Storage

Storage

Users’ loop cover traffic
generates traffic
in two directions

Mixes can detect
n-1 attacks

Providers offer
offline storage

when user is offline

Figure 1: The Loopix Architecture. Clients pass the messages
to the providers, which are responsible for injecting traffic into
the network. The received messages are stored in individual
inboxes and retrieved by clients when they are online.

tion contained in it becomes irrecoverable. Thanks to the
message authentication code in the header and the LI-
ONESS encryption the Sphinx packet format thus allows
for detection of tagging attacks.
Sphinx packet generation: The sender, given the public
keys of the recipient and the nodes in the path, computes
the sequence of shared secrets and blinded group ele-
ments. Next, the sender encrypts with the derived secret
keys the vector of routing information and corresponding
message authentication codes. The sender concatenates
the computed header and onion-encrypted payload en-
capsulating confidential message to send to the recipient.
Sphinx packet processing: Each node after receiv-
ing the packet proceeds as follows. First, it computes
a shared key using the group element included in the
packet header and its private key. Next, using the com-
puted shared key, the node validates the integrity of the
packet by computing the hash of the encrypted routing
information vector and comparing it with the received
MAC. If the MAC is correct, the node, using the obtained
key, strips off a single layer of encryption from the rout-
ing information and payload. The decryption operation
returns the routing commands and a new packet, which
should be forwarded to the next hop.

We extend the Sphinx packet format to carry addi-
tional routing commands in the header to each interme-
diate relay, including a delay and additional flags.

Path selection. As opposed to circuit-based onion
routing, in Loopix the communication path for every sin-
gle message is chosen independently, even between the
same pair of users.

Messages are routed through l layers of mix nodes, as-
sembled in a stratified topology [13, 21]. Each mix node
is connected only with all the mix nodes from adjacent

layers. This ensures that few links are used, and those
few links are well covered in traffic; stratified topologies
mix well in few layers [21]. Providers act as the first and
last layer of mix servers.

Preparing message for sending. To send a message,
the sender generates a random path, as described above.
For each hop in the path the sender samples a delay
from an exponential distribution with parameter µ , and
includes it in the vector of routing commends, together
with any other auxiliary information, to the correspond-
ing relay. Given the message, recipient, path and rout-
ing commends the client encapsulates them into a Sphinx
packet format.

Sending messages and cover traffic. Users and mix
servers continuously generate a bed of real and cover
traffic that is injected into the network. Our design guar-
antees that all outgoing traffic sent by users can by mod-
eled by a Poisson process.

To send a message, a user packages their message into
a mix packet and places it into their buffer—a first-in-
first-out (FIFO) queue that stores all the messages sched-
uled to be sent.

Each sender periodically checks, following the expo-
nential distribution with parameter 1

λP
, whether there is

any scheduled message to be sent in their buffer. If there
is a scheduled message, the sender pops this message
from the buffer queue and sends it, otherwise a drop
cover message is generated (in the same manner as a reg-
ular message) and sent (depicted as the four middle blue,
solid arrows in Figure 1). Cover messages are routed
through the sender’s provider and a chain of mix nodes to
a random destination provider. The destination provider
detects the message is cover based on the special drop
flag encapsulated into the packet header, and drops it.
Thus, regardless of whether a user actually wants to send
a message or not, there is always a stream of messages
being sent according to a Poisson process Pois(λP).

Moreover, independently from the above, all users
emit separate streams of special indistinguishable types
of cover messages, which also follow a Poisson process.
The first type of cover messages are Poisson distributed
loops emitted at rate λL. These are routed through the
network and looped back to the senders (the upper four
red arrows in Figure 1), by specifying the sending user as
the recipient. These “loops” inspire the system’s name.
Users also inject a separate stream of drop cover mes-
sages, defined before, following the Poisson distribution
Pois(λD). Additionally, each user sends a stream of pull
requests at a fixed frequency to its provider in order to
retrieve received messages, described in Section 3.2.

USENIX Association 26th USENIX Security Symposium 1203

• Packs message m in
the Sphinx packet
format and put it
into the outbox
buffer;

• Continuously gener-
ates loop and drop
cover traffic;

• When the buffer is
checked, pops the
encrypted message
and sends to the
provider.

Sender
• Processes the

received packet,
checks the in-
tegrity and detects
replays,

• If the processing
succeeded, injects
the packet into the
mix network after
the required delay.

Ingress Provider

• Processes the
received packet,
checks the in-
tegrity and detects
replays,

• If the process-
ing succeeded,
forwards the de-
crypted packet to
the next hop after
the required delay.

Mix
• Processes the

received packet,
checks the in-
tegrity and detects
replays,

• Stores the packet in
the client’s inbox.

Egress Provider

• Retrieves a fixed
number of mes-
sages from the
inbox,

• Unwraps the last
layer of encryption
and reads the
content.

Recipient

Figure 2: Sending a single message between two users using the Loopix system. For simplicity, we present the mix network
as a single mix; however, all mixes in the network perform the same operations. The mail client, besides sending the messages,
generates constant streams of loop and drop cover traffic, independently of the user activity. The dotted line depicts retrieving of
messages.

Each mix also injects its own loop cover traffic, drawn
from a Poisson process with rate Pois(λM), into the net-
work. Mix servers inject mix packets that are looped
through a path, made up of a subset of other mix servers
and one randomly selected provider, back to the sending
mix server, creating a second type of “loop”. This loop
originates and ends in a mix server (shown as the lower
four green arrows in Figure 1). In Section 4 we exam-
ine how these loops and the drop cover messages help
protect against passive and active attacks.

Processing messages. Upon receiving a packet, each
node, i.e., each mix and provider, performs the opera-
tion of processing the Sphinx packet. While processing
the packet, the server recomputes the shared secret and
checks the MAC’s correctness. If this integrity test fails,
the packet is dropped. Otherwise, the unwrapping func-
tion returns the replay detection tag and the vector of
routing commands, as well the new packet. The vector
of routing commands includes, among others, the rout-
ing flag, the address of the next hop and the delay. After
unwrapping the packet, the node checks whether the re-
turned replay detection tag has been already seen and if
so, drops the packet. This allows for detection and pro-
tection against replay attacks. Otherwise, the node saves
the tag in a data structure that stores previously observed
tags. Next, it checks whether the routing flag is set to
Relay or Dest. The Dest flag means that the received
message is a loop message transferred back to the node.
In the case of the Relay flag, we consider two scenarios
depending on whether the processing node is a mix or a
provider. In the case of a mix, the decrypted new packet
is send to the next hop, specified by address, after the de-
lay has elapsed. In the case of a provider, the new packet

is either forwarded as before or saved in the inbox of one
of the provider’s clients specified by the address.

Message storing and retrieving. Providers do not for-
ward the incoming mix packets to users but instead
buffer them in clients’ inboxes. Users, when online, poll
providers or register their online status to download a
fixed subset of stored messages, allowing for the recep-
tion of the off-line messages. Recall that cover loops are
generated by users and traverse through the network and
come back to the sender. Cover loops serve as a cover
set of outgoing and incoming real messages. Whenever
a user requests messages, their provider responds with a
constant number of messages, which includes their cover
loop messages and real messages. If the inbox of a par-
ticular user contains fewer messages than this constant
number, the provider generates and sends dummy mes-
sages to the sender up to that number.

3.3 The Poisson Mix Strategy

Loopix leverages cover traffic to resist traffic analysis
while still achieving low- to mid-latency. To this end
Loopix employs a mixing strategy that we call a Pois-
son Mix, to foil observers from learning about the cor-
respondences between input and output messages. The
Poisson Mix is a simplification of the Stop-and-go mix
strategy [29]. A similar strategy has been used to model
traffic in onion routing servers [12]. In contrast, recall
that in Loopix each message is source routed through an
independent route in the network.

The Poisson Mix functions as follows: mix servers lis-
ten for the incoming mix packets and received messages
are checked for duplication and decoded using the mix

1204 26th USENIX Security Symposium USENIX Association

Event i−1

Pool i−1

Event i

Pool i

Event i+1

Pool i+1

Event i+2

Figure 3: The Poisson Mix strategy mapped to a Pool mix
strategy. Each single message sending or receiving event leads
to a new pool of messages that are exchangeable and indistin-
guishable with respect to their departure times.

node’s private keys. The detected duplicates are dropped.
Next, the mix node extracts a subsequent mix packet.
Decoded mix packets are not forwarded immediately,
but each of them is delayed according to a source pre-
determined delay di. Honest clients chose these delays,
independently for each hop, from an exponential distri-
bution with a parameter µ that is assumed to be public
and the same for all mix nodes. This parameter deter-
mines how long the message is queued in the mix. Thus,
the end-to-end latency of the messages depends on the
selected parameter µ .

Mathematical model of a Poisson Mix. Honest
clients and mixes generate drop cover traffic, loop traf-
fic, and messaging traffic following a Poisson process.
Aggregating Poisson processes results in a Poisson pro-
cess with the sum of their rates, therefore we may model
the streams of traffic received by a Poisson mix as a Pois-
son process. It is the superposition of traffic streams from
multiple clients. It has a rate λn depending on the number
of clients and the number of mix nodes.

Since this input process is a Poisson process and each
message is independently delayed using an exponential
distribution with parameter µ , the Poisson Mix may be
modeled as an M/M/∞ queuing system – for which we
have a number of well known theorems [5]. We know
that output stream of messages is also a Poisson process
with the parameter λn as the the input process. We can
also derive the distribution of the number of messages
within a Poisson Mix in a steady state [34]. By the steady
state we mean the state of the system in which all entities
have already generated and processed messages for some
reasonable period of time. By the convergence of the sys-
tem to the equilibrium, this guarantees that the observed
traffic closely follows the assumed distribution.

Lemma 1. The mean number of messages in the Poisson
Mix with input Poisson process Pois(λ) and exponential
delay parameter µ at a steady state follows the Poisson
distribution Pois(λ/µ).

These characteristics, which give the Poisson Mix its
name, allow us to calculate the mean number of mes-

sages perfectly mixed together at any time, as well as the
probability that the number of messages falls below or
above certain thresholds.

The Poisson Mix, under the assumption that it approx-
imates an M/M/∞ queue is a stochastic variant of a pool
mixing strategy [42]. Conceptually, every message sent
or received leads to a pool within which messages are
indistinguishable due to the memoryless property of the
exponential delay distribution.

Lemma 2 (Memoryless property [34]). For an exponen-
tial random variable X with parameter µ holds Pr[X >
s+ t|X > t] = Pr[X > s].

Intuitively, any two messages in the same pool are
emitted next with equal probability – no matter how long
they have been waiting. As illustrated in Figure 3, the
receiving event i− 1 leads to a pool of messages i− 1,
until the sending event i. From the perspective of the ad-
versary observing all inputs and outputs, all messages in
the pool i−1 are indistinguishable from each other. Only
the presence of those messages in the pool is necessary to
characterize the hidden state of the mix (not their delay
so far). Relating the Poisson mix to a pool mix allows
us to compute easily and exactly both the entropy metric
for the anonymity it provides [40] within a trace (used in
Section 4.1.3). It also allows us to compute the likelihood
that an emitted message was any specific input message
used in our security evaluation.

Synchronous variant of Loopix. While Loopix oper-
ates asynchronously by design, we now consider a syn-
chronous Loopix variant that operates in discrete rounds
and thus cannot use the exponential mixing strategy,
where delays attached to the packets are drawn from a
continuous distribution. However, note that in a sin-
gle round of the synchronous system the mixes gather
packets - thus creating pools of packets - which are then
flushed following the mixing strategy. All the messages
gathered in the pool during a single round are indistin-
guishable from each other. Hence, since we have shown
earlier that the Poisson mix can be modeled as a pool
mix, the security analysis of mixing we present next can
be applied both in the asynchronous and synchronous de-
sign.

4 Analysis of Loopix security properties

In this section we present the analytical and experimental
evaluation of the security of Loopix and argue its resis-
tance to traffic analysis and active attacks.

USENIX Association 26th USENIX Security Symposium 1205

4.1 Passive attack resistance

4.1.1 Message Indistinguishability

Loopix relies on the Sphinx packet format [16] to provide
bitwise unlinkability of incoming and outgoing messages
from a mix server; it does not leak information about the
number of hops a single message has traversed or the
total path length; and it is resistant to tagging attacks.

For Loopix, we make minor modifications to Sphinx
to allow auxiliary meta-information to be passed to dif-
ferent mix servers. Since all the auxiliary information is
encapsulated into the header of the packet in the same
manner as any meta-information was encapsulated in the
Sphinx design, the security properties are unchanged. An
external adversary and a corrupt intermediate mix node
or a corrupt provider will not be able to distinguish real
messages from cover messages of any type. Thus, the
GPA observing the network cannot infer any information
about the type of the transmitted messages, and interme-
diate nodes cannot distinguish real messages, drop cover
messages or loops of clients and other nodes from each
other. Providers are able to distinguish drop cover mes-
sage destined for them from other messages, since they
learn the drop flag attached in the header of the packet.
Each mix node learns the delay chosen by clients for this
particular mix node, but all delays are chosen indepen-
dently from each other.

4.1.2 Client-Provider unobservability

In this section, we argue the sender and receiver un-
observability against different adversaries in our threat
model. Users emit payload messages following a Pois-
son distribution with parameter λP. All messages sched-
uled for sending by the user are placed within a first-in-
first-out buffer. According to a Poisson process, a sin-
gle message is popped out of the buffer and sent, or a
drop cover message is sent in case the buffer is empty.
Thus, from an adversarial perspective, there is always
traffic emitted modeled by Pois(λP). Since clients send
also streams of cover traffic messages with rates λL for
loops and λD for drop cover messages, the traffic sent by
the client follows Pois(λP +λL +λD). Thus, we achieve
perfect sender unobservability, since the adversary can-
not tell whether a genuine message or a drop cover mes-
sage is sent.

When clients query providers for received messages,
the providers always send a constant number of messages
to the client. If the number of messages in client’s inbox
is smaller than a constant threshold, the provider gen-
erates additional dummy messages. Thus, the adversary
observing the client-provider connection, as presented on
Figure 4, cannot learn how many messages were in the
user’s inbox. Note that, as long as the providers are hon-

Inbox I

Inbox II

Inbox III

Figure 4: Provider stores messages destined for assigned
clients in a particular inbox. When users pull messages from
the mix node, the provider generates cover messages to guar-
antee that the adversary cannot learn how many messages are
in the users inbox. The messages from the inbox and dummies
are indistinguishable.

est, the protection and receiver unobservability is perfect
and the adversary cannot learn any information about the
inbox and outbox of any client.

Corrupt providers: We distinguish the sender’s and
recipient’s providers by calling them the ingress and
egress providers respectively. If the ingress provider is
compromised, all security properties of the Loopix sys-
tem are still preserved, since the ingress provider ob-
serves a rate of traffic shaped by the Poisson distribution
coming from the client and cannot distinguish whether
the received packets carry real, loop or drop messages.

If the egress provider is malicious it can reveal to the
adversary whether a particular client is receiving mes-
sages or not since the provider is responsible for man-
aging the clients’ inboxes. However, even an egress
provider is still uncertain whether a received message is
genuine or the result of a client loop – this cannot be
determined from their bit pattern alone. Further statis-
tical attacks may be possible, and we leave quantifying
the exact information leakage against this threat model
as future work. Thus, Loopix does not guarantee perfect
receiver unobservability in the presence of a corrupted
egress provider.

4.1.3 Poisson mix security

We first show that a single honest Poisson mix provides a
measure of sender-receiver unlinkability. From the prop-
erties of Poisson mix, we know that the number of mes-
sages in the mix server at a steady state depends on the
ratio of the incoming traffic (λ) and the delay parameter
(µ) (from Section 3.3). The number of messages in each
mix node at any time will on average be λ

µ
. However, an

adversary observing the messages flowing into and out
of a single mix node could estimate the exact number of

1206 26th USENIX Security Symposium USENIX Association

messages within a mix with better accuracy – hindered
only by the mix loop cover traffic.

We first consider, conservatively, the case where a mix
node is not generating any loops and the adversary can
count the exact number of messages in the mix. Let us
define on,k,l as an adversary A observing a mix in which
n messages arrive and are mixed together. The adversary
then observes an outgoing set of n− k messages and can
infer that there are now k < n messages in the mix. Next,
l additional messages arrive at the mix before any mes-
sage leaves, and the pool now mixes k+ l messages. The
adversary then observes exactly one outgoing message
m and tries to correlate it with any of the n+ l messages
which she has observed arriving at the mix node.

The following lemma is based on the memoryless
property of the Poisson mix. It provides an upper bound
on the probability that the adversary A correctly links the
outgoing message m with one of the previously observed
arrivals in observation on,k,l .

Theorem 1. Let m1 be any of the initial n messages in
the mix node in scenario on,k,l , and let m2 be any of the l
messages that arrive later. Then

Pr(m = m1) =
k

n(l + k)
, (1)

Pr(m = m2) =
1

l + k
. (2)

Note that the last l messages that arrived at the mix
node have equal probabilities of being the outgoing mes-
sage m, independently of their arrival times. Thus, the
arrival and departure times of the messages cannot be
correlated, and the adversary learns no additional infor-
mation by observing the timings. Note that 1

l+k is an
upper bound on the probability that the adversary A cor-
rectly links the outgoing message to an incoming mes-
sage. Thus, continuous observation of a Poisson mix
leaks no additional information other than the number
of messages present in the mix. We leverage those re-
sults for a single Poisson Mix to simulate the information
propagated withing a the whole network observed by the
adversary (c.f. Section 4.3).

We quantify the anonymity of messages in the mix
node empirically, using an information theory based met-
ric introduced in [40, 18]. We record the traffic flow
for a single mix node and compute the distribution of
probabilities that the outgoing message is the adversary’s
target message. Given this distribution we compute the
value of Shannon entropy (see Appendix A), a measure
of unlinkability of incoming to outgoing messages. We
compute this using the simpy package in Python. All
data points are averaged over 50 simulations.

Figure 5 depicts the change of entropy against an in-
creasing rate of incoming mix traffic λ . We simulate the

Figure 5: Entropy versus the changing rate of the incoming
traffic for different delays with mean 1

µ
. In order to measure

the entropy we run a simulation of traffic arriving at a single
Loopix mix node.

dependency between entropy and traffic rate for differ-
ent mix delay parameter µ by recording the traffic flow
and changing state of the mix node’s pool. As expected,
we observe that for a fixed delay, the entropy increases
when the rate of traffic increases. Higher delay also re-
sults in an increase in entropy, denoting a larger potential
anonymity set, since more messages are mixed together.

In case the mix node emits loop cover traffic, the ad-
versary with observation on,k,l , tries to estimate the prob-
ability that the observed outgoing message is a particular
target message she observed coming into the mix node.
An outgoing message can be either input message or a
loop message generated by the mix node – resulting in
additional uncertainty for the adversary.

Theorem 2. Let m1 be any of the initial n messages in
the mix node in scenario on,k,l , and let m2 be any of the
l messages that arrive later. Let λM denote the rate at
which mix node generates loop cover traffic. Then,

Pr(m = m1) =
k
n
· µ

(l + k)µ +λM
,

Pr(m = m2) =
µ

(l + k)µ +λM
.

We refer to Appendix A for the proof. We conclude
that the loops generated by the mix node obfuscate the
adversary’s view and decrease the probability of success-
fully linking input and output of the mix node. In Sec-
tion 4.2 we show that those types of loops also protect
against active attacks.

4.2 Active-attack Resistance
Lemma 1 gives the direct relationship between the ex-
pected number of messages in a mix node, the rate of in-
coming traffic, and the delay induced on a message while
transiting through a mix. By increasing the rate of cover
traffic, λD and λL, users can collectively maintain strong

USENIX Association 26th USENIX Security Symposium 1207

anonymity with low message delay. However, once the
volume of real communication traffic λP increases, users
can tune down the rate of cover traffic in comparison
to the real traffic, while maintaining a small delay and
be confident their messages are mixed with a sufficient
number of messages.

In the previous section, we analyze the security prop-
erties of Loopix when the adversary observes the state
of a single mix node and the traffic flowing through it.
We show, that the adversary’s advantage is bounded due
to the indistinguishability of messages and the memory-
less property of the Poisson mixing strategy. We now in-
vestigate how Loopix can protect users’ communications
against active adversaries conducting the (n−1) attack.

4.2.1 Active attacks

We consider an attack at a mix node where an adversary
blocks all but a target message from entering in order
to follow the target message when it exits the mix node.
This is referred to as an (n-1) attack [41].

A mix node needs to distinguish between an active at-
tack and loop messages dropped due to congestion. We
assume that each mix node chooses some public param-
eter r, which is a fraction of the number of loops that
are expected to return. If the mix node does not see this
fraction of loops returning they alter their behavior. In
extremis such a mix could refuse to emit any messages
– but this would escalate this attack to full denial-of-
service. A gentler approach involves generating more
cover traffic on outgoing links [17].

To attempt an (n-1) attack, the adversary could simply
block all incoming messages to the mix node except for a
target message. The Loopix mix node can notice that the
self-loops are not returning and deduce it is under attack.
Therefore, an adversary that wants to perform a stealthy
attack has to be judicious when blocking messages, to
ensure that a fraction r of loops return to the mix node,
i.e. the adversary must distinguish loop cover traffic from
other types of traffic. However, traffic generated by mix
loops is indistinguishable from other network traffic and
they cannot do this better than by chance. Therefore
given a threshold r = λM

s ,s ∈ R>1 of expected returning
loops when a mix observes fewer returning it deploys ap-
propriate countermeasures.

We analyze this strategy: since the adversary cannot
distinguish loops from other traffic the adversary can do
no better than block traffic uniformly such that a fraction
R = λ

s = λR+λM
s enter the mix, where λR is the rate of

incoming traffic that is not the mix node’s loops. If we
assume a steady state, the target message can expect to
be mixed with λR

s·µ messages that entered this mix, and
λM
µ

loop messages generated at the mix node. Thus, the
probability of correctly blocking a sufficient number of

messages entering the mix node so as not to alter the be-
havior of the mix is:

Pr(x = target) =
1

λR/s ·µ +λM/µ
=

sµ

sλM +λR

Due to the stratified topology, providers are able to dis-
tinguish mix loop messages sent from other traffic, since
they are unique in not being routed to or from a client.
This is not a substantial attack vector since mix loop
messages are evenly distributed among all providers, of
which a small fraction are corrupt and providers do not
learn which mix node sent the loop to target it.

4.3 End-to-End Anonymity Evaluation
We evaluate the sender-receiver third-party unlinkability
of the full Loopix system through an empirical analysis
of the propagation of messages in the network. Our key
metric is the expected difference in likelihood that a mes-
sage leaving the last mix node is sent from one sender
in comparison to another sender. Given two probabilities
p0 = Pr[S0] and p1 = Pr[S1] that the message was sent by
senders S0 and S1, respectively, we calculate

ε = |log(p0/p1)| . (3)

To approximate the probabilities p0 and p1, we pro-
ceed as follows. We simulate U = 100 senders that gen-
erate and send messages (both payload and cover mes-
sages) with a rate λ = 2. Among them are two challenge
senders S0 and S1 that send payload messages at a con-
stant rate, i.e, they add one messages to their sending
buffer every time unit.

Whenever a challenge sender S0 or S1 sends a payload
message from its buffer, we tag the message with a la-
bel S0 or S1, respectively. All other messages, including
messages from the remaining 98 clients and the cover
messages of S0 and S1 are unlabeled. At every mix we
track the probability that an outgoing message is labeled
S0 or S1, depending on the messages that entered the mix
node and the number of messages that already left the
mix node, as in Theorem 1. Thus, messages leaving a
mix node carry a probability distribution over labels S0,
S1, or ‘unlabeled’. Corrupt mix nodes, assign to outgoing
messages their input distributions. The probabilities nat-
urally add up to 1. For example, a message leaving a mix
can be labeled as {S0 : 12%,S1 : 15%,unlabeled : 73%}.

In a burn-in phase of 2500 time units, the 98 senders
without S0 or S1 communicate. Then we start the two
challenge senders and then simulate the network for an-
other 100 time units, before we compute the expected
difference in likelihood metric. We pick a final mix node
and using probabilities of labels S0 and S1 for any mes-
sage in the pool we calculate ε as in Equation (3).

1208 26th USENIX Security Symposium USENIX Association

Figure 6: Likelihood difference ε depending on the delay pa-
rameter µ of mix nodes. We use λ = 2, a topology of 3 layers
with 3 nodes per layer and no corruption.

This is a conservative approximation: we tell the ad-
versary which of the messages leaving senders S0 and S1
are payload messages; and we do not consider mix or
client loop messages confusing them. 4 However, when
we calculate our anonymity metric at a mix node we as-
sume this mix node to be honest.

4.3.1 Results

We compare our metric for different parameters: depend-
ing on the delay parameter µ , the number of layers in
our topology l and the percentage of corrupt mix nodes
in the network. All simulations are averaged over 100
repetitions and the error bars are the standard deviation.

Delay. Increasing the average delay (by decreasing pa-
rameter µ) with respect to the rate of message sending
λ immediately increases anonymity (decreases ε) (Fig-
ure 6). For µ = 2.0 and λ/µ = 1, Loopix still provides a
weak form of anonymity. As this fraction increases, the
log likelihood ratio grow closer and closer to zero. We
consider values λ/µ ≥ 2 to be a good choice in terms of
anonymity.

Number of layers. By increasing the number of layers
of mix nodes, we can further strengthen the anonymity of
Loopix users. As expected, using only one or two layers
of mix nodes leads to high values of adversary advantage
ε . For a increasing number of layers, ε approaches zero
(Figure 7). We consider a number of 3 or more layers
to be a good choice. We believe the bump between 5–8
layers is due to messages not reaching latter layers within
100 time units. Results from experiments with increased
duration do not display such a bump.

4The soundness of our simplification can be seen by the fact that we
could tell the adversary which messages are loops and the adversary
could thus ignore them. This is equivalent to removing them, as an
adversary could also simulate loop messages.

Figure 7: Likelihood difference ε depending on the number of
layers of mix nodes with 3 mix nodes per layer. We use λ = 2,
µ = 1, and no corruption.

Figure 8: Likelihood difference ε depending on the percentage
of (passively) corrupted mix nodes. We use λ = 2, µ = 1 and
a topology of 3 layers with 3 nodes per layer.

Corruption. Finally, we analyze the impact that cor-
rupt mix nodes have on the adversary advantage ε (Fig-
ure 8). We assume that the adversary randomly corrupts
mix nodes. Naturally, the advantage ε increases with the
percentage of corrupt mix nodes in the network. In a
real-world deployment we do not expect a large fraction
of mix nodes to be corrupt. While the adversary may
be able to observe the entire network, to control a large
number of nodes would be more costly.

5 Performance Evaluation

Implementation. We implement the Loopix system
prototype in 4000 lines of Python 2.7 code for mix
nodes, providers and clients, including unit-tests, de-
ployment, and orchestration code. Loopix source code
is available under an open-source license5. We use the
Twisted 15.5.0 network library for networking; as well
as the Sphinx mix packet format6 and the cryptographic
tools from the petlib7 library. We modify Sphinx to
use NIST/SEGS-p224 curves and to accommodate addi-
tional information inside the packet, including the delay

5https://github.com/UCL-InfoSec/loopix
6http://sphinxmix.readthedocs.io/en/latest/
7http://petlib.readthedocs.org

USENIX Association 26th USENIX Security Symposium 1209

https://github.com/UCL-InfoSec/loopix

for each hop and auxiliary flags. We also optimize the
Sphinx implementation leading to processing times per
packet of less than 1ms.

The most computationally expensive part of Loopix
is messages processing and packaging, which involves
cryptographic operations. Thus, we implement Loopix
as a multi-thread system, with cryptographic processing
happening in a thread pool separated from the rest of the
operations in the main thread loop. To recover from con-
gestion we implement active queue management based
on a PID controller and we drop messages when the size
of the queue reaches a (high) threshold.

Experimental Setup. We present an experimental per-
formance evaluation of the Loopix system running on
the AWS EC2 platform. All mix nodes and providers
run as separate instances. Mix nodes are deployed on
m4.4xlarge instances running EC2 Linux on 2.3GHz
machines with 64GB RAM memory. Providers, since
they handle more traffic, storage and operations, are de-
ployed on m4.16xlarge instances with 256GB RAM.
We select large instances to ensure that the providers
are not the bottleneck of the bandwidth transfer, even
when users send messages at a high rate. This reflects
real-world deployments where providers are expected to
be well-resourced. We also run one m4.16xlarge in-
stance supporting 500 clients. We only show results for
500 clients, due to limitations of our experimental hard-
ware setup such as ports and memory. A real world de-
ployment of Loopix would scale to a larger client base.
We believe that our empirical analysis is a more accu-
rate assessment of real-world performance than those re-
ported by other works, e.g. [45, 46], which depend on
simplish extrapolation. In order to measure the system
performance, we run six mix nodes, arranged in a strat-
ified topology with three layers, each layer composed
of two mix nodes. Additionally, we run four providers,
each serving approximately 125 clients. The delays of
all the messages are drawn from an exponential distri-
bution with parameter µ , which is the same for all mix
servers in the network. All measurements are taken from
network traffic dumps using tcpdump.

Bandwidth. First, we evaluate the increase of band-
width of mix nodes by measuring the rate at which a
single mix node processes messages, for an increasing
overall rate at which users send messages.

We set up the fixed delay parameter µ = 1000 (s.t.
the average delay is 1ms). We have 500 clients ac-
tively sending messages at rate λ each, which is the
sum of payload, loop and drop rates, i.e., Pois(λ) =
Pois(λL + λD + λP). We start our simulation with pa-
rameters λL = λD = 1 and λP = 3 messages per minute
for a single client. Mix nodes send loop cover traffic at

Figure 9: Overall bandwidth and good throughput per second
for a single mix node.

rate starting from λM = 1. Next, we periodically increase
each Poisson rate by another 2 messages per minute.
Each packet sent through the network has a size of a few
kilobytes only, but this size is a parameter that can, of
course, be increased to fit the needs of a particular appli-
cation.

In order to measure the overall bandwidth, i.e. the
number of all messages processed by a single mix node,
we use the network packet analyzer tcpdump. Since
real and cover message packets are indistinguishable, we
measure the good throughput by encapsulating an addi-
tional, temporary, typeFlag in the packet header for this
evaluation, which leaks to the mix the message type—
real or cover—and is recorded. Knowing the parameters
λP, λL, and λD the adversary can try to estimate how
many messages on average in the outgoing stream are
real, loop or drop messages. However, the average es-
timation does not give the adversary any significant in-
formation, since the outgoing traffic may contain various
numbers of each type of message which an adversary is
not able to distinguish between.

Figure 9 illustrates the number of total messages and
the number of payload messages that are processed by
a single mix node versus the overall sending rate λ of a
single user. We observe that the bandwidth of the mix
node increases linearly until it reaches around 225 mes-
sages per second. After that point the performance of
the mix node stabilizes and we observe a much smaller
growth. We highlight that the amount of real traffic in the
network depends on the parameter λP within λ . A client
may chose to tune up the rate of real messages sent, by
tuning down the rate of loops and drop messages – at
the potential loss of security in case less cover traffic is
present in the system overall. Thus, depending on the
size of the honest user population in Loopix, we can in-
crease the rate of goodput.

Latency Overhead & Scalability. End-to-end latency
overhead is the cost of routing and decoding relayed mes-
sages, without any additional artificial delays. We run

1210 26th USENIX Security Symposium USENIX Association

Figure 10: Latency overhead of the system where 50 to 500
users simultaneously send traffic at rates λP = λL = λD = 10
per minute and mix nodes generate loop cover traffic at rate
λM = 10 per minute. We assume that there is not additional
delay added to the messages by the senders.

simulations to measure its sensitivity to the number of
users participating in the system.

We measure the time needed to process a single packet
by a mix node, which is approximately 0.6ms. This cost
is dominated by the scalar multiplication of an elliptic
curve point and symmetric cryptographic operations. For
the end-to-end measurement, we run Loopix with a setup
where all users have the same rates of sending real and
cover messages, such that λP = λD = λL = 10 messages
per minute and mix servers generate loops at rate λM =
10 messages per minute. All clients set a delay of 0.0
seconds for all the hops of their messages – to ensure
we only measure the system overhead, not the artificial
mixing delay.

Figure 10 shows that increasing the number of online
clients, from 50 to 500, raises the latency overhead by
only 0.37ms. The variance of the processing delay in-
creases with the amount of traffic in the network, but
more clients do not significantly influence the average
latency overhead. Neither the computational power of
clients nor mix servers nor the communication between
them seem to become bottlenecks for these rates. Those
results show that the increasing number of users in the
network does not lead to any bottleneck for our parame-
ters. The measurements presented here are for a network
of 6 mix nodes, however we can increase the system ca-
pacity by adding more servers. Thus, Loopix scales well
for an increasing number of users.

We also investigate how increasing the delays through
Poisson Mixing with µ = 2 affects the end-to-end la-
tency of messages. We measure this latency through tim-
ing mix heartbeat messages traversing the system. Fig-
ure 11 illustrates that when the mean delay 1/µ sec. is
higher than the processing time (∼ 1ms−2ms), the end-
to-end latency is determined by this delay, and follows
the Gamma distribution with parameter being the sum of
the exponential distribution parameter over the number
of servers on the path. The good fit to a gamma distribu-

Figure 11: End-to-end latency histogram measured through
timing mix node loops. We run 500 users actively commu-
nicating via Loopix at rates λP = λL = λD = 60 per minute and
λM = 60 per minute. The delay for each hop is drawn from
Exp(2). The latency of the message is determined by the as-
signed delay and fits the Gamma distribution with mean 1.93
and standard deviation 0.87.

tion provides evidence that the implementation of Loopix
is faithful to the queuing theory models our analysis as-
sumes.

6 Related Work

All anonymous communication designs share the com-
mon goal of hiding users’ communication patterns
from adversaries. Simultaneously minimizing latency
and communication overhead while still providing high
anonymity is challenging. We survey other anonymous
systems and compare them with Loopix (a summary is
provided in Table 3).

Early designs. Designs based on Chaum’s mixes [8]
can support both high and low latency communication;
all sharing the basic principles of mixing and layered
encryption. Mixmaster [35] supports sender anonymity
using messages encryption but does not ensure receiver
anonymity. Mixminion [15] uses fixed sized messages
and supports anonymous replies and ensures forward
anonymity using link encryption between nodes. As a
defense against traffic analysis, but at the cost of high-
latencies, both designs delay incoming messages by col-
lecting them in a pool that is flushed every t seconds (if
a fixed message threshold is reached).

In contrast, Onion routing [26] was developed for low-
latency anonymous communication. Similar to mix de-
signs, each packet is encrypted in layers, and is decrypted
by a chain of authorized onion routers. Tor [20], the
most popular low-latency anonymity system, is an over-
lay network of onion routers. Tor protects against sender-
receiver message linking against a partially global adver-
sary and ensures perfect forward secrecy, integrity of the

USENIX Association 26th USENIX Security Symposium 1211

messages, and congestion control. However, Tor is vul-
nerable to traffic analysis attacks, if an adversary can ob-
serve the ingress and egress points of the network. A
great number of works have studied how mix networks
and onion routing leak information, and how better de-
sign such systems [36, 38, 44, 48].
Recent designs. Vuvuzela [46] protects against both
passive and active adversaries as long as there is one
honest mix node. Since Vuvuzela operates in rounds, of-
fline users lose the ability to receive messages and all
messages must traverse a single chain of relay servers.
Loopix does not operate in rounds, thus the end-to-end
latency can be significantly smaller than in Vuvuzela,
depending on the delay parameter the senders choose.
Moreover, Loopix allows off-line users to receive mes-
sages and uses parallel mix nodes to improve the scala-
bility of the network.

Stadium [45] and AnonPop [24] refine Vuvuzela; both
operating in rounds making the routing of messages de-
pendent on the dynamics of others. Stadium is scalable,
but it lacks offline storage, whereas AnonPop does pro-
vide offline message storage. Loopix also provides both
properties, and because it operates continuously avoids
user synchronization issues. Additionally, Loopix, in
comparison to AnonPop, protects against active attacks.

Riposte [11] is based on a write PIR scheme in which
users write their messages into a database, without re-
vealing the row into which they wrote to the database
server. Riposte enjoys low communication-overhead and
protects against traffic analysis and denial of service at-
tacks, but requires long epochs and a small number of
clients writing into the database simultaneously. In con-
trast to Loopix, it is suitable for high-latency applica-
tions.

Dissent [9], based on DC-networks [9], offers re-
silience against a GPA and some active attacks, but at sig-
nificantly higher delays and scales to only several thou-
sand clients.

Riffle [31] introduces a new verifiable shuffle tech-
nique to achieve sender anonymity. Using PIR, Rif-
fle guarantees receiver anonymity in the presence of an
active adversary, as well as both sender and receiver
anonymity, but it cannot support a large user base. Riffle
also utilizes rounds protect traffic analysis attacks. Riffle
is not designed for Internet-scale anonymous communi-
cation, like Loopix, but for supporting intra-group com-
munication.

Finally, Atom [30] combines a number of novel tech-
niques to provide mid-latency communication, strong
protection against passive adversaries and uses zero
knowledge proofs between servers to resist active at-
tacks. Performance scales horizontally, however latency
comparisons between Loopix and Atom are difficult due
to the dependence on pre-computation in Atom. Un-

like Loopix, Atom is designed for latency tolerant uni-
directional anonymous communication applications with
only sender anonymity in mind.

7 Discussion & Future Work

As shown in Section 4.1, the security of Loopix heavily
depends on the ratio of the rate of traffic sent through the
network and the mean delay at every mix node. Opti-
mization of this ratio is application dependent. For ap-
plications with small number of messages and delay tol-
erance, a small amount of cover traffic can guarantee se-
curity.

Loopix achieves its stated security and performance
goals. However, there are many other facets of the design
space that have been left for future work. For instance,
reliable message delivery, session management, and flow
control while avoiding inherent risks, such as statistical
disclosure attacks [14], are all fruitful avenues of pursuit.

We also leave the analysis of replies to messages as
future work. Loopix currently allows two methods if
the receiver does not already know the sender a priori:
we either attach the address of the sender to each mes-
sage payload, or provide a single-use anonymous reply
block [15, 16], which enables different use-cases.

The Loopix architecture deliberately relies on estab-
lished providers to connect to and authenticate end-users.
This architecture brings a number of potential benefits,
such as resistance to Sybil attacks, enabling anonymous
blacklisting [27] and payment gateways [2] to mitigate
flooding attacks and other abuses of the system, and pri-
vacy preserving measurements [23, 28] about client and
network trends and the security stance of the system. All
of this analysis is left for future work.

It is also apparent that an efficient and secure pri-
vate lookup system, one that can deliver network state
and keying information to its users, is necessary to sup-
port modern anonymous communications. Proposals
of stand-alone ‘presence’ systems such as DP5 [6] and
MP3 [37] provide efficient lookup methods, however,
we anticipate that tight integration between the lookup
and anonymity systems may bring mutual performance
and security benefits, which is another avenue for future
work.

8 Conclusion

The Loopix mix system explores the design space fron-
tiers of low-latency mixing. We balance cover traffic
and message delays to achieve a tunable trade-off be-
tween real traffic and cover traffic, and between latency
and good anonymity. Low-latency incentivizes early
adopters to use the system, as they benefit from good

1212 26th USENIX Security Symposium USENIX Association

Low Low Communication Scalable Asynchronous Active Offline Resistance
Latency Overhead Deployment Messaging† Attack Resistant Storage* to GPA

Loopix X X X X X X X

Dissent [47] X X

Vuvuzela [46] X X X

Stadium [45] X X X X

Riposte [11] X X X

Atom [30] X X X X

Riffle [31] X X X X

AnonPoP [24] X X X X

Tor [20] X X X X

Table 3: Comparison of popular anonymous communication systems. By *, we mean if the design intentionally incorporates
provisions for delivery of messages when a user is offline, perhaps for a long period of time. By †, we mean that the system
operates continuously and does not depend on synchronized rounds for its security properties and users do not need to coordinate
to communicate together.

performance. Moreover, the cover traffic introduced by
both clients and mix servers provides security in the pres-
ence of a smaller user-base size. In turn this promotes
growth in the user-base leading on one hand to greater
security [19], and on the other a tuning down of cover
traffic over time.

Loopix is the first system to combine a number of
best-of-breed techniques: we provide definitions inspired
by AnoA [3] for our security properties; improve the
analysis of simplified variants of stop-and-go-mixing
as a Poisson mix [29]; we use restricted topologies
to promote good mixing [21]; we deploy modern ac-
tive attack mitigations based on loops [17]; and we use
modified modern cryptographic packet formats, such as
Sphinx [16], for low information leakage. Our design,
security and performance analysis, and empirical eval-
uation shows they work well together to provide strong
security guarantees.

The result of composing these different techniques –
previously explored as separate and abstract design op-
tions – is a design that is strong against global net-
work level adversaries without the very high-latencies
traditionally associated with mix systems [35, 15].
Thus, Loopix revitalizes message-based mix systems and
makes them competitive once more against onion rout-
ing [26] based solutions that have dominated the field
of anonymity research since Tor [20] was proposed in
2004.

Acknowledgments In memory of Len Sassaman. We
thank Claudia Diaz and Mary Maller for the helpful dis-
cussions. This work was supported by NSERC through
a Postdoctoral Fellowship Award, the Research Coun-
cil KU Leuven: C16/15/058, the European Commis-
sion through H2020-DS-2014-653497 PANORAMIX,

the EPSRC Grant EP/M013-286/1, and the UK Govern-
ment Communications Headquarters (GCHQ), as part of
University College London’s status as a recognised Aca-
demic Centre of Excellence in Cyber Security Research.

References
[1] ANDERSON, R., AND BIHAM, E. Two practical and provably

secure block ciphers: Bear and lion. In Fast Software Encryption
(1996), Springer, pp. 113–120.

[2] ANDROULAKI, E., RAYKOVA, M., SRIVATSAN, S., STAVROU,
A., AND BELLOVIN, S. M. PAR: Payment for Anonymous Rout-
ing. In Privacy Enhancing Technologies, 8th International Sym-
posium, PETS 2008, Leuven, Belgium, July 23-25, 2008, Pro-
ceedings (2008), pp. 219–236.

[3] BACKES, M., KATE, A., MANOHARAN, P., MEISER, S., AND
MOHAMMADI, E. AnoA: A Framework for Analyzing Anony-
mous Communication Protocols. In Computer Security Founda-
tions Symposium (CSF), 2013 IEEE 26th (2013), IEEE, pp. 163–
178.

[4] BALLANI, H., FRANCIS, P., AND ZHANG, X. A study of
prefix hijacking and interception in the Internet. In ACM SIG-
COMM Computer Communication Review (2007), vol. 37, ACM,
pp. 265–276.

[5] BOLCH, G., GREINER, S., DE MEER, H., AND TRIVEDI, K. S.
Queueing networks and Markov chains: modeling and perfor-
mance evaluation with computer science applications. John Wi-
ley & Sons, 2006.

[6] BORISOV, N., DANEZIS, G., AND GOLDBERG, I. DP5: A pri-
vate presence service. Proceedings on Privacy Enhancing Tech-
nologies 2015, 2 (2015), 4–24.

[7] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON, R. Touch-
ing from a distance: Website fingerprinting attacks and defenses.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 605–616.

[8] CHAUM, D. Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms. Commun. ACM 24, 2 (1981), 84–88.

[9] CHAUM, D. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of cryptology 1, 1
(1988), 65–75.

USENIX Association 26th USENIX Security Symposium 1213

[10] CHEN, C., ASONI, D. E., BARRERA, D., DANEZIS, G., AND
PERRIG, A. HORNET: High-speed Onion Routing at the Net-
work Layer. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, Denver, CO,
USA, October 12-6, 2015 (2015), pp. 1441–1454.

[11] CORRIGAN-GIBBS, H., BONEH, D., AND MAZIÈRES, D. Ri-
poste: An anonymous messaging system handling millions of
users. In 2015 IEEE Symposium on Security and Privacy (2015),
IEEE, pp. 321–338.

[12] DANEZIS, G. The Traffic Analysis of Continuous-Time Mixes.
In Privacy Enhancing Technologies, 4th International Workshop,
PET 2004, Toronto, Canada, May 26-28, 2004, pp. 35–50.

[13] DANEZIS, G. Mix-networks with restricted routes. In Inter-
national Workshop on Privacy Enhancing Technologies (2003),
Springer, pp. 1–17.

[14] DANEZIS, G. Statistical disclosure attacks. In Security and Pri-
vacy in the Age of Uncertainty. Springer, 2003, pp. 421–426.

[15] DANEZIS, G., DINGLEDINE, R., AND MATHEWSON, N.
Mixminion: Design of a type III anonymous remailer protocol.
In Security and Privacy, 2003. Proceedings. 2003 Symposium on
(2003), IEEE, pp. 2–15.

[16] DANEZIS, G., AND GOLDBERG, I. Sphinx: A compact and
provably secure mix format. In Security and Privacy, 2009 30th
IEEE Symposium on (2009), IEEE, pp. 269–282.

[17] DANEZIS, G., AND SASSAMAN, L. Heartbeat traffic to counter
(n-1) attacks: red-green-black mixes. In Proceedings of the 2003
ACM workshop on Privacy in the electronic society (2003), ACM,
pp. 89–93.

[18] DIAZ, C., SEYS, S., CLAESSENS, J., AND PRENEEL, B. To-
wards measuring anonymity. In International Workshop on Pri-
vacy Enhancing Technologies (2002), Springer, pp. 54–68.

[19] DINGLEDINE, R., AND MATHEWSON, N. June 2006. anonymity
loves company: Usability and the network effect. In Proceedings
of the Fifth Workshop on the Economics of Information Security
(WEIS 2006).

[20] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In Proceedings of the 13th
conference on USENIX Security Symposium-Volume (2004).

[21] DINGLEDINE, R., SHMATIKOV, V., AND SYVERSON, P. Syn-
chronous batching: From cascades to free routes. In International
Workshop on Privacy Enhancing Technologies (2004), Springer,
pp. 186–206.

[22] DOUCEUR, J. R. The sybil attack. In International Workshop on
Peer-to-Peer Systems (2002), Springer, pp. 251–260.

[23] ELAHI, T., DANEZIS, G., AND GOLDBERG, I. PrivEx: Private
Collection of Traffic Statistics for Anonymous Communication
Networks. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, Arizona,
November 3-7, 2014 (2016), pp. 1068–1079.

[24] GELERNTER, N., HERZBERG, A., AND LEIBOWITZ, H. Two
cents for strong anonymity: The anonymous post-office protocol.
Proceedings on Privacy Enhancing Technologies 2 (2016), 1–20.

[25] GILAD, Y., AND HERZBERG, A. Spying in the dark: TCP and
Tor traffic analysis. In International Symposium on Privacy En-
hancing Technologies Symposium (2012), Springer, pp. 100–119.

[26] GOLDSCHLAG, D., REED, M., AND SYVERSON, P. Onion rout-
ing. Communications of the ACM 42, 2 (1999), 39–41.

[27] HENRY, R., AND GOLDBERG, I. Thinking inside the BLAC box:
smarter protocols for faster anonymous blacklisting. In Proceed-
ings of the 12th ACM workshop on Workshop on privacy in the
electronic society (2013), ACM, pp. 71–82.

[28] JANSEN, R., AND JOHNSON, A. Safely Measuring Tor. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016
(2016), pp. 1553–1567.

[29] KESDOGAN, D., EGNER, J., AND BÜSCHKES, R. Stop-and-go-
mixes providing probabilistic anonymity in an open system. In
International Workshop on Information Hiding (1998), Springer,
pp. 83–98.

[30] KWON, A., CORRIGAN-GIBBS, H., DEVADAS, S., AND FORD,
B. Atom: Scalable Anonymity Resistant to Traffic Analysis.
CoRR abs/1612.07841 (2016).

[31] KWON, Y. H. Riffle: An efficient communication system with
strong anonymity. PhD thesis, Massachusetts Institute of Tech-
nology, 2015.

[32] LAZAR, D., AND ZELDOVICH, N. Alpenhorn: Bootstrapping
secure communication without leaking metadata. In Proceedings
of the 12th Symposium on Operating Systems Design and Imple-
mentation (OSDI), Savannah, GA (2016).

[33] LE BLOND, S., CHOFFNES, D., CALDWELL, W., DRUSCHEL,
P., AND MERRITT, N. Herd: A Scalable, Traffic Analysis Re-
sistant Anonymity Network for VoIP Systems. In ACM SIG-
COMM Computer Communication Review (2015), vol. 45, ACM,
pp. 639–652.

[34] MITZENMACHER, M., AND UPFAL, E. Probability and com-
puting: Randomized algorithms and probabilistic analysis. Cam-
bridge university press, 2005.

[35] MÖLLER, U., COTTRELL, L., PALFRADER, P., AND SAS-
SAMAN, L. Mixmaster Protocol-Version 2. Draft. July, available
at: www. abditum. com/mixmaster-spec. txt (2003).

[36] NIPANE, N., DACOSTA, I., AND TRAYNOR, P. Mix-in-place
anonymous networking using secure function evaluation. In
Proceedings of the 27th Annual Computer Security Applications
Conference (2011), ACM, pp. 63–72.

[37] PARHI, R., SCHLIEP, M., AND HOPPER, N. MP3: A More Effi-
cient Private Presence Protocol. arXiv preprint arXiv:1609.02987
(2016).

[38] REBOLLO-MONEDERO, D., PARRA-ARNAU, J., FORNÉ, J.,
AND DIAZ, C. Optimizing the design parameters of threshold
pool mixes for anonymity and delay. Computer networks 67
(2014), 180–200.

[39] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end
arguments in system design. ACM Transactions on Computer
Systems (TOCS) 2, 4 (1984), 277–288.

[40] SERJANTOV, A., AND DANEZIS, G. Towards an information
theoretic metric for anonymity. In International Workshop on
Privacy Enhancing Technologies (2002), Springer, pp. 41–53.

[41] SERJANTOV, A., DINGLEDINE, R., AND SYVERSON, P. From
a trickle to a flood: Active attacks on several mix types. In In-
ternational Workshop on Information Hiding (2002), Springer,
pp. 36–52.

[42] SERJANTOV, A., AND NEWMAN, R. E. On the anonymity of
timed pool mixes. In Security and Privacy in the Age of Uncer-
tainty. Springer, 2003, pp. 427–434.

[43] SHANNON, C. E. A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications Re-
view 5, 1 (2001), 3–55.

[44] SHMATIKOV, V., AND WANG, M.-H. Timing analysis in low-
latency mix networks: Attacks and defenses. Computer Security–
ESORICS 2006 (2006), 18–33.

[45] TYAGI, N., GILAD, Y., ZAHARIA, M., AND ZELDOVICH,
N. Stadium: A Distributed Metadata-Private Messaging Sys-
tem. Cryptology ePrint Archive, Report 2016/943, 2016. http:
//eprint.iacr.org/2016/943.

1214 26th USENIX Security Symposium USENIX Association

http://eprint.iacr.org/2016/943
http://eprint.iacr.org/2016/943

[46] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZEL-
DOVICH, N. Vuvuzela: Scalable private messaging resistant to
traffic analysis. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), ACM, pp. 137–152.

[47] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND
JOHNSON, A. Dissent in numbers: Making strong anonymity
scale. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12)
(2012), pp. 179–182.

[48] ZHU, Y., FU, X., BETTATI, R., AND ZHAO, W. Anonymity
analysis of mix networks against flow-correlation attacks. In
Global Telecommunications Conference, 2005. GLOBECOM’05.
IEEE, vol. 3, IEEE, pp. 5–pp.

A Appendix

A.1 Incremental Computation of the En-
tropy Metric

Let X be a discrete random variable over the finite set X
with probability mass function p(x) = Pr(X = x). The
Shannon entropy H(X) [43] of a discrete random vari-
able X is defined as

H(X) =− ∑
x∈X

p(x) log p(x). (4)

Let on,k,l be an observation as defined in Section 4.1.3
for a pool at time t. We note that any outgoing message
will have a distribution over being linked with past input
messages, and the entropy Ht of this distribution is our
anonymity metric. Ht can be computed incrementally
given the size of the pool l (from previous mix rounds)
and the entropy Ht−1 of the messages in this previous
pool, and the number of messages k received since a mes-
sage was last sent:

Ht =H
({

k
k+ l

,
l

k+ l

})
+

k
k+ l

logk+
l

k+ l
Ht−1,

(5)

for any t > 0 and H0 = 0. Thus for sequential obser-
vations we can incrementally compute the entropy met-
ric for each outgoing message, without remembering the
full history of the arrivals and departures at the Poisson
mix. We use this method to compute the entropy metric
illustrated in Figure 5.

A.2 Proof of Theorem 2
Let us assume, that in mix node Mi there are n′ mes-
sages at a given moment, among which is a target mes-
sage mt . Each message has a delay di drawn from the ex-
ponential distribution with parameter µ . The mix node
generates loops with distribution Pois(λM). The adver-
sary observes an outgoing message m and wants to quan-
tify whether this outgoing message is her target message.

The adversary knows, that the output of the mix node can
be either one of the messages inside the mix or its loop
cover message. Thus, for any message mt , the following
holds

Pr [m = mt] = Pr [m 6= loop] ·Pr [m = mt |m 6= loop] (6)

We note that the next message m is a loop if and only if
the next loop message is sent before any of the messages
within the mix, i.e., if the sampled time for the next loop
message is smaller than any of the remaining delays of all
messages within the mix. We now leverage the memory-
less property of the exponential distribution to model the
remaining delays of all n′ messages in the mix as fresh
random samples from the same exponential distribution.

Pr [m 6= loop] = 1−Pr [m = loop]

= 1−Pr [X < d1∧X < d2∧ . . .∧X < dn′]

= 1−Pr [X < min{d1,d2, . . .dn′}]
(7)

We know, that di ∼ Exp(µ) for all i ∈ {1, . . . ,n′} and
X ∼ Exp(λM). Moreover, we know that the minimum
of n independent exponential random variables with rate
µ is an exponential random variable with parameter
∑

n′
i µ . Since all the delays di are independent expo-

nential variables with the same parameter, we have for
Y = min{d1,d2, . . .dn′}, Y ∼ Exp(n′µ). Thus, we obtain
the following continuation of Equation (7).

Pr [m 6= loop] = 1−Pr [X < Y]

= 1−
∫

∞

0
Pr [X < Y |X = x]Pr [X = x]dx

= 1−
∫

∞

0
Pr [x < Y]λMe−λMxdx

= 1−
∫

∞

0
e−n′µx

λMe−λMxdx

= 1− λM

λM +nµ

=
n′µ

n′µ +λM

(8)

Since the probability to send a loop depends only on the
number of messages in a mix, but not on which messages
are in the mix, this probability is independent of the prob-
ability from Theorem 1. Theorem 2 follows directly by
combining Theorem 1 and Equation (8), with n′ = k+ l.
We get for messages m1 that previously were in the mix,

Pr [m = m1] = Pr [m 6= loop] ·Pr [m = m1|m 6= loop]

=
(k+ l)µ

(k+ l)µ +λM
· k

n(k+ l)

=
k
n
· µ

(k+ l)µ +λM
.

USENIX Association 26th USENIX Security Symposium 1215

Analogously, we get for m2,

Pr [m = m2] = Pr [m 6= loop] ·Pr [m = m2|m 6= loop]

=
(k+ l)µ

(k+ l)µ +λM
· 1

k+ l

=
µ

(k+ l)µ +λM
.

This concludes the proof.

1216 26th USENIX Security Symposium USENIX Association

	Introduction
	Model and Goals
	High-level overview
	Threat Model
	Security Goals

	The Loopix Architecture
	System Setup
	Format, Paths and Cover Traffic
	The Poisson Mix Strategy

	Analysis of Loopix security properties
	Passive attack resistance
	Message Indistinguishability
	Client-Provider unobservability
	Poisson mix security

	Active-attack Resistance
	Active attacks

	End-to-End Anonymity Evaluation
	Results

	Performance Evaluation
	Related Work
	Discussion & Future Work
	Conclusion
	Appendix
	Incremental Computation of the Entropy Metric
	Proof of probability2

