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Abstract

Publishing data about individuals without revealing sen-
sitive information about them is an important problem. In
recent years, a new definition of privacy calleénonymity
has gained popularity. In &-anonymized dataset, each
record is indistinguishable from at leakt- 1 other records
with respect to certain “identifying” attributes.

In this paper we show with two simple attacks that a
k-anonymized dataset has some subtle, but severe privac
problems. First, we show that an attacker can discover the
values of sensitive attributes when there is little divgrsi
in those sensitive attributes. Second, attackers ofter hav
background knowledge, and we show tha&nonymity does
not guarantee privacy against attackers using background

knowledge. We give a detailed analysis of these two at-

tacks and we propose a novel and powerful privacy defi-
nition called ¢-diversity. In addition to building a formal
foundation for/-diversity, we show in an experimental eval-
uation that¢-diversity is practical and can be implemented
efficiently.

1. Introduction

Many organizations are increasingly publishing micro-
data — tables that contain unaggregated information abou
individuals. These tables can include medical, voter reg-

istration, census, and customer data. Microdata is a valu-

able source of information for the allocation of public fend
medical research, and trend analysis. However, if individ-
uals can be uniquely identified in the microdata then their
private information (such as their medical condition) wbul
be disclosed, and this is unacceptable.

To avoid the identification of records in microdata,
uniquely identifying information like names and social se-
curity numbers are removed from the table. However, this
first sanitization still does not ensure the privacy of indi-
viduals in the data. A recent study estimated that 87% of
the population of the United States can be uniquely identi-
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fied using the seemingly innocuous attributes gender, date
of birth, and 5-digit zip code [23]. In fact, those three at-
tributes were used to link Massachusetts voter registratio
records (which included the name, gender, zip code, and
date of birth) to supposedly anonymized medical data from
GIC! (which included gender, zip code, date of birth and di-
agnosis). This “linking attack” managed to uniquely iden-
tify the medical records of the governor of Massachusetts in
the medical data [24].
y Sets of attributes (like gender, date of birth, and zip code
in the example above) that can be linked with external data
to uniquely identify individuals in the population are el
quasi-identifiers To counter linking attacks using quasi-
identifiers, Samarati and Sweeney proposed a definition of
privacy calledk-anonymity[21, 24]. A table satisfie&-
anonymity if every record in the table is indistinguishable
from at leastk — 1 other records with respect to every
set of quasi-identifier attributes; such a table is calldd a
anonymousable. Hence, for every combination of values
of the quasi-identifiers in the-anonymous table, there are
at leastk records that share those values. This ensures that
individuals cannot be uniquely identified by linking attack
An Example. Figure 1 shows medical records from a
fictitious hospital located in upstate New York. Note that
the table contains no uniquely identifying attributes like
name, social security number, etc. In this example, we di-
tvide the attributes into two groups: tisensitiveattributes
(consisting only of medical condition) and then-sensitive
attributes (zip code, age, and nationality). An attribgte i
marked sensitive if an adversary must not be allowed to dis-
cover the value of that attribute for any individual in the
dataset. Attributes not marked sensitive are non-seasitiv
Furthermore, let the collection of attributésip code, age,
nationality} be the quasi-identifier for this dataset. Figure 2
shows a 4-anonymous table derived from the table in Fig-
ure 1 (here “*" denotes a suppressed value so, for example,
“zip code =1485*" means that the zip code is in the range
[14850 — 14859] and “age=3*"means the age is in the range

1Group Insurance Company (GIC) is responsible for purclgdsaalth
insurance for Massachusetts state employees.



Non-Sensitive Sensitive Non-Sensitive Sensitive
Zip CodeAge| Nationality Condition Zip Code Age | Nationality Condition
1 13053 | 28 Russian Heart Disease 1 130** | < 30 * Heart Disease|
2 13068 | 29 | American || Heart Disease 2 130** | < 30 * Heart Disease|
3 || 13068 | 21 | Japanese|| Viral Infection 3 || 130** | <30 * Viral Infection
4 13053 | 23 | American || Viral Infection 4 130** | < 30 * Viral Infection
5 14853 | 50 Indian Cancer 5 1485* | > 40 * Cancer
6 14853 | 55 Russian Heart Disease 6 1485* | > 40 * Heart Disease|
7 14850 | 47 | American || Viral Infection 7 1485* | > 40 * Viral Infection
8 14850 | 49 | American || Viral Infection 8 1485* | > 40 * Viral Infection
9 13053 | 31 | American Cancer 9 130** 3 * Cancer
10 || 13053 37 Indian Cancer 10 || 130** 3% * Cancer
11 || 13068 | 36 | Japanese Cancer 11 || 130* 3 * Cancer
12 || 13068 | 35 | American Cancer 12 || 130** 3% * Cancer

Figure 1. Inpatient Microdata

Figure 2. 4-anonymousinpatient Microdata

[30 — 39]). Note that in the 4-anonymous table, each tuple Observation 1 k-Anonymity can create groups that leak
has the same values for the quasi-identifier as at least thre@anformation due to lack of diversity in the sensitive atirti.
other tuples in the table.

Because of its conceptual simplicity;anonymity has Note that such a situation is not uncommon. As a back-
been widely discussed as a viable definition of privacy in 0f-the-envelope calculation, suppose we have a dataset con
data publishing, and due to algorithmic advances in crgatin taining 60,000 distinct tuples where the sensitive attgbu
k-anonymous versions of a dataset [3, 6, 16, 18, 21, 24, 25],can take 3 distinct values and is not correlated with the non-
k-anonymity has grown in popularity. However, ddes sensitive attributes. A 5-anonymization of this table will
anonymity really guarantee privacy? In the next section, we have around 12,000 groufsnd, on average, 1 out of every
will show that the answer to this question is interestingly 81 groups will have no diversity (the values for the sensi-
no. We give examples of two simple, yet subtle attacks on tive attribute will all be the same). Thus we should expect
ak-anonymous dataset that allow an attacker to identify in- about 148 groups with no diversity. Therefore, information
dividual records. Defending against these attacks resjaire about 740 people would be compromised by a homogeneity
stronger notion of privacy that we caldiversity, the focus ~ attack. This suggests that in additioniteanonymity, the
of this paper. But we are jumping ahead in our story. Let sanitized table should also ensure “diversity” — all tuples
us first show the two attacks to give the intuition behind the that share the same values of their quasi-identifiers should
problems withk-anonymity. have diverse values for their sensitive attributes.

Our next observation is that an adversary could use
“background” knowledge to discover sensitive information

Background Knowledge Attack: Alice has a pen-
friend named Umeko who is admitted to the same hospital
as Bob, and whose patient records also appear in the table
shown in Figure 2. Alice knows that Umeko is a 21 year-
dataset. old Japanese female who currently lives in zip code 13068.

Homogeneity Attack: Alice and Bob are antagonistic Based on this information, Alice learns that Umeko’s infor-

neighbors_ One day Bob falls ill and is taken by ambulance mation is contained in record number 1,2,3, or 4. Without
to the hospita]_ Having seen the ambu|ance, Alice sets outadditional information, Alice is not sure whether Umeko
to discover what disease Bob is suffering from. Alice dis- caught a virus or has heart disease. However, it is well-
covers the 4-anonymous table of current inpatient recordsknown that Japanese have an extremely low incidence of
published by the hospital (Figure 2), and so she knows thatheartdisease. Therefore Alice concludes with near ceytain
one of the records in this table contains Bob’s data. Sincethat Umeko has a viral infection.

Alice is Bob’s neighbor, she knows that Bob is a 31-year-old i ) ]
American male who lives in the zip code 13053. Therefore, Observation 2 k-Anonymity does not protect against at-
Alice knows that Bob's record number is 9,10,11, or 12, tacks based on background knowledge.

Now, all of those patients have the same medical condition
(cancer), and so Alice concludes that Bob has cancer.

1.1. Attacks Onk-Anonymity

In this section we present two attacks, tm@mogene-
ity attack and thebackground knowledge attacknd we
show how they can be used to compromiseanonymous

20ur experiments on real data sets show that data is ofterskewyed
and a 5-anonymous table might not have so many groups



We have demonstrated (using the homogeneity and backuse the notation|C] to denote the tupl&[C1], ..., t[Cp)),
ground knowledge attacks) thattaanonymous table may  which is the projection of onto the attributes if.
disclose sensitive information. Since both of these attack  In privacy-preserving data publishing, there exist severa
are plausible in real life, we need a stronger definition of important subsets ofl. A sensitive attributés an attribute
privacy that takes into account diversity and background whose value for any particular individual must be kept se-

knowledge. This paper addresses this very issue. cret from people who have no direct access to the original
data. LetS denote the set of all sensitive attributes. An
1.2. Contributions and Paper Outline example of a sensitive attribute lidedical Conditionfrom

Figure 1. The association between individuals &hed-

. . L ical Conditionshould be kept secret; thus we should not
In thg previous sectlon-, we showed titatnonymity Is disclose which particular patients have cancer, but it is pe

susceplible to homogeneity and background knowledge a'['missible to disclose the information that there exist cance

tacks; thus a stronger definition of privacy is needed. Inthe __.. . . .
remainder of the pgper we derive gur so)I/ution We start by patients in the hqsp|tal. We assume that thg data publisher
! ) knows which attributes are sensitive. All attributes thrat a

introducing an ideal notion of privacy calldihyes-optimal not sensitive are calledonsensitivattributes. Let\ de-

for the case that both data publisher and the adversary hav?]ote the set of nonsensitive attributes. We are now ready to
full (and identical) background knowledge (Section 3). Un- formally define the notion of a quasi-identifier.

fortunately in practice, the data publisher is unlikely tsp
sess all this information, and in addition, the adversary pefinition 2.1 (Quasi-identifier) A set of nonsensitive at-
may have more specific background knowledge than thetriputes{Q, ..., Q.,} of a table is called ajuasi-identifier
data publisher. Hence, while Bayes-optimal privacy soundsit these attributes can be linked with external data to

great in theory, it is unlikely that it can be guaranteed in yniquely identify at least one individual in the general pop
practice. To address this problem, we show that the notiony|ation Q.

of Bayes-optimal privacy naturally leads to a nopedcti-
cal definition that we call-diversity. ¢-Diversity provides One example of a quasi-identifier is a primary key like
privacy even when the data publisher does not know whatsocial security number. Another example is the{é&nder,
kind of knowledge is possessed by the adversary. The mairAge, Zip Codé in the GIC dataset that was used to identify
idea behind/-diversity is the requirement that the values of the governor of Massachusetts as described in the introduc-
the sensitive attributes are well-represented in eachpgrou tion. Let us denote the set of all quasi-identifiers @Y.
(Section 4). We are now ready to formally defirkeanonymity.

We show that existing algorithms f@ranonymity can L ) o
be adapted to computediverse tables (Section 5), and in  Definition 2.2 (k-Anonymity) A table T satisfies k-
an experimental evaluation we show thativersity is prac- ~ anonymity if for every tuple < 7' there existk — 1 other
tical and can be implemented efficiently (Section 6). We tUPI€Sti tis, ..., ti,, € T such thati[C] = ¢;,[C] =
discuss related work in Section 7, and we conclude in Sec-tiz[C] = -+ = ti,_,[C] forall C € QT.
tion 8. Before jumping into the contributions of this paper,
we introduce the notation needed to formally discuss data
privacy in the next section.

The Anonymized TableT™*. Since the quasi-identifiers
might uniquely identify tuples ifl’, the tablel” is not pub-
lished; it is subjected to aanonymization procedurand
the resulting tabl@™ is published instead.

2. Model and Notation There has been a lot of research on techniques for
anonymization (see Section 7 for a discussion of related
work). These techniques can be broadly classified into
generalizationtechniques [3, 16]generalization with tu-
ple suppressiotechniques [6, 22], andata swapping and
randomizatiortechniques [1, 13]. In this paper we limit our
discussion only to generalization techniques.

In this section we will introduce some basic notation that
will be used in the remainder of the paper. We will also
discuss how a table can be anonymized and what kind of
background knowledge an adversary may possess.

Basic Notation. Let T' = {t¢1,t2,...,t,} be a table

with attributesA;, ..., A,,. We assume thal’ is a sub-  pefinition 2.3 (Domain Generalization) A domainD* =
set of some larger populatial where each tuple repre- (p, p, ...} is ageneralizatiorfpartition) of a domainD
sents an individual from the population. For example, if it | jp, = D and P, n P; = () whenevei # j. Forz € D

T is a medical dataset theid could be the population of e letép- (z) denote the elemett € D* that contains.
the United States. Le# denote the set of all attributes

{A1, Ao, ..., A} andt[A;] denote the value of attribute Note that we can create a partial order on domains by
A, for tuplet. If C = {C1,Cs,...,Cp} C A then we requiringD < D* if and only if D* is a generalization of



D. Given atablel’ = {t,,...,t,} with the set of nonsen- 3. Bayes-Optimal Privacy
sitive attributes\V" and a generalizatio®}, of domain(\/),
we can construct a table* = {¢}, ..., ¢} by replacing the
value oft;[N] with the generalized valugp« (;[N]) to get
anew tuple}. The tuplet’ is called ageneralizatiorof the

In this section we analyze an ideal notion of privacy
called Bayes-Optimal Privacyince it involves modeling
T background knowledge as a probability distribution over th
tuplet; and we use the notatidn — ¢} to mean 7 gener-  gyributes and uses Bayesian inference technigues torreaso
alizest;". Extending the notation to table®, = 7* means  ahout privacy. We introduce tools for reasoning about pri-
“T'* is a generalization df ™. Typically, ordered attributes  vacy (Section 3.1), we use them to discuss theoretical prin-
are partitioned into intervals, and categorical attrisiaee ciples of privacy (Section 3.2), and then we point out the

partitioned according to a user-defined hierarchy (for exam (ifficulties that need to be overcome to arrive at a practical
ple, cities are generalized to counties, counties to states  definition of privacy (Section 3.3).

states to regions).

Example 1 (Continued).The table in Figure 2 is a gen-
eralization of the table in Figure 1. We generalized on the
Zip Codeattribute by partitioning it into two sets: “1485*”
(representing all zip codes whose first four digits are 1485)  For simplicity of discussion, we will combine all the
and “130**" (representing all zip codes whose first three nonsensitive attributes into a single, multi-dimensional
digits are 130). Then we partitionédyeinto three groups: ~ duasi-identifier attribut€) whose values are generalized to
“< 30", “3* (representing all ages between 30 and 39), create the anonymized taliié fromthe base tabl€. Since

and “> 40”. Finally, we partitonedNationalityinto just ~ Bayes-optimal privacy is only used to motivate a practical
one set “*” representing all nationalities. definition, we make the following two simplifying assump-

The Adversary’s Background Knowledge. Since the tions: first, we assume th_ﬁt is a simple ran(_jom sample
background knowledge attack was due to the adversary'sTOm some larger populatioft (a sample of size: drawn
additional knowledge about the table, let us briefly discuss Without replacement is called gimple random samplé
the type of background knowledge that we are modeling. €Very sample Of_ size Is equally_llkely)g second, we as-

First, the adversary has access to the published able ~ SUMe that there is a single sensitive attribute. We woutd lik
and she knows that* is a generalization of some base table 10 €mphasize that both these assumptions will be dropped
T. The adversary also knows the domain of each attribute!n Section 4 when we introduce a practical definition of pri-
of T'. vacy.

Second, the adversary may know that some individuals Recall that in our attack model, the adversary Alice has
arein the table. This knowledge is often easy to acquire. ForPartial knowledge of the distribution of the sensitive and
example, GIC published medical data about Massachusett§lOn-sensitive attributes. Let us assume a worst case sce-
state employees. If the adversary Alice knows that her Nario Where_Allce knows the C(_)mplete ]0|nt_d|str|but|¢n
neighbor Bob is a Massachusetts state employee then AT @ andss' (i.e. she knows their frequency in the popula-
ice is almost certain that Bob’s information is contained t0N£2). She knows that Bob corresponds to a redogd?’
in that table. In this case, we assume that Alice knows that has been generalized to a recoréh the published ta-
all of Bob’s nonsensitive attributes. In addition, the ad- Ple7™, and she also knows the value of Bob’s non-sensitive

versary could have knowledge about the sensitive attribute attributes (i.e., she knows that)] = ¢). Alice’s goalis

of specific individuals in the population and/or the table. © use her background knowledge to discover Bob's sensi-

For example, the adversary Alice might know that neighbor tive information — the \{alu,e of[S]. We gauge her success

Bob does not have pneumonia since Bob does not show an;ﬁs'_ng two quantities: Alice’grior belief, and heiposterior

of the symptoms of pneumonia. We call such knowledge P€li€f

“instance-level background knowledge,” since it is associ  Alice’s prior belief, a(, ), that Bob’s sensitive attribute

ated with specific instances in the table. is s given that his nonsensitive attributejigs just her back-
Third, the adversary could have partial knowledge about 9round knowledge:

the distribution of sensitive and nonsensitive attributes

the population. We call this “demographic background Aq,5) = Pr (t1S] = 5| [Q] = q)

knowledge.” For example, the adversary may know ] .

P (t[Conditior] = “cancer t[Age] > 40), and may use it ~After Alice observes the tabl", her belief about Bob's

to make additional inferences about records in the table. ~ Sensitive attribute changes. This new beli€f; . r+), is
Now armed with the right notation, let us start looking Nerposterior belief

into principles and definitions of privacy that leak little-i

formation. Big,s,m+) = Py (t[S] =s|tQl=gAIH eT* t5 t*)

3.1. Changes in Belief Due to Data Publishing



Given f andT™, we can derive a formula fgt, ; 7+) which disclosure. Similarly, in the example from Section 1.1,
will help us formulate our new privacy definition in Sec- even without background knowledge Alice can deduce that
tion 4. The main idea behind the derivation is to find a set Umeko does not have cancer. This is an example of a nega-
of equally likely disjoint random worlds (like in [5]) such tive disclosure.

that the conditional probability?(A|B) is the number of Note that not all positive disclosures are disastrous. |If
worlds satisfying the conditiod A B divided by the num-  the prior belief was that(, ;) > 14, the adversary would
ber of worlds satisfying the conditiaB. We avoid double-  not have learned anything new. Similarly, negative disclo-
counting because the random worlds are disjoint. In our sures are not always bad: discovering that Bob does not
case, a random world is any permutation of a simple ran-have Ebola might not be very serious because the prior be-
dom sample of size n that is drawn from the populatibn lief of this event was small. Hence, the ideal definition of
and which iscompatiblewith the published tabl@*. 3 privacy can be based on the following principle:

Theorem 3.1 Letq be a value of the nonsensitive attribute principle 1 (Uninformative Principle) The published ta-

Qinthe base tabld’; let ¢* be the generalized value gin ble should provide the adversary with little additionalant
the published tablé™; let s be a possible value of the sen-  mation beyond the background knowledge. In other words,
sitive attribute; letn,+ .y be the number of tuples € 7™ there should not be a large difference between the prior and

wheret*[Q] = ¢* andt*[S] = s'; and let f(s" | ¢*) be  posterior beliefs.
the conditional probability of the sensitive attribute dn

tioned on the fact that the nonsensitive attrib@ecan be The uninformative principle can be instantiated in sev-
generalized tg/*. Then the following relationship holds: eral ways, for example with thép:, po)-privacy breach
Fsla) definition [14]. Under this definition, privacy is breached
5 N(g*,s) F(sla*) (1) either Whena(w) < p1 A ﬂ(q,&T*) > pg Or when
((LsaT*) = s/ — % — -
Sees n(q*,s’)ff((sl|‘qq*)) Qgs) > L —p1 AN Bsrs) < 1 — p2. An alterna

tive privacy definition based on the uninformative prineipl

Armed with a way of calculating Alice’s belief about Would bound the maximum difference betweep ,) and
Bob’s private data after she has s&n let us now examine ~ F(¢.s,7+) USing any of the functions commonly used to mea-

some principles for building definitions of privacy. sure the dif_‘fe_r_ence bereen probability d?stributio_ns.yA_n
privacy definition that is based on the uninformative prin-

ciple, and instantiated either by(@1, p2)-privacy breach
definition or by bounding the difference betweep ) and
B(q,s,7+) IS @ Bayes-optimal privacy definition. The specific
choice of definition depends on the application.

Note that any Bayes-optimal privacy definition captures
diversity as well as background knowledge. To see how it
captures diversity, suppose that all the tuples whose mense
sitive attributel) have been generalized4d have the same
values for their sensitive attribute. Then. ) = 0 for all

3.2. Privacy Principles

Given the adversary’s background knowledge, a pub-
lished tablel™ might disclose information in two important
ways: positive disclosurandnegative disclosure

Definition 3.1 (Positive disclosure)Publishing the table
T* that was derived frorfl” results in apositive disclosure

if the adversary can correctly identify the value of a sensi-
tive attribute with high probability; i.e., given&> 0, there s' # s and hence the value of the observed befigf; )

is a positive disclosure i, , 7) > 1 — 6 and there exists becomes 1 in Equation 1. This will be flagged as a breach
t € T such that[Q] = q arffji[S] _ . whenever the prior belief is not close to 1.

Definition 3.2 (Negative disclosure)Publishing the table  3.3. Limitations of the Bayes-Optimal Privacy
T* that was derived from¥" results in anegative disclo-
sureif the adversary can correctly eliminate some possi-  For the purposes of our discussion, we are more inter-
ble values of the sensitive attribute (with high probabil- ested in the properties of Bayes-optimal privacy rathen tha
ity); i.e., given ane > 0, there is a negative disclosure if jts exact instantiation. In particular, Bayes-optimakpdy
Bq.s,r+) < € and there exists & € T such thatt[Q] = ¢ has several drawbacks that make it hard to use in practice.
butt[S] # s. Insufficient Knowledge. The data publisher is unlikely

to know the full distributionf of sensitive and nonsensitive

The homogeneity attack in Section 1.1 where Alice de- 4yriputes over the general populatiifrom which T is a
termined that Bob has cancer is an example of a p05|t|vesamp|e_

3Due to space constraints we had to omit the proof of the fatlgw The Adversary’s Knowledge is Unknown. It is also
theorem; see [17] for the derivation of Equation 1. unlikely that the adversary has knowledge of the complete



joint distribution between the non-sensitive and seresit# tive attributes in the*-block, and/or (ii) strong background

tributes. However, the data publisher does not know how knowledge. Let us discuss these in turn.

much the adversary knows. For example, in the background Lack of Diversity. Lack of diversity in the sensitive at-

knowledge attack in Section 1.1, Alice knew that Japanesetribute manifests itself as follows:

have a low incidence of heart disease, but the data publisher ,

did not know that Alice knew this piece of information. Vs F s, Ngrs) KNgrs) (3)
Instance-Level Kn_owledge.The theoretical definition |1 this case, almost all tuples have the same valder

does not protect against knowledge that cannot be modeleqy,q sensitive attributé, and thus3, , 7+, ~ 1. Note that

probabilistically. For example, suppose Bob's son tells Al ;g condition can be easily checked since it only involves
ice that Bob does not have diabetes. The theoretical def-

S ) . X counting the values of in the published tablg™. We
inition of privacy will not be able to protect against such ., ensure diversity by requiring thai the possible val-
adversaries.

X ) o ] uess’ € domain(S) occur in theg*-block with roughly
Multiple Adversaries. There will likely be multiple ad-

; Ve . equal proportions. This, however, is likely to cause signif
versaries with different levels of knowledge, each of which jcant oss of information: itlomain(S) is large then the
is consistent with the full joint distribution. Suppose Bob

- ) ! ) q*-blocks will necessarily be large and so the data will be
has a disease that is (a) very likely among people in the,itioned into a small number gf -blocks. Another way

age group [30-50], but (b) is very rare for people of that i, angyre diversity and to guard against Equation 3 is to re-
age group who are doctors. An adversary who only Knows y,ire that ag*-block has at least > 2 different sensitive
the interaction of age and iliness will think that it is very 51 es such that themost frequent_values (in the-block)
likely for Bob to have that disease. However, an adversary}, e roughly the same frequency. We say that sugh a
who also knows that Bob is a doctor is more likely to think 5k iswell-represented by sensitive values

that Bob does not have that disease. Thus, although ad- Strong Background Knowledge. The other factor that
ditional knowledge can yield better inferences on average,.qid lead to a positive disclosure (Equation 2) is strong

there are specific instances where it does not. Thus the dat%ackground knowledge. Even thoughtablock may have
publisher must take into account all possible levels of back “well-represented” sensitive values, Alice may still bdeab

ground knowledg(_e. e . to use her background knowledge to eliminate sensitive val-
Inthe next section, we present a definition that eliminates ;o< \when the following is true:

these drawbacks.
P LCI)

4. (-Diversity: A Practical Privacy Definition IS

. _ . . This equation states that Bob with quasi-identifi€}] = ¢
In this section we discuss how to overcome the difficul- i much less likely to have sensitive valsiehan any other
ties outlined at the end of the previous section. We derive jndividual in theg*-block. For example, Alice may know
the (-diversity principle (Section 4.1), show how to instan- {hat Bob never travels, and thus he is extremely unlikely
tiate it with specific definitions of privacy (Section 4.2), (5 have Ebola. It is not possible for a data publisher to
outline how to handle multiple sensitive attributes (Satti guard against attacks employing arbitrary amounts of back-
4.3), and discuss hotdiversity addresses the issues raised ground knowledge. However, the data publisher can still

~0 (4)

in the previous section (Section 4.4). guard against many attacks even without having access to
) i o Alice’s background knowledge. In our model, Alice might
4.1. The/-Diversity Principle know the distributionf (¢, s) over the sensitive and non-

sensitive attributes, in addition to the conditional disir
served belief of the adversary. Let us defing #lockto be has the formf(slq) ~ 0, e.g., “men do not have breast
the set of tuples if™ whose nonsensitive attribute values cancer”, or the form of Equation 4, e.g., “among Asians,

generalize tgj*. Consider the case of positive disclosures; japanese have a very low incidence of heart disease”. Note

i.e., Alice wants to determine that Bob hds] = s with  thata priori information of the formf(s|g) = 1 is not as
very high probability. From Theorem 3.1, this can happen harmful since this positive disclosure is independent ef th
only when: published tablg™. Alice can also eliminate sensitive val-
/ ues with instance-level knowledge such as “Bob does not
s, Vs’ #£5, Ngr.s S(la) K Nygs f(s]a) (2) have diabetes”
| L) Y T Gle) |

In spite of such background knowledge, if there &are
The condition in Equation (2) could occur due to a com- “well represented” sensitive values ing&-block, then Al-
bination of two factors: (i) a lack of diversity in the sensi- ice need€ — 1 damaging pieces of background knowledge



Non-Sensitive Sensitive
Zip Code Age | Nationality Condition
1 1305* | <40 * Heart Disease
4 1305* | <40 * Viral Infection
9 1305* | <40 * Cancer
10 || 1305* | <40 * Cancer
5 1485* | > 40 * Cancer
6 1485* | > 40 * Heart Disease|
7 1485* | > 40 * Viral Infection
8 1485* | > 40 * Viral Infection
2 1306* | <40 * Heart Disease
3 1306* | <40 * Viral Infection
11 || 1306* | < 40 * Cancer
12 || 1306* | <40 * Cancer

Figure 3. 3-Diverselnpatient Microdata

to eliminate? — 1 possible sensitive values and infer a pos-
itive disclosure! Thus, by setting the parametethe data
publisher can determine how much protection is provided
against background knowledge — even if this background
knowledge is unknown to the publisher.

Putting these two arguments together, we arrive at the
following principle.

Principle 2 (¢-Diversity Principle) A g*-block is¢-diverse
if contains at least “well-represented” values for the sen-
sitive attributeS. A table is¢-diverse if every*-block is
¢-diverse.

Returning to our example, consider the inpatient records
shown in Figure 1. We present a 3-diverse version of the ta
ble in Figure 3. Comparing it with the 4-anonymous table in
Figure 2 we see that the attacks against the 4-anonymous't

ble are prevented by the 3-diverse table. For example, Alice

cannot infer from the 3-diverse table that Bob (a 31 year old
American from zip code 13053) has cancer. Even though
Umeko (a 21 year old Japanese from zip code 13068) is ex
tremely unlikely to have heart disease, Alice is still ursur
whether Umeko has a viral infection or cancer.
The¢-diversity principle advocates ensuriffwell rep-
resented” values for the sensitive attribute in evgrplock,
but does not clearly state what “well represented” means.
Note that we called it a “principle” instead of a theorem
— we will use it to give two concrete instantiations of the
(-diversity principle and discuss their relative tradesoff

4.2.¢-Diversity: Instantiations

Our first instantiation of thé-diversity principle uses the
information-theoretic notion of entropy:

Definition 4.1 (Entropy ¢-Diversity) A table isEntropy/-

a

Diverseif for everyq*-block

- Zp(q*_’s) log(p(g+,s7)) > log()
ses

wherep g« 5) = —~=to2) ) is the fraction of tuples in the

Z n(q*ysl

s'es

q*-block with sensitive attribute value equaldo

As a consequence of this condition, evetyblock has at
least/ distinct values for the sensitive attribute. Using this
definition, Figure 3 is actuallg.8-diverse.

Since—x log(x) is a concave function, it can be shown
that if we split ag*-block into two sub-blockg; andg;
thenentropy(¢*) > min(entropy(q};), entropy(g;)). This
implies that in order for entropg-diversity to be possible,
the entropy of the entire table must be at Idagt?). This
might not be the case, especially if one value of the sensi
tive attribute is very common — for example, if 90% of the
patients have “heart problems” as the value for the “Medical
Condition” attribute.

Thus entropy-diversity may sometimes be too restric-
tive. If some positive disclosures are acceptable (for exam
ple, a clinic is allowed to disclose that a patient has a “hear
problem” because it is well known that most patients who
visit the clinic have heart problems) then we can do bet-
ter. This reasoning allows us to develop a less conservative
instantiation of the/-diversity principle calledecursive/-
diversity.

Letsy,..., s, be the possible values of the sensitive at-
tribute S in a ¢*-block. Assume that we sort the counts
Ng*,s1)> - -+ » (g~ s, IN dESCENdiNG Order and name the el-
ements of the resulting sequenee. .., r,,. One way to
think about/-diversity is the following: the adversary needs
to eliminate at least — 1 possible values of' in order to

infer a positive disclosure. This means that, for example, i

a 2-diverse table, none of the sensitive values should appea
too frequently. We say that @-block is (¢, 2)-diverse if

r1 < ¢(ra + -+ + 1y, ) for some user-specified constant

For¢ > 2, we say that @*-block satisfiesecursive(c, ¢)-
diversityif we can eliminate one possible sensitive value in
the ¢*-block and still have dc, ¢ —1)-diverse block. This
recursive definition can be succinctly stated as follows:

Definition 4.2 (Recursive(c, ¢)-Diversity) In a giveng*-
block, letr; denote the number of times ti#& most fre-
guent sensitive value appears in thatblock. Given a
constante, the ¢*-block satisfiegecursive(c, £)-diversity
if 11 < c(re +rep1 + -+ + 7). AtableT™* satisfies re-
cursive (¢, £)-diversity if everyg*-block satisfies recursive
(-diversity. We say that-diversity is always satisfied.

Now suppose that” is the set of sensitive values for
which positive disclosure is allowed (for example, because
they are extremely frequent, or because they may not be an



invasion of privacy — like “Medical Condition”"="Healthy?)
Since we are not worried about those values being too fre-
quent, lets, be the most frequent sensitive value in tfie
block that isnotin Y and letr, be the associated frequency.
Then theg*-block satisfied-diversity if we can eliminate
the ¢ — 2 most frequent values & not includingr, with-

out makings, too frequent in the resulting set. This is the

4.3. Multiple Sensitive Attributes

Multiple sensitive attributes present some additional
challenges. Supposé& and V are two sensitive at-
tributes, and consider the*-block with the following
tuples: {(q*v 81, Ul)? (q*a 517U2)a (q*v 527U3)7 (q*v 53, U3)}'
This ¢g*-block is 3-diverse (actually recursive (2,3)-diverse)

same as saying that after we remove the sensitive valuesvith respect taS (ignoring V) and 3-diverse with respect

with countsry,...,r,_1, then the result i/ — y + 1)-
diverse. This brings us to the following definition.

Definition 4.3 (Positive  Disclosure-Recursive (c, {)-
Diversity). Let Y denote the set of sensitive values for
which positive disclosure is allowed. In a givehblock,

let the most frequent sensitive value notYinbe theyt"
most frequent sensitive value. Lgtdenote the frequency
of the i*» most frequent sensitive value in theé-block.
Such ag*-block satisfiepd-recursivec, ¢)-diversityif one

of the following hold:

m
e y<({—landry,<c) rj
j=¢

y—1
ey>({—landry,<c Y,
j=t—1

m
rite X
J=y+1

We denote the summations on the right hand side of the botq

conditions bytaily« (sy).

Now, note that ifr, = 0 then theg*-block only has sen-

to V' (ignoring.S). However, if we know that Bob is in this
block and his value fof is nots; then his value for attribute
V' cannot bey; or vy, and therefore must be,. One piece
of information destroyed his privacy. Thus we see that-
block that is¢-diverse in each sensitive attribute separately
may still violate the principle of-diversity.

Intuitively, the problem occurred because within tte
block, V' was not well-represented for each valuesofHad
we treatedS as part of the quasi-identifier when checking
for diversity inV (and vice versa), we would have ensured
that the/-diversity principle held for the entire table. For-
mally,

Definition 4.5 (Multi-Attribute ¢-Diversity) Let T' be a
table with nonsensitive attribute®q,...,Q@,,, and sen-
sitive attributes Sy,...,S,,. We say thatT is /-
diverse if for all: = 1...mo, the tableT is ¢-diverse
when S; is treated as the sole sensitive attribute and
{Q1,.-,Qmy,S1,--,8i—1,Si+1,- .., Sm, } is treated as
he quasi-identifier.

As the number of sensitive attributes grows, it is not hard
to see that we will necessarily need larger and larger

sitive values that can be disclosed and so both conditionsblocks to ensure diversity. This problem may be amelio-

in Definition 4.3 are trivially satisfied. Second, note tHat i

¢ > 1 then the second condition clearly reduces to just the
conditiony > ¢ — 1 because, < r,_;. The second condi-
tion states that even though the- 1 most frequent values
can be disclosed, we still do not wantto be too frequent if

£ — 2 of them have been eliminated (i.e., we want the result
to be 2-diverse).

Until now we have treated negative disclosure as rela-
tively unimportant compared to positive disclosure. How-
ever, negative disclosure may also be importaniVIfs the
set of values for the sensitive attribute for which negative
disclosure is not allowed then, given a user-specified con-
stantco < 100, we require that each € W appear in at
leastco-percent of the tuples in every-block, resulting in
the following definition.

Definition 4.4 (Negative/Positive Disclosure-Recursive
(c1, o, £)-Diversity). Let W be the set of sensitive values
for which negative disclosure is not allowed. A table
satisfies npd-recursive(cy, co, £)-diversity if it satisfies
pd-recursive(cy, £)-diversity and if every € W occurs in

at leastc, percent of the tuples in evegy-block.

rated through tuple suppression and generalization on the
sensitive attributes, and is a subject for future work.

4 4. Discussion

Recall that we started our journey into Section 4 moti-
vated by the weaknesses of Bayes-optimal privacy. Let us
now revisit these issues one by one.

e (-Diversity no longer requires knowledge of the full
distribution of the sensitive and nonsensitive attributes

o (-Diversity does not even require the data publisher to
have as much information as the adversary. The pa-
rameter/ protects against more knowledgeable adver-
saries; the larger the value fthe more information
is needed to rule out possible values of the sensitive
attribute.

Instance-level knowledge (Bob’s son tells Alice that
Bob does not have diabetes) is automatically covered.
It is treated as just another way of ruling out possible
values of the sensitive attribute.



o Different adversaries can have different background erty, and it is this property which guarantees the corresstne
knowledge leading to different inferencesDiversity of all efficient algorithms [6, 16]. Thus, if we show that
simultaneously protects against all of them without the ¢-diversity also possesses the monotonicity property, then
need for checking which inferences can be made with we can re-use these efficient lattice search algorithms to
which levels of background knowledge. find the/-diverse table with optimal utility. Although more

of theoretical interest, we can prove the following theorem

Overall, we believe that-diversity is practical, easy to  that gives a computational reason why Bayes-optimal pri-
understand, and addresses the shortcomingsobnymity  vacy does not lend itself to efficient algorithmic implemen-
with respect to the background knowledge and homogene-tations.
ity attacks. Let us now see whether we can give efficient
algorithms to implemené-diversity. We will see that, un-
like Bayes-optimal privacy-diversity possesses a property
calledmonotonicity We will define this concept in Section However, we can prove that all variants/ediversity satisfy
5, and we show how this property can be used to efficiently monotonicity.
generaté-diverse tables.

Theorem 5.1 Bayes-optimal privacy does not satisfy the
monotonicity property.

Theorem 5.2 (Monotonicity of Entropy ¢-diversity)
) ] _ Entropy ¢-diversity satisfies the monotonicity property:
5. Implementing Privacy Preserving Data Pub- it a table 7* satisfies entropy¢-diversity, then any

lishing generalizatioril™** of T* also satisfies entropédiversity.

) ) ] . ] Theorem 5.3 (Monotonicity of NPD Recursive
In this section we discuss how to build algorithms for ¢-diversity) npd recursive(cy, ¢, £)-diversity satisfies the
privacy-preserving data publishing using domain general- monotonicity property: if a tablg@™* satisfies npd recursive
ization. Let us first review the search space for privacy- (1, 2, £)-diversity, then any generalizatidi™* of T* also

preserving data publishing using domain generalization satisfies npd recursivie: , c2, ¢)-diversity.
[6, 16]. For ease of explanation, we will combine all the

nonsensitive attributes into a single multi-dimensiortal a ~ Thus to create an algorithm fdrdiversity, we simply
tribute Q. For attributeQ, there is a user-defined general- take any algorithm fok-anonymity and make the following
ization lattice. Formally, we define a generalization tatti ~ change: every time a table” is tested fork-anonymity, we
to be a set of domains partially ordered by a generalizationcheck for(-diversity instead. Sincé-diversity is a property
relation < (as described in Section 2). The bottom ele- thatis local to eacly*-block and since all-diversity tests
ment of this lattice islomain(Q) and the top element is  are solely based on the counts of the sensitive values, this
the domain where each dimension @fis generalized to  test can be performed very efficiently.
a single value. Given a base tatfle each domairDy, in
the lattice defines an anonymized talilé which is con- 6. Experiments
structed by replacing each tuptec T by the tuplet*,
such that the valugf[Q] € D is the generalization of the In our experiments, we used an implementation of Incog-
valuet|Q] € domain(Q). An algorithm for data publishing  nito, as described in [16], for generatikganonymous ta-
should find a point on the lattice such that the correspond-bles. We modified this implementation so that it produces
ing generalized tabl@™* preserves privacy and retains as ¢-diverse tables as well. Incognito is implemented in Java
much utility as possible. In the literature, the utility of a and uses the database manager IBM DB2 v8.1 to store its
generalized table is usually defined as a distance metric ordata. All experiments were run under Linux (Fedora Core
the lattice — the closer the lattice point is to the bottore, th  3) on a machine with a 3 GHz Intel Pentium 4 processor and
larger the utility of the corresponding taldl&. Hence, find- 1 GB RAM.
ing a a suitable anonymized taliie is essentially a lattice We ran our experiments on the Adult Database from
search problem. There has been work on search strategiethe UCI Machine Learning Repository [20] and the Lands
for k-anonymous tables that explore the lattice top-down [6] End Database. The Adult Database contains 45,222 tuples
or bottom-up [16]. from US Census data and the Lands End Database contains
In general, searching the entire lattice is computatignall 4,591,581 tuples of point-of-sale information. We removed
intractable. However, lattice searches can be made efficientuples with missing values and adopted the same domain
if there is a stopping condition of the form:If* preserves  generalizations as [16]. Figure 4 provides a brief descrip-
privacy then every generalization 8% also preserves pri- tion of the data including the attributes we used, the num-
vacy [16, 22]. This is called themonotonicity propertyand ber of distinct values for each attribute, the type of gelhera
it has been used extensively in frequent itemset mining al-ization that was used (for non-sensitive attributes), &ed t
gorithms [4]. k-Anonymity satisfies the monotonicity prop- height of the generalization hierarchy for each attribute.



Adults Lands End

Attribute Domain | Generalizations| Ht. Attribute Domain | Generalizations | Ht.
size type size type

1| Age 74 ranges-5,10,20| 4 1 | Zipcode 31953 | Round each digitf 5
2 | Gender 2 Suppression 1 2 | Order date 320 Taxonomy tree 3
3 | Race 5 Suppression 1 3 | Gender 2 Suppression 1
4 | Marital Status 7 Taxonomy tree | 2 4 | Style 1509 Suppression 1
5 | Education 16 Taxonomy tree | 3 5 | Price 346 Round each digit| 4
6 | Native Country 41 Taxonomy tree | 2 6 | Quantity 1 Suppression 1
7 | Work Class 7 Taxonomy tree | 2 7 | Shipment 2 Suppression 1
8 | Salary class 2 Sensitive att. 8 | Cost 147 Sensitive att.
9 | Occupation 41 Sensitive att.

Figure 4. Description of Adults and Lands End Databases

Due to space restrictions, we report only a small subset6-anonymous tables and compared it to the time taken to re-
of our experiments. An exhaustive set of experimental re- turn all 6-diverse tables. In both datasets, the running times
sults can be found in our technical report [17]; those rasult for k-anonymity and/-diversity were similar. Sometimes
are qualitatively similar to the ones we present here. the running time fo¥-diversity was faster, which happened

Homogeneity Attack. We illustrate thenomogeneity at- v_vhen th_e algorit_hm_ pruned parts_of the generalization lat-
tack on a k-anonymized dataset with the Lands End and tice earlier than it did fok-anonymity.

Adult databases. For the Lands End Database, we treated

the first 5 attributes in Figure 4 as the quasi-identifier. We Utility. The utility of a dataset is a property that is diffi-
partitioned the Cost attribute into 147 buckets of size 100 cult to quantify. As a result, we used three different metric
and used this as the sensitive attribute. We then generatetb gauge the utility of-diverse andk-anonymous tables.
all 3-anonymous tables that were minimal with respect to The first metric, generalization height [16, 21], is the nig
the generalization lattice (i.e. no table at a lower level of of an anonymized table in the generalization lattice; intu-
generalization was 3-anonymous). There were 3 minimalitively, it is the number of generalization steps that were
tables, and 2 of them were vulnerable to the homogeneityperformed. The second metric is the average size of the
attack. In fact, more than 1,000 tuples had their sensitive ¢*-blocks generated by the anonymization algorithm. The
value revealed. Surprisingly, in each of the vulnerable ta- third metric is thediscernibility metric [6]. The discerni-
bles, the average size of a homogeneous group was largebility metric measures the number of tuples that are indis-
than 100. The table that was not vulnerable to the homo-tinguishable from each other. Each tuple ig*ablock B;
geneity attack was entropy61-diverse. incurs a costB;| and each tuple that is completely sup-

For the Adult Database, we treated the first 5 attributes Pressed incurs a cogb| (whereD is the original dataset).
in Figure 4 as the quasi-identifier. When we used Occupa-Since we did not perform any tuple suppressions, the dis-
tion as the sensitive attribute, there were a total of 12-mini c€rnibility metric is equivalent to the sum of the squares of
mal 6-anonymous tables, and one of them was vulnerable tghe sizes of thg*-blocks.
the homogeneity attack. On the other hand, when we used The first graph in Figure 7 shows the minimum gener-
Salary Class as the sensitive attribute, there were 9 mini-alization height ofk-anonymous and-diverse tables for
mal 6-anonymous tables, and 8 of them were vulnerable.k,/ = 2,4,6,8. As the graph shows, ensuring diversity
The 9" table was recursive (6,2)-diverse. This large value in the sensitive attribute does not require many more gener-
of ¢ (from the definition of recursivé, ¢)-diversity) is due alization steps than fos-anonymity (note that af-diverse
to the distribution of values of the Salary Class attribute: table is automatically-anonymous); the minimum gener-
Salary Class is a binary attribute with one value occurring 4 alization heights for identical values #fand/ were either
times as frequently as the other. the same or differed by one.

Nevertheless, we found that generalization height [21]
Performance. In our next set of experiments, we compare was not an ideal utility metric because tables with small
the running times of entropg-diversity andk-anonymity. generalization heights can still have very large groupssize
The results are shown in Figures 5 and 6. For the Adult For example, using full-domain generalization on the Adult
Database, we used Occupation as the sensitive attribute, anDatabase with 5 quasi-identifiers, we found minimal (with
for Lands End we used Cost. We varied the quasi-identifierrespect to the generalization lattice) 4-anonymous tables
size from 3 attributes up to 8 attributes; a quasi-identifier that had average group sizes larger than 1,000 tuples. The
of sizej consisted of the firsj attributes of its dataset as large groups were caused by data skew. For example, there
listed in Figure 4. We measured the time taken to return all were only 114 tuples with age between 81 and 90, while
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Figure 7. Adults Database. Q = {age, gender, race, marital_status}

there were 12,291 tuples with age between 31 and 40. Sdrol how much skew is acceptable imy&block. Since there

if age groups of length 5 (i.e. [1-5], [6-10], [11-15], etc) is still some residual skew even in our 5% subsample, the
were generalized to age groups of length 10 (i.e. [1-10], entropy definition performs worse than the recursive defini-
[11-20], etc), we would end up with very largé-blocks. tion.

Generalization hierarchies that are aware of data skew may

yield higher quality anonymizations. This is a promising 7. Related Work

avenue for future work because some recent algorithms [6]

can handle certain dynamic generalization hierarchies. The problem of publishing public-use microdata has

In order to understand the loss of utility due to domain been extensively studied in both the statistics and compute
generalization better, we chose to study a subsample of thescience communities. The statistics literature, motivéte
Adults Database with a lesser data skew in the Age attribute the need to publish census data, focuses on identifying and
It turned out that a 5% Bernoulli subsample of the Adult protecting the privacy of sensitive entries in contingetaey
Database suited our requirements — most of the Age val-bles, or tables of counts which represent the completecross
ues appeared in around 20 tuples each, while only a fewclassification of the data. Two main approaches have been
values appeared in less than 10 tuples each. The secongroposed for protecting the privacy of sensitive cetiata
and third graphs in Figure 7 show the minimum average swappingand data suppressian The data swapping ap-
group size and the discernibility metric cost, respecfivel proach involves moving data entries from one cell to an-
of k-anonymous and-diverse tables fok, ¢ = 2,4,6, 8. other in the contingency table in a manner that is consistent
Smaller values for utility metrics represent higher ufilit ~ with the set of published marginals [9, 10, 13]. In the data
We found that the begtanonymous and-diverse tables  suppression approach [8], cells with low counts are simply
often had comparable utility. We also found that, in some deleted, which in turn might lead to the deletion of addi-
cases,/-diversity had worse utility because some utility tional cells. An alternate approach is to determirsafety
must be traded off for privacy. It is interesting to note that rangeor protection intervalfor each cell [12], and publish
recursive(3, ¢)-diversity permits tables which have better only those marginals which ensure that the feasibilityrinte
utility than entropy/-diversity. Figure 7 shows that both the vals (i.e. upper and lower bounds on the values a cell may
instantiations off-diversity have similar costs for the dis- take) contain the protection intervals for all the cell @&tr
cernibility metric, but recursivé-diversity permits smaller  The above techniques, however, do not provide a strong the-
average group sizes than the entropy definition. Recursiveoretical guarantee of the privacy ensured.

(¢, £)-diversity is generally less restrictive than entrapy Computer science research also has tried to solve the
diversity, because the extra parametglllows us to con-  data publishing problem. A technique calleéanonymity
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has been proposed which guarantees that every individual iReferences
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