KECCAK sponge function family
main document

Guido BERTONI!
Joan DAEMEN!
Michaél PEETERS?
Gilles VAN ASSCHE!

http://keccak.noekeon.org/

Version 2.1 1STMicroelectronics
June 19, 2010 2NXP Semiconductors

http://keccak.noekeon.org/

KEccaAk

2 /[121]

Contents

[1.1 Specifications summary|
1.2 NIST requirements|
1.3 Acknowledgments|.

|2 Design rationale summary|

[2.1 Choosing the sponge construction|

[2.2 Choosing an iterated permutation|

[2.3 Designing the KECCAK-{ permutations|

[2.4 Choosing the parameter values| .

[3 The sponge construction|

[3.1 Security of the sponge construction|.

[3.1.1 Indifferentiability from a random oracle|

[3.1.2 Indifterentiability of multiple sponge functions|

13.1.3 Immunity to generic attacks|. L.

13.1.4 Randomized hashing| . . .
3.1.5 Keyed modes|
[3.2 Rationale for the padding|
[3.2.1 Sponge input preparation|
13.2.2 Multi-capacity property| .

[3.2.3 Digest-length dependent digest|

3.3 Parameter choices]
3.3.1 Capacity]

[3.3.3 The default sponge functio

n KECCAK/[|[.

|3.4 The four critical operations of a sponge]

tion|

|4.1 Usage scenario’s for a sponge func

4.1.1 Random-oracle interfacel .

[4.1.2 Linking to the security claim|

4.1.3 Examples of modes of use]|

3 /[121]

11
12

13
13
14
14
15
16

17
17
17
18
19
19
20
20
20
21
21
21
21
22
22
23
23
23

25
25
25
25
26

KEccaAk

CONTENTS

4.2 Backward compatibility with old standards|
|4.2.1 Input block length and output lengthl

M22 Initialvaluel

4.3 Input formatting and diversification|

4.4 Parallel and tree hashing/.

44.1 Definitions

B

Sponge functions with an iterated permutation|

5.1 The philosophy|
The hermetic sponge strategy|
[5.1.2 The impossibility of implementing a random oracle|
[5.1.3 The choice between a permutation and a transformation|. . .
[5.1.4 The choice of an iterated permutation|
[5.2 Some structural distinguishers|.o

b1l

P21
5.2.2
5.2.3
(.24
5.25
5.2.6

Differential cryptanalysis|

Algebraic expressions|
The constrained-input constrained-output (CICO) problem)

b.3.1 Exploiting a differential trail|
[5.3.2 Exploiting a differentiall

5.3.3 Truncated trails and differentialsl

5.5 Detecting acyclel
[.6 Binding an output to a state]

5.7 Classical hash function criterial

[0.7.2 Preimage resistance)
[5.7.3 Second preimage resistance

b.7.4 Length extension|

5.7.6 Output subset properties|

The KECCAK-} permutations|

6.1 Translation invariancel
6.2 The Matryoshka structure|,
6.3 The step mappings of KECCAK-f|
[6.3.1 Propertiesof x|
[6.3.2 Propertiesof 6
[6.3.3 Propertiesof @ oo
[6.3.4 Propertiesof p| oo

4 /121]

Linear cryptanalysis|

Multi-block CICO problems|
Cycle structure]o oo

CONTENTS KECCAK
6.3.5 Propertiesof ¢ 54
[6.3.6 The order of steps within around| 55

6.4 Choice of parameters: the number of rounds|. 55
|6.5 Difterential and linear cryptanalysis| 99
[6.5.1 A formalism for describing trails adapted to KECCAK-f| 55
[6.5.2 The Matryoshka consequence| Y
6.5.3 The column parity kernel| 000, 57
6.5.4 Omne and two-round traild 57
[6.5.5 Three-round trails: kernel vorticesf 58
16.5.6 Beyond three-round trails: choiceotn| 60
[6.5.7 Truncated trails and differentials| 61
[6.5.8 Other group operations|, 62
16.5.9 Ditterential and linear cryptanalysis variants| 62

6.6 Solving CICO problems| 63
6.7 Strength in keyed mode| Lo 63
6.8 Symmetry weaknesses| Lo 63
|7 Trail propagation in KECCAK-f| 65
7.1 Relations between different kinds of weight| 65
[7.2 Propagation properties related to the linear step 6| 67
[.3 Exhaustive trail searchl 68
[7.3.1 Upper bound for the weight of two-round trails to scan| 68
[7.3.2 Constructing two-round trails| 69
[7.3.3 Extending trails| oo oo 72
7.3.4 Linear and difterential trail bounds for w <& 72

[[4 Tametraild 73
[[.41 Construction of tame trailsl 73
[1.4.2 Bounds for three-round tame traald 74
[7.4.3 Bounds for four-round tame trails| 75

I8 Analysis of KECCAK-f| 77
[8.1 Algebraic normal form| oo 77
B.1.1 Statistical tests| 77
[8.1.2 Symmetric trails| o 79
813 Shideattacks o 80

8.2 Solving CICO problems algebraically| 80
821 Thegoall. 80
[8.2.2 The supporting software| 81
8.2.3 The experiments| L 81
[8.2.4 Third-party analysis| o L. 83

[8.3 Properties of KECCAK-f[25]| oo 83
[8.3.1 Algebraic normal statistics| 83
[8.3.2 Difterential probability distributions| 84
R.3.3 Correlation distributions. o000 86
8.3.4 Cycle distributions| L 89

[8.4 Distinguishers exploiting low algebraic degree| 92

5 /[121]

KEccAK CONTENTS
[9 Implementation| 95
9.1 Bit and byte numbering conventions| 95
9.2 General aspects| 96
9.2.1 The lane complementing transform| 97

[9.2.2 Bit interleaving| oo 98

9.3 Software implementation|. L L L 99
9.3.1 Optimized for speed| L. 100

9.3.2 Using SIMD instructions|. L. 101

9.3.3 SIMD instructions and KECCAKITREE 102

9.3.4 Protection against side channel attacks| 103

9.3.5 Estimation on 8-bit processors| L. 103

9.4 Hardware Implementations] 104
9.4.1 High-speed corel. 105

[9.4.2 Variants of the high-speed core| 000 106

9.4.3 Low-area coprocessor|. oo 107

9.4.4 FPGA implementations| 0. 109

[9.4.5 Protection against side channel attacks 111

|A Change log| 119
[AT From2.0to 2.1 o . o 119
IA.1.1 Restructuring of document| 119

[A.1.2 Additionof contents 119

[A.1.3 Corrections and editorial changes| 120

(A2 From 1.2to 200 o . 120
[A3 From T.Tto T.2] 121
A4 From T.0to IO oo oo 121

6 /[121]

Chapter 1

Introduction

Keccak [I1] is a family of cryptographic hash functions [86] or, more accurately, sponge
functions [9]. This document describes the properties of the KECCAK family and presents
its members as candidates to NIST’s request for a new cryptographic hash algorithm family
called SHA-3 [6§].

This introduction offers in Section [I.I] a summary of the KECCAK specifications using
pseudocode, sufficient to understand its structure and building blocks. In no way should this
introductory text be considered as a formal and reference description of KECCAK. For the
formal definition of the KECCAK family, we refer to the separate document [11], to which we
assume the reader has access. While the KECCAK definition is updated once (for the SHA-3
2nd round), this present document is regularly updated, so we suggest the reader to obtain
the latest version from our website http://keccak.noekeon.org/. Note that this document
comes with a set of files containing results of tests and experiments. Moreover, also available
from http://keccak.noekeon.org/|is KECCAKToOLS [I4], a public software for aimed at
helping analyze KECCAK.

The document is organized as follows. The design choices behind the KECCAK sponge
functions are summarized in Chapter[2 Chapter [3|looks at the use of the sponge construction
in our submission. Chapter [4] gives an overview of the different modes of use of sponge func-
tions that go beyond plain hashing and discusses backwards compatibility with old standards.
Chapter [5| gives more insight on the use of an iterated permutation in the sponge construc-
tion and introduces our hermetic sponge design strategy. The subsequent three chapters are
dedicated to the permutations underlying KECCAK: KECCAK-f.

e Chapter [0] explains the properties of the building blocks of KECCAK-f and motivates
the choices made in the design of KECCAK-f.

e Chapter [7]is dedicated to trail propagation in KECCAK-f.
e Chapter [§] covers all other analysis of KECCAK-f respectively.

Finally, Chapter [9] takes a look at the software and hardware implementation aspects.

7 /[121

http://keccak.noekeon.org/
http://keccak.noekeon.org/

KEccAK 1. Introduction

1.1 Specifications summary

Any instance of the KECCAK sponge function family makes use of one of the seven KECCAK- f
permutations, denoted KECCAK-f[b], where b € {25, 50, 100, 200, 400, 800, 1600} is the width
of the permutation. These KECCAK-f permutations are iterated constructions consisting of
a sequence of almost identical rounds. The number of rounds n, depends on the permu-
tation width, and is given by n, = 12 + 2¢, where 2 = b/25. This gives 24 rounds for
KEccAK- f[1600].

KECCAK- f[b](A)
fortin0...n, —1
A = Round[b](A, RC[i])

return A

A KEccAK-f round consists of a sequence of invertible steps each operating on the state,
organized as an array of 5 x 5 lanes, each of length w € {1,2,4,8,16,32,64} (b = 25w). When
implemented on a 64-bit processor, a lane of KECCAK-f[1600] can be represented as a 64-bit
CPU word.

Round[b](A, RC)

0 STEP

Clz] = Alz,0] ® Alz, 1] ® Alz, 2] ® Alz, 3] & Alz, 4], Vrin0...4

Diz] = Clx — 1] ROT(Clz + 1], 1), Vxin0...4

Alx,y] = Alz,y] ® D|x], V(z,y) in (0...4,0...4)
p AND T STEPS

Bly, 2z + 3y| = ROT(A[x, y, [z, y]), V(z,y)in (0...4,0...4)
X STEP

Alz,y] = Blz,y] ® (NOT Bz + 1,y]) AND B[z + 2,9]), V(z,y)in (0...4,0...4)

L STEP
A[0,0] = A[0,0] ® RC

return A

Here the following conventions are in use. All the operations on the indices are done
modulo 5. A denotes the complete permutation state array and Alz,y| denotes a particular
lane in that state. B[z,y], C[z] and D[z] are intermediate variables. The symbol @& denotes
the bitwise exclusive OR, NOT the bitwise complement and AND the bitwise AND operation.
Finally, ROT(W, r) denotes the bitwise cyclic shift operation, moving bit at position ¢ into
position ¢ + r (modulo the lane size).

8 /[121

1. Introduction

KECCAK

The constants r[x,y] are the cyclic shift offsets and are specified in the following table.

r=3 =4 =0 =1 x=2
Y= 25 39 3 10 43
y=1 59 20 36 44 6
Y= 28 27 0 1 62
y=4 56 14 18 61
Y= 21 8 41 45 15

The constants RC[i] are the round constants. The following table specifies their values in

hexadecimal notation for lane size 64. For smaller sizes they must be truncated.

RC[0] 0x0000000000000001 RC[12]
RC[1] 0x0000000000008082 RC|[13]
RC[2] 0x8000000000008084A RC[14]
RC[3] 0x8000000080008000 RC[15]
RC[4] 0x000000000000808B RC[16]
RC[5] 0x0000000080000001 RC[17]
RC[6] 0x8000000080008081 RC|[18]
RC[7] 0x8000000000008009 RC[19]
RC[8] 0x0000000000000084 RC|[20]
RC[9] 0x0000000000000088 RC|[21]
RC[10] 0x0000000080008009 RC|[22]
RC[11] 0x000000008000000A RC|[23]

0x000000008000808B
0x800000000000008B
0x8000000000008089
0x8000000000008003
0x8000000000008002
0x8000000000000080
0x000000000000800A
0x8000000080000004A
0x8000000080008081
0x8000000000008080
0x0000000080000001
0x8000000080008008

We obtain the KECCAK]r, ¢, d] sponge function, with parameters capacity c, bitrate r and
diversifier d, if we apply the sponge construction to KECCAK-f[r + ¢] and perform specific
padding on the message input. The following pseudocode is restricted to the case of messages
that span a whole number of bytes and where the bitrate r is a multiple of the lane size.

KECCAK]r, ¢, d](M)
INITIALIZATION AND PADDING
Slx,y] =0,

V(z,y)in (0...4,0...

P = M||0x01|[byte(d)||byte(r/8)||0x01][0x00]| . . .||0x00

ABSORBING PHASE

for every block P; in P
Sz, y] = Sz, y] & Pz + 5y],
S = KECCAK-f[r + c|(S)

SQUEEZING PHASE

Z = empty string

while output is requested
Z = Z||Se.yl,
S = KECCAK-f[r + ¢|(5)

return Z

V(z,y) such that + by < r/w

V(z,y) such that x + 5y < r/w

9 /[121

KEccAK 1. Introduction

Here S denotes the state as an array of lanes. The padded message P is organised as
an array of blocks P;, themselves organized as arrays of lanes. The || operator denotes byte
string concatenation.

10 /[121]

1. Introduction KECCAK

1.2 NIST requirements

In this section, we provide a mapping from the items required by NIST to the appropriate
sections in this document.

e Requirements in [68 Section 2.B.1]

The complete specifications can be found in [I1].

Design rationale: a summary is provided in Chapter 2] with pointers to sections
with more details.

Any security argument and a preliminary analysis: this is the purpose of the
Chapters [6] [7] and

Tunable parameters: a summary is provided in Section with pointers to sec-
tions with more details.

Recommended value for each digest size: see [LI, Section 1] for the number of
rounds and [IT], Section 4] for the other parameters.

Bounds below which we expect cryptanalysis to become practical: this can be
found in Sections [3.3.2 and

e Requirements in [68, Section 2.B.2]

The estimated computational efficiency can be found in Chapter [0

A description of the platforms used to generate the estimates can be found in
Section [9.3.1]

The speed estimate on the reference platform can also be found in Section [9.3.1

e Requirements in [68, Section 2.B.3]

The known answer and Monte Carlo results can be found on the optical media.

e Requirements in [68, Section 2.B.4]

The expected strength of KECCAK is stated in [I1], Section 3].

The link between the security claim and the expected strength criteria listed in
[68, Section 4.A] can be found in Section More details can be found in
Sections [3.1.3], [3.1.4] [3.1.5] and

For HMAC specifically, see also Section [4.2.3

Other pseudo random functions (PRF) constructions: some modes of use are pro-
posed in Section [4.1

e Requirements in [68, Section 2.B.5]

We formally state that we have not inserted any trapdoor or any hidden weakness
in KECCAK. Moreover, we believe that the structure of the KECCAK- f permutation
does not offer enough degrees of freedom to hide a trapdoor or any other weakness.

e Requirements in [68, Section 2.B.6]

Advantages and limitations: a summary is provided in Chapter [2| with pointers
to sections with more details.

11 /[121]

KEccAK 1. Introduction

1.3 Acknowledgments

We wish to thank (in no particular order) Charles Bouillaguet and Pierre-Alain Fouque for
discussing their results later published in [20] with us, Dmitry Khovratovich for discussing
with us the results published in [54] and for his analysis in [2], Jean-Philippe Aumasson
for his analysis in [2] and [3], Joel Lathrop for his analysis in [62] and Willi Meier for his
analysis in [3], Anne Canteaut and Christina Boura for their analysis in [22, 21], Pawel
Morawiecki and Marian Srebrny for their analysis in [66], Joachim Strémbergson for useful
comments on the FPGA implementation, Joppe Bos for reporting a bug in the optimized
implementation, all people who contributed to implementations or benchmarks of KECCAK in
hardware or software, Virgile Landry Nguegnia Wandji for his work on DPA-resistant KECCAK
implementations, Yves Moulart, Bernard Kasser and all our colleagues at STMicroelectronics
and NXP Semiconductors for creating the working environment in which we could work on
this, and especially Joris Delclef and Jean-Louis Modave for kindly lending us fast hardware.
Finally we would like to thank agentschap voor Innovatie door Wetenschap en Technologie
(IWT) for funding two of the authors (Joan Daemen and Gilles Van Assche).

12 /[121]

Chapter 2

Design rationale summary

The purpose of this chapter is to list the design choices and to briefly motivate them, although
further analysis is provided in the subsequent chapters.

2.1 Choosing the sponge construction
We start with defining a generic attack:

Definition 1. A shortcut attack [11] on a sponge function is a generic attack if it does not
exploit specific properties of the underlying permutation or transformation.

The KECCAK hash function makes use of the sponge construction, following the definition
of [9l 10]H This results in the following property:

Provability It has a proven upper bound for the success probability, and hence also a lower
bound for the expected workload, of generic attacks. We refer to Chapter [3| for a more
in-depth discussion.

The design philosophy underlying KECCAK is the hermetic sponge strategy. This consists
of using the sponge construction for having provable security against all generic attacks and
calling a permutation (or transformation) that should not have structural properties with the
exception of a compact description (see Section .

Additionally, the sponge construction has the following advantages over constructions that
make use of a compression function:

Simplicity Compared to the other constructions for which upper bounds have been proven
for the success of generic attacks, the sponge construction is very simple, and it also
provides a bound that can be expressed in a simple way.

Variable-length output It can generate outputs of any length and hence a single function
can be used for different output lengths.

Flexibility Security level can be incremented at the cost of speed by trading in bitrate for
capacity, using the same permutation (or transformation).

'Note that RADIOGATUN [§] and GRINDAHL [63] are not sponge functions.

13 / [121]

KEccAk 2. Design rationale summary

Functionality Thanks to its long outputs and proven security bounds with respect to generic
attacks, a sponge function can be used in a straightforward way as a MAC function,
stream cipher, a reseedable pseudorandom bit generator and a mask generating function

(see Section [4.1]).

To support arbitrary bit strings as input, the sponge construction requires a padding function.
We refer to Section for a rationale for the specific padding function we have used.

2.2 Choosing an iterated permutation

The sponge construction requires an underlying function f, either a transformation or a
permutation. Informally speaking, f should be such that it does not have properties that can
be exploited in shortcut attacks. We have chosen a permutation, constructed as a sequence of
(almost) identical rounds because of the following advantages:

Block cipher experience An iterated permutation is an iterated block cipher with a fixed
key. In its design one can build on knowledge obtained from block cipher design and
cryptanalysis (see Chapter [6)).

Memory efficiency Often a transformation is built by taking a permutation and adding a
feedforward loop. This implies that (at least part of) the input must be kept during the
complete computation. This is not the case for a permutation, leading to a relatively
small RAM footprint.

Compactness Iteration of a single round leads to a compact specification and potentially
compact code and hardware circuits.

2.3 Designing the KECCAK-f permutations

The design criterion for the KECCAK-f permutations is to have no properties that can be
exploited in a shortcut attack when being used in the sponge construction. It is constructed
as an iterated block cipher similar to NOEKEON [38] and RIJNDAEL [39], with the key schedule
replaced by some simple round constants. Here we give a rationale for its features:

Bit-oriented structure Attacks where the bits are grouped (e.g., in bytes), such as integral
cryptanalysis and truncated trails or differentials, are unsuitable against the KECCAK- f
structure.

Bitwise logical operations and fixed rotations Dependence on CPU word length is only
due to rotations, leading to an efficient use of CPU resources on a wide range of pro-
cessors. Implementation requires no large tables, removing the risk of table-lookup
based cache miss attacks. They can be programmed as a fixed sequence of instructions,
providing protection against timing attacks.

Symmetry This allows to have very compact code in software (see Section [9.3) and a very
compact co-processor circuit (see Section [9.4.3)) suitable for constrained environments.

Parallelism Thanks to its symmetry and the chosen operations, the design is well-suited
for ultra-fast hardware implementations and the exploitation of SIMD instructions and
pipelining in CPUs.

14 / [121]

2. Design rationale summary KEccak

Round degree 2 This makes the analysis with respect to differential and linear cryptanal-
ysis easier, leads to relatively simple (albeit large) systems of algebraic equations and
allows the usage of very powerful protection measures against differential power analysis

(DPA) both in software (see Section [9.3.4)) and hardware (see Section [9.4.5)) that are
not suited for most other nonlinear functions [12].

Matryoshka structure The analysis of small versions is relevant for larger versions (see

Section .

Eggs in another basket The choice of operations is very different from that in SHA-1 and
the members of the SHA-2 family on the one hand and from AES on the other.

2.4 Choosing the parameter values

In KECCAK, there are basically three security-relevant parameters that can be varied:
e b: width of KECCAK-f,
e c: capacity, limited by ¢ < b,
e n,: number of rounds in KECCAK-f.
The parameters of the candidate sponge functions have been chosen for the following reasons.

e ¢ = 2n: for the fixed-output-length candidates, we chose a capacity equal to twice the
output length n. This is the smallest capacity value such that there are no generic
attacks with expected complexity below 2". See Section [3.3.1

e b =1600: The width of the KECCAK-f permutation is chosen to favor 64-bit architec-
tures while supporting all required capacity values using the same permutation. See

Section 3.3.2

e Parameters for KECCAK[]: for the variable-output-length candidate KECCAK]|, we chose
a rate value that is a power of two and a capacity not smaller than 512 bits and such
that their sum equals 1600. This results in 7 = 1024 and ¢ = 576. This capacity value
precludes generic attacks with expected complexity below 2288, A rate value that is a
power of two may be convenient in some applications to have a block size which is a
power of two, e.g., for a real-time application to align its data source (assumed to be
organized in blocks of size a power of two) to the block size without the need of an extra
buffer.

e n, = 24: The value of n, has been chosen to have a good safety margin with respect
to even the weakest structural distinguishers and still have good performance. See

Section [6.4]

15 /[121]

KEccAk 2. Design rationale summary

2.5 The difference between version 1 and version 2 of KECCAK

For the 2nd round of the SHA-3 competition, we decided to modify KEccAK. There are
basically two modifications: the increase of the number of rounds in KECCAK-f and the

modification of the rate and capacity values in the four fixed-output-length candidates for
SHA-3:

e Increasing the number of rounds of KECCAK-f from 12 4 ¢ to 12 + 2¢ (from 18 to 24
rounds for KECCAK-f[1600]): this modification is due to the distinguishers described
in [3] that work on reduced-round variants of KECCAK-f[1600] up to 16 rounds. In
the logic of the hermetic sponge strategy (see Section , we want the underlying
permutation to have no structural distinguishers. Sticking to 18 rounds would not
contradict this strategy but would leave a security margin of only 2 rounds against a
distinguisher of KECCAK-f. In addition, we do think that this increase in the number
of rounds increases the security margin with respect to distinguishers of the resulting
sponge functions and attacks against those sponge functions.

e For applications where the bitrate does not need to be a power of 2, the new parameters
of the fixed-output-length candidates take better advantage of the performance-security
trade-offs that the KECCAK sponge function allows.

16 /[121]

Chapter 3

The sponge construction

In this chapter, we treat the implications of the use of the sponge construction on KECCAK.

3.1 Security of the sponge construction

The KEccAK hash function makes use of the sponge construction, as depicted in Figure [3.1
We have introduced and analyzed this construction in [9] and proven that it is indifferentiable
from a random oracle in [10].

3.1.1 Indifferentiability from a random oracle

In [I0] we have proven that given capacity ¢, the success probability of any generic attack is
upper bounded by 1 — exp (—N(N + 1)2_(C+1)) with N the number of calls to the underlying
permutation or its inverse. If 1 < N < 2¢/2 this bound simplifies to 2~ (¢*Y N2, resulting in
a lower bound for the expected complexity of differentiating the sponge construction calling
a random permutation or transformation from a random oracle of /72%2. Note that this is
true independently of the output length. For example, finding collisions for output lengths
shorter than ¢ has for a random sponge the same expected complexity as for a random oracle.

B P P, P;
T 0 o> A o> o>

N N N N e N

absorbing | squeezing

20 z1 z9

\ 4
A 4

\ 4
A 4

—— e ——— v —— -

Figure 3.1: The sponge construction

17 / [121]

KEccAk 3. The sponge construction

3.1.2 Indifferentiability of multiple sponge functions

In our SHA-3 proposal we have multiple sponge functions that make use of the same f.
The indifferentiability proof of [10] actually only covers the indifferentiability of a single
sponge function instance from a random oracle. In this section we extend this proof to
indifferentiability from a set of random oracles of any set of sponge functions with different
capacity and/or diversifier parameters calling the same f.

Clearly, the best one can achieve is bounded by the strength of the sponge construction
instance with the smallest capacity, as an adversary can always just try to differentiate the
weakest construction from a random oracle. The next theorem states that we achieve this

bound.

Theorem 1. Differentiating an array of padded sponge constructions (S;) according to [11,
Algorithm 1] and calling the same random function (resp. permutation) f of width b with
different (c;,d;) from an array of independent random oracles (RQO;) has the same success
probability as differentiating a padded sponge construction with capacity min; ¢; calling a ran-
dom function (resp. permutation) f of width b from a random oracle.

Proof: An array (RO;) of independent random oracles can be alternatively implemented by
having a single central random oracle RO and simple algorithms I; that pre-process the input
strings, so that RO;(M) = RO(I;(M)). To simulate independent random oracles, each I;
must produce a different range of output strings, i.e., provide domain separation. In other
words, the mapping from the couple (i, M) to = I;(M) must be injective. This reasoning
is also valid if the output of the random oracles is processed by some algorithms O; that
extracts bits at predefined positions, so that RO;(M) = O;(RO(I;(M))).

In this proof, we will do similarly for the array of padded sponge constructions, by sim-
ulating them via a single sponge construction Sy, that calls the common random function
(or permutation) f. We will then rely on the indifferentiability proof in [I0] for the indiffer-
entiability between Sy, and RO.

For Smin, consider the padded sponge construction where the padding simply consists of
the function pad [11]. This padding satisfies the conditions imposed by the indifferentiability
proof in [I0]. The capacity of Sy is chosen to be ¢pin = min; ¢;. In the proof we make use
of the bitrates r; that are fully determined by the width b of f and the capacities ¢;: we have
r; = b — ¢; and denote b — cpin by Tmax-

The function I; is built as follows. The input message M is padded with a single 1 followed
by the minimum number of zeroes such that its length becomes a multiple of 8. Then it is
followed by the binary coding of d; and that of r;/8. Subsequently, if r; < ryax, the following
processing is performed. The result is split into blocks of r; bits and to each complete block
rmax — 75 zeroes are appended. Note that zeroes are appended to the last block only if it is
complete, i.e., if it has length r;. Finally the blocks are concatenated together again and the
result is = I;(M). Due to the fact that the only allowed bitrate values are those multiple
of 8, the length of x is a multiple of 8.

The function O; is built as follows. The output z = O;(y) is obtained by splitting y in
rmax-Pit blocks and truncating each block to r; bits.

It follows that each of the functions S; can be simulated as S;(M) = O;(Smin(Li(M))).
Furthermore, the mapping = = I;(M) from a triplet (M,r;,d;) to x is injective. We demon-
strate this by giving an algorithm for reconstructing (M, r;, d;) from x. We start by extracting
r; from x. If the length of x is not a multiple of ryay, N0 zeroes were added to the last block

18 /[121]

3. The sponge construction KEccak

and the binary encoding of r;/8 is in the last byte of z. Otherwise, it is in the last non-zero
byte of . Now we split x in ryax blocks, truncate each block to its first r; bits, concatenate
them again and call the resulting string m. We can now find the binary encoding of d; in the
second to last byte of m. Finally, we obtain M by removing the two last bytes from m and
subsequently removing the trailing 10* bit string.

Differentiating the array (5;) from the array (RQO;) comes down to differentiating Smin
from RO, where Syin has capacity cpin = min; ¢;.

O

Note that for the proof to work it is crucial that the inner part (i.e., the ¢ bits unaffected
by the input or hidden from the output, see Section of the sponge function instance
with the smallest capacity is inside the inner parts of all other sponge function instances.
This is realized in our sponge construction by systematically taking as inner part of the state
its last ¢ bits.

So if several sponge construction instances are considered together, only the smallest
capacity counts. When considering a sponge construction instance, one may wonder whether
the mere existence of a sponge function instance with a smaller capacity has an impact on
the security of that sponge construction. This is naturally not the case, as an adversary has
access to f and can simulate any construction imaginable on top of f. What matters is that
the value N used in the expression for the workload shall include all calls to f and f~' of
which results are used.

3.1.3 Immunity to generic attacks

The indifferentiability result gives us a provable upper bound for the success probability,
and hence a provable lower bound for the expected workload of any generic attack. More
particularly, for a sponge construction with given ¢ there can be no generic attacks with
expected workload below /722,

In the last few years a number of generic attacks against iterated hash functions have been
published that demonstrated unexpected weaknesses:

e multicollisions [51],
e second preimages on n-bit hash functions for much less than 2" work [53],
e herding hash functions and the Nostradamus attack [59].

Clearly these attacks are covered by the indifferentiability proof and for a sponge function
the workload of generic versions of these attacks cannot be below /72¢2. As a matter of
fact, all these attacks imply the generation of inner collisions and hence they pose no threat if
generating inner collisions is difficult. We will discuss non-generic methods for the generation
of inner collisions applicable to KECCAK in Section [5.3

3.1.4 Randomized hashing

Interesting in this context is the application of randomized hashing [68]. Here a signing
device randomizes the message prior to hashing with a random value that is unpredictable
by the adversary. This increases the expected workload of generating a signature that is
valid for two different messages from generating two colliding messages to that of generating
a second pre-image for a message already signed. Now, if we keep in mind that for the

19 /[121]

KEccAk 3. The sponge construction

sponge construction there are no generic attacks with expected workload of order below 2¢/2,
we can conclude the following. A lower bound for the expected complexity for generating
a collision is min(2™/2,2%2) and for generating a second preimage min(2",2%?). Hence, if
¢ > 2n, randomization increases the strength against signature forgery due to generic attacks
against the hash function from 2n/2 to 2", If the capacity is between n and 2n, the increase
is from 22 to 2¢/2. If ¢ < n, randomized hashing does not significantly increase the security
level.

3.1.5 Keyed modes

With a random oracle, one can construct a pseudo-random function (PRF) Fj(m) by prepend-
ing the message m with a key k, i.e., Fi;(m) = RO(k||m). In such a case, the function behaves
as a random function to anyone not knowing the key & but having access to the same random
oracle. Note that the same reasoning is valid if k is appended to the message.

More specifically, let us consider the following differentiating experiment. In a first world,
let the adversary have access to the PRF Fji(m) = RO;1(k||m) and to the random oracle
instance RO1 used by the PRF. In a second world, the adversary has access to two indepen-
dent random oracle instances RQO2 and R(O3. The adversary has to differentiate the couple
(Fi, RO1) from the couple (RO2, RO3). The only statistical difference between the two pairs
comes from the identity between Fj(m) and RO;(k||m), whereas RO2(m) and RO3(k||m)
give independent results. Therefore, being able to detect such statistical difference means that
the key k has been recovered. For a key k containing n independent and uniform random
bits, the workload to generically recover it is about 2771,

As a consequence of the indifferentiability result, the same construction can be used with
a sponge function and the same security can be expected when the adversary does not have
access to a complexity of order higher than 2¢/2.

Note that two options are possible, namely, prepending or appending the key. Prepending
the key prevents the adversary from performing offline computations without access to Fj. If
the key is appended, the adversary can for instance generate a state collision (see Section
before querying Fj. The difference between the two options does not make a difference below
the 2¢/2 complexity order bound, though.

3.2 Rationale for the padding

The padding we apply has three purposes:
e sponge input preparation,
e multi-capacity property,
e digest-length dependent digest.

We explain these three purposes in the following subsections.

3.2.1 Sponge input preparation

The padding converts the input string M in an injective way into a string P that satisfies the
requirements for the input to an unpadded sponge [9) [10]: the length is a non-zero multiple of
r and the last block is different from 0”. This way, the indifferentiability proof is applicable.

20 / [121]

3. The sponge construction KEccak

3.2.2 Multi-capacity property

In the padding the value of the bitrate divided by 8 is binary coded and appended to the
message. This allows to apply the sponge construction to the same permutation with different
capacity values. Using this padding, the fact that the same f is used for different capacities
does not jeopardize the security of the sponge construction. We have proven in Section [3.1.2
that given a random permutation (or transformation) f, for any set of allowed capacity values
{c1, o, ...}, differentiating the resulting set of sponge functions from a set of random oracles
is not easier than differentiating the sponge function with capacity min; ¢; from a random
oracle. We have limited the allowed bitrate values to multiples of 8 to limit splitting of input
strings at byte boundaries. Note that this does not impose restrictions on possible input and
output lengths.

3.2.3 Digest-length dependent digest

One may have the requirement that a hash function with the same input but requesting a
different number of output bits shall behave as different hash functions. More particularly,
the SHA-3 requirements specify a range of fixed digest lengths while our KECCAK sponge
functions in principle have an output with arbitrary length. To achieve this we set the value
of the diversifier d to the digest length expressed in bytes. We have proven in Section [3.1.2) that
given a random permutation (or transformation) f, for any set of diversifier values {d;, d, ...}
and given the capacity c, differentiating the resulting set of sponge functions from a set of
random oracles is not easier than differentiating a single sponge function with capacity ¢ from
a random oracle.

3.3 Parameter choices

3.3.1 Capacity

In fixed digest-length hash functions, the required resistance against attacks is expressed
relative to the digest length. Until recently one has always found it reasonable to expect
a hash function to be as strong as a random oracle with respect to the classical attacks:
collisions and (second) preimage. This changed after the publication of the generic attacks
listed in Section B.1.3

For variable output-length hash functions expressing the required resistance with respect
to the output length makes little sense as this would imply that it should be possible to
increase the security level indefinitely by just taking longer digests. In our papers [9, [10], we
have shown that for iterated variable output-length hash functions it is natural to express
the resistance against attacks with respect to a single parameter called the capacity. Given a
flat sponge claim with a specific capacity ¢, the claim implies that with respect to any attack
with expected complexity below \/7720/ 2 the hash function is as strong as a random oracle.

Choosing ¢ = 2n for SHA3-n makes the sponge construction as strong as a random oracle
with respect to the security requirements as specified in [68]. In particular, ¢ = 2n is needed
by the requirement that (second) preimage resistance should be at least 2".

For our candidate with default parameters KECCAK[] we have chosen a capacity of 576
bits. For this choice, the expected workload of an attack should be 228 calls to the underlying
permutation. Note that requiring a resistance of 22%® is quite strong, as according to laws

21 /[121]

KEccAk 3. The sponge construction

of thermodynamics the energy needed by an irreversible computer to perform that many
operations is unreachable [78, pages 157-158|.

3.3.2 Width

The width b of the permutation has been chosen as a trade-off between bitrate and memory
footprint.

In a straightforward implementation, the RAM footprint is limited to the state and some
working memory. For the 1600-bit version, is still limited to slightly above 200 bytes. More-
over, it allows to have a bitrate of 1024 bit and still have a high capacity.

KEccAK-f is oriented towards 64-bit CPUs. In applications that are expected to run
mainly on 32-bit CPUs, one may consider using KECCAK-f[800] in KECCAK[r = 256, ¢ = 544]
or KECCAK[r = 512,¢ = 288]. The former has a small bitrate, hence impacting its perfor-
mance. The latter is twice as fast and has a claimed security level of 2! with respect to
all shortcut attacks. Note that this is higher than the collision resistance claimed today for
SHA-224 and SHA-256.

The smallest value of b for which a reasonable level of security can be obtained is b = 200.
In our opinion the value of ¢ below which attacks become practical is somewhere between 110
and 140, depending on the resources of the adversary.

3.3.3 The default sponge function KECCAK]]

One may ask the question: if we can construct arbitrary output-length hash functions, why
not just have a single function and truncate at required length instead of trying to have a
different hash function per supported output length? This is why we propose KECCAK]| as a
fifth candidate. As said, it has a capacity of 576 bits, a bitrate of 1024 bits and its diversifier
is fixed to 0. The capacity and bitrate sum up to 1600, the width of the KECCAK-f variant
with lane length of 64 bits, the dominant word length in modern CPUs. For the bitrate we
have chosen the largest power of 2 such that the capacity is not smaller than 512 bits. Note
that the capacity of 576 bits precludes any generic attacks with expected workload below the
(astronomical) number 2288,

The default value of the diversifier is 0 as we believe differentiation between versions
with different output lengths is in general not a requirement. Still, we are aware that there
may be schemes in which different hash (or sponge) functions are used that must behave
as different functions, possibly even if they have equal output length. In the latter case,
setting the diversifier to the output length does not solve the issue. Rather, in such a case,
the requirement that the different instances behave as different functions can be satisfied
by applying domain separation. This can be done by appending or prepending different
constants to the input for each of the function instances: f;(M) = KEcCAK[|(M]|C;) or
fi(M) = KecCAK([](C;||M). Note that for an appropriate set of constants C;, Theorem (1| can
be extended to this mode of use.

For a more detailed discussion of these aspects we refer to our Note on KECCAK parameters
and usage [15].

22 /[121]

3. The sponge construction KEccak

3.4 The four critical operations of a sponge

In this section we consider four critical operations that generic attacks on a sponge functions
seem to imply.

3.4.1 Definitions

We call the last ¢ bits of a state S the inner part and we denote it by S.
In the sequel, we make use of the S¢[] function. For a given input string P (after padding),
S¢[P] denotes the value of the state obtained after absorbing P. If s = S¢[P], we call P a

—

path to state s (under f). Similarly, if 5 = S¢[P] we call P a path to the inner state 5. The
Sl function is defined by the following recursion:
S¢lempty string] =0"]|0°,
S¢[Pl|la] =f (Sf[P] @ (al|0°)) for any string P of length multiple of r
and any r-bit block a .
In general, the j-th r-bit block of a sponge output is

zj = S¢[P||0™"], j > 0.

The S¢[] function can be used to express the states that the sponge traverses both as it
absorbs an input P and as it is being squeezed. The traversed states are Sy[P’] for any P’
prefix of P|0> with |P’| = kr, including the empty string.

Definition 2. A state collision is a pair of different paths P # @ to the same state: S§[P] =
SrlQ].

Definition 3. An inner collision is a pair of two different paths P # @ to the same inner

—_—

state: S¢[P] = S¢[Q)].

Clearly, a state collision on P # () implies an inner collision on P # (). The converse is not
true. However, in the absorbing phase it is very easy to produce a state collision from an inner

collision. Given P # @ such that S¢[P] = S¢[Q], the pair P||a and Q||(a ® | S¢[P] ® Sf[Q]]r)
forms a state collision for any r-block a.

3.4.2 The operations

The four critical operations are:

e finding an inner collision;

finding a path to a given inner state;

finding a cycle in the output: finding an input string P and an integer d > 0 such that
Sy[P] = S¢[PlI0"];

binding an output string to a state: given a string z with length |z|, finding a state
value s such that the sponge generates z as output. Here we can distinguish two cases:

23 / [121]

KEccAk 3. The sponge construction

— Short output string (z < b): the number of possible output strings z is below the
number of possible states. It is likely that an inner state value can be found, and
the expected number of solutions is ~ 2072,

— Long output string (z > b): the number of possible output strings z is above the
number of possible states. For a randomly chosen z, the probability that a state
value may be found is 2°~%. If one is found, it is likely that the inner state value
is unique.

As explained in [9], the classical attacks can be executed as a combination of these operations.
In [9] we have discussed generic approaches to these four operations and the corresponding
success probabilities.

The optimum algorithm to find an inner collision is to build a rooted tree [9] until a collision
is found. The success probability of this algorithm coincides with the success probability of
differentiating the sponge construction calling a random permutation or transformation from
a random oracle.

The optimum algorithm to find a path to an inner state for a permutation is to build
two trees: a rooted tree and a tree ending in the final inner state. The path is found when
a new node in one of the trees is also a node in the other tree. The success probability of
this algorithm is slightly below that of generating an inner collision. For a transformation
the tree ending in the final inner state cannot be built and the success probability is much
lower. However, both for a transformation as for a permutation, the success probability for
finding a path to an inner state is below that of differentiating the sponge construction from
a random oracle.

For a discussion on how to find a cycle or bind an output string to a state, we refer to
[9]. In [I7] we have proven upper bounds for the success probability of recovering the state
from an output sequence for the case that there is a single solution. We refer to [17] for the
detailed statements. In short, the success probability of a passive attack for typical values
of the bitrate upper bounded by N27¢ with N the number of queries to f. The success
probability of an active attack is upper bounded by N¢27¢ with £ the number of calls to
f in the sponge instance under attack. Both success probabilities are far below the success
probability of differentiating the sponge construction from a random oracle and allow to adopt
smaller capacity values in keyed modes of use. Moreover, as recovery of a pre-image implies
state recovery, in applications where one-wayness is the sole requirement, here also a smaller
capacity can be adopted.

24 /[121]

Chapter 4
Usage

This chapter discusses the KECCAK sponge functions from a users’ point of view. Note that
the explanations are given for KECCAK, but most of the material treated in this chapter
applies to any sponge function.

4.1 Usage scenario’s for a sponge function

4.1.1 Random-oracle interface

A sponge function has the same input and output interface as a random oracle: It accepts an
arbitrarily-long input message and produces an infinite output string that can be truncated
at the desired length. Unlike some other constructions, a sponge function does not have a
so called initial value (IV) that can be used as an additional input. Instead, any additional
input, such as a key or a diversifier, can be prepended to the input message, as one would do
with a random oracle. See also Section for a related discussion.

4.1.2 Linking to the security claim

Basically, the security claim in [T1, Section 3] specifies that any attacks on a member of the
KECCAK family should have a complexity of order 2¢/2 calls to KECCAK- f, unless easier on a
random oracle.

For the first four KECCAK candidates with fixed digest length, the output length n satisfies
n = ¢/2. This means that using KECCAK as a hash function provides collision resistance of
on/2, (second) preimage resistance of 2" and resistance to length-extension. Furthermore, for
any fixed subset of m < n output bits, the same complexities apply with m replacing n.

For the fifth candidate KECCAK][] with its arbitrarily-long output mode, the idea is pretty
much the same, except that, for any attacks that would require more than 2¢/2 = 2288 on a
random oracle, the attack may work on KECCAK][] with a complexity of 2¢/2 = 2288,

With a random oracle, one can construct a pseudo-random function (PRF) Fj(m) by
prepending the message m with a key k, ie., Fp(m) = RO(k|lm). In such a case, the
function behaves as a random function to anyone not knowing the key k& but having access to
the same random oracle (see also Section [3.1.5)). As a consequence of the security claim, the
same construction can be used with a KECCAK sponge function and the same security can be
expected when the adversary does not have access to a complexity of order higher than 2¢/2.

25 /[121]

KEccAk 4. Usage

Functionality Expression Input Output
n-bit hash function h = H(m) m |z]n
n-bit randomized hash function h = H,(m) r||m |2]n
n-bit hash function instance differentiation h = Hg(m) d||m |2]n
n-bit MAC function t = MAC(k, [IV,]m) | k|[IV]|m | |z]n
Random-access stream cipher (n-bit block) zi = f(k,IV,1) ENIVI]i | [z]n
Stream cipher z = f(k,IV) k|[IV as is
Mask generating and key derivation function | mask = f(seed,) seed |z
Deterministic random bit generator (DRBG) | z = DRBG(seed) seed as is
Reseedable pseudo-random bit generator see [17]

Slow n-bit one-way function h = H(m) ‘ m ‘ ZN..N4n—1
Tree and parallel hashing see Section M

Table 4.1: Examples of usage scenario’s for a sponge function

4.1.3 Examples of modes of use

In Table we propose some possible modes of use of a sponge function.

The first five examples of Table[4.1|can be applied with any member of the KECCAK family,
while the last ones, as such, require the arbitrarily-long output mode of KECccAk (although
less natural constructions can be found on top of the fixed digest length candidates).

An n-bit hash function can trivially be implemented using a sponge function, e.g., H(m) =
| KECCAK][](m) |,,. If the hash function is to be used in the context of randomized hashing, a
random value (i.e., the salt) can be prepended to the message, e.g., H,(m) = | KECCAK[|(r||m) | .
Domain separation using the same prepending idea applies if one needs to simulate indepen-
dent hash function instances (hash function instance differentiation, see also Section and
to compute a message authentication code (MAC).

The random-access stream cipher works similarly to the SALSA20 family of stream ci-
phers [6]: It takes as input a key, a nonce and a block index and produces a block of key
stream. It can be used with the four fixed digest length variants of KECCAK, with n the digest
length. It can also be used with the arbitrarily-long output mode of KECCAK][], in which case
producing blocks of n = r bits of key stream is most efficient per application of KECCAK-f.

A sponge function can also be used as a stream cipher. One can input the key and some
initial value and then get key stream in the squeezing phase.

A mask generating function, a key derivation function or a pseudo-random bit generator
can be constructed with a sponge function by absorbing the seed data and then producing
the desired number of bits in the squeezing phase. Often pseudo-random bit generator should
support re-seeding, i.e., injecting new seed material without throwing away its current state.
This can be implemented quite efficiently with the sponge construction and is the subject of
our paper [17].

Finally, a slow n-bit one-way function can be built by defining as output the output bits
ZN t0 zN4n—1 (and thus discarding the first N output bits) rather than its first n bits. Slow
one-way functions are useful as so-called password-based key derivation functions, where the
relative high computation time protects against password guessing. The function can be made
arbitrarily slow by increasing N: taking N = 107 implies that KECCAK-f must be called

26 /[121]

4. Usage KEccAK

a million times for a single call to the function. Note that increasing N does not result in
entropy loss as KECCAK-f is a permutation.

4.2 Backward compatibility with old standards

4.2.1 Input block length and output length

Several standards that make use of a hash function assume it has an input block length and a
fixed output length. A sponge function supports inputs of any length and returns an output
of arbitrary length. When a sponge function is used in those cases, an input block length and
an output length must be chosen. We distinguish two cases.

e For the four SHA-3 candidates where the digest length is fixed, the input block length is
assumed to be the bitrate r and the output length is the digest length of the candidate
n € {224,256, 384,512}.

e For the fifth SHA-3 candidate KECCAK]], the output length n must be explicitly chosen
to fit a particular standard. Since the input block length is usually assumed to be
greater than or equal to the output length, the input block length can be taken as an
integer multiple of the bitrate, mr, to satisfy this constraint.

4.2.2 Initial value

Some constructions that make use of hash functions assume the existence of a so-called initial
value (IV) and use this as additional input. In the sponge construction the root state could
be considered as such an IV. However, for the security of the sponge construction it is crucial
that the root state is fixed and cannot be manipulated by the adversary. If KECCAK sponge
functions are used in constructions that require it to have an initial value as supplementary
input, e.g., as in NMAC [5], this initial value shall just be pre-pended to the regular input.

4.2.3 HMAC

HMAC [5, [73] is fully specified in terms of a hash function, so it can be applied as such using
one of the KECCAK candidates. It is parameterized by an input block length and an output
length, which we propose to choose as in Section above.

Apart from length extension attacks, the security of HMAC comes essentially from the
security of its inner hash. The inner hash is obtained by prepending the message with the
key, which gives a secure MAC. The outer hash prepends the inner MAC with the key (but
padded differently), so again giving a secure MAC. (Of course, it is also possible to use the
generic MAC construction given in Section which requires only one application of the
sponge function.)

From the security claim in [II, Section 3|, a PRF constructed using HMAC shall re-
sist a distinguishing attack that requires much fewer than 2¢/2 queries and significantly less
computation than a preimage attack.

27 / [121]

KEccAk 4. Usage

4.2.4 NIST and other relevant standards

The following standards are based either generically on a hash function or on HMAC. In
all cases, at least one of the KECCAK candidates can readily be used as the required hash
function or via HMAC.

e IEEE P1393 [50] requires a hash function for a key derivation function (X9.42) and a
mask generating function (MGF-hash). (Note that the MGF-hash construction could
be advantageously replaced by the arbitrarily-long output mode of KECCAK]].)

e PKCS #1 [60] also requires a hash function for a mask generating function (MGF1).
e The key derivation functions in NIST SP 800-108 [74] rely on HMAC.

e The key derivation functions in NIST SP 800-56a [70] are generically based on a hash
function.

e The digital signature standard (DSS) [67] makes use of a hash function with output
size of 160, 224 or 256 bits. Output truncation is permitted so any of the five KECCAK
candidates can be chosen to produce the 160 bits of output.

e In the randomized hashing digital signatures of NIST SP 800-106 [69], the message is
randomized prior to hashing, so this is independent of the hash function used. (With a
sponge function, this can also be done by prepending the random value to the message.)

e The deterministic random bit generation (DRBG) in NIST SP 800-90 [71] is based on
either a hash function or on HMAC.

4.3 Input formatting and diversification

In a sponge function, the input is like a white page: It does not impose any specific structure
to it. Some SHA-3 submissions (e.g., SKEIN [42]) propose a structured way to add optional
inputs (e.g., key, nonce, personalization data) in addition to the main input message.

For KECCAK, we do not wish to impose a way data would be structured. We prefer to
keep the input as a white page and let anyone build upon it. Instead, we propose in this
section a simple convention that allows anyone to impose his/her own format. Note that this
convention could be used with any other hash function.

In the KECCAK specifications [I1], out of the 256 possible values for the diversifier d only
5 have been assigned. There are thus many available values of d to create diversified sponge
functions, but clearly not enough for anyone to choose his/her own.

The idea is to prefix the input with a namespace name. The owner of the namespace can
then define the format of any input data, appended to the namespace name. To make this
construction distinct from the five candidates defined in [I1], we propose to assign d = 1 in
this case, for any valid r. More specifically, we propose the namespace name to be a uniform
resource identifier (URI) [45], similarly to what is done for XML [83]. The namespace name
is encoded in UTF-8 [44] as a sequence of bytes, followed by the byte 08:

KECCAKNS]Ir, ¢, ns|(data) £ KECCAK][r, ¢, d = 1](UTF8(ns)||0%]| encodeys(data)),

28 /[121]

4. Usage KEccAK

where encodeyg is a function defined by the owner of the namespace ns. This allows domain
separation: Two inputs, formatted using different namespaced conventions, will thus always
be different.

For efficiency reasons, the namespace owner may design encode,s to put fixed bytes after
the encoded namespace name and before the variable data, so as to create a constant prefix
of r bits (or a multiple of r bits). This way, the state obtained after absorbing the constant
prefix can be precomputed once for all.

Using a specific namespace also implies how the output of the sponge function is used. In
the KECCAK specifications [I1], the four fixed output length candidates are diversified using
d. Here we propose an additional possibility, where the namespace owner can decide what
is the output length, if not arbitrarily long, or in which way the desired output length is
encoded.

4.4 Parallel and tree hashing

Tree hashing (see, e.g., [65, [76]) can be used to speed up the computation of a hash function
by taking advantage of parallelism in modern architectures. It can be performed on top of
many hash function constructions, including sponge functions. In this section, we propose a
tree hashing scheme, called KECCAKTREE, which explicitly uses KECCAK but which could
also be implemented on top of another hash function. In addition, this scheme can be seen
as an example of an application of sponge functions. It does not exclude variants or other
applications: By basing KECCAKTREE on KECCAKNS, other tree hashing schemes can be
defined using different namespaces.

In a nutshell, the construction works as follows. Consider a rooted tree, with internal
nodes and leaves. The input message is cut into blocks, which are spread onto the leaves.
Each leaf is then hashed, producing c¢ bits of output. An internal node gathers the output
values of its (ordered) sons, concatenates them and hashes them. This process is repeated
recursively until the root node is reached. The output of the root node, also called final node,
can be arbitrarily long.

Since the input message is arbitrarily long and a priori unknown, we have to define how
the tree can grow or how a finite tree can accept a growing number of input blocks. In fact,
we propose two options.

e The first option is final node growing (FNG). The degree of the final node grows as a
function of the input message length, and the number of leaves then increases propor-
tionally.

e The second option is leaf interleaving (LI), where the tree size and the number of leaves
are fixed, but the message input blocks are interleaved onto the leaves.

For randomized and keyed hashing, it should be possible to prefix all the node inputs with
the salt or key. To this purpose, the construction accepts such a prefix.

29 / [121]

KEccAk 4. Usage

4.4.1 Definitions

The input of the scheme are two binary strings: the prefix (key or salt) P (from 0 to 2040
bits) and the input message M. Its tree parameters, collectively denoted A, are the following:

e the tree growing mode G € {LI, FNG};
e the height H of the tree;

e the degree D of the nodes;

e the leaf block size B.

When G = LI, the tree is a balanced rooted tree of height H. All the internal nodes have
degree D. When G = FNG, the final node has variable degree (as a function of the input
message length) and all other internal nodes have degree D.

For all nodes, the scheme uses the sponge function defined by

K[r,c] £ KECCAKNS|[r, c,ns = “http://keccak.noekeon.org/tree/”].

Its input is composed of the prefix P, a partial input message m € {0,1}*, a flag v €
{final, nonfinal} and the scheme parameters A when v = final:

K[r, ¢](P, m,nonfinal) or K]r,c|(P, m,final, A).

For simplicity, we omit the fixed parameters r and ¢ in the sequel. The input arguments
are encoded into a binary string according to Algorithm The prefix length |P| must be
an integral number of bytes and such that |P|/8 € [0...255]. The possible values of A are
constrained by H,D € [0...255], B is a multiple of 8 bits and B/8 € [1...2!0 —1]. In
addition, H > 1 when G = FNG.

Algorithm 1 encOdehttp://keccak.noekeon. org/tree/ (P7 m,v, A)

Input P,m,v, A
Let M = enc(|P|/8,8)||P
Let [= |UTF8(http://keccak.noekeon.org/tree/)| + 8 + |M| = 264 + |P|
Align M to a block boundary: M = M||o(~}) modr
M = M||pad(m,8)
if v = final then
M = M||(enc(0,8) if G = LI, or enc(1,8) if G = FNG)
M = M||enc(H, 8)||enc(D, 8)||enc(B/8, 16)
M = M||enc(1,8)
else
M = M]||enc(0, 8)
end if
return M

We then define how the data are divided into leaves. The number L of leaves depends on

the tree growing mode G. If G = LI, L = DY, 1f G = FNG, L = RD" ! with R = [%]
Input message blocks are assigned to the leaves according to Algorithm
The processing at each node is defined in Algorithm [3] The output of the KECCAKTREE

scheme is the output of the final node obtained by calling Node(0, 0).

30 /[121]

4. Usage

KECCAK

Algorithm 2 Construction of the leaves

For each leaf L;, 0 < j < L —1, set L; to the empty string
for i =0 to |[M|—1do

j=|%] modL

Append bit ¢ of M to L;
end for

Algorithm 3 Node(h, j)

if h = H # 0 (processing a leaf) then
return |K(P, L;, nonfinal) |,
else if 0 < h < H (processing an internal node except the final node) then
Set Z to the empty string
fori=0to D—1do
Z = Z||Node(h + 1, j + iDH=h=1)
end for
return |K(P, Z, nonfinal)|.
else if h =0 and H > 0 (processing the final node of a non-trivial tree) then
Set Z to the empty string
for i =0 to R —1 (taking R = D when G = LI) do
7 = Z||Node(1,iDH-1)
end for
return K(P, Z, final, A)

else if h = H = 0 (processing a trivial tree containing only a final node) then

return K(P, M, final, A)
end if

31 /[121]

KEccAk 4. Usage

4.4.2 Soundness

In [I3], we define a set of four conditions for a tree hashing mode to be sound. Here soundness
is defined in the scope of the indifferentiability framework [64]. The advantage in differenti-
ating a sound tree hashing mode from an ideal monolithic hash function is upper bounded
by ¢?/2"*"! with ¢ the number of queries to the underlying hash function and n the length of
the chaining values.

The mode used by KECCAKTREE satisfies the four following conditions, hence is sound.
For the terminology, please refer to [13].

e The mode is tree-decodable. The structure of the tree is entirely determined by the
parameters encoded in the final node, except for the degree of the final node when
G = FNG. The degree of the final node can be determined from the length of its input.

e The mode is message-complete, as Algorithm [2| assigns each input message bit to a leaf.
The length of the message can be determined from the length of the leaf nodes.

e The mode is parameter-complete, as Algorithm [I] encodes all tree parameters in the
final node.

e The mode enforces domain separation between final and inner nodes. Algorithm
encodes whether the node is final or not in the last byte.

4.4.3 Discussion

The calls to Node(h, j), for equal h but different j, process independent data and so can be
parallelized. Furthermore, the prefix P is always absorbed in K, both for leaves and internal
nodes. The state after absorbing P can therefore be computed once for all.

If the optimal number of independent processes is known, one can simply use the LI mode
(G =LI) with H =1 and D equal to or greater than this number of independent processes.
Tree hashing in this case comes down to a simple parallel hashing, where the B-bit blocks of
the input message are equally spread onto D different sponge functions. The D results are
then combined at the final node to make the final output string. (The performance of such a
configuration is discussed in Section [9.3.3])

In addition to the LI and FNG growing modes, one can make the tree grow by increasing
its height H until the number of leaves L is large enough for |M|. Setting G = LI in this
case does not really interleave the input blocks, but fixes the tree. Knowing whether a node
is going to be the final node (if H is large enough) or not becomes significant only at the end
of the absorbing phase of K. Once H is large enough, the implementation can then fix it and
mark the candidate final node as final.

From the soundness of the construction, the expected workload for differentiating this
scheme from a random oracle is of the order 2/2 with n the output size of the called com-
pression function (i.e., in this case K with n = ¢). For this reason, this scheme would be
sub-optimal if used with one of the four fixed-output length candidates of [I1l, Section 4] as
they all have an output size n that satisfies n = ¢/2. When using as underlying compression
function a function that is claimed to be indifferentiable with a capacity ¢, the optimum out-
put size to use is also ¢, resulting in the absence of generic attacks with expected workload
of order below 2¢/2.

32 / [121]

Chapter 5

Sponge functions with an iterated
permutation

The purpose of this chapter is to discuss a number of properties of an iterated permutation
that are particularly relevant when being used in a sponge construction.

5.1 The philosophy

5.1.1 The hermetic sponge strategy

For our KECCAK functions we make a flat sponge claim with the same capacity as used in
the sponge construction. This implies that for the claim to stand, the underlying function
(permutation or transformation) must be constructed such that it does not allow mounting
shortcut attacks that have a higher success probability than generic attacks for the same work-
load. We call the design philosophy of adopting a sponge construction using a permutation
that should not have exploitable properties the hermetic sponge strategy.

Thanks to the indifferentiability proof a shortcut attack on a concrete sponge function
implies a distinguisher for the function (permutation or transformation) it calls. However, a
distinguisher for that function does not necessarily imply an exploitable weakness in a sponge
function calling it.

5.1.2 The impossibility of implementing a random oracle

Informally, a distinguisher for a function (permutation or transformation) is the demonstra-
tion of any property that sets it significantly apart from a randomly chosen function (per-
mutation or transformation). Unfortunately, it is impossible to construct such a function
that is efficient and has a reasonably sized description or code. It is not hard to see why:
any practical b-bit transformation (permutation) has a compact description and implemen-
tation not shared by a randomly chosen transformation (or permutation) with its 2% (or
log, 2°! & (b — 1)2°) bits of entropy.

This is better known as the random oracle implementation impossibility and a formal
proof for it was first given in [24] and later an alternative proof was given in [64]. In their
proofs, the authors construct a signature scheme that is secure when calling a random oracle
but is insecure when calling a function f taking the place of the random oracle, where the

33 /[121]

KECcAK 5. Sponge functions with an iterated permutation

function f has a limited (polynomial) running time and can be expressed as a Turing pro-
gram of limited size. This argument is valid for any cryptographic function, and so includes
KEccak-f. Now, looking more closely at the signature schemes used in [24] and [64], it turns
out that they are especially designed to fail in the case of a concrete function. We find it
hard to see how this property in a protocol designed to be robust may lead to its collapse of
security. The proofs certainly have their importance in the more philosophical approach to
cryptography, but we don’t believe they prevent the design of cryptographic primitives that
provide excellent security in well-engineered examples. Therefore, we address the random
oracle implementation impossibility by just making an exception in our security claim.

5.1.3 The choice between a permutation and a transformation

As can be read in [9], the expected workload of the best generic attack for finding a second
preimage of a message of length |m| when using a transformation is of the order 2¢/|m|. When
using a permutation this is only of order 2¢/2. In that respect, a transformation has preference
over a permutation. This argument makes sense when developing a hash function dedicated
to offering resistance against second preimage attacks. Indeed, using a transformation allows
going for a smaller value of ¢ providing the same level of security against generic attacks.

When developing a general-purpose hash function however, the choice of ¢ is governed by
the security level against the most powerful attack the function must resist, namely collision
attacks. The resistance against output collisions that a sponge function can offer is determined
by their resistance against generating inner collisions. For high values of r, the resistance
against generating inner collisions is the same for a transformation or a permutation and of
the order 2¢/2.

5.1.4 The choice of an iterated permutation

Clearly, using a random transformation instead of a random permutation does not offer less
resistance against the four critical operations, with the exception of detecting cycles [9] and the
latter is only relevant if very long outputs are generated. Hence, why choose for a permutation
rather than a transformation?

We believe a suitable permutation can be constructed as a fixed-key block cipher: as a
sequence of simple and similar rounds. A suitable transformation can also be constructed as
a block cipher, but here the input of the transformation would correspond with the key input
of the block cipher. This would involve the definition of a key schedule and in our opinion
results in less computational and memory usage efficiency and a more difficult analysis.

Our KEccak functions apply the sponge construction to iterated permutations that are
designed in the same way as modern block ciphers: iterate a simple nonlinear round func-
tion enough times until the resulting permutation has no properties that can be exploited in
attacks. The remainder of this chapter deals with such properties and attacks. First, as an
iterated permutation can be seen a block cipher with a fixed and known key, it should be
impossible to construct for the full-round versions distinguishers like the known-key distin-
guishers for reduced-round versions of DES and AES given in [57]. This includes differentials
with high differential probability (DP), high input-output correlations, distinguishers based
on integral cryptanalysis or deviations in algebraic expressions of the output in terms of the
input. We call this kind of distinguishers structural, to set them apart from trivial distinguish-
ers that are of no use in attacks such as checking that f(a) = b for some known input-output

34 /[121]

5. Sponge functions with an iterated permutation KEccAK

couple (a,b) or the observation that f has a compact description.

In the remainder of this chapter we will discuss some important structural distinguishers
for iterated permutations, identify the properties that are relevant in the critical sponge
operations and finally those for providing resistance to the classical hash function attacks.

5.2 Some structural distinguishers

In this section we discuss structural ways to distinguish an iterated permutation from a
random permutation: differentials with high differential probability (DP), high input-output
correlation, non-random properties in the algebraic expressions of the input in terms of the
output (or vice versa) and the difficulty of solving a particular problem: the constrained-input
constrained-output problem.

5.2.1 Differential cryptanalysis

A (XOR) differential over a function « consists of an input difference a’ and an output
difference b’ and is denoted by a couple (a/,b'). A pair in a differential is a pair {a,a ® a'}
such that a(a @ a') ® a(a) = V. In general, one can define differentials and (ordered) pairs
for any Abelian group operation of the domain and codomain of ar. A pair in a differential is
then defined as {a + d’, a} such that a(a +a’) = a(a) © V', where + corresponds to the group
operation of the domain of o and ® of its codomain. In the following we will however assume
that both group operations are the bitwise XOR, or equivalently, addition in Zg.

The cardinality of (a’,b’) is the number of pairs it contains and its differential probability
(DP) is the cardinality divided by the total number of pairs with given input difference. We
define the (restriction) weight of a differential wy(a’,b’) as minus the binary logarithm of its
DP, hence we have DP(a/, V') = 2-wr(a"V) The set of values a with @ a member of a pair in
a differential (a’,0’) can be expressed by a number of conditions on the bits of a. Hence a
differential imposes a number of conditions on the absolute value at its input. In many cases
these conditions can be expressed as w,(a’,b’) independent binary equations.

It is well known (see, e.g., [40]) that the cardinality of non-trivial (i.e., with a’ # 0 # b')
differentials in a random permutation operating on Z3 with n not very small has a Poisson
distribution with A = 1/2 [40]. Hence the cardinality of non-trivial differentials of an iterated
permutation used in a sponge construction shall obey this distribution.

Let us now have a look at how differentials over iterated mappings are structured. A
differential trail () over an iterated mapping f of n, rounds R; consists of a sequence of n, + 1
differences (qo,q1,---,qn,)- Now let f; = R;—1 o Rj_2 0... Ry, i.e., f; consists of the first i
rounds of a. A pair in a trail is a couple {a,a @ a} such that for all ¢ with 0 < i < n,:

fila @ qo) @ fi(a) = q; -

Note that a trail can be considered as a sequence of n, round differentials (¢;—1, ¢;) over each
R;. The cardinality of a trail is the number of pairs it contains and its DP is the cardinality
divided by the total number of pairs with given input difference. We define the (restriction)
weight of a differential trail w,(Q) as the sum of the weights of its round differentials.

The cardinality of a differential (a’,b) over f is the sum of the cardinalities of all trails @
within that differential, i.e., with ¢y = @’ and ¢,,, = b’. From this, the condition on the values
of the cardinality of differentials of f implies that there shall be no trails with high cardinality
and there shall not be differentials containing many trails with non-zero cardinality.

35 / [121]

KECcAK 5. Sponge functions with an iterated permutation

Let us take a look at the cardinality of trails. First of all, note that DP(Q) = 2~%(@)
is not necessarily true, although in many cases it may be a good approximation, e.g., when
w:(Q) < b — 4. The cardinality of the trail is then given by 2°~! x DP(Q). Now, when
we(Q) > b — 1, we cannot have DP(Q) = 2-"(?) as the number of pairs is an integer.
Typically, a trail with w,(Q) > b — 1 has no pairs, maybe one pair and very maybe a few
pairs. If all trails over an iterated permutation have weight significantly above b, most trails
with non-zero cardinality will only have a single pair. In other words, trails containing more
than a single pair will be rare. In those circumstances, finding a trail with non-zero cardinality
is practically equivalent to finding a pair in it. This makes such trails of very small value in
cryptanalysis.

If there are no trails with low weight, it remains to be verified that there are no systematic
clustering of non-zero cardinality trails in differentials. A similar phenomenon is that of
truncated differentials. These are differentials where the input and output differences are not
fully determined. A first type of truncated differentials are especially a concern in ciphers
where the round function treats the state bits in sets, e.g., bytes. In that case, a typical
truncated differential only specifies which bytes in the input and/or output differences are
passive (equal to zero) and which ones are active (different from zero). The central point of
these truncated differentials is that they also consist of truncated trails and that it may be
possible to construct truncated trails with high cardinality. Similar to ordinary differential
trails, truncated trails also impose conditions on the bits of the intermediate computation
values of a, and the number of such conditions can again be quantified by defining a weight
function.

A second type of truncated differentials are those where part of the output is truncated.
Instead of considering the output difference over the complete output of f, one considers
it over a subset of (say, n of) its output bits (e.g., the inner part f). For a random b-bit
to n-bit function, the cardinality of non-trivial differentials has a normal distribution with
mean 207"~ and variance 207"~ [40]. Again, this implies that there shall be no trails of the
truncated function f with low weight and there shall be no clustering of trails.

Given a trail for f, one can construct a corresponding trail for the truncated version of
f. This requires exploiting the properties of the round function of f. In general, the trail for
the truncated version will have a weight that is equal to or lower than the original trail. How
much lower depends on the round function of f. Typically, the trail in f determines the full
differences up to the last few rounds. In the last few rounds the difference values in some bit
positions may become unconstrained resulting in a decrease of the number of conditions.

5.2.2 Linear cryptanalysis

A (XOR) correlation over a function «, defined by a linear mask v at the input and a linear
mask u at the output is denoted by a couple (v,u). It has a correlation value denoted by
C(v,u) equal to the correlation between the Boolean functions vTa = 3 v;a; and uTh =
> u;b; with b = a(a) and the summations taken over GF(2). This correlation is a real
number in the interval [—1, 1]. We define the (correlation) weight of a correlation by:

Wc(v7u) - —10g2(02(1),u)) :

In general, one can define correlations for any Abelian group operation of the domain and
codomain of «, where C'(v,u) is a complex number in the closed unit disk [4]. In the following

36 / [121]

5. Sponge functions with an iterated permutation KEccAK

we will however assume that both group operations are the bitwise XOR, or equivalently,
addition in Z4. We only give an introduction here, for more background, we refer to [34].

Correlations in a permutation operating on Zg are integer multiples of 227°. The distribu-
tion of non-trivial correlations (i.e., with u # 0 # v) in a random permutation operating on
Z5 with b not very small has as envelope a normal distribution with mean 0 and variance 27°
[40]. Hence non-trivial correlations of an iterated permutation used in a sponge construction
shall obey this distribution.

Let us now have a look at how correlations over iterated mappings can be decomposed
into linear trails. A linear trail Q over an iterated mapping f of n, rounds R; consists of a
sequence of n; + 1 masks (qo, q1,- - -, qn,). A linear trail can be considered as a sequence of n,
round correlations (g;, gi+1) over each R; and its correlation contribution C(()) consists of the
product of the correlations of its round correlations: C(Q) = [[,; C(gi, ¢i41). It follows that
C(Q) is a real number in the interval [—1, 1]. We define the correlation weight of a linear trail
by

we(Q) = —1ogy(C*(Q)) = ZWC(%%H) -

A correlation C'(v,u) over f is now given by the sum of the correlation contributions of all
linear trails @) within that correlation, i.e., with ¢o = v and ¢,,, = u. From this, the condition
on the values of the correlations of f implies that there shall be no trails with high correlation
contribution (so low weight) and there shall not be correlations containing many trails with
high correlation contributions.

5.2.3 Algebraic expressions

In this secton we discuss distinguishers exploiting particular properties of algebraic expressions
of iterated mappings, more particular that of the algebraic normal form (ANF) considered
over GF(2). In a mapping operating on b bits, one may define a grouping of bits in d-bit
blocks for any d dividing b and consider the ANF over GF(2%). The derivations are very
similar, the only difference is that the coefficients are in GF(2%) rather than GF(2) and that
the maximum degree of individual variables is 2¢ — 1 rather than 1.

Let g : GF(2)? — GF(2) be a mapping from b input bits to one output bit. The ANF is
the polynomial

b—1
g(xo,...,xp—1) = Z G(e)z®, with z¢ = Hmf’ and G(e) € GF(2).
eeGF(2)b =0

Given the truth table of g(x), one can compute the ANF of g with complexity of O(b2?)
as in Algorithm [4]

When g is a (uniformly-chosen) random function, each monomial ¢ is present with prob-
ability one half, or equivalently, G(e) behaves as a uniform random variable over {0,1} [43].
A transformation f : GF(2)® — GF(2)® can be seen as a tuple of b binary functions f = (f;).
For a (uniformly-chosen) random transformation, each F;(e) behaves as a uniform and inde-
pendent random variable over {0,1}.

If f is a random permutation over b bits, each Fj(e) is not necessarily an independent
uniform variable. For instance, the monomial of maximal degree zgxy ...Tp_1 cannot appear
since the bits of a permutation are balanced when z is varied over the whole range GF(2)°.

37 / [121]

KECcAK 5. Sponge functions with an iterated permutation

Algorithm 4 Computation of the ANF of g(z)

Input g(x) for all x € GF(2)
Output G(e) for all e € GF(2)°
Define G[t] = G(e), for t € N, when t = 5. ¢;2!
Start with G(e) < g(e) for all e € GF(2)?
fori=0tob—1do
for j =0to 21 — 1 do
for k=0to2'—1do
G[20H15 4+ 20 + k] + G[20F15 + 20 + k] + G[27HY5 + K]
end for
end for
end for

If b is small, the ANF of the permutation f can be computed explicitly by varying the
b bits of input and applying Algorithm A statistical test on the ANF of the output bit
functions is performed and if an abnormal deviation is found, the permutation f can be
distinguished from a random permutation. Examples of statistical tests on the ANF can be
found in [43].

If b is large, only a fraction of the input bits can be varied, the others being set to some
fixed value. All the output bits can be statistically tested, though. This can be seen as a
sampling from the actual, full b-bit, ANF. For instance, let f be obtained by varying only the
first n < b inputs of f and fixing the others to zero:

f(.’Eo, N ,{Bn_l) = f(.%‘o, N ,xn_l,O, e ,0)

Then, it is easy to see that any monomial ¢ in the ANF of f also appears in the ANF of f,
and vice-versa, whenever ¢ > n = ¢; = 0.

A powerful type of attack that exploits algebraic expressions with a low degree are cube
attacks, recently introduced in [4I]. Cube attacks recover secret bits from polynomials that
take as input both secret and tweakable public variables. Later cube testers were introduced
in [I], that detect nonrandom behaviour rather than perform key extraction and can attack
cryptographic schemes described by polynomials of relatively high degree. Cube testers are
very well suited for building structural distinguishers.

5.2.4 The constrained-input constrained-output (CICO) problem

In this section we define and discuss a problem related to f whose difficulty is crucial if it
is used in a sponge construction: the constrained-input constrained-output (CICO) problem.
Let:

e X C75: aset of possible inputs.
e Y C Zg: a set of possible outputs.

Solving the CICO problem consists in finding a couple (z,y) with y = f(x), 2z € X and y €).
The sets X and) can be expressed by a number of equations in the bits of z and y
respectively. In the simplest variant, the value of a subset of the bits of x (or y) are fixed. A

38 /[121]

5. Sponge functions with an iterated permutation KEccAK

similarly simple case is when they are determined by a set of linear conditions on the bits of
x (or y).
We define the weight of X as

w(&) = b—logy |X],

and w())) likewise. When the conditions y = f(z) , z € X and y € Y are considered as
independent, the expected number of solutions is 20~ (W(X)+w() Note that there may be no
solutions, and this is even likely if w(X') + w()) > b.

The expected workload of solving a CICO problem depends on b, w(X) and w())) but also
on the nature of the constraints and the nature of f. If we make abstraction of the difficulty of
finding members of X or), generic attacks impose upper bounds to the expected complexity
of solving the CICO problem:

e If finding = values in X is easy,

— Trying values x € X until one is found with f(z) €) is expected to take ow(Y)
calls to f.

— Trying all values z € X takes 20~V
found.

(*) calls to f. If there is a solution, it will be

e If finding y values in) is easy,

— Trying values y € Y until one is found with f~(y) € X is expected to take 2¥(¥)
calls to f~1.

— Trying all values y €) takes 20=%(Y) calls to f~!. If there is a solution, it will be
found.

When w(X) or w()) is small or close to b, this problem may be generically easy, provided
there is a solution.

In many cases, a CICO problem can be easily expressed as a set of algebraic equations in
a set of unknowns and one may apply algebraic techniques for solving these equations such
as Grobner bases [33].

5.2.5 Multi-block CICO problems

The CICO problem can be extended from a single iteration of f to multiple iterations in a
natural way. We distinguish two cases: one for the absorbing phase and another one for the
squeezing phase.

An e-block absorbing CICO problem for a function f is defined by two sets X and) and
consists of finding a solution (xg,x1,x2,...x) such that

xg € X,

LEeEy,
forO<i<e: x; =0°,

y1=f(l“0),
forl<i<e: yi=f(yis1®2i1),

me:f(ye—l@xe—l) :

A priori, this problem is expected to have solutions if w(&X') + w(Y) < ¢+ er.

39 /[121]

KECcAK 5. Sponge functions with an iterated permutation

An e-block squeezing CICO problem for a function f is defined by e+ 1 sets Xy to X, and
consists of finding a solution zg such that:

for0<i<e: x;, €4,
forO0<i<e: z; = f(zi—1) .

A priori, this problem is expected to have solutions if), w(A;) < b. If it is known that there
is a solution, it is likely that this solution is unique if) . w(X;) > b.
Note that if e = 1 both problems reduce to the simple CICO problem.

5.2.6 Cycle structure

Consider the infinite sequence a, f(a), f(f(a)),... with f a permutation over a finite domain
and a an element of that set. This sequence is periodic and the set of different elements in
this sequence is called a cycle of f. In this way, a permutation partitions its domain into a
number of cycles.

Statistics of random permutations have been well studied, see [88] for an introduction and
references. The cycle partition of a permutation used in a sponge construction shall again
respect the distributions. For example, in a random permutation over Zg:

e The expected number of cycles is bln 2.
e The expected number of fixed points (cycles of length 1) is 1.
e The number of cycles of length at most m is about Inm.

e The expected length of the longest cycle is about G'x 2, where G is the Golomb-Dickman
constant (G ~ 0.624).

5.3 Inner collision

Assume we want to generate an inner collision with two single-block inputs. This requires
finding states a and a* such that

ﬂa\)@f/(aT):OCWitha:c?‘:oC,

This can be rephrased as finding a pair {a,a*} with @ = a* = 0° in the differential (a ® a*, 0°)
of f. Requiring @ = a* = 0° is needed to obtain valid paths from the root state to iteration
of f Wherg}E differential occurs. In general, it is required to know a path to the/i@er state
a=a" = S¢[P]; the case @ = a* = 0° is just a special case of that as 0¢ = S¢lempty string].

5.3.1 Exploiting a differential trail

Assume [is an iterated function and we have a trail @ in j? with initial difference a’ and
final difference ' such that o/ = b = 0°. This implies that for a pair (a,a*) in this trail, the
intermediate values of a satisfy w;(Q) conditions. If w,(Q) is smaller than b, the expected
number of pairs of such a trail is 2%,

40 / [121]

5. Sponge functions with an iterated permutation KEccAK

Let us now assume that given a trail and the value of @, it is easy to find pairs {a,a ® a’}
in it with given a. We consider two cases:

e w,(Q) < r: it is likely that the trail contains pairs with @ = 0¢ and an inner collision
can be found readily. The paths are made of the first r bits of the members of the found

pair, a # a*.
e w.(Q) > r: the probability that the trail contains a pair with @ = 0¢ is 27~V (@),

If several trails are available, one can extend this attack by trying it for different trails
until a pair in one of them is found with @ = 0¢. If the weight of trails over f is lower bounded
by wmin, the expected workload of this method is higher than 2*min=" With this method,
differential trails do not lead to a shortcut attack if wpin > ¢/2 +r =b—¢/2.

One can extend this attack by allowing more than a single block in the input. In a first
variant, an initial block in the input is used to vary the inner part of the state and are equal
for both members of the pair that will be found. Given a trail in the second block, the
problem is now to find an initial block that, once absorbed, leads to an inner state at the
input of the trail, for which the trail in the second block contains a pair. In other words,
that leads to an inner state that satisfies a number of equations due to the trail in the second
block. The equations in the second block define a set) for the output of the first block with
w()) ~ w;(Q) — r: the conditions imposed by the trail in the second block on the inner part
of the state at its input. Moreover, the fact that the inner part of the input to f in the first
iteration is fixed to zero defines a set X with w(X’) = ¢. Hence, even if a pair can be found
that is in the trail, a CICO problem must be solved with w(X) = ¢ and w()) ~ w,(Q) — r
for determining the first block of the inputs.

Note that if there are no trails with weight below b, the expected number of pairs per trail
is smaller than 1 and trails containing more than a single pair will be rare. In this case, even
if a trail with non-zero cardinality can be found, the generation of an inner collision implies
solving a CICO problem for the first block with w(X) = w(Y) = c.

One can input pairs that consist of multiple input blocks where there is a difference in
more than a single input block. Here, chained trails may be exploited in subsequent iterations
of f. However, even assuming that the transfer of equations through f due to a trail and
conditions at the output is easy, one ends up in the same situation with a number of conditions
on the bits of the inner part of the state at the beginning of the first input differential. And
again, if there are no trails with weight below b, the generation of an inner collision implies
solving a CICO problem with w(X) = w(Y) = c.

If ¢ > b/2, typically a CICO problem with w(X) = w()) = ¢ will have no solution. In
that case one must consider multiple blocks and the problem to solve becomes a multi-block
absorbing CICO problem. The required number of rounds e for there to be a solution is [¢/r].

5.3.2 Exploiting a differential

In the search for inner collisions, all pairs (a,a @ a’) with @ = 0¢ in a differential (a’,0¢) with
a = 0°¢ over f are useful, and not only the pairs of a single trail. So it seems like a good
idea to consider differentials instead of trails. However, where for a given trail it may be
easy to determine the pairs it contains, this is not true in general for a differential. Still, an
f—diﬂ'erential may give an advantage with respect to a trail if it contains more than a single
trail with low weight. On the other hand, the conditions to be pairs in a set of trails tend to

41 / [121]

KECcAK 5. Sponge functions with an iterated permutation

become more complicated as the number of trails grows. This makes algebraic manipulation
more and more difficult as the number of trails to consider grows.

If there are no trails over fwith weight below b, the set of pairs in a differential is expected
to be a set that has no simple algebraic characterization and we expect the most efficient way
to determine pairs in a differential is to try different outputs of f with the required difference
and computing the corresponding inputs.

5.3.3 Truncated trails and differentials

As for ordinary differential trails, the conditions imposed by a truncated trail can be trans-
ferred to the input and for finding a collision a CICO problem needs to be solved. Here the
factor w()) is determined by the weight of the truncated trail. Similarly, truncated trails can
be combined to truncated differentials and here the same difficulties can be expected as when
combining ordinary trails

5.4 Path to an inner state

If ¢ > b/2, this is simply a CICO problem with w(X) = w()) = ¢ and solving it results in
a single-block path to an inner state. If ¢ < b/2, an e-block path to the inner state can be
found by solving a multi-block absorbing CICO problem with e = [r/c].

5.5 Detecting a cycle

This is strongly linked to the cycle structure of f. If f is assumed to behave as a random
permutation, the overwhelming majority of states will generate very long cycles. Short cycles
do exist, but due to the sheer number of states, the probability that this will be observed is
extremely low.

5.6 Binding an output to a state

We consider here only the case where the output must fully determine the state. If the capacity
is smaller than the bitrate, it is highly probable that a sequence of two output blocks fully
determines the inner state. In that case, finding the inner state is a CICO problem with
w(X)=w(() =r.

If the capacity is larger than the bitrate, one needs more than two output blocks to
uniquely determine the inner state. Finding the state consists in solving a multi-block squeez-
ing CICO problem with w(X;) = r. The required number of rounds e to uniquely determine
the state is [b/r].

42 /[121]

5. Sponge functions with an iterated permutation KEccAK

5.7 Classical hash function criteria

In this section we discuss the properties of an iterated permutation that are relevant in the
classical hash function criteria.

5.7.1 Collision resistance

We assume that the sponge function output is truncated to its first n bits and we try to
generate two outputs that are the same for two different inputs. We can distinguish two
ways to achieve this: with or without an inner collision. While the effort for generating an
inner collision is independent of the length of the output to consider, this is not the case in
general for generating output collisions. If n is smaller than the capacity, the generic attack
to generate an output collision directly has a smaller workload than generating an inner
collision. Otherwise, generating an inner collision and using this to construct a state collision
is expected to be more efficient.

We refer to Section for a treatment on inner collisions. With some small adaptations,
that explanation also applies to the case of directly generating output collisions. The only
difference is that for the last iteration of the trail, instead of considering differentials (a',0°
over f, one needs to consider differentials (a’,0™) over | f|,. When exploiting a trail, and in
the absence of high-probability trails, this reduces to solving a CICO problem with w(X) =
w()) = c to find a suitable first block.

5.7.2 Preimage resistance

We distinguish three cases:

e n > b: in this case the output fully determines the state just prior to squeezing. Gener-
ating a preimage implies binding a state to an output and subsequently finding a path
to that state. As explained in Sections and [5.6] this comes down to solving two
CICO problems.

e r < n < b: Here a sequence of input block can in theory be found by solving a problem
that can be seen as a combination of a multi-round squeezing CICO problem and a
multi-round absorbing CICO problem.

e n < r: A single-block preimage can be found by solving a single-block CICO problem
with w(X) = ¢ and w()) = n.

5.7.3 Second preimage resistance

There are two possible strategies for producing a second preimage. In a first strategy, the
adversary can try to find a second path to one of the inner states traversed when absorbing
the first message. Finding a second preimage then reduces to finding a path to a given inner
state [9], which is discussed in Section As a by-product, this strategy exhibits an inner
collision.

In a second strategy, the adversary can ignore the inner states traversed when absorbing
the first message and instead take into account only the given output. In this case, the first
preimage is of no use and the problem is equivalent to finding a (first) preimage as discussed
in the two last bullets of Section 5.7.2

43 / [121]

KECcAK 5. Sponge functions with an iterated permutation

5.7.4 Length extension

Length extension consists in, given h(M) for an unknown input M, being able to predict the
value of h(M]||z) for some string x. For a sponge function, length extension is successful if
one can find the inner state at the end of the squeezing of M. This comes down to binding
the output to a state, discussed in Section Note that the state is probably only uniquely
determined if n > b. Otherwise, the expected number of state values the output can be bound
to is 2°~™. In that case, the probability of success of length extension is max(2"~% 27").

In principle, if the permutation f has high input-output correlations (v, u) with v = u =
0¢, this could be exploited to improve the probability of guessing right when doing length
extension by a single block.

5.7.5 Pseudo-random function

One can use a sponge function with an iterated permutation as a pseudorandom function
(PRF) by pre-pending the input by a secret key: PRF[k](M) = sponge(k||M). As explained
in Section this can be used to construct MAC functions and stream ciphers. A similar
application is randomized hashing where an unpredictable value takes the place of the key.
Distinguishing the resulting PRF from a random oracle can be done by finding the key,
or by detecting properties in the output that would not be present for a random oracle.
Examples of such properties are the detection of large DP values or high correlations over f.
If the key is shorter than the bitrate, finding it given the output corresponding to a single
input is a CICO problem. If the key is longer, this becomes a multi-round absorbing CICO
problem. If more than a single input-output pair is available, this is no longer the case. In
general, an adversary can even request outputs corresponding with adaptively chosen inputs.
When we use a PRF for MAC computation, the length of the key is typically smaller
than the bitrate and the output is limited to (less than) a single output block. For this case,
breaking the MAC function can be considered as solving the following generic problem for f.
An adversary can query f for inputs P with P = k||z||0¢ and

e k: an ng-bit secret key,
e x: an r — ng-bit value chosen by the adversary,

and is given the first n bits of f(P), with n < r. The goal of the adversary is predict the
output of | f(P)], for non-queried values of x with a success probability higher than 27".

5.7.6 Output subset properties

One can define an m-bit hash function based on a sponge function by, instead of taking
the m first bits of its output, just specify m bit positions in the output and consider the
corresponding m bits as the output. Such a hash function shall not be weaker than a hash
function where the m bits are just taken as the first m bits of the sponge output stream. If
the m bits are from the same output block, there is little difference between the two functions.
If the m bits are taken from different output blocks, the CICO problems implied by attacking
the function tend to become more complicated and are expected to be harder to solve.

44 / [121]

Chapter 6

The KECCAK-f permutations

This chapter discusses the properties of the KECCAK-f permutations that are relevant for
the security of KECccAK. After discussing some structural properties, we treat the different
mappings that make up the round function. This is followed by a discussion of differential
and linear cryptanalysis to motivate certain design choices. Subsequently, we briefly discuss
the applicability of a number of cryptanalytic techniques to KECCAK-f.

As a reminder, the seven KECCAK-f permutations are parameterized by their width b =
25w = 25 x 2¢, for 0 < £ < 6.

6.1 Translation invariance

Let b = 7(a) with 7 a mapping that translates the state by 1 bit in the direction of the z
axis. For 0 < z < w we have b[z][y][z] = a[z][y][z — 1] and for z = 0 we have b[z][y][0] =
alz][y][w — 1]. Translating over ¢ bits gives b[x][y|[z] = a[z][y][(z — t) mod w]. In general, a
translation 7t;][t,][t.] can be characterized by a vector with three components (¢, t,,t.) and
this gives:

b(z][y][z] = a[(z — tz) mod 5][(y — t,) mod 5][(z — t,) mod w] .

Now we can define translation-invariance.
Definition 4. A mapping « is translation-invariant in direction (t;,t,,t.) if
Tlta][ty][t:] 0 @ = avo T[tg][ty][t.] -
Let us now define the z-period of a state.

Definition 5. The z-period of a state a is the smallest integer d > 0 such that:

Va,y € Zs and z € Zy, : alz][y][(z + d) mod w] = a[z][y][#] .

45 /[121]

KECcAK 6. The KECCAK-f permutations

It is easy to prove the following properties:
e The z-period of a state divides w.

e A state a with z-period d can be represented by w, its z-period d, and its d first slices
al.][][z] with z < d. We call this the z-reduced representation of a.

e The number of states with z-period d is zero if d does not divide w and fully determined
by d only, otherwise.

e There is a one-to-one mapping between the states a’ with z-period d for any lane length
w that is a multiple of d and the states a with z-period d of lane length d: o'[.][.][z] =
al.][.][z mod d].

e If « is translation-invariant in the direction of the z axis, the z-period of a(a) divides
the z-period of a. Moreover, the z-reduced state of a(a) is independent of w.

e If o is injective and translation-invariant, « preserves the z-period.
e For a given w, the z-period defines a partition on the states.

e For w values that are a power of two (the only ones allowed in KECCAK), the state
space consists of the states with z-period 1, 2, 22 up to 2¢ = w.

225

e The number of states with z-period 1 is 22°. The number of states with z-period 2¢ for

d>1is 22725 _ 9297125

6.2 The Matryoshka structure

With the exception of ¢, all step mappings of the KECCAK-f round function are translation-
invariant in the direction of the z axis. This allows the introduction of a size parameter that
can easily be varied without having to re-specify the step mappings. As in several types
of analysis abstraction can be made of the addition of constants, this allows the re-use of
structures for small width versions to symmetric structures for large width versions. We
refer to Section for an example. As the allowed lane lengths are all powers of two,
every smaller lane length divides a larger lane length. So, as the propagation structures for
smaller width version are embedded as symmetric structure in larger width versions, we call
it Matryoshka, after the well-known Russian dolls.

6.3 The step mappings of KECCAK-f

A round is composed from a sequence of dedicated mappings, each one with its particular
task. The steps have a simple description leading to a specification that is compact and in
which no trapdoor can be hidden.

Mapping the lanes of the state, i.e., the one-dimensional sub-arrays in the direction of the
z axis, onto CPU words, results in simple and efficient software implementation for the step
mappings. We start the discussion of each of the step mappings by pseudocode where the
variables alz, y| represent the old values of lanes and A|x,y| the new values. The operations
on the lanes are limited to bitwise Boolean operations and rotations. In our pseudocode we

46 / [121]

6. The KECCAK-f permutations KEccAK

e

TN,

Figure 6.1: x applied to a single row

denote by ROT(a, d) a translation of a over d bits where bit in position z is mapped to position
z 4+ d mod w. If the CPU word length equals the lane length, the latter can be implemented
with rotate instructions. Otherwise a number of shift and bitwise Boolean instructions must
be combined or bit-interleaving can be applied (see Section .

6.3.1 Properties of x

Figure [6.1] contains a schematic representation of x and Algorithm [5]its pseudocode.

Algorithm 5 y
for y=0to 4 do
for x =0to 4 do
Alz,y] = alz,y] ® (NOT alzx + 1,y]) AND alz + 2,y])
end for
end for

X is the only nonlinear mapping in KECCAK-f. Without it, the KECCAK- f round function
would be linear. It can be seen as the parallel application of bw S-boxes operating on 5-bit
rows. X is translation-invariant in all directions and has algebraic degree two. This has
consequences for its differential propagation and correlation properties. We discuss these in
short in Sections and Section and refer to [34, Section 6.9] for an in-depth
treatment of these aspects.

X is invertible but its inverse is of a different nature than y itself. For example, it does
not have algebraic degree 2. We refer to [34, Section 6.6.2] for an algorithm for computing
the inverse of y.

X is simply the complement of the nonlinear function called v used in RADIOGATUN
[8], PANAMA [35] and several other ciphers [34]. We have chosen it for its simple nonlinear
propagation properties, its simple algebraic expression and its low gate count: one XOR, one
AND and one NOT operation per state bit.

47 /[121]

KECcAK 6. The KECCAK-f permutations

6.3.1.1 Differential propagation properties

Thanks to the fact that y has algebraic degree 2, for a given input difference a’, the space of
possible output differences forms a linear affine variety [33] with ow:(@"b) elements. Moreover,
the cardinality of a differential (a’,0’) over x is either zero or a power of two. The corre-
sponding (restriction) weight wy(a’,0’) = w,(a’) is an integer that only depends on the input
difference a’. A possible differential imposes wy(a’) linear conditions on the bits of input a.

We now provide a recipe for constructing the affine variety of output differences corre-
sponding to an input difference, applied to a single row. Indices shall be taken modulo 5 (or
in general, the length of the register). We denote by (i) a pattern with a single nonzero bit
in position ¢ and 6(, j) a pattern with only non-zero bits in positions i and j.

We can characterize the linear affine variety of the possible output differences by an offset
A" and a basis (¢j). The offset is A" = x(a’). We construct the basis (c;) by adding vectors
to it while running over the bit positions :

o If ajaj, aj ya] 5 € {-100,-11-,001-}, extend the basis with 0(i).
o If ajaj, aj ,aj 5 = -101, extend the basis with §(i,i + 1).

This algorithm is implemented in KECCAKTOOLS [14]. The (restriction) weight of a difference
is equal to its Hamming weight plus the number of patterns 001. The all-1 input difference
results in the affine variety of odd-parity patterns and has weight 4 (or in general the length
of the register minus 1). Among the 31 non-zero differences, 5 have weight 2, 15 weight 3 and
11 weight 4.

A differential (a’,b") leads to a number of conditions on the bits of the absolute value a.
Let B=A" @b = x(a’) ®V, then we can construct the conditions on a by running over each
bit position :

® a;, ,a; o = 10 imposes the condition a;12 = B; .
e aj ,a;. o =11 imposes the condition aj11 ® a2 = B; .
e a; ,a; o = 01 imposes the condition a;11 = B; .

The generation of these conditions given a differential trail is implemented in KECCAKTOOLS
[14].

6.3.1.2 Correlation properties

Thanks to the fact that y has algebraic degree 2, for a given output mask wu, the space of
input mask v whose parities have a non-zero correlation with the parity determined by u
form a linear affine variety. This variety has 2¥<("%) elements, with wc(v,u) = we(u) the
(correlation) weight function, which is an even integer that only depends on the output mask
u. Moreover, the magnitude of a correlation over y is either zero or equal to 2%e(®),

We now provide a recipe for constructing the affine variety of input masks corresponding
to an output mask, applied to a single row. Indices shall again be taken modulo 5 (or in
general, the length of the register). We use the term 1-run of length ¢ to denote a sequence
of ¢ 1-bits preceded and followed by a 0-bit.

48 / [121]

6. The KECCAK-f permutations KEccAK

We characterize the linear affine variety with an offset U’ and a basis (¢;) and build the
offset and basis by running over the output mask. First initialize the offset to 0 and the basis
to the empty set. Then for each of the 1-runs asasyq ... asy¢—1 do the following:

e Add a 1 in position s of the offset U’.
e Set i = s, the starting position of the 1-run.

e Aslong as a;a;+1 = 11 extend the basis with (i + 1,7 4+ 3) and §(i + 2), add 2 to ¢ and
continue.

e If a;a; 11 = 10 extend the basis with 6(i + 1) and (i + 2).
This algorithm is implemented in KECCAKToOOLS [14]. The (correlation) weight of a mask is
equal to its Hamming weight plus the number of 1-runs of odd length. The all-1 output mask

results in the affine variety of odd-parity patterns and has weight 4 (or in general the length
of the register minus 1). Of the 31 non-zero mask, 10 have weight 2 and 21 have weight 4.

6.3.2 Properties of 0

Figure [6.2] contains a schematic representation of § and Algorithm [6] its pseudocode.

Algorithm 6 6
for x =0 to 4 do
Clz] = a[z, 0]
for y =1to 4 do
Clz] = Clz] @ alz, y]
end for
end for
for x =0to 4 do
Djz] = Clx — 1] & ROT(Clx + 1],1)
for y =0to 4 do
Alw,y) = alz,y] & Dla]
end for
end for

The 0 mapping is linear and aimed at diffusion and is translation-invariant in all directions.
Its effect can be described as follows: it adds to each bit a[x][y][z] the bitwise sum of the
parities of two columns: that of a[r — 1][-][2] and that of a[z + 1][-][z — 1]. Without 6, the
KEccAK-f round function would not provide diffusion of any significance. The 6 mapping
has a branch number as low as 4 but provides a high level of diffusion on the average. We
refer to Section [6.5.3] for a more detailed treatment of this.

In fact, we have chosen 6 for its high average diffusion and low gate count: two XORs per
bit. Thanks to the interaction with x each bit at the input of a round potentially affects 31
bits at its output and each bit at the output of a round depends on 31 bits at its input. Note
that without the translation of one of the two sheet parities this would only be 25 bits.

49 /[121]

KECcAK 6. The KECCAK-f permutations

Figure 6.2: 6 applied to a single bit

6.3.2.1 The inverse mapping

Computing the inverse of 6 can be done by adopting a polynomial notation. The state can be
represented by a polynomial in the three variables z,y and z with binary coeflicients. Here
the coefficient of the monomial 2737 2* denotes the value of bit ali][j][k]. The exponents i
and j range from 0 to 4 and the exponent k ranges from 0 to w — 1. In this representation a
translation 7(t,][t,][t.] corresponds with the multiplication by the monomial 'y 2'* modulo
the three polynomials 1 + 2°, 1 +° and 1 + 2*. More exactly, the polynomial representing
the state is an element of a polynomial quotient ring defined by the polynomial ring over
GF(2)[z,y,z] modulo the ideal generated by (1+z° 1+5° 1+ 2"). A translation corre-
sponds with multiplication by xzy'v2*: in this quotient ring. The z-period of a state a is
d if d is the smallest nonzero integer such that 1 4 2% divides a. Let @/ be the polynomial
corresponding to the z-reduced state of a, then a can be written as

14 2% ,
T4zd 0

When the state is represented by a polynomial, the mapping 6 can be expressed as the
multiplication (in the quotient ring defined above) by the following polynomial :

a=1+20+22 4. 42N xd =

4 1+y5
147 (z+2*2) with § = i = . 6.1
7 ()] ggy Ty (6.1)

The inverse of 6 corresponds with the multiplication by the polynomial that is the inverse
of polynomial . For w = 64, we have computed this with the open source mathematics
software SAGE [80] after doing a number of manipulations. First, we assume it is of the form
1+ g@Q with @ a polynomial in z and z only:

(1—1—@(;8—1—1‘42)) X (1+9Q) =1 mod <1—|—x5,1—|—y5,1+z64> .
Working this out and using §? = § yields

Q:1+(1+x+x4z)_1mod<1+x5,1+z64> .

50 / [121]

6. The KECCAK-f permutations KEccAK

The inverse of 14z +x*2 can be computed with a variant of the extended Euclidian algorithm
for polynomials in multiple variables. At the time of writing this was unfortunately not
supported by SAGE. Therefore, we reduced the number of variables to one by using the
change of variables ¢t = 2722, We have = = t!92 and 2%z = 193, yielding:

Q=1+ (1+t"2 4+ 9" mod (1 +320) .

By performing a change in variables from ¢ to and z again, @ is obtained.

For w < 64, the inverse can simply be found by reducing @ modulo 1 + z%. For w = 1,
the inverse of # reduces to 1+ (x? + x3).

For all values of w = 2¢, the Hamming weight of the polynomial of #~! is of the order b/2.
This implies that applying 67! to a difference with a single active bit results in a difference
with about half of the bits active. Similarly, a mask at the output of #~' determines a mask
at its input with about half of the bits active.

6.3.2.2 Propagation of linear masks

A linear Boolean function defined by a linear mask u at the output of a linear function
has non-zero correlation to a single linear Boolean function at its input. Given the matrix
representation of the linear function, it is easy to express the relation between the input and
output mask. Given b = Ma, we have:

uh =uT Ma=(M"u)Ta .

It follow that u b is correlated to v'a with v = M Tu with correlation 1. We say that a linear
mask u at the output of a linear mapping M propagates to v = M u at its input. We denote
the mapping defined by M7 the transpose of M.

As 0 is linear, we have v = 6T (u), with u a linear mask at the output of 6, v a linear
mask at its input and where 7 the transpose of §. We now determine the expression for the
transpose of # in the formalism of [I1]. Let b = 6(a) and

T,Y,2 T,Y,z

Filling in the value of b[z][y][z] from the specification of # in [11] and working this out yields:

> ulally][=]ble]][] =

x7y7z

Yo | ulallyll) +) ule + Y + Y ule — Y]z + 1] | al2]ly][]

I?y’z

It follows that:

v=0"(u) & v[zllyl[z]) = ulz)y][z] + D ule +][+ ulz — 1Y)z + 1) (6.2)
Y Yy’

In polynomial notation the application of #T is a multiplication by

1+ (2* + 22%) .

51 /[121]

KECcAK 6. The KECCAK-f permutations

Algorithm 7 7
for x =0 to 4 do
for y=0to 4 do
X\ (0 1\ [x
(7)-(3) ()

ALX,Y] = alz,y]

end for
end for
° ® X
@ ® Ly
@ +@+ O/Q@¥/ﬁ
® ® «]
o) o 3
ke A h¢
« T o= |\
: D 9
1 e MRS
o | ¥ ° \

Figure 6.3: m applied to a slice. Note that x = y = 0 is depicted at the center of the slice.

6.3.3 Properties of =

Figure [6.3| contains a schematic representation of m and Algorithm [7] its pseudocode.
Note that in an efficient program 7 can be implemented implicitly by addressing.

The mapping 7 is a transposition of the lanes that provides dispersion aimed at long-term
diffusion. Without it, KECCAK-f would exhibit periodic trails of low weight. 7w operates in a
linear way on the coordinates (z,): the lane in position (z,y) goes to position (z,y)M ™, with
M = (93) a2 by 2 matrix with elements in GF(5). It follows that the lane in the origin (0,0)
does not change position. As 7 operates on the slices independently, it is translation-invariant
in the z-direction. The inverse of 7 is defined by M1,

Within a slice, we can define 6 axes, where each axis defines a direction that partitions
the 25 positions of a slice in 5 sets:

e I axis: rows or planes;
e y axis: columns or sheets;

e y = x axis: rising 1-slope;

52 / [121]

6. The KECCAK-f permutations KEccAK

r=3 x=4 xx=0 x=1 z=2
y=2 153 231 3 10 171
Yy = 55 276 36 300 6
y=20 28 91 0 1 190
Yy = 120 78 210 66 253
Y= 21 136 105 45 15

Table 6.1: The offsets of p

e y = —x axis: falling 1-slope;
e y = 2z axis: rising 2-slope;
e y = —2x axis: falling 2-slope;

The x axis is just the row through the origin, the y axis is the column through the origin, etc.

There are many matrices that could be used for 7. In fact, the invertible 2 by 2 matrices
with elements in GF(5) with the matrix multiplication form a group with 480 elements con-
taining elements of order 1, 2, 3, 4, 5, 6, 8, 10, 12, 20 and 24. Each of these matrices defines
a permutation on the 6 axes, and equivalently, on the 6 directions. Thanks to its linearity,
the 5 positions on an axis are mapped to 5 positions on an axis (not necessarily the same).
Similarly, the 5 positions that are on a line parallel to an axis, are mapped to 5 positions on
a line parallel to an axis.

For m we have chosen a matrix that defines a permutation of the axes where they are in
a single cycle of length 6 for reasons explained in Section [6.5.6 Implementing 7 in hardware
requires no gates but results in wiring.

As 7 is a linear function, a linear mask u at the output propagates to the linear mask v
at the input with v = 77 (u) (see Section [6.3.2.2)). Moreover, we have 71 = 77!, yielding u =
7(v). This follows directly from the fact that 7 is a bit transposition and that subsequently
its matrix is orthogonal: MTM = I.

6.3.4 Properties of p

Figure[6.4] contains a schematic representation of p, while Table lists its translation offsets.
Algorithm [§] gives pseudocode for p.

Algorithm 8 p
A[0,0] = a0, 0]
x 1
G-
or t =0 to 23 do
ALx, yl = (P]iOlT(a[i, yl (t+1)(t+2)/2)
()-() ()

end for

53 / [121]

KECcAK 6. The KECCAK-f permutations

THL
LY
NS NSNS NN NN

Figure 6.4: p applied to the lanes. Note that x = y = 0 is depicted at the center of the slices.

The mapping p consists of translations within the lanes aimed at providing inter-slice
dispersion. Without it, diffusion between the slices would be very slow. It is translation-
invariant in the z-direction. The inverse of p is the set of lane translations where the constants
are the same but the direction is reversed.

The 25 translation constants are the values defined by i(i 4+ 1)/2 modulo the lane length.
It can be proven that for any ¢, the sequence i(i + 1)/2 mod 2¢ has period 2! and that any
sub-sequence with n2¢ < i < (n 4 1)2¢ runs through all values of Zy. From this it follows
that for lane lengths 64 and 32, all translation constants are different. For lane length 16,
9 translation constants occur twice and 7 once. For lane lengths 8, 4 and 2, all translation
constants occur equally often except the translation constant 0, that occurs one time more
often. For the mapping of the (one-dimensional) sequence of translation constants to the lanes
arranged in two dimensions z and y we make use of the matrix of w. This groups the lanes
in a cycle of length 24 on the one hand and the origin on the other. The non-zero translation
constants are allocated to the lanes in the cycle, starting from (1,0).

p is very similar to the transpositions used in RADIOGATUN(§|, PANAMA [35] and STEP-
RiGHTUP [34]. In hardware its computational cost corresponds to wiring.

As p is a linear function, a linear mask u at the output propagates to the linear mask
v at the input with v = pT(u) (see Section . Moreover, we have pT = p~!, yielding
u = p(v). This follows directly from the fact that p is a bit transposition and that subsequently
its matrix is orthogonal: MTM = I.

6.3.5 Properties of ¢

The mapping ¢ consists of the addition of round constants and is aimed at disrupting sym-
metry. Without it, the round function would be translation-invariant in the z direction and
all rounds of KECCAK-f would be equal making it subject to attacks exploiting symmetry
such as slide attacks. The number of active bit positions of the round constants, i.e., the bit
positions in which the round constant can differ from 0, is £ + 1. As £ increases, the round
constants add more and more asymmetry.

The bits of the round constants are different from round to round and are taken as the
output of a maximum-length LFSR. The constants are only added in a single lane of the
state. Because of this, the disruption diffuses through 6 and x to all lanes of the state after
a single round.

54 /[121]

6. The KECCAK-f permutations KEccAK

In hardware, the computational cost of ¢ is a few XORs and some circuitry for the gener-
ating LFSR. In software, it is a single bitwise XOR instruction.

6.3.6 The order of steps within a round

The reason why the round function starts with 6 is due to the usage of KECCAK-f in the
sponge construction. It provides a mixing between the inner and outer parts of the state.
Typically, the inner part is the part that is unknown to, or not under the control of the
adversary. The order of the other step mappings is arbitrary.

6.4 Choice of parameters: the number of rounds

We here provide our estimate for our SHA-3 candidates specified in [I1], Section 4] of how
many rounds in KECCAK-f[1600] are sufficient to provide resistance against four types of
distinguishers or attacks:

e Construction of structural distinguisher for KECCAK-f[1600]: 21 rounds.
e Construction of structural distinguisher for any of the five candidates: 13 rounds.

e Shortcut attack for collision or (second) preimage for any of the five candidates: 11
rounds.

e Practical generation of an actual collision or (second) preimage for any of the five
candidates (where the output of KECCAK]] is truncated to not less than 256 bits): 9
rounds.

These estimates are based on the results of our preliminary analysis that is treated in the
remainder of this chapter and the following two chapters and the third-party analysis in
[2, 62, B, 22, 21] [66]. By having 24 rounds in KECCAK-f[1600], we take a security margin
even with respect to the weakest known structural distinguishers of KECCAK-f as described in
[3,22],21]. In addition, we take a high security margin with respect to structural distinguishers
of the KECCAK sponge function and the two types of attack against the five candidates.

6.5 Differential and linear cryptanalysis

6.5.1 A formalism for describing trails adapted to KECCAK-f

The propagation of differential and linear trails in KECCAK-f is very similar. Therefore we
introduce a formalism for the description of trails that is to a large extent common for both
types of trails. Differential trails describe the propagation of differences through the rounds
of KECCAK-f and linear trails the propagation of masks. We will address both with the term
patterns.

As explained in Section for a given difference a at the input of y, the set of possible
output differences is a linear affine variety. For a given mask a at the output of x, the set
of input masks with non-zero correlation to the given output mask is also a linear affine
variety. Hence, to make the pattern propagation similar, for differential trails we consider
the propagation from input to output and for linear trails we consider the propagation from
output to input.

55 / [121]

KECcAK 6. The KECCAK-f permutations

A difference at the input of y is denoted by a; and we call it a pattern before x (in round 7).
A difference at the output of x is denoted by b; and we call it the pattern after x. Similarly,
a mask at the output of x is denoted by a; and we call it a pattern before x. A mask at the
input of x is denoted by b; and we call it the pattern after x. In both cases we denote the
linear affine variety of possible patterns after y compatible with a; by B(a;).

Thanks to the fact that x is the only nonlinear step in the round, a difference b; after x
fully determines the difference a;41 before y of the following round: we have a; = w(p(0(b;))).
We denote the linear part of the round by A, so:

A=mopof.

Similarly, a mask b; after x fully determines the mask a;; before the x of the following
round. Now we have a; = 0T (pT (7 T(b;))) = 6T (p~*(7~1(b;))). Here again, we denote this
linear transformation by A, so in this case we have:

A=0Toptont,

Note that the way B(a;) is formed depends on whether we consider differential or linear trails.
Moreover, the meaning of A depends on whether we consider differential or linear trails.
Consider now the set obtained by applying A to all elements of B(a;). Thanks to the
linearity of A this is again a linear affine variety and we denote it by A(a;).
We now define a f-round trail Q) by a sequence of state patterns a; with 0 < ¢ < £. Every
a; denotes a state pattern before x and a; must be compatible with a;_1, i.e., a; € A(a;_1).
We use b; to denote the patterns after y, i.e., a;+1 = A(b;). So we have:

aoﬁbogaléblgwébgg...a@ (6.3)

The restriction weight of a differential trail @) is the number of conditions it imposes on
the absolute values on the members of a right pair. It is given by

wr(Q) = Z Wr(ai) .

0<i<t

Note that the restriction weight of the last difference a, does not contribute to that of the
trail. Hence the weight of any f-round trail is fully determined by its ¢ first differences. For
weight values well below the width of the permutation, a good approximation for the DP of
a trail is given by DP(Q) ~ 27"(@). If w,(Q) is near the width b, this approximation is no
longer valid due to the fact that the cardinality of a trail is an integer. While the mapping ¢
has no role in the existence of differential trails, it does in general impact their DP. For trails
with weight above the width, it can make the difference between having cardinality zero or
non-zero.

The correlation weight of a linear trail over an iterative mapping determines its contri-
bution to a correlation between output and input defined by the masks ag and ay. The
correlation weight of a trail is given by

we(Q) = Z we(a;) -

0<i<t

Here also the correlation weight of a; does not contribute and hence the weight of any ¢-round
trail is fully determined by its ¢ first masks. The magnitude of the correlation contribution

56 / [121]

6. The KECCAK-f permutations KEccAK

of a trail is given by 27%<(@). The sign is the product of the correlations over the y and ¢
steps in the trail. The sign of the correlation contribution of a linear trail hence depends on
the round constants.

In our analysis we focus on the weights of trails. As the weight of a f-round trail is
determined by its first £ patterns, in the following we will ignore the last pattern and describe
f-round trail with only ¢ patterns a;, namely ag to as_1.

6.5.2 The Matryoshka consequence

The weight and existence of trails (both differential and linear) is independent of ¢. The fact
that all other step mappings of the round function are translation-invariant in the direction
of the z axis, makes that a trail @ implies w — 1 other trails: those obtained by translating
the patterns of) over any non-zero offset in the z direction. If all patterns in a trail have a
z-period below or equal to d, this implies only d — 1 other trails.

Moreover, a trail for a given width b implies a trail for all larger widths b’. The patterns
are just defined by their z-reduced representations and the weight must be multiplied by &’/b.
Note that this is not true for the cardinality of differential trails and the sign of the correlation
contribution of linear trails, as these do depend on the round constants.

6.5.3 The column parity kernel

The mapping 6 is there to provide diffusion. As said, it can be expressed as follows: add to
each bit a[z][y][z] the bitwise sum of the parities of two columns: that of a[z — 1][-][z] and
that of a[z + 1][-][z — 1]. From this we can see that for states in which all columns have even
parity, 6 is the identity. We call this set of states the column parity kernel or CP-kernel for
short.

The size of the CP-kernel is 22°” as there are in total 2° = 225 states and there are 2°%
independent parity conditions. The kernel contains states with Hamming weight values as
low as 2: those with two active bits in a single column. Due to these states, 6 only has a
branch number (expressed in Hamming weight) of 4.

The low branch number is a consequence of the fact that only the column parities prop-
agate. One could consider changing 6 to improve the worst-case diffusion, but this would
significantly increase the computational cost of 6 as well. Instead, we have chosen to address
the CP-kernel issue by carefully choosing the mapping 7.

We can compute from a 25w-bit state its bw-bit column parity pattern. These patterns
partition the state space in 2°% subsets, called the parity classes, with each 220 elements.
We can now consider the branch number restricted to the states in a given parity class. As
said, the minimum branch number that can occur is 4 for the CP-kernel, the parity class with
the all-zero column parity pattern. Over all other parity classes, the branch number is at
least 12.

Note that for states where all columns have odd parity, 8 adds 0 to every bit and also acts
as the identity. However, the Hamming weight of states in the corresponding parity class is
at least 5w resulting in a branch number of 10w.

6.5.4 One and two-round trails

Now we will have a look at minimum weights for trails with one and two rounds. The
minimum weight for a one-round differential trail (ag) is obtained by taking a difference ag

57 / [121]

KECcAK 6. The KECCAK-f permutations

with a single active bit and has weight 2. For a linear trail this is obtained by a mask ag with
a single active bit or two neighboring active bits in the same row, and the weight is also 2.
This is independent of the width of KECCAK-f.

For the minimum weight of two-round trails we use the following property of x: if a
difference before x restricted to a row has a single active bit, the same difference is a possible
difference after x. Hence for difference with zero or one active bits per row, x can behave as
the identity. Similarly, for masks with zero or one active bits per row, y can behave as the
identity. We call such trails in which the patterns at the input and output of x are the same,
x-zero trails. Note that all patterns in a x-zero trail are fully determined by the first pattern
agp.

For all widths, the two-round trails with minimum weight are y-zero trails. For a differen-
tial trail, we choose for ag a difference with two active bits that are in the same column. After
x the difference has not changed and as it is in the CP-kernel, it goes unchanged through 6
as well. The mappings m and p move the two active bits to different columns, but in no case
to the same row. This results in a value of a7 with two active bits in different rows. As the
weight of both ag and a; is 4, the resulting trail has weight 8. For linear trails, the two active
bits in ag must be chosen such that after p and 7 they are in the same column. with a similar
reasoning it follows that the minimum trail weight is also 8. Note that the low weight of these
trails is due to the fact that the difference at the input of # in round 0 is in the CP-kernel.

6.5.5 Three-round trails: kernel vortices

From here on, we concentrate on differential trails as the explanation is very similar for linear
trails. We can construct a three-round y-zero trail where both differences ag and a1 are in the
CP-kernel. As in a x-zero trail x behaves as the identity and ag is in the CP-kernel, we have
a1 = m(p(ap)). Hence, we can transfer the conditions that ag is in the kernel to conditions on
ai, or vice versa.

We will now look for patterns ap where both ag and m(p(ag)) are in the CP-kernel. ag
cannot be a pattern with only two active bits in one column since 7 o p maps these bits to
two different columns in a;.

The minimum number of active bits in ag is four, where both a¢ and a; have two active
columns with two active bits each. We will denote these four active bits as points 0, 1, 2 and
3. Without loss of generality, we assume these points are grouped two by two in columns in
ap: {0,1} in one column and {2,3} in another one. In a; we assume they are grouped in
columns as {1,2} and {3,0}.

The mapping 7 maps sheets (containing the columns) to falling 2-slopes and maps planes
to sheets. Hence the points {0,1} and {2,3} are in falling 2-slopes in a; and the points
{1,2} and {3,0} are in planes in ag. This implies that projected on the (z,y) plane, the four
points of ag form a rectangle with horizontal and vertical sides. Similarly, in a; they form a

parallelogram with vertical sides and sides that are falling 2-slopes.

The (x,y) coordinates of the four points in ag are completely determined by those of the
two opposite corner points (g, yo) and (z2,y2). The four points have coordinates: (xg,yo),
(z0,Y2), (x2,y2) and (x2,y0). The number of possible choices is (2)2 = 100. Now let us have
a look at their z coordinates. Points 0 and 1 should be in the same column and points 2 and

3 too. Hence 21 = zp and 23 = z2. Moreover, p shall map points 1 and 2 to the same slice

58 / [121]

6. The KECCAK-f permutations KEccAK

and bits 3 and 0 too. This results in the following conditions for their z-coordinates:

20 +r[wo][y2] = 22 +r[r2]lye] modw,

2o +rlza]lyo] = 20+ r[ro]lyo] modw , (6.4

with r[z][y] denoting the translation offset of p in position (x,y). They can be converted to
the following two conditions:

2o = 20 + r[zo][y2] — rlr2]lye] modw ,
zo = zo + r[zo][yo] — rlr2][yo] modw .

In any case zg can be freely chosen, and this determines zo. Subtracting these two equations
eliminates zg and z9 and results in:

rlzollyol — rlzo][y2] + rlws]lys] — rlza][yo] = 0 mod w . (6.5)

If this equation is not satisfied, the equations have no solution.

Consider now w = 1. In that case Equation is always satisfied. However, in order to
be x-zero, the points must be in different rows, and hence in different planes, both in a¢ and
a1, and this is not possible for a rectangle.

If £ > 1, Equation has a priori a probability of 2% of being satisfied. Hence, we
can expect about 27¢100 rectangles to define a state ag with both ag and m(p(ag)) in the
CP-kernel. So it is not inconceivable that such patterns exists for w = 64. This would result
in a 3-round trail with weight of 8 per round and hence a total weight of 24. However, for
our choice of m and p, there are no such trails for w > 16.

Note that here also the Matryoshka principle plays. First, the z-coordinate of one of
the points can be freely chosen and determines all others. So, given a rectangle that has a
solution for Equation , there are 2¢ patterns ag, one for each choice of zy. Second, if
Equation is not satisfied for £ but it is for some ¢ < ¢, it implies a pattern ag with 2¢-¢'4
points rather than 4 for which both ag and 7(p(ap)) are in the kernel.

These patterns can be generalized by extending the number of active bits: a pattern ag
with both ag and 7(p(ag)) in the kernel can be constructed by arranging 2e points in a cycle
in the (z,y) plane and giving the appropriate z-coordinates. In such a cycle each combination
of points {2i,2i + 1} are in the same sheet and each combination of points {2i + 1,2i 4 2} are
in the same plane. We call such a cycle of 2e (x,y) positions a kernel vortex V.

For the z coordinates, the conditions that the points {2i,2i + 1} are in the same column
in ap and the points {2i + 1,2i 4+ 2} are in the same column in a; results in 2e conditions.
Similar to the rectangle case, these conditions only have a solution if the p rotation constants
in the lanes of the cycle satisfy a condition. For a given kernel vortex V', we define its depth
d(V) as:

2e—1
d(V) =Y (~1)'r[point . (6.6)

i=0
Now, the vortex results in a valid pattern ag if d(V) mod w = 0. We call the largest power
of 2 dividing d(V') the character of the vortex ¢(V). If d(V) = 0, we say its character is
¢(V) = oco. Summarizing, a vortex V defines a valid pattern ag with 2e active bits for lane
length w < ¢(V'). For constructing low-weight 3-round trails, it suffices to find vortices with
small e and large character: given a vortex V it results in a 3-round trail with weight 12e

59 / [121]

KECcAK 6. The KECCAK-f permutations

for all values of 2¢ < ¢(V) and with weight 12e2¢/c(V) for all values of 2¢ > ¢(V) (using
symmetric trails of period ¢(V)).

As the length of vortices grows, so does their number. There are 600 vortices of length
6, 8400 of length 8 and 104040 of length 10. The character ¢(V') over these vortices has an
exponential distribution: about half of them has character 1, 1/4 have character 2, 1/8 have
character 4 and so on. It follows that as their length 2e grows, there are more and more
vortices that result in valid pattern ag with 2e active bits, even for lane length 64.

Moreover, one can construct patterns ag containing two or more vortices, provided that
they do not result in a row with two active bits in either ag or a;. The character of such a
combination is just the minimum of the characters of its component vortices. Clearly, due the
large number of kernel vortices, it is likely that there are three-round trails with low weight
for any choice of p and 7. For our choice of w and p, the vortex that leads to the 3-round
trail with the smallest weight for KECCAK-f is one of length 6 and character 64. It results in
a 3-round trail with weight 36.

6.5.6 Beyond three-round trails: choice of 7

We will now try to extend this to four-round trails: we try to find patterns ag such that ag,
a1 and asg are in the CP-kernel.

A vortex of length 4, i.e., with e = 2 cannot do the job with our choice of 7: a rectangle
in ag with sheets and planes as sides results in a parallelogram in a; with falling 2-slopes and
columns as sides and in a parallelogram in as with rising 2-slopes and falling 2-slopes as sides.
Hence the four points in as cannot group in columns 2 by 2 and therefore it cannot be in the
kernel.

Consider now a vortex of length 6. We choose the points such that the grouping in columns
is {0,1},{2,3},{4,5} in ao, it is {1,2},{3,4},{5,0} in a; and {1,4},{2,5},{3,0} in as. The
grouping in a; simply implies that {1,2},{3,4},{5,0} are grouped in planes in ag. Actually,
the first two groupings are similar to the three-round trail case: they determine a character
¢(V) and fix the z coordinates of all points but one. We will now study the implications of the
grouping in ag on the (z,y) coordinates. Grouping in columns (sheets) in ag implies grouping
in planes in a; and subsequently grouping in rising 1-slopes in ag.

For the z-coordinates this results in 3 additional conditions: points 1 and 4, points 2 and
5 and points 3 and 0 must have the same z-coordinate in as. Similar to Equation these
conditions are equalities modulo 2¢. For each of the equations, the a priori probability that it
is satisfied for a given value of 2¢ is 27¢. With each of these equations we can again associate
a character: the largest value w that is a power of two for which the equation is satisfied. The
4-round character (i.e. leading to ag, a; and ag all three in the kernel) of the vortex in this
context is now the minimum of the 3-round character (i.e. leading to both a¢ and a; in the
kernel) of the vortex and the characters of the three additional equations. The probability
that the 4-round character is larger than 2¢ is approximately 2-4¢*+1 It turns out that for
our choice of 7 and p, 8 of the 50 candidate vortices have 4-round character 2 and the others
have all 4-round character 1.

The conditions on the (x,y) coordinates imply that only vortices are suited that have an
even number of active points in each sheet, each plane and each rising 1-slope. This limits the
number of suitable vortices of length 6 to 50, of length 8 to 300, of length 10 to 4180 and of
length 12 to 53750. To illustrate this, let us now study the number of activity patterns in the
(x,y) coordinates of ap assuming there is only a single active bit in each lane. In total there

60 / [121]

6. The KECCAK-f permutations KEccAK

are 22 — 1 nonzero patterns. If we impose the pattern to be in the CP-kernel, the parity
of each sheet must be even, resulting in 5 independent linear equations. Hence there are
220 _ 1 patterns in the kernel. Additionally requiring a; to be in the kernel imposes that the
number of points in each plane of ag must be even. This adds 5 parity conditions. However,
one is redundant with the ones due to ag as the total parity of the activity pattern over the
state is even. Hence there are 2'6 — 1 such patterns. Additionally requiring as to be in the
kernel imposes that the number of points in each rising 1-slope of ag must be even. This
adds again 5 new parity condition, with one of them redundant and reduces the number of
possible patterns to 2'2 — 1. Since 7 runs through all directions, adding more rounds results
in 28 — 1, and 2% — 1 and finally 0 patterns. It follows that the range of possible activity
patterns shrinks exponentially as the number of rounds grows.

This is the main reason for choosing a 7 that runs through all axes in a single cycle.
Consider a 7w that would map sheets to rising 1-slopes and rising 1-slopes back to sheets. For
such a 7 there would be 216 — 1 activity patterns with ag, a1 and as in the kernel. Moreover,
this number would not decrease for more rounds and periodic x-zero trails of low weight might
appear.

When trying vortices with length above 6, the conditions on the z coordinates can be
more involved. If in a particular sheet of as the number of active points is 2, the condition is
the same as for the case described above: their z coordinates should match. However, if there
are 4, 6 or any even number of active points, there are several ways for them to be grouped in
different columns. In general a character can be computed per sheet and the character of the
complete structure is the minimum of all these characters. The character for a given sheet
can be computed in a recursive way. The probability that an active sheet has character 1
is 1/2. For larger characters, the probability decreases faster with growing number of active
bits in the character.

We have done tests for vortex lengths up to 14 and for constructions making use of two
vortices totaling to about 1 million valid ag patterns. The vast majority have character
1, less than 13000 have character 2, 103 have character 4 and one has character 8. This
last one is based on vortex of length 8 and it results in a 4-round trail with weight 512 in
KECCAK- f[1600].

6.5.7 Truncated trails and differentials

Truncated trails deal with the propagation of activity patterns rather than differences [55].
A partition of the state in sub-blocks is defined where the activity patterns describe whether
a sub-block has no active bits (passive or 0) or has at least one active bit (active or 1). The
structure of the state in KECCAK-f suggests several bundlings. In a first order, one may
take rows, columns, lanes, sheets, planes or slices as sub-blocks. We have gone through an
exercise of attempting this but got stuck very soon for each of the choices. The problem is
that for every choice, at least one of the step mappings completely tears apart the sub-blocks.
We have also considered hybrid state definitions, such as the combination of row activities
with column parities. However, in the cases that could be interesting, i.e., states with low
weight (with respect to the truncation considered), this soon lead to the full specification of
the difference.

In [54] truncated cryptanalysis was applied to RADIOGATUN [8], where the truncation
was defined by a linear subspaces of the word vectors. In the attack it made sense as part
of the RADIOGATUN round function is linear. In KECCAK-f the round function is uniformly

61 / [121]

KECcAK 6. The KECCAK-f permutations

non-linear and we do not believe that this approach can work.

6.5.8 Other group operations

We have considered differential and linear cryptanalysis while assuming the bitwise addition
as the group operation. One may equivalently consider differential and linear properties with
respect to a wide range of other group operations that can be defined on the state. However,
for any other choice than the bitwise addition, § becomes a nonlinear function and for most
choices also ¢, m and p become nonlinear. We do not expect this to lead to better results.

6.5.9 Differential and linear cryptanalysis variants

There are many attacks that use elements from differential cryptanalysis and/or linear crypt-
analysis. Most are applied to block ciphers to extract the key. We have considered a number
of techniques:

e Higher-order differentials [55]: we believe that due to the high average diffusion it is
very difficult to construct higher-order differentials of any significance for KECCAK-f.

e Impossible differentials [87]: we expect the KECCAK-f permutations to behave as ran-
dom permutations. If so, the cardinality of differentials has a Poisson distribution with
A = 1/2 [40] and hence about 60 % of the differentials in KECCAK- f will have cardinality
0, and so are impossible. However, given a differential (a, b), it is a priori hard to predict
whether it is impossible. Settings in which one could exploit impossible differentials are
keyed modes, where part of the input is fixed and unknown. In this case one would
need truncated impossible differentials. If the number of rounds is sufficient to avoid
low-weight differential trails, we believe this can pose no problem.

e Differential-linear attacks [61]: in these attacks one concatenates a differential over a
number of rounds and a correlation over a number of subsequent rounds. We think that
for reduced-round versions of KECCAK-f differential-linear distinguishers are a candi-
date for the most powerful structural distinguisher. The required number of pairs is of
the order DP?LP~2 with DP the differential probability of the distinguisher’s differen-
tial and LP the square of the distinguisher’s correlation. If we assume the differentials
is dominated by a single low-weight differential trail, we have DP ~ 2~%r(Qa) Addition-
ally, if we assume the correlation is dominated by a single low-weight linear trail, we have
DP ~ 2~ %e(Q)_ This gives for the number of required pairs: 22("r(Qa)+we(Q1) The num-
ber of required pairs to exploit a trail in a simple differential or linear attack is of the or-
der 2%<(Q) Hence, over a number of rounds, the differential-linear distinguisher is more
powerful than a simple differential or linear distinguisher if w;(Qg) +w.(Q;) < we(Q)/2.
Where @ is a trail over all rounds, Q4 a trail of the first n rounds and @; a trail over
the remaining rounds. As we expect in the KECCAK- f variants with large width and a
low number of rounds, the minimum trail weight tends to grow exponentially, and the
chaining of two half-length trails is favored over a single full-length trail.

e (Amplified) Boomerang [84] [52] and rectangle attacks [18]: These attacks chain (sets
of) differentials over a small number of rounds to construct distinguishers over a larger
number of rounds. These are also likely candidates for good structural distinguishers,
for the same reason as differential-linear ones.

62 / [121]

6. The KECCAK-f permutations KEccAK

e Integral cryptanalysis (Square attacks) [36]: this type of cryptanalysis lends itself very
well to ciphers that treat the state in blocks. It was applied to bit-oriented ciphers
in [89]. Based on the findings of that paper we estimate that it will only work on
reduced-round versions of KECCAK-f with three to four rounds.

In this section we have limited ourselves to the construction of structural distinguishers. We
have not discussed how these distinguishers can be used to attack the sponge function making
use of the permutation.

6.6 Solving CICO problems

There are several approaches to solving a CICO problem for KECCAK-f. The most straight-
forward way is to use the KECCAK-f specification to construct a set of algebraic equations in
a number of unknowns that represents the CICO problem and try to solve it. Thanks to the
simple algebraic structure of KECCAK-f, constructing the algebraic equations is straightfor-
ward. A single instance of KECCAK-f results in (n, — 1)b intermediate variables and about
as many equations. Each equation has algebraic degree 2 and involves about 31 variables.
Solving these sets of equations is however not an easy task. This is even the case for the toy
version KECCAK- f[25] with lane length w = 1. We refer to Section [8.2] for the results of some
experiments for solving CICO-solving algebraically.

6.7 Strength in keyed mode

In keyed modes we must consider attack scenario’s such as explained in Section [5.7.5] Here
we see two main approaches to cryptanalysis. The first one is the exploitation of structural
distinguishers and the second one is an algebraic approach, similar to the one presented in
Section[6.6] A possible third approach is the intelligent combination of exploiting a structural
distinguisher and algebraic techniques. In our opinion, the strength in keyed modes depends
on the absence of good structural distinguishers and the difficulty of algebraically solving sets
of equations.

6.8 Symmetry weaknesses

Symmetry in the state could lead to properties similar to the complementation property.
Symmetry between the rounds could lead to slide attacks. We believe that the asymmetry
introduced by ¢ is sufficient to remove all exploitable symmetry from KECCAK-f. We refer to
Section for some experimentally obtained evidence of this.

63 / [121]

KEccAk 6. The KECCAK-f permutations

64 / [121]

Chapter 7

Trail propagation in KECCAK-f

As explained in Section the existence of differential or linear trails in KECCAK-f with a
weight below the width of KECCAK-f may result in a structural distinguisher of KECCAK-f.
In this chapter we report on our investigations related to lower bounds for weights of such
trails.

In Section we define different types of weight and in Section we discuss the relevant
properties of #. In Section [7.3] we discuss the techniques used to come up with the lower
bounds on trail weights and report on the results obtained. Finally, in Section we report
on experiments that allows us to get an idea what to expect for higher width values.

7.1 Relations between different kinds of weight

In this section, we recall or define the various kinds of weight we use in the sequel. We speak
of patterns that may have the shape of a state, slice, plane, sheet, row, column, lane or even
a single bit. Some types of weight are only defined for certain shapes and we will indicate if
it is the case.

We call a bit equal to 1 in a pattern an active bit and a bit equal to zero a passive bit.

Definition 6. The Hamming weight of a pattern a is the number of active bits in the pattern
and is denoted by ||al|.

Definition 7. The (propagation) weight of a pattern a, denoted by w(a), is a generic term for
either the restriction weight or the correlation weight of a pattern before x. Since x operates
on rows, the pattern a must consist of full rows implying that the weight is only defined for
states, slices, planes and rows.

Note that the size of the linear affine varieties B(a;) and A(a;) is determined by the
propagation weight of a;:

[B(a;)| = |A(a;)] = 2% .

These two weights relate to the properties of y, which are detailed in Section Since
X operates on each row independently, the restriction and correlation weights of a pattern
can be computed row per row and the results are summed. The weights for all row patterns

are listed explicitly in Tables and

65 /[121]

KECcAK 7. Trail propagation in KECCAK-f

Difference a
00000
10000
11000
10100
11100
11010
11110
11111

=
=
—

S
~—

R W R W WO
WWwWN NN O

Table 7.1: Weights of all row differences (up to cyclic shifts)

Mask a
00000
10000
11000
10100
11100
11010
11110
11111

(@) | llal] | lla]low

=
]
—~

S
~—
o

[S~ SN NV R\ i)
RN NN O

Table 7.2: Weights of all row masks (up to cyclic shifts)

Definition 8. For a pattern b after x, we define the minimum reverse weight w™V(b) as the
minimum weight over all compatible a. Namely,

rev(p) — .)
v () a :I?érBl(a) W(a)

This weight applies to states, slices, planes and rows.

Given an f-round trail Q = (aj...ay), it is easy to find the ¢ 4+ 1-round trail Q' =
(ap, @y ...ap) with minimum weight such that a; = a} for 1 < i < ¢. In this case, w(Q') =
w(Q) + W (A ay)).

It may also be useful to express the number of active rows in a given pattern.

Definition 9. For a pattern a before (or after) x, the number of active rows, denoted by
llallrow s simply the number of rows whose value is non-zero. This weight applies to states,
slices, planes and rows.

The different kinds of weight for all row patterns are given in Tables [7.1] and We now
give some relations between the various kinds of weights. The following bounds relate the
Hamming weight to the weight:

el = lall = | 120|411 mod 5) < wia) < 2l
[Wﬂ < llall < FWH

66 / [121]

7. Trail propagation in KECCAK-f KEccAK

The following bounds relate the number of active rows to the weight:

2|allrow < w(a) < 4l|al|row,

W} < Jlaflrow < {W;) J |

Given the Hamming weight, the minimum reverse restriction weight can be lower bounded
as follows:

0 if|la]|=0 (mod 5),

1 iflla|]=1 (mod 5),

wiV(a) > wi%(||al]) =3 wgw +492 if|la|]]=2 (mod 5),
2 if|la|| =3 (mod b),

(3 if|la]| =4 (mod 5).

Given the Hamming weight, the minimum reverse correlation weight can be lower bounded
as follows:

Wi (a) > W2 (||al]) = 2 [HZH-‘ '

Other relations on the minimum reverse weight follow:

w (D) < 2|[bl],
‘Wrev (b) T 5Wrev (b)
<|pll < | ——1-
2 4
2[[bllrow < W (0) < 4|([lrowb),
—Wrev (b) 7 wrev (b)
4 2 ’

< [Bllrow < {

And finally,

w'V(b) < w(b).
Definition 10. A weight function f(a) is said to be monotonous if setting a passive bit of a
pattern a to active does not decrease f(a). More formally, let the partial ordering a < a' be
defined as a[z][y][z] = 1 = d'[z][y][z] = 1. Then, f is a monotonous weight if Va,a' : a < d,
we have f(a) < f(d').

All weights defined in this section are monotonous. This follows directly from Tables
and

7.2 Propagation properties related to the linear step ¢

Definition 11. The column parity (or parity for short) P(a) of a pattern a is a pattern
P(a) = p[z|[2] defined as the parity of the columns of a, namely p[z|[z] = >_, a[z][y][z]. The
parity is defined for states, slices, sheets and columns. The parity of a state has the shape of
a plane, the parity of a slice has the shape of a row, the parity of a sheet has the shape of a
lane and the parity of a column is a bit.

67 / [121]

KECcAK 7. Trail propagation in KECCAK-f

Equivalently, the parity is the result of applying the operator § (see Section , and
the value C' in Algorithm |§| is the parity of a state. A column is even (resp. odd) if its parity
is O (resp. 1). When the parity of a pattern is zero (i.e., all its columns are even), we say it is
in the CP-kernel, as in Section [6.5.3] Note that the column parity defines a partition on the
set of possible states.

Definition 12. The 6-effect of a state a before 0 is a pattern E(a)[x][z] defined as the result of
applying the operator jj(x+2x*2) to the state, or equivalently by applying the operator (x+x*2)
to its parity, i.e., E(a)[z][z] = P(a)[x — 1][z] + P(a)[z + 1][z — 1].

In difference propagation, the f-effect is also the value of D in Algorithm [} In mask
propagation, the f-effect is defined by AT rather than 6 itself and the expression becomes
E(a)[z][z] = P(a)[z 4+ 1][z] + P(a)[z — 1][z + 1]. (see Section [6.3.2.2). Note that the 6-
effect always has an even Hamming weight. A column of coordinates (z,z) is affected iff
E(a)[z][z] = 1; otherwise, it is unaffected.

The 6-effect entirely determines the effect of applying 0 to a state a. For a fixed 6-effect
elz][z], 0 just adds a constant pattern e[x][y][z] of bits to the state, constant in each column,
namely e[z][y][z] = e[z][z] for all y. Since the f-effect has even Hamming weight, it means
that the number of affected columns is even.

Definition 13. The 0-gap is defined as the Hamming weight of the 0-effect divided by two.

Hence, if the f-gap of a state at the input of 8 is g, the number of affected columns is 2g
and applying 6 to it results in 10g bits being flipped.

When a state is in the CP-kernel, the 8-gap is zero. However, the 0-gap is also zero when
the parity is all-one, i.e., when all columns have odd parity before 6.

We have defined the 6-gap using the -effect, but it can also be defined using the parity
itself. For this, we need to represent the parity p[z|[z]| differently. We do the coordinate trans-
formation mapping the (z, z) coordinates to a single coordinate t as specified in Section
(i.e., t goes to (x,z) = (—2t,t)) and denote the result by p[t].

In this representation, a run is defined as a sequence R of consecutive t-coordinates,
R={s,s+1,...,s+n— 1}, such that p[s — 1] = 0, p[t] = 1Vt € R and p[s + n] = 0. The
following lemma links the number of runs to the 6-gap.

Lemma 1. The parity p has 0-gap g iff p[t] has g distinct runs.

7.3 Exhaustive trail search

In Section we will show an efficient method for generating all two-round trails up to a
given propagation weight 75. We will then show in section Section how these trails can
be extended to more rounds. In general, we want to generate all -round trails up to some
propagation weight T;. We start with Section deriving the minimum value of T, given
¢ and Ty. Finally, we report on our bounds obtained in Section

7.3.1 Upper bound for the weight of two-round trails to scan

The idea is have bounds on /-round trails by starting from all two-round trails of weight up to
T and extending them both forwards and backwards. More precisely, each two-round trail is
extended n rounds backwards and {—2—n rounds forwards, for each value of n € {0, ...,¢—2}.
This way, we cover all trails that have a two-round subtrail with weight up to T5.

68 / [121]

7. Trail propagation in KECCAK-f KEccAK

Lemma 2. To list all £-round trails of weight not higher than Ty exhaustively, it is necessary
to start from all 2-round trails with weight up to (and including) Ty, with Ty = {ZTZJ if 0 is

A
even, or Ty = L%J if £ is odd.

Proof. For a sequence of weights W = wy, we, ..., wy, let (W) = min;—1_p—1(w; + w;y1). We
want to make sure that 6(1W) <15 for all W such that >, w; < Tp.
If ¢ is even, Ty > Zle w; = 26/2 (woj—1 + woy) > éé(W) and thus (W) < 2% Setting

j=1
T = V%J satisfies the condition.

If 7 is odd, we can always assume that wy, > 2 (as in any non-trivial trail) and thus we
can consider the same problem with sequences of £ — 1 weights and T;_1 =T, — 2. O

So we have all the necessary ingredients to make exhaustive search of trails up to a given
weight, within the limits of a reasonable computation time, and we can use that to find trails
with minimum weight.

7.3.2 Constructing two-round trails

In this section we describe an efficient method for constructing all two-round trails (ag, a1)
with w(ag) + w(a1) < Tb for a given value T. For any such trail, we know that there exists
a trail (af, a1) with w(ap) = w*(A"1(a1)) < w(ag). The quantity w*(A~1(a)) + w(a) < Ty
imposes a lower bound on the weight of a 2-round trail trail that has a as its state before y
of the second round and we give it the following name.

Definition 14. The propagation branch number of a state a before x is denoted by Bp(a)
and given by:
By(a) = WA\ Ha)) + w(a) .

Hence, rather than explicitly constructing all two-round trails, we can generate the set of
states a such that Bp(a) < T>. We call this set (7). It contains the second members a; of
all two-round trails @ with w(Q) < T5. Each state in this set «(73) then serves as a starting
point for trail extension. For the resulting trails, we know that the subtrail (a;—1,a;) with
a; = a has a weight of at least B (a).

In generating a(Th) we use a strategy that exploits the monotonicity of the propagation
weight and the properties of 6 in terms of the Hamming weight of its input/output. In
Section we listed equations providing lower bounds on the weight and reverse minimum
weight of a state as a function of its Hamming weight. Hence, ||a|| and [|A71(a)|| gives a lower
bound on By (a).

Definition 15. The Hamming branch number of a state a before x is denoted by By(a) and
given by:
By(a) = A" (a)][+ [[al| -

We can now just generate all states up to some given propagation branch number by
generating all states up to a sufficiently high Hamming branch number value.

Now let a’ be the state before 6 corresponding with a. In difference propagation, we
have o’ = A~!(a) and in mask propagation this is a’ = 6T ' (a). Tt follows that in difference
propagation, we have ||a’|| = ||[A\7(a)|| and ||8(a’)|| = ||a|| and hence By (a) = ||d’|| + ||8(a’)|].
In mask propagation we can similarly derive By(a) = ||a/|| + [|6T (a’)||. Hence we can instead

69 / [121]

KECcAK 7. Trail propagation in KECCAK-f

move our reference from a to a’ and just compute the value of a from a’. With a slight abuse
of notation we will write By (a’) and Bp(a’) to denote By (a) and Bp(a).

Consider now the set of states a’ with a given parity p, i.e., P(a’) = p. As the f-effect e is
fully determined by the parity, all these states have the same parity effect. It follows that 6
is reduced to the addition of a constant value, facilitating the computation of By(a’) and the
deduction of lower bounds on By (a’).

Similar to the Hamming branch number of a state, we can define the Hamming branch
number of a parity.

Definition 16. The Hamming branch number of a parity p before 0 is defined as the minimum
Hamming branch number over all states with the given parity:

B = min By(ad) .
h(p) a’ :P(a")=p h()

In a state a’ we can use its parity p to partition its columns a'[z][z] in four kinds: odd
(P(d’)[z][z] = 1) and even (P(a’)[x][z] = 0), combined with affected (E(a’)[z][z] = 1) and
unaffected (E(a’)[z][z] = 0). We can use this to easily compute By(p) for any parity p.

e An unaffected odd column has at least one active bit before 6 and is preserved after it.
Hence, it contributes at least 2 to By(a’). As this minimal case can be constructed, the
contribution to By (p) is equal to 2.

e An affected (odd or even) column having n active bits before 6 has 5 —n bits afterwards,
hence contributes exactly 5 to By(a’) and to By(p).

e An unaffected even column can have zero active bits, hence does not contribute to
Bu(p).

Hence, it turns out that
By(p) = 5[|E(p)|| +2[lp - (0+ E(p))|| = 10g + 2uo,

with g the #-gap of p, - the componentwise product, 0 the all-1 state and u, the number of
unaffected odd columns.

We can now generate all states a’ up to some given propagation branch number and with
given parity p in two phases.

e In a first phase we generate all states o’ with By(a’) = Bp(p). We call those states
branch-parity-minimal.

e In a second phase, we can generate states @’ that are not branch-parity-minimal by
taking branch-parity-minimal states and adding pairs of active bits in columns such
that the parity is unchanged.

70 /[121]

7. Trail propagation in KECCAK-f KEccAK

The generation of branch-parity-minimal states is done as follows:

e For each unaffected odd column, put a single active bit. There are 5 possibilities: one
for each positions y.

e For each affected even column, put an even number of active bits. There are 2% possi-
bilities.

e For each affected odd column, put an odd number of active bits. There are in 2*
possibilities.

The number of branch-parity-minimal states a’ with given parity p is thus 2895/P(1+e)l,

From the monotonicity of the weights it follows that in the set of states a’ with given
parity p, the subset of branch-parity-minimal states contain the states that minimize Bp(a’).
Adding a pair of active bits in a single column of @’ leaves its parity intact and thanks to the
monotonicity cannot decrease Bp(a'). From this, we devise the following strategy to generate
all states ¢’ with given parity p with By(a") < T».

For each branch-parity-minimal state a’ with Bp(a") < T3 do the following:

e Output a'.

e Iteratively construct states a’ by adding pairs of active bits in each column, as long as
By(a') < Tp. To avoid duplicates the active bits shall have y coordinates with larger
values than any active bits in the columns.

To generate all states a’ for which Bp(a’) < T» we must do this for all parities with a small
enough 6-gap. Actually, we can compute a lower bound on By (a’) given only P(a’). We then
have to consider only those parities for which this bound is lower than or equal to T>. We
compute it in the following way. First, we consider the Hamming branch number By, (p) and
assume that [A\7!(a)| = Byp(p) — n and |a| = n for some value n. Then, we use the bounds
found in Section [Z.1] and minimize over n. Note that we have checked that the minimum is
always at n = 1, hence:

B / > : A Trev B _ + 5
p(a) = e n W (Bu(p) —n) +W(n)
= W*(Bu(p) —1) +2

=w'(10g + 2uo, — 1) + 2.

Hence the 0-gap of the parity p imposes a lower bound to the propagation branch number of
a state.

Then, it is possible to determine the maximum 6-gap gmax above which the lower bound
is above Ty. If we further relate gmax to the number of runs in the parity, as in Lemma
we can generate all possible parities we need to consider by generating those with up to gmax
runs.

Notice that both x and A are invariant by translation along z. It is thus necessary to
keep only a single member of the states (or parities) in a(7%) that are equal modulo the
translations along z.

71 /[121]

KECcAK 7. Trail propagation in KECCAK-f

7.3.3 Extending trails

We can now use the elements in a(7%) to recursively generate longer and longer trails up
to some given length and some given weight. We can extend the trails in two directions:
forward and backward. Given a trail @), extending the trail forward (resp. backward) means
constructing trails @' of which @ is a prefix (resp. suffix). It can also be in both directions,
i.e., adding a number of steps as a prefix and another number of steps as a suffix of Q.

In the forward direction, the general idea is the following. Given the last state ay_1 of the
trail @, we characterize the affine space A(ay—1) as an offset and a basis, i.e.,

A(af) =5+ <t17t27 e 7tw(ae)> .

We can then loop through the affine space, produce the state values a, and check the weight
w(ag). If the weight is low enough for the extended trail to be interesting in the search, we
can append ay to @ and recursively continue the search from there if necessary.

In the backward direction, we cannot use an affine space representation of a_1 as a function
of ag. As the weight is determined by the to-be-found state a_1, we can list, for each active
row of by, the possible input rows and their corresponding weight in increasing order. The
weight of a_1 is the sum of the weights of each individual row, and we can take advantage
of this to choose input rows such that the weight stays below or equal to a given threshold.
We set each active row to the input row with lowest weight, the total weight w(a_1) being
equal to w™V(bg) for the output state by. Then, we can generate all other input states a_; by
looping through the input rows, locally knowing up to which weight we can go.

7.3.4 Linear and differential trail bounds for w < 8§

We have investigated the different instances of KECCAK- f[b] starting from the smallest widths
b = 25w, resulting in the lower bounds for trail weights listed in Table [7.3] Thanks to
the Matryoshka structure, a lower bound on trails for KECCAK-f[b] implies a lower bound
on symmetric trails for all larger widths. More specifically, a differential or linear trail for
KECCAK- f[25w] with weight W corresponds with a w-symmetric trail for KECCAK- f[25w']
with weight W/ = W% For instance, in Table the column DC, w = 8 expresses a
lower bound of 46 on the weight of 4-round trails in KECCAK-f[200]. This also expresses a
lower bound for 4-round symmetric trails in KECCAK-f versions with larger width: 92 for
2-symmetric trails in KECCAK-f[400], 184 for 4-symmetric trails in KECCAK-f[800] and 268
for 8-symmetric trails in KECCAK-f[1600].

For w = 1, five rounds are sufficient to have no trails with weight below 25, the width
of the permutation. For w = 2, six rounds are sufficient to have no differential trails with
weight below the width. It can be observed that as the number of rounds grows, the difference
between the bounds for width 25 and those for width 50 grows. We expect this effect to be
similar for larger widths.

For w = 4, the search was complete up to weight 36 and 38 for 4 rounds, for differential
and linear trails respectively:

e For 4 rounds, the differential trail with minimum weight has weight 30. For the small
number of trails found up to weight 36, we checked that these trails cannot be chained
together. Hence, this guarantees that a 8-round differential trail has at least weight
36+37 = 73. For 5 and 6 rounds, the best trails we have found so far have weight 54 and

72 /[121]

7. Trail propagation in KECCAK-f KEccAK

Number DC LC
ofrounds |w=1|w=2|w=4|w=8|w=1|w=2|w=4|w=2_,
2 8 8 8 8 8 8 8 8
3 16 18 19 20 16 16 20 20
4 23 29 30 46 24 30 38 46
5 30 42 | <54 30 40 | <66
6 37 54 | < 85 38 52 <94

Table 7.3: Minimum weight of w-symmetric trails

85, respectively (but these do not provide bounds). For the 16 rounds of KECCAK-f[100],
we can guarantee that there are no differential trails of weight below 2 x 73 = 146.

e For 4 rounds, the linear trail with minimum weight has weight 38. For 5 and 6 rounds,
the best trails we have found so far have weight 66 and 94, respectively (but these do
not provide bounds). For the 16 rounds of KECCAK-f[100], we can guarantee that there
are no linear trails of weight below 4 x 38 = 152.

For w = 8, the search was complete up to weight 49 and 48 for 4 rounds, for differential
and linear trails respectively:

e For 4 rounds, the differential trail with minimum weight has weight 46. For the small
number of trails found up to weight 49, we checked that these trails cannot be chained
together. Hence, this guarantees that a 8-round differential trail has at least weight
49 + 50 = 99. For the 18 rounds of KECCAK-f[200], we can guarantee that there are no
differential trails of weight below 2 x 99 + 8 = 206.

e For 4 rounds, the linear trail with minimum weight has weight 46. For the small number
of trails found up to weight 48, we checked that these trails cannot be chained together.
Hence, this guarantees that a 8-round differential trail has at least weight 48 + 50 = 98.
For the 18 rounds of KECCAK-f[200], we can guarantee that there are no linear trails
of weight below 8 x 98 + 8 = 204.

7.4 Tame trails

In this section we report on our investigations related to the search for 3-round and 4-round
differential trails with low weight and for high width. In this context, we consider differential
trails for which the intermediate states b; are in the CP-kernel and call such trails tame.
Linear trails are expected to behave in qualitatively the same way.

This is a generalization of the kernel vortices introduced in Section where only
patterns are considered for which both x and € behave as the identity. In kernel vortices only
intermediate patterns at the input of y where considered with a single active bit per row. In
the trails considered in this section, this restriction is no longer present.

7.4.1 Construction of tame trails

Let us start with 3-round differential trails. The weight of such a trail is defined by three
states: (ag,a1,az). This trail is tame if bg = A7'(a1) and by = A~!(az) are both in the

73 / [121]

KECcAK 7. Trail propagation in KECCAK-f

CP-kernel. We have written a program that generates all values of a; of a given Hamming
weight, such that bg is in the CP-kernel and there is at least one three-round differential trail
(ap,a1,az2) that is tame, i.e., with by in the CP-kernel. The latter condition imposes that a;
must be such that the intersection of A(a;) and the CP-kernel is not empty. As y operates
on rows and the CP-kernel is determined by individual columns, this can be treated slice by
slice. In other words, every slice of a; must be such that its linear affine variety of possible
output patterns contains patterns in the CP-kernel.

We call such a slice tame and a state with only tame slices also tame. For slice patterns
with few active bits it can be easily verified whether it is tame. A slice with no active bits
is tame, a slice with a single active bit can never be tame and a slice with two active bits
is tame iff the active bits are in the same column. As the number of active bits grows, the
proportion of slice patterns that are not tame decreases exponentially. As there are only 2%°
different slice patterns, the tameness check can be precomputed and implemented by a simple
table-lookup. Generating all states a; of a given (small) Hamming weight, that are tame and
for which bg is in the CP-kernel can be done efficiently.

We can now construct all valid states a; as the combination of a number of kernel chains.
A kernel chain is set of active bits determined by a sequence of bit positions ¢; in a;. A kernel
chain forms a set of active bits with the following properties:

e When moved to position by the kernel chain it is in the CP-kernel.

e In position a; every slice contains exactly two bits of the kernel chain and is tame,
except the slice containing the initial bit ¢y and the slice containing the final bit cop41,
that each just contain a single slice and are not tame.

Actually, a kernel chain is a generalization of a kernel vortex. It follows that in by, the bits co;
and cg;41 are in the same column and in a1, the bits cg;+1 and cg;49 are in the same column.
This implies that the total number of kernel chains of a given length 2n starting from a given
position is only 4?"~1. Clearly, any combination of kernel chains is in the CP-kernel in by.
Likewise, all slices in a; that contain only two kernel chain bits (excluding the initial and
final bits) are tame. Now we must arrange the initial and final kernel chain bits such that
the slides in ay that contain them are tame. The first possibility is that the bits cg and co,,—1
are in the same column in aq: this kernel chain forms a kernel vortex. The second possibility
is to group the initial and final bits of kernel chains in tame knots. We call a slice in a; with
more than 2 active bits a knot. We construct states a; by combining kernel chains such that
their initial and final bits are grouped in a set of knots. If all knots are tame, the state is
tame. For a given Hamming weight z, valid states may exist with 0 up to |z/3] knots.

In our program we first fix the number of knots and their slice positions and then efficiently
search for all valid states. Table lists the number of valid states a; (modulo translation
over the z-axis) for all KECCAK-f widths and up to a Hamming weight of 14. The question
marks mark the limitations of our search algorithm: we have not yet been able to compute
those values due to time constraints. It can be seen that for a given Hamming weight, overall
the number of valid states decreases with increasing width. For a given width, the number of
valid states increases with increasing Hamming weight.

7.4.2 Bounds for three-round tame trails

Starting from the valid patterns a; we have for each one searched for the 3-round tame trail
with the smallest (restriction) weight. This was done in the following way. Given a; we

74 /[121]

7. Trail propagation in KECCAK-f KEccAK

Width Hamming weight
4 6 8 10 12 14
25 | 825 12100 95600 465690 1456725
50 | 150 13835 905135 22392676 ?
100 | 48 2712 137078 6953033 ?

200 | 10 481 24037 1143550 56824109

400 4 83 4006 164806 7290847 !
800 0 28 918 30771 1154855 44788752
1600 0 10 304 8231 259567 8399589

Table 7.4: The number of valid difference patterns a; per KECCAK-f width and Hamming
weight

Width Hamming weight
4 6 8 10 12 14
25118 20 22 <22 ?
50 | 18 22 25 28 ?
100 | 19 24 29 <36 ?
200 | 20 29 33 38 7 ?
400 | 24 30 35 40 47 7
800 | - 35 41 47 53 58
1600 | - 35 41 48 56 62

Table 7.5: Minimum differential trail weight values of tame 3-round trails per KECCAK-f
width and Hamming weight of ay.

compute the minimum weight of ag by taking w*®¥(A~!(a;)). In the forward direction, we
iterate over all states ag for which by is in the CP-kernel. The results are given in Table
Cases containing a dash indicate that there are no tame 3-round trails for the given width
and Hamming weight. Entries of the form “< n” indicate that not all the patterns were
investigated. It can be seen that increasing the width results only in a limited growth of
the (restriction) weight. Clearly, the limited diffusion due to the existence of the CP-kernel
results in low-weight trails.

7.4.3 Bounds for four-round tame trails

We have conducted the a similar search for the 4-round tame trails with the smallest (restric-
tion) weight. This was done in the same way as for 3-round trails with this difference: rather
than stopping at ag, we iterate over all states az € A(ag) in the CP-kernel and compute
its restriction weight. To speed up the search we apply pruning if the restriction weight of
(ap,a1,az) is such that ag cannot result in a trail with a lower restriction weight than one
found for the given category. The results are given in Table While for small widths the
increase in width does not substantially increase the restriction weights, for higher widths it
can be observed that the minimum Hamming weight of a; for which there exist tame 4-round
differential trails increases dramatically. For width 400 we have to go up to a Hamming
weight of 12 to find a tame 4-round trail and for 800 and 1600 no tame 4-round trails exist

75 / [121]

KECcAK 7. Trail propagation in KECCAK-f

Width Hamming weight
4 6 8 10 12 14

250125 28 29 <31 ?
50 | 30 31 34 38 ?
100 | 30 36 41 <48 ?
200 - 56 56 61 7 ?
400 - - - - 9 7
8O0 | - - - - - -
1600 | - - - - - -

Table 7.6: Minimum differential trail weight values of tame 4-round trails per KECCAK-f
width and Hamming weight of pattern after first x

for a; patterns with Hamming weight below 16. As for the minimum restriction weights of
the 4-round tame trails found, the increase in 30 to 56 from width 100 to 200 and to 90 for
width 400 suggests that the CP-kernel plays a much smaller role than for 3-round trails.

76 / [121]

Chapter 8

Analysis of KECCAK-f

In this chapter we report on analysis and experiments performed on reduced-round versions of
KECCAK-f, either by the designers or third parties. In Section[8.1]we describe our experiments
based on the algebraic normal form representations. In Section we report on the outcome
of attempts to solve CICO problem instances. In Section we describe statistical properties
of reduced-round versions of KECCAK-f[25]. Finally, in Section we discuss distinguishers
that exploit the low algebraic degree of the round function and its inverse.

8.1 Algebraic normal form

In this section, explain how the algebraic normal form can be used to evaluate the pseudo-
randomness of KECCAK-f in different aspects.

8.1.1 Statistical tests

There are several ways to describe KECCAK- f algebraically. One could compute the algebraic
normal form (ANF, see Section with elements in GF(2), GF(2%), GF(2?°) or GF(2¥),
but given the bit-oriented structure and matching 0, p, 7, ¢ and x as operations in GF(2),
the ANF in GF(2) seems like a natural way to represent the KECCAK-f permutation. For
instance, one could take the rows as variables in GF(2°). This way, the x operation applies
independently per variable. However, the other operations will have a complex expression.

We performed several statistical tests based on the ANF of KECCAK-f[b,n, = n], from
b =25 to b = 1600 and their inverses in GF(2). The number of rounds n is also varied from
1 to its nominal value, although in practice we can limit ourselves to a reasonable number of
rounds after which no significant statistical deviation can be found.

In general, the test consists in varying 25 bits of input and counting the number of
monomials of degree d of all b output bits. The statistical test is performed per degree
independently. The number of monomials of degree d should be present in a ratio of about
one half. The test fails when the observed number of monomials is more than two standard
deviations away from the theoretical average. We look for the highest degree that passes the
test.

The different tests determine which input bits are varied and/or which variant of the
KECCAK-f permutation is used.

77 / [121]

KEccAK

8. Analysis of KECCAK-f

Rounds | Maximum degree | Monomials exist

to pass test up to degree
f ! / !

1 (none) (none) 2 3

2 (none) 3 3 9

3 (none) 10 5 17

4 5 25 9 25

5 16 25 17 25

6-24 25 25 25 25

Table 8.1: The BIS ANF statistical test on KECCAK-f[1600] and its inverse

e Bits in slice (BIS) In this test, the 25 bits of the slice z = 0 are varied. For b > 25,
the remaining b — 25 bits are set to zero.

e Bits in lane (BIL) In this test, the first 25 bits of lane x = y = 0 are varied. This
test applies only to b > 800. The remaining b — 25 bits are set to zero.

e Bits in two lanes, kernel In this test, the first 25 bits of lane z = y = 0 and of lane
(z,y) = (0, 1) are varied simultaneously. The remaining b — 50 bits are set to zero. The
idea behind this test is that 6 will behave like the identity in the first round since the
input state is always in the column-parity kernel (see [6.5.3)).

e BIS, symmetry in lanes In this test, the 25 bits of the slice z = 0 are varied. The
b— 25 other bits are set as a[z][y][z] = a]z][y][0] so that all lanes contain either all zeroes
or all ones. The output bits a[z][y][0] are xored into a[x][y][z] for all z > 0. Only the
b — 25 output bits with z > 0 are considered for the test—this test applies only when
b > 25. The purpose of this test is discussed in Section [8.1.2

e BIS, slide This test is like the first BIS test, except that the function tested is different.
Instead of testing it against KECCAK-f[b, n, = n| itself, we test it against the function
slide[b, n] defined in Equation (8.1]). The purpose of this test is discussed in Section

The results for KECCAK-f[1600] are summarized in Tables 8.1 and Extrapolating this
to the full 1600-input-bit ANF and assuming that it starts with a good set of monomials up
to degree 16 at round 5, like here, and then doubles for each additional round, we need at
least 12 rounds to populate a good set of monomials up to degree 1599.

All results of the tests can be found in the file ANF-Keccak-f.ods. It is interesting to
observe the fast increase of degree of the monomials that are densely present in the algebraic
description of the KECCAK-f permutations. Note that the round function has only degree
two and thus no monomial of degree higher than 2¢ can appear after after i rounds. The
degree of the inverse of the round function is three and thus no monomial of degree higher
than 3% can appear after after 7 inverse rounds.

Taking the worst case among all these tests, the KECCAK-f permutations and their in-
verses pass the test for the maximum degree tested here (i.e., max(25,b — 1)) after 6 to 8
rounds, depending on the width.

78 /[121]

8. Analysis of KECCAK-f KECcAK

Rounds | Maximum degree | Monomials exist

to pass test up to degree
f ! / !

1 (none) (none) 2 1

2 (none) 3 4 3

3 (none) 8 8 9

4 8 25 15 25

5 25 25 25 25

6 24 25 25 25

7-24 25 25 25 25

Table 8.2: The BIL ANF statistical test on KECCAK-f[1600] and its inverse

8.1.2 Symmetric trails

The design of KECCAK-f has a high level of symmetry. Due to this, the weight of symmetric
trails may no longer be relevant for the security. (See Section for more details.) We
investigate how an attacker may be able to exploit the symmetry in his advantage.

The weight and existence of trails (both differential and linear) is independent of ¢. The
fact that all other step mappings of the round function are translation-invariant in the direc-
tion of the z axis, makes that a trail () implies w—1 other trails: those obtained by translating
the patterns of) over any non-zero offset in the z direction. If all patterns in a trail have a
z-period below or equal to d, this implies only d — 1 other trails.

Moreover, a trail for a given width b implies a trail for all larger widths b’. The patterns
are just defined by their z-reduced representations and the weight must be multiplied by &’/b.
Note that this is not true for the cardinality of differential trails and the sign of the correlation
contribution of linear trails, as these do depend on the round constants.

To find a pair in a differential trail of weight W requires the attacker to fulfill W conditions
on the absolute values when following that trail. In the case of a b'-symmetric case, the
conditions are repeated V'/b times on translated sets of bits. The question is to determine
whether the symmetry induced by this duplication can be exploited by the attacker, even
with the asymmetry introduced by ¢.

In the absence of ¢, KECCAK-f[b] presented with a symmetric input behaves as b parallel
identical instances of KECCAK- f[25]. In such a modified permutation, a symmetric trail with
weight eb would only impose e conditions (on the symmetric absolute values) rather than eb.

To determine how much asymmetry ¢ introduces on the absolute values, we express the
KECCAK-f[b] permutation on a different set of variables and compute the ANF on it. The
change of variables is defined as:

[z][y]
[z][y]

[0]
[2]

[=][y][0],

a alz][yl[z] ® a[z][y][0], = > 0.

In the absence of asymmetry (i.e., without ¢), a’[z][y][z], z > 0 remains zero if the input
of the permutation is 1-symmetric, i.e., if a[z][y][z] depends only on = and y.

The attacker can try to introduce a symmetric difference and to keep it symmetric through
the rounds. In these new variables, it is equivalent to keeping a'[z][y][z] = 0 for z > 0. By

79 /[121]

KEccAk 8. Analysis of KECCAK-f

analyzing the ANF in these new variables, it gives the degree of the equations to solve to keep
the symmetry in the state at a given round by adjusting the input.

The results of these tests can be found in the file ANF-Keccak-f.ods. The maximum
degree to pass test is indicated in the BIS, sym lane columns. To impose dense non-linear
equations to the attacker, KECCAK-f[50] to KECCAK-f[400] need at least 3 rounds, while
KECCAK- f[800] and KECCAK-f[1600] need at least 4 rounds. A dense number of monomials
with maximum degree tested here (i.e., max(25,b—1)) is reached after 6 rounds for all widths.
Similar conclusions apply to the inverse of KECCAK-f: The maximum degree tested is reached
after 6 rounds for the inverse of KECCAK-f[50], 5 rounds for the inverse of KECCAK- f[100] and
of KECCAK-f[200] and 4 rounds for the other inverses. According to this test, the attacker
should have a very difficult time to keep the differences symmetric after such a number of
rounds.

8.1.3 Slide attacks

Slide attacks [19, 47] are attacks that exploit symmetry in a primitive that consists of the
iteration of a number of identical rounds. We investigate how much asymmetry must be
applied for these attacks to be non-effective.

In the absence of ¢, all rounds are identical. In such a case, this allows for distinguishing
properties of KECCAK-f: the distribution of the cycle lengths will be significantly different
from that of a typical randomly-chosen permutation.

To evaluate the amount of inter-round asymmetry brought by ¢, we performed a specific
test based on ANF. We compute the ANF of the function slide[b, n], which is obtained by
XORing together the output of the first n rounds of KECCAK- f[b] and the output of n rounds
starting from the second one. Alternatively, it is defined as

slide[b, n] = (round,,—1 o - - - o roundyp) @ (round,, o - - - o roundy), (8.1)

where round; is the round permutation number 4. In the absence of ¢, the slide[b, n| function
would constantly return zeroes. With ¢, it returns the difference between two sets of n rounds
slid by one round.

The results of these tests can be found in the file ANF-Keccak-f.ods. The maximum
degree to pass test is indicated in the BIS, slide columns. The degree increases more slowly
than for other tests such as bits in slice. However, the maximum degree tested here (i.e.,
max(25,b — 1)) is reached after 8 rounds for KECCAK-f[25] and after 6 rounds for all other
widths. For the inverse of KECCAK-f[25], the maximum degree tested is reached after 7
rounds and, for the other inverses, after 4 rounds.

8.2 Solving CICO problems algebraically

8.2.1 The goal

As explained in Sections to the security of a sponge function relies critically on the
infeasibility of solving non-trivial CICO problems for its underlying permutation. The re-
sistance of KECCAK-f against solving non-trivial CICO problems is hence critical for the
security of KECCAK. We have developed software to generate the sets of equations in a form
that they can be fed to mathematics software such as MAGMA or SAGE, and subsequently
using this software to solve instances of the CICO problem for different sets of parameters.

80 / [121]

8. Analysis of KECCAK-f KECcAK

8.2.2 The supporting software

KEeccakTooLs [14] supports the generation of round equations of all supported width values,
compatible with SAGE or other computer algebra tools. It can generate the equations for all
operations within a round, 8, p, m, x and ¢, or a sequence of them. The functions that generate
the equations are based on the same code that actually evaluates the KECCAK- f permutations.
Using C++ template classes, the evaluation of the operations is made symbolically, hence
producing equations. This way of working reduces the chances of making mistakes, as it
avoids to duplicate the description of KECCAK-f in C++.

The format of the generated equations has been chosen to match the syntax of SAGE [80].
Also, the bits inside the state are named in such a way that their alphabetical order matches
the bit numbering defined at the level of the sponge construction. This feature comes in handy
when defining a concrete problem to solve, e.g., finding a pre-image or a collision. One needs
to separate bits that are known and fixed from those that are the unknowns of the problem
instance. This separation is defined at the sponge level and can be done alphabetically on
the bit names.

We have installed a SAGE server version 1.4 [80] and automated the tests using Python
scripts [26] interpreted by the SAGE server.

8.2.3 The experiments

In our experiments we have used SAGE to solve a wide range of CICO problems applied
to the KECCAK-f permutations. In all problems a subset of the input bits and output bits
are fixed to randomly generated values. More particularly, the range of CICO problems we
investigated can be characterized with the following parameters:

e Number of rounds n,: the number of rounds of KECCAK-f
e Width b: the width of KECCAK-f

e Rate r: the number of unknown input bits

e Output length n: the number of known output bits

There is a variable for every bit at the input of each round and for the output bits, totalling to
b(ny + 1) variables. There is a round equation for each output bit of every round, expressing
the output bit as a Boolean expression of the input bits. Additionally there is an equation
for each input or output bit that is fixed, simply expressing the equality of the corresponding
variable with a binary constant. Hence in total the number of equations is bn, + (b—r) +n =
b(ny +1)+n—r.

We use SAGE to solve the CICO problems using Ideals and Grobner bases [33]. We
provide a short intuitive explanation here and refer to [33] for thorough treatment of Ideals
and Grobner bases. To solve a CICO problem we do the following;:

e Define a ring R of Boolean polynomials, providing the b(n, + 1) variable names and
specifying the so-called term ordering [33].

e Define an ideal over the ring, providing the b(n, + 1) + n — r equations as generator
polynomials.

e Compute a Grobner basis for this ideal.

81 /[121]

KEccAk 8. Analysis of KECCAK-f

The generated Grobner basis consists of a sequence of polynomials (equivalent to equations)
that allows to easily generate all solutions of the set of equations generating the ideal. If there
is no solution, it simply consists of the polynomial 1 (implying the equation 1 = 0 that has no
solution). If there is one solution, it simply consists of a sequence of equations of type = + 1
(implying = 1) or z (implying = 0). The order of the variable names and term ordering
provided in the definition of the ring R have an impact on the Grébner basis. The sequence
of polynomials in the Grobner basis satisfy an ordering that is determined by the order of
variable names and the term ordering. This is not just the way the basis is presented but has
an impact on the way it is generated and hence may impact its computational and memory
complexity.

For executing these functions, SAGE calls an underlying library dedicated to Boolean
polynomials and monomials. This library is called PolyBoRi [23] and is part of the SAGE
distribution. As opposed to the generic polynomial ideal oriented functions in SAGE, it
heavily exploits the fact that Boolean polynomials can be modelled in a very simple way,
with both coefficients and degree per variable in {0,1}. The ring of Boolean polynomials is
not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with
two elements modulo the field equations x? = z for each variable x. Therefore, the usual
polynomial data structures seem not to be appropriate for fast Grébner basis computations.
The PolyBoRi authors state that they introduces a specialised data structure for Boolean
polynomials, capable of handling these polynomials more efficiently with respect to memory
consumption and also computational speed.

If the number of equation is smaller than the number of variables, we expect there to be
multiple solutions. If the number of equations is larger than the number of variables, chances
are that there is no solution at all. A priori, the expected number of solutions of a CICO
problem is 2"7™. In our experiments we have focused on the case r = n where we expect to
have one solution on the average and across experiments we expect the number of solutions
to have a Poisson distribution with A = 1. This is an interesting case as it corresponds with
the CICO problems encountered when searching a (second) pre-image.

We investigated the case n = r for values of r up to 12, values of n, up to 8 and widths
from 25 to 400. We used lexicographical order with the output variables declared first and the
input variables declared last, as from preliminary experiments this turned out to be the most
efficient choice. For each set of parameters, a number of CICO problems was solved with at
least 5 problems resulting in a solution and 5 problems resulting in the absence of a solution.
We arranged the output of SAGE for analysis in the file Keccak-CICO-results.ods.

Analysing this data, we can make the following observations:

e For small values of r PolyBoRi is efficient in computing the Grobner basis, and this for
all values of n, and width b.

e For certain parameter choices, solving CICO problems that have no solution takes signif-
icantly less time than CICO problems that have a solution. The difference is especially
large for large widths and small rate values. When the rate increases, the computation
times for the two cases (solution and no solution) converge.

e Doubling the width, keeping all other parameters constant also roughly doubles the

computation time. Hence the computation time appears to grows roughly linearly in
the width.

82 / [121]

8. Analysis of KECCAK-f KECcAK

e Increasing the number of rounds from n, to n,+1, keeping all other parameters constant,
results in an increase roughly independent from the value of n,. Hence the computation
time appears to grow linearly in the number of rounds.

e The effect of increasing bitrate by 1 from r to r + 1, keeping all other parameters
constant, appears to increase the computation time by a factor that weakly increases
with 7 and the number of rounds. At r = 12 its value is around 3. If we may extrapolate
this behaviour, solving a CICO problem quickly becomes infeasible with this method as
7 grows.

Hence for this class of CICO problems the case of a small rate and small output length can be
relatively easily solved. Although surprising at first sight, this poses no threat to the security
of KECcCAK-f as such a CICO problem can be efficiently solved by exhaustive search for any
permutation. It suffices to try all 2" possible values of the » unknown input bits, apply the
permutation and verify whether the generated output has the correct value in the known bit
positions.

8.2.4 Third-party analysis

[2] reports on attempts of solving instances of the CICO problem for different widths of
KECCAK-f using a so-called triangulation tool. Solutions were found for KECCAK-f[1600]
reduced to three rounds. For more rounds the fast backwards diffusion in 6 apparently
prevented solving the CICO problems.

[66] reports on attempts of solving instances of the CICO problem for different widths of
KECCAK-f by first expressing the round equations in conjunctive normal form (CNF) and
then run SAT solvers on the resulting set of equations. The SAT solver performed better than
exhaustive search for some CICO problem instances of KECCAK-f[1600], KECCAK- f[200] and
KEcCAK- f[50] reduced to three rounds. For more rounds the SAT solvers were less efficient
than exhaustive search.

8.3 Properties of KECCAK-f[25]

The KECCAK-f permutations should have no propagation properties significantly different
from that of a random permutation. For the smallest KECCAK-f version, KECCAK-f[25], it
is possible to experimentally verify certain properties.

First, we report on the algebraic normal form investigations, applied to KECCAK-f[25].
Second, we have reconstructed significant parts of the distribution of differential probabilities
and input-output correlation of KECCAK-f[25] and its reduced-round versions. Third, we
have determined the cycle structure of KECCAK-f[25] and all its reduced-round versions.

As a reference for the distributions, we have generated a pseudorandom permutation
operating on 25 bits using a simple algorithm from [58] taking input from a pseudorandom
bit generator based on a cipher that is remote from KECCAK and its inventors: RC6 [75]. We
denote this permutation by the term Perm-R.

8.3.1 Algebraic normal statistics

The results of the ANF analysis of KECCAK-f[25] are displayed in Table Starting from 7
rounds, all monomials up to order 24 exist and appear with a fraction close to one half. Since

83 / [121]

KEccAk 8. Analysis of KECCAK-f

Rounds | Maximum degree | Monomials exist

to pass test up to degree
f ! / !

1 (none) (none) 2 3

2 1 2 4 9

3 6 10 8 17

4 14 18 16 21

5 22 23 22 23

6 23 23 24 24

7-12 24 24 24 24

Table 8.3: The ANF statistical test on KECCAK- f[25] and its inverse

KECCAK-f[25] is a permutation, the monomial of order 25 does not appear.

8.3.2 Differential probability distributions

We have investigated the distribution of the cardinality of differentials for KECCAK-f[25],
several reduced-round versions of KECCAK- f[25] and of Perm-R. For these permutations, we
have computed the cardinalities of 24! differentials of type (a’,d’) where a’ ranges over 2'°
different non-zero input patterns and b’ over all 2?° patterns. For Perm-R we just tested
the first (when considered as an integer) 2'% non-zero input patterns. For the KECCAK-f[25]
variants we tested as input patterns the first 26 non-zero entries in the lookup table of
Perm-R.

In a random permutation the cardinality of differentials has a Poisson distribution with
A = 1/2. This is studied and described among others in [40]. Moreover, [40] also determines
the distribution of the maximum cardinality of a large number of differentials over a random
permutation. According to [40), Section 5.2], the expected value of the maximum cardinality
over the 24! samples is 12 and the expected value of the maximum cardinality over all 259 — 1
non-trivial differentials (a’,?’) is 14.

We provide in a sequence of diagrams the histograms obtained from these samplings,
indicating the envelope of the theoretical Poisson distribution for a random permutation
as a continuous line and the results of the measurements as diamond-shaped dots. We have
adopted a logarithmic scale in the y axis to make the deviations stand out as much as possible.

Figure [8.1] shows that Perm-R exhibits a distribution that follows quite closely the theo-
retically predicted one. The maximum observed cardinality is 11.

Figure shows the distribution for the two-round version of KECCAK-f[25]: the distri-
bution deviates significantly from the theoretical Poisson distribution. Note that here also
the = axis has a logarithmic scale. The largest cardinality encountered is 32768. It turns out
that the pairs of this differential are all in a single trail with weight 9. The number of pairs
is equal to the number of pairs predicted by the weight: 2249 = 215, Note that there are
2-round trails with weight 8 (see Table but apparently no such trail was encountered in
our sampling.

Figure shows the distribution for the three-round version of KECCAK-f[25]. The devi-
ation from the theoretical Poisson distribution is smaller. The largest cardinality encountered
is now 146. The pairs of this differential are all in a single trail with weight 17. The number

84 /[121]

8. Analysis of KECCAK-f KECcAK

LE+13
1E+12 !P\,\
LE+11

1E+10
LE+09

1.E+08 -
1.E+07 -

1.E+06
1.E+05 1 \\

1.E+04

1E+03 ™.

LE+02 1 \
1E+01

1.E+00 N

1E-01 -
0 2 4 6 8 10 12 14

Figure 8.1: Cardinality histogram of sampling of Perm-R

LE+12
LE+11
LE+10 -
1E+09
1.E+08 -
1E+07 -
1E+06 -
1E+05 -
1E+04 -
1E+03
LE+02
LE+01
1E+00 o
1.E-01 -

1 10 100 1000 10000 100000

Figure 8.2: Cardinality histogram of sampling of 2-round version of KECCAK- f[25]

85 /[121]

KEccAk 8. Analysis of KECCAK-f

1.E+12

1.E+11
1.E+10 -
1.E+09 -
1.E+08 -
1.E+07 A

1.E+06
1.E+05 \
1.E+04 \,\
1.E+03
LE+02 \ \w.,,..
1E+01 “"ea. P I
1.E+00 \. ..“.e“‘..':“ev‘ T * A .‘00 ‘. % .‘.ee
1.E-01 -
0 20 40 60 80 100 120 140 160

Figure 8.3: Cardinality histogram of sampling of 3-round version of KECCAK- f[25]

of pairs is slightly higher than the number of pairs predicted by the weight: 224717 = 27, The
3-round trails with weight 16 (see Table were not encountered in our sampling.

Figure shows the distribution for the four-round version of KECCAK-f[25]. The sam-
pling does no longer allow to distinguish the distribution from that of a random permutation.
The largest cardinality encountered is now 12. The pairs of this differential are in 12 different
trails with weight ranging from 56 to 64. For the 4-round trails with weight 23 (see Table|7.3))
it is not clear whether they were encountered in our sampling: the expected number of pairs
is only 2 and this may have gone unnoticed.

Finally, Figure shows the distribution for the 12-round version of KECCAK-f[25]. As
expected, the distribution is typical of a random permutation. The maximum cardinality
observed is 12.

8.3.3 Correlation distributions

We have investigated the distribution of the correlations for KECCAK- f[25], several reduced-
round versions of KECCAK- f[25] and Perm-R. For these permutations, we have computed the
correlations of 23? couples (v, u) where u ranges over 2! different non-zero output masks and
v over all 225 patterns. For Perm-R we just tested the first (when considered as an integer)
2'4 non-zero output masks. For the KECCAK-f[25] variants we tested as output masks the
first 2'4 non-zero entries in the lookup table of Perm-R.

In a random permutation with width b the input-output correlations have a discrete
distribution enveloped by a normal distribution with 02 = 27°. This is studied and described
in [40]. Moreover, [40] also determines the distribution of the maximum correlation magnitude
of a large number of couples (v, u) over a random permutation. According to [40, Section 5.4],
the expected value of the maximum correlation magnitude over the 23° samples is 0.00123
and the expected value of the maximum correlation magnitude over all 2°° — 1 non-trivial
correlations (v, u) is 0.0017.

We provide in a sequence of diagrams the histograms obtained from these samplings,

86 /[121]

8. Analysis of KECCAK-f KECcAK

1E+13
LE+12 0\\
LE+11

LE+10 -
LE+09 -

1.E+08 -
1.E+07 -

1.E+06
1E+05 1 \0\

1E+04

LE+03 N

LE+02 1 \
1E+01

1.E+00 \

. 4

1E-01 -
0 2 4 6 8 10 12 14

Figure 8.4: Cardinality histogram of sampling of 4-round version of KECCAK- f[25]

1E+13
LE+12 0\\
LE+11

1E+10
1.E+09 4

1.E+08
1.E+07 -

1.E+06
LE+05 | \

LE+04

1.E+03 ™~

1.E+02 4 \
1LE+01

LE+00

1.E-01 -
0 2 4 6 8 10 12 14

1e

Figure 8.5: Cardinality histogram of sampling of KECCAK-f[25]

87 /[121]

KEccAk 8. Analysis of KECCAK-f

1.E+09

1.E+08 g —

LE+07

1.E+06 / \
1E+05 / \

1.E+04

1.E+03
1.E+02

1E+01

1.E+00

1AE—01‘ F / | | | | | | | | | \

-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0O 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Figure 8.6: Correlation histogram of sampling of Perm-R

indicating the envelope of the theoretical normal distribution for a random permutation as
a continuous line and the results of the measurements as diamond-shaped dots. We have
adopted a logarithmic scale in the y axis to make the deviations stand out as much as possible.

Figure shows that Perm-R exhibits a distribution that follows quite closely the normal
envelope. At its tails the experimental distribution exhibits its discrete nature. Because it
is a permutation, the correlation can only be non-zero in values that are a multiple of 227°.
For a given correlation value ¢ that is a multiple of 227°, the a priori distribution of the
corresponding value in the histogram is a Poisson distribution with A given by the value of
the normal envelope in that point. The largest correlation magnitude observed is 0.001226,
quite close to the theoretically predicted value.

Figure shows the distribution for the two-round version of KECCAK-f[25]: the dis-
tribution deviates significantly from the theoretical normal envelope. Additionally, it is zero
for all values that are not a multiple of 2715 (rather than 2723). This is due to the fact
that the Boolean component functions of KECCAK-f[25] have only reached degree 4 after two
rounds, rather than full degree 24. The largest correlation magnitude encountered is 0.03125
(outside the scale of the figure). This is the correlation magnitude 27° one would obtain by
a single linear trail with weight 10. By measuring the correlation of the same pair of masks
for variants of the two-round version of KECCAK-f[25] where different constant vectors are
XORed in between the two rounds, it turns out that the correlation value is either 2° or —27°.
This implies that the correlation is the result of a single trail. The 2-round linear trails with
weight 8 (see Table were apparently not encountered in our sampling.

Figure shows the distribution for the three-round version of KECCAK-f[25]: the de-
viation from the theoretical normal envelope becomes smaller. This distribution is zero for
all values that are not a multiple of 2718 due to the fact that the Boolean component func-
tions of KECCAK- f[25] have only reached degree 8 after three rounds. The largest correlation
magnitude encountered is 0.003479. This is a correlation magnitude that cannot be obtained
by a single linear trail. 3-round linear trails with weight 16 would give correlation magnitude

88 /[121]

8. Analysis of KECCAK-f KECcAK

1E+11

1E+10

1.E+09

1.E+08
1.E+07

1.E+06

1.E+05
1.E+04
1.E+03
1.E+02

1E+01
1.E+00

1E-01
-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

Figure 8.7: Correlation histogram of sampling of 2-round version of KECCAK- f[25]

278 ~ 0.0039. It is quite possible that the observed correlation value is the sum of the (signed)
correlation contributions of some trails, including one with weight 16 and some with higher
weight. By measuring the correlation of this pair of masks in variants of the three-round
version of KECCAK- f[25] where different constant vectors are XORed in between the rounds,
we obtain 491 different values. This implies that this correlation has contributions from at
least 9 trails.

Figure shows the distribution for the four-round version of KECCAK-f[25]. The shape
of the distribution and the maximum values do no longer allow to distinguish the distribu-
tion from that of a random permutation. The largest correlation magnitude encountered is
0.001196. However, this distribution differs from that of a random permutation because it is
zero for all values that are not a multiple of 2729 due to the fact that the Boolean component
functions of KECCAK-f[25] have only reached degree 16 after four rounds. By measuring the
correlation of this pair of masks in variants of the four-round version of KECCAK- f[25] where
different constant vectors are XORed in between the rounds, we obtain many different values
implying that this correlation is the result of a large amount of trails. Moreover, the value of
the correlation exhibits a normal distribution.

After 5 rounds the distribution is zero for values that are not a multiple of 2722 and only
after 6 rounds this becomes 2723,

Finally, Figure shows the distribution for the 12-round version of KECCAK-f[25]. As
expected, the distribution is typical of a random permutation. The maximum correlation
magnitude observed is 0.001226.

8.3.4 Cycle distributions

We have determined the cycle structure of KECCAK- f[25] and all its reduced-round versions.
Table [8.4]lists all cycles for KECCAK-f[25] and Table [8.5|the number of cycles for all reduced-
round versions. For a random permutation, the expected value of the number of cycles is
In(2%5) = 25In2 ~ 17.3. The average of Table [8.5|is 16.3.

89 /[121]

KEccAk 8. Analysis of KECCAK-f

1.E+10 -
1.E+09 / \
1.E+08

1.E+07 1

1.E+06 q

1.E+05 1
1E+04 l \
1.E+03

1.E+02 1

1.E+01 q

* & * e
1.E+00 T T
1.E-01] \

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

$
+
$

Figure 8.8: Correlation histogram of sampling of 3-round version of KECCAK- f[25]

1.E+10 B
1.E+09 / \
1.E+08

1E+07 B

1.E+06 B

1.E+05 E

1.E+04

1E+03

1.E+02

1E+01

1.E+00

1.E-01
-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Figure 8.9: Correlation histogram of sampling of 4-round version of KECCAK- f[25]

90 /[121]

8. Analysis of KECCAK-f KECcAK

1.E+09

1.E+08 g —

LE+07

1.E+06 / \
1E+05 / \

1.E+04

1.E+03
1.E+02
1.E+01

1.E+00

-0.0014 -0.0012 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0O 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Figure 8.10: Correlation histogram of sampling of KECCAK- f[25]

It can be observed that KECCAK-f[25] and all its reduced-round versions have an even
number of cycles. For a permutation operating on a domain with an even number of elements,
an even number of cycles implies that it is an even permutation [85], hence they are all even
permutations. Actually, it is easy to demonstrate that all members of the KECCAK-f family
are even permutations. We do however not think this property can be exploited in an attack
or to build a usable distinguisher.

The members of the KECCAK-f family are even permutations because the composition of
two even permutation is an even permutation and that all step mappings of KECCAK-f are
even permutations. We cite here a number of arguments we found in [85, Lemma 2]:

e The mappings 6, m and p are linear. In fact all invertible linear transformations over Zg
with b > 2 are even permutations. This follows from the fact that each invertible binary
matrix can be obtained from the identity matrix by elementary row transformations
(binary addition of one row to another row), and that these elementary row transfor-
mations (considered as linear mappings) are permutations with 2°~! fixed points and
20=2 cycles of length 2.

e The mapping ¢ consists of the addition of a constant. Addition of a constant in Zg is
the identity mapping if the constant is all-zero and has 2! cycles of length 2 if the
constant is not all-zero.

e The mapping x is an even permutation because it can be represented as a composition
of 5w permutations that carry out the y mapping for one row and leave the other 5w —1
rows fixed. The cycle representation of each such permutation contains a number of
cycles that is a multiple of 22°*~> and hence even.

91 /[121]

KEccAk 8. Analysis of KECCAK-f

18447749 | 147821 | 168 | 12
13104259 | 40365 | 27 | 3
1811878 2134 | 14| 2

Table 8.4: Cycle lengths in KECCAK- f[25]

rounds | cycles || rounds | cycles || rounds | cycles
1 14 5 18 9 14
2 12 6 20 10 20
3 16 7 18 11 18
4 16 8 18 12 12

Table 8.5: Number of cycles in reduced-round versions of KECCAK-f[25]

8.4 Distinguishers exploiting low algebraic degree

The KECCAK-f round function and it inverse have low algebraic degrees, 2 and 3 respectively.
This has been exploited in third-party cryptanalysis to construct a number of distinguishers.

[2] reports on observations showing that KECCAK- f[1600] reduced to 3 and 4 rounds does
not have an ideal algebraic structure and conjectures that this can be observed up to reduced-
round versions of ten rounds, for which the algebraic degree is at most 1024 and hence not
maximal.

[62] tested the resistance of KECCAK against cube attacks by executing efficient cube
attack against the 224-bit output-length version of KECCAK configured as an HMAC and
calling a version of KECCAK-f[1600] reduced to 4 rounds or less. Based on their analysis,
the author suggests that a cube attack against such a configuration would only be practical
against reduced-round versions up to 7 rounds.

The papers [3], 22] describe very simple and elegant distinguishers against reduced-round
versions of KECCAK-f[1600]. They are based on the simple observation that the degree of n
KECCAK-f rounds is at most 2™ and that the degree of n inverse rounds is at most 3". We
cite [3]:

Suppose one firzes 1600 — 513 = 1087 bits of the initial state to some arbitrary value,
and consider the 2513 states obtained by varying the 513 bits left. Our main observation is
that applying the 9-round KECCAK-f to each of those states and zoring the 2°'3 1600-bit final
states obtained yields the zero state. This is because, for each of the 1600 Boolean components,
the value obtained is the order-513 derivative of a degree-512 polynomial, which by definition
s null.

If these states are chosen in some intermediate round and one computes the corresponding
inputs and outputs, this is also the case for those inputs as long as the polynomials expressing
the inputs in terms of the intermediate state bits have small enough degree. Hence one
has a systematic way to construct a set of inputs that XOR to zero and for which the
corresponding outputs XOR to zero, which is qualitatively different from the generic method
[16]. Additionally, if the positions of the free bits in the intermediate round are chosen
carefully, one may even reduce the degree of the forward and/or backward polynomials. Using
these simple elements, [3] constructs distinguishers for up to 16 rounds of KECCAK-f[1600].

92 / [121]

8. Analysis of KECCAK-f KECcAK

This last one makes use of 6 backward rounds and 10 forward rounds.

Given an upper bound of N free bits one can construct a zero-sum distinguisher with
logy N forward rounds and logs N backward rounds. While in a distinguisher using only
the forward direction maximum degree is reached after 11 rounds, the start-in-the-middle
technique allows going up to 16 rounds.

This was further refined in [22] where the authors show a distinguisher for KECCAK- f[1600]
up to 18 rounds and later in [2I], where they extended it to 20 rounds. The new ideas are
the following. First, the Walsh spectrum of x allows one to bound the degree of the inverse
rounds more tightly. In particular, while 7 inverse rounds are expected to be of maximal
degree (as 37 > 1599), they show that it cannot be higher than 1369. Second, by aligning the
bits that are varied and those that are fixed on row boundaries, y works independently and
bijectively row per row. This can be generalized to cover several rounds.

In general, for all widths, the number of rounds is now expressed as 12 + 2¢ instead of
12 + ¢. The motivation behind this is that the applicability of the zero-sum distinguishers
is limited by the maximum number of free bits N, namely the width. Doubling the width
allows to add a forward round in the distinguisher and possibly a backward round. So when
doubling the width, roughly two additional rounds are required to provide resistance against
zero-zum distinguishers.

Further discussions about the applicability of the zero-sum distinguishers can be found in
[16].

93 / [121]

KEccAK 8. Analysis of KECCAK-f

94 / [121]

Chapter 9

Implementation

In this chapter, we discuss the implementation of KECCAK in software and in hardware,
together with its estimated performances.

9.1 Bit and byte numbering conventions

As it impacts the reference implementation, the bit and byte numbering conventions are
defined in [II, Section 5.1]. In this section, we wish to detail our choices concerning the
mapping between the bits of the KECCAK- f[b] permutation and their representation in terms
of w-bit CPU words and in the SHA-3 API defined by NIST [72].

As explained in [IT}, Section 1], the bits in the state are numbered from 0 to b— 1, and bit
i = z+w(by + x) corresponds to the coordinates (z,y, z). From the software implementation
point of view, we expect the bits in a lane (i.e., with the same coordinates (z,y)) to be packed
together in a w-bit CPU word, so that, if the processor allows it, the operation p becomes a
set of CPU word rotations.

For the p operation to be translated into rotation instructions in the processor, the num-
bering z must be either an increasing or a decreasing function of the bit numbering in the
processor’s conventions. So, up to a constant offset, either z = 0 is the most significant bit
(MSB) and z = w — 1 is the least significant bit (LSB), or vice-versa.

The input bits of the hash function come through the Update function of the API, orga-
nized as a sequence of bytes. Within each block, the message bit i = ipi; + 8ipyte is going to
be XORed with the state bit <. To avoid re-ordering bits or bytes and to allow a word-wise
XORing, the message bit numbering should follow the same convention as the state bit num-
bering. In particular, if 2 = 0 indicates the MSB (resp. LSB), iy, = 0 should indicate the
most (resp. least) significant byte within a word.

Since the NIST reference platform follows the little-endian (LE) convention, we adopt the
following numbering of bits and bytes: when mapping a lane to a CPU word, bit z = 0 is
the LSB. Within a CPU word, the byte ipyte = 0 is the least significant byte. Within a byte,
it = 0 is the LSB. This way, the message bits can be organized as a sequence of words
(except for the last bits), to be XORed directly to the lanes of the state on a LE processor.

The convention in the Update function is different, and this is the reason for applying the
formal bit reordering of [I1), Section 5.1]. It formalizes the chosen translation between the two
conventions, while having an extremely limited impact on the implementation. In practice,
only the bits of the last byte (when incomplete) of the input message need to be shifted.

95 /[121]

KECcAK 9. Implementation

r ¢ | Relative performance
576 | 1024 +1.778
832 | 768 +1.231

1024 | 576 1

1088 | 512 x1.063
1152 | 448 x1.125
1216 | 384 x1.188
1280 | 320 x1.250
1344 | 256 x1.312
1408 | 192 x1.375

Table 9.1: Relative performance of KECCAK]r, ¢] with respect to KECCAK]].

9.2 General aspects

For KEccak, the bulk of the processing is done by the KECCAK-f permutation and by
XORing the message blocks into the state. For an input message of [bits, the number of
blocks to process, or in other words, the number of calls to KECCAK-f, is given by:

{S{gj +32W

For an output length n smaller than or equal to the bitrate, the squeezing phase does not
imply any additional processing. However, in the arbitrarily-long output mode, the additional
number of calls to KECCAK-f for an n-bit output is [2] — 1.

When evaluating KECCAK, the processing time is dominantly spent in the evaluation
of KECCAK-f. In good approximation, the throughput of KECccak for long messages is
therefore proportional to r. In the sequel, we will often write performance figures for the
default bitrate r = 1024. To estimate the performance for another bitrate, Table [0.1] provides
the performance relative to the default bitrate. This is valid for long messages; for short
messages, the processing time is determined by the required number of calls to KECCAK-f
(e.g., one when | < r — 25).

96 / [121]

9. Implementation KEccAK

In terms of memory usage, KECCAK has no feedforward loop and the message block can
be directly XORed into the state. This limits the amount of working memory to the state,
the round number and some extra working memory for # and y. Five w-bit words of extra
working memory allow the implementation of 8 to compute the XOR of the sheets, while they
can hold the five lanes of a plane when y is computed.

In terms of lane operations, the evaluation of KECCAK-f[1600] uses

e 1824 XORs,
e 600 ANDs,
e 600 NOTs, and

e 696 64-bit rotations.

Almost 80% of the NOT operations can be removed by applying a lane complementing trans-
form as explained in Section[9.2.1] turning a subset of the AND operations into OR operations.

On a 64-bit platform, each lane can be mapped to a CPU word. On a b-bit platform,
each lane can be mapped to 64/b CPU words. There are different such mappings. As long
as the same mapping is applied to all lanes, each bitwise Boolean operation on a lane is
translated as 64/b instructions on CPU words. The most straightforward mapping is to take
as CPU word i the lane bits with z = bi...b(i + 1) — 1. In that case, the 64-bit rotations
need to be implemented using a number of shifts and bitwise Boolean instructions. Another
possible mapping, that translates the 64-bit rotations into a series of b-bit CPU word rotation
instructions, is introduced in Section [9.2.2

9.2.1 The lane complementing transform

The mapping y applied to the 5 lanes in a plane requires 5 XORs, 5 AND and 5 NOT
operations. The number of NOT operations can be reduced to 1 by representing certain lanes
by their complement. In this section we explain how this can be done.

For the sake of clarity we denote the XOR operation by @, the AND operation by A,
the OR operation by V and the NOT operation by @1. Assume that the lane with x = 2 is
represented its bitwise complement a[2]. The equation for the bits of A[0] can be transformed
using the law of De Morgan (@A b= a V b):

Al0] = a[0] & (a[l] ® 1) A (a2] & 1) = a[0] & (a[1] V a[2]) .

The equation for the bits of A[1] now becomes A[l] = a[l] & (a[2] A a[3]). This results in the
cancellation of two NOT operations and A[0] being represented by its complement. Similarly,
representing a[4] by its complement cancels two more NOT operations. We have

Al0] = al0] @ (a[1] V a[2)),
All] = a[l] ® (a[2] A a[3]),
Al2] = al2] @ (a[3] v a[4)),
A3l = a[3] @ (al4] A a]0]).

In the computation of the bits of A[4] the NOT operation cannot be avoided without intro-
ducing NOT operations in other places. We do however have two options:

4 [4] & ((a[0] ® 1) A a[1]), or

4= a
A4l = a4 @ (al0] V (a]1] @ 1)).

97 / [121]

KECcAK 9. Implementation

Hence one can choose between computing A[4] and A[4]. In each of the two cases a NOT
operation must be performed on either a[0] or on a[l]. These can be used to compute A[0]
rather than A[0] or A[1] rather than A[1], respectively, adding another degree of freedom for
the implementer. In the output some lanes are represented by their complement and the
implementer can choose from 4 output patterns. In short, representing lanes a[2] and a[4]
by their complement reduces the number of NOT operations from 5 to 1 and replaces 2 or 3
AND operations by OR operations. It is easy to see that complementing any pair of lanes ali]
and a[(i + 2) mod 5] will result in the same reduction. Moreover, this is also the case when
complementing all lanes except a[i] and a[(i + 2) mod 5]. This results in 10 possible input
patterns in total.

Clearly, this can be applied to all 5 planes of the state, each with its own input and output
patterns. We apply a complementing pattern (or mask) p at the input of x and choose for each
plane an output pattern resulting in P. This output mask P propagates through the linear
steps 0, p, ™ (and ¢) as a symmetric difference pattern, to result in yet another (symmetric)
mask p’ = w(p(0(P))) at the input of y of the next round. We have looked for couples of masks
(p, P) that are round-invariant, i.e., with p = w(p(6(P))), and found one that complements
the lanes in the following 6 (x,y) positions at the output of x or input of §:

P:{(1,0),(2,0),(3,1),(2,2),(2,3),(0,4)}.

A round-invariant mask P can be applied at the input of KECCAK-f. The benefit is that
in all rounds 80% of the NOT operations are cancelled. The output of KECCAK-f can be
corrected by applying the same mask P. The overhead of this method comes from applying
the masks at the input and output of KECCAK-f. This overhead can be reduced by redefining
KECCAK-f as operating on the masked state. In that case, P must be applied to the root state
0° and during the squeezing phase some lanes (e.g., 4 when r = 16w) must be complemented
prior to being presented at the output.

9.2.2 Bit interleaving

The technique of bit interleaving consists in coding an w-bit lane as an array of s = w/b CPU
words of b bits each, with word ¢ containing the lane bits with z = ¢ (mod s). This can be
applied to any version of KECCAK-f to any CPU with word length b that divides its lane
length w.

For readability, we now treat the concrete case of 64-bit lanes and 32-bit CPU words.
This can be easily generalized. A 64-bit lane is coded as two 32-bit words, one containing
the lane bits with even z-coordinate and the other those with odd z-coordinates. More
exactly, a lane L[z] = alz][y][#] is mapped onto words U and V with Uli] = L[2i] and
V[i] = L[2i+1]. If all the lanes of the state are coded this way, the bitwise Boolean operations
can be simply implemented with bitwise Boolean instructions operating on the words. The
main benefit is that the lane translations in p and 6 can now be implemented with 32-bit word
rotations. A translation of L with an even offset 27 corresponds to the translation of the two
corresponding words with offset 7. A translation of L with an odd offset 27 + 1 corresponds
to U <~ ROT33(V, 7+ 1) and V <~ ROT32(U, 7). On a 32-bit processor with efficient rotation
instructions, this may give an important advantage compared to the straightforward mapping
of lanes to CPU words. Additionally, a translation with an offset equal to 1 or —1 results in
only a single CPU word rotation. This is the case for 6 out of the 29 lane translations in each
round (5 in 0 and 1 in p).

98 / [121]

9. Implementation KEccAK

The bit-interleaving representation can be used in all of KECCAK-f where the input and
output of KECCAK-f assume this representation. This implies that during the absorbing the
input blocks must be presented in bit-interleaving representation and during the squeezing
the output blocks are made available in bit-interleaving representation. When implementing
KECCAK in strict compliance to the specifications [11], the input blocks must be transformed
to the bit-interleaving representation and the output blocks must be transformed back to
the standard representation. However, one can imagine applications that require a secure
hash function but no interoperability with respect to the exact coding. In that case one may
present the input in interleaved form and use the output in this form too. The resulting
function will only differ from KECCAK by the order of bits in its input and output.

In hashing applications, the output is usually kept short and some overhead is caused by
applying the bit-interleaving transform to the input. Such a transform can be implemented
using shifts and bitwise operations. For implementing KECCAK-f[1600] on a 32-bit CPU, we
must distribute the 64 bits of a lane to two 32-bit words. The cost of this transform is about
2 cycles/byte on the reference platform (see Table . On some platforms, look-up tables
can speed up this process, although the gain is not always significant.

9.3 Software implementation

We provide a reference and two optimized implementations of the KECCAK candidates in
ANSI C. The file KeccakSponge.c is common to the three flavors and implements the NIST
API, including the functions Init, Update, Final and Hash, plus the additional function
Squeeze (see [11, Section 5.2]).

The reference implementation calls the KECCAK- f[1600] permutation written in Keccak-
PermutationReference.c, while the optimized versions use KeccakPermutationOptimized-
32.c and KeccakPermutationOptimized64.c for 32-bit and 64-bit platforms respectively.

For best performance, we allow the state to be stored in an opaque way during the hash
computation. In particular, the state can have some of its lanes complemented (as in ,
the even and odd bits separated (as in or the bytes in a word reordered according to
the endianness of the machine. The methods that apply on the state are:

e KeccakInitializeState() to set the state to zero;
e KeccakPermutation() to apply the KECCAK-f[1600] permutation on it;

e KeccakAbsorb1024bits() and KeccakAbsorb() to XOR the input, given as bytes, to
the state and then apply the permutation;

e KeccakExtract1024bits() and KeccakExtract () to extract output bits from the state
in the squeezing phase.

In the case of the reference implementation, separate functions are provided for the 6, p,
m, x and ¢ operations for readability purposes.

Additional files are provided, i.e., to produce known answer test results, to display in-
termediate values in the case of the reference implementation and to measure timings in the
optimized one.

99 /[121]

KECcAK 9. Implementation

9.3.1 Optimized for speed

An optimized version of KECCAK has been written in ANSI C and tested under the following
platforms.

e Platform A:

— PC running Linux openSUSE 11.0 x86_64;

— CPU: Intel Xeon 5150 (CPU ID: 06F6) at 2.66GHz, dual core, with a bus at
1333MHz and 4Mb of level-2 cache;

— Compiler: GCC 4.4.1 using gcc -03 -g0 -march=barcelona for 64-bit code and
adding -m32 to produce only 32-bit code.
e Platform B (reference platform proposed by NIST):

— PC running Vista Ultimate x86 or x64, version 6.0.6001, SP1 build 6001;
— CPU: Intel Core2 Duo E6600 at 2.4GHz;
For x86:

x Microsoft Visual Studio 2008 Version 9.0.21022.8 RTM,

x 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86;
— For x64:

x Microsoft Visual Studio 2008 version 9.0.30428.1 SP1Betal,

* Microsoft Windows SDK 6.1 Targeting Windows Server 2008 x64,

x C/C++ Optimizing Compiler Version 15.00.21022.08 for x64, using c1 /02
/0t /favor:INTEL64.

The code uses only plain C instructions, without assembly nor SIMD instructions. We
have applied lane complementing to reduce the number of NOTs. The operations in the
round function have been expanded in macros to allow some reordering of the instructions.
We have tried to interleave lines that apply on different variables to enable pipelining, while
grouping sets of lines that use a common precomputed value to avoid reloading the registers
too often. The order of operations is centered on the evaluation of x on each plane, preceded
by the appropriate XORs for 8 and rotations for p, and accumulating the parity of sheets for
0 in the next round.

The macros are generated by KECCAKToOLS [14], which can be parameterized to different
lane sizes and CPU word sizes, possibly with lane complementing and/or bit interleaving.

For the 64-bit optimized code, unrolling 24 rounds was found often to give the best results,
although one can unroll any number of rounds that divides 24. On the platforms defined
above, we have obtained the figures in Table

For the 32-bit optimized code, we have used interleaving so as to use 32-bit rotations.
Unrolling 2 or 6 rounds usually gives the best results. We have then performed the same
measurement, instructing the compiler to use only x86 32-bit instructions; the figures are in
Table 0.3

Please refer to eBASH [7] and our website for up-to-date figures on a wider range of
platforms.

100 /[121]

9. Implementation KEccAK

Operation Platform A | Platform B
KECCAK-f[1600] only 1648 ¢ 1845 ¢
Squeezing with r = 1024 12.9 ¢/b 14.4 ¢/b
KEeccak-f and XORing 1024 bits 1680 c 1854 ¢
Absorbing with r = 1024 13.1¢/b 14.5 ¢/b

Table 9.2: Performance of the KECCAK- f[1600] permutation and the XOR of the input block,
compiled using 64-bit instructions (“c” is for cycles and “c/b” for cycles per byte)

Operation Platform A | Platform B
KECCAK- f[1600] only 4408 ¢ 5904 ¢
Squeezing with r = 1024 344 ¢/b 46.1 ¢/b
KEccak-f and XORing 1024 bits 4600 c 6165 ¢
Absorbing with r = 1024 35.9 ¢/b 48.2 ¢/b

Table 9.3: Performance of the KECCAK- f[1600] permutation and the XOR of the input block,
compiled using only 32-bit instructions (“c” is for cycles and “c/b” for cycles per byte)

The performance on the 32-bit reference platform can be improved by using SIMD in-
structions, as detailed in Section Also, it may be possible to find a better order of the
C operations using profiling tools or write the code directly in assembler.

While Platform B is the reference platform given by NIST, we think that the figures for
Platform A are also relevant to the reference platform for the following reasons. First, the
Intel Xeon 5150 [31] is identical in terms of CPU ID, number of cores, core stepping and
level-2 cache size as the Intel Core 2 Duo Processor E6600 (2.4GHz) [30]. The clock speed
differs, but the figures are expressed in clock cycles. Second, the operating system should
not have an impact on the performance of KECCAK as the algorithm does not use any OS
services. Finally, the compiler should not have an impact on the intrinsic speed of KECCAK
on a given CPU, as a developer can always take the assembly code produced by one compiler
and use it as in-line assembly on the other (although we did not do this exercise explicitly).

There is no precomputation in the Init function (when the round constants and p offsets
are integrated into the code). The only constant overhead is taken by clearing the initial
state to zero in Init and padding the message in Final. We have measured the overhead by
timing the whole process from Init to Final with 1, 2, 3 and 10 blocks of data. The number
of cycles of the constant overhead, in the current implementation, is of the order of 300 cycles
using 64-bit code and of the order 600 cycles using 32-bit code (for the whole message).

9.3.2 Using SIMD instructions

The reference platform CPU, as well as other members of the family, supports single instruc-
tion multiple data (SIMD) instruction sets known as MMX, SSE and their successors. These
include bitwise operations on 64-bit and 128-bit registers. Thanks to the symmetry of the
operations in KECCAK- f, the performance of KECCAK can benefit from these instruction sets.
Due to the size of the registers, the relative benefit is higher for 32-bit code than for 64-bit
code.

101 /[121]

KECcAK 9. Implementation

Operation Platform A | Platform B
KECCAK-f[1600] only 2520 ¢ 2394 c
Squeezing with r» = 1024 19.7 ¢/b 18.7 ¢/b
KEeccak-f and XORing 1024 bits 2528 ¢ 2412 ¢
Absorbing with r = 1024 19.8 ¢/b 18.8 ¢/b

Table 9.4: Performance of the KECCAK- f[1600] permutation and the XOR of the input block,
using SSE2 instructions (“c” is for cycles and “c/b” for cycles per byte)

Operation Platform A | Platform B
KECCAK-[1600] only 2816 ¢ 2475 ¢
Squeezing with r = 1024 22.0 ¢/b 19.3 ¢/b
KECCAK-f and XORing 1024 bits 2832 ¢ 9475 ¢
Absorbing with r» = 1024 22.1¢/b 19.3 ¢/b

Table 9.5: Performance of the KECCAK- f[1600] permutation and the XOR of the input block,
using SSE2 instructions and restricted to the 32-bit mode (“c¢” is for cycles and “c/b” for
cycles per byte)

For instance, the pandn instruction performs the AND NOT operation bitwise on 128-bit
registers (or one register and one memory location), which can be used to implement x. Such
an instruction replaces four 64-bit instructions or eight 32-bit instructions. Similarly, the
pxor instruction computes the XOR of two 128-bit registers (or one register and one memory
location), replacing two 64-bit XORs or four 32-bit XORs.

While instructions on 128-bit registers work well for 6, 7, x and ¢, the lanes are rotated
by different amounts in p. Consequently, the rotations in p cannot fully benefit from the 128-
bit registers. However, the rotations in 6 are all of the same amount and can be combined
efficiently.

Overall, the results are encouraging, as shown in Tables and The use of SIMD
instructions on the 32-bit reference platform significantly improves the performance.

9.3.3 SIMD instructions and KECCAKTREE

Parallel evaluations of two instances of KECCAK can also benefit from SIMD instructions, for
example in the context of KECCAKTREE (see Section [£.4). In particular, KECCAKTREE[r =
1024,¢ = 576,G = LI, H = 1, D = 2, B = 64] can directly take advantage of two independent
sponge functions running in parallel, each taking 64 bits of input alternatively. The final node
then combines their outputs.

We have implemented the KECCAK-f[1600] permutation with SSE2 instructions using
only 64 bits of the 128-bit registers. By definition of these instructions, the same operations
are applied to the other 64 bits of the same registers. It is thus possible to evaluate two
independent instances of KECCAK-f[1600] in parallel on a single core of the CPU.

In this instance of KECCAKTREE, the message bits can be directly input into the 128-bit
SSE2 registers without any data shuffling. Using leaf interleaving and a block size B of 64 bits,
64 bits of message are used alternatively by the first sponge then by the second sponge. This

102 /[121]

9. Implementation KEccAK

Operation Platform A | Platform B
2 x (Keccak-f and XORing 1024 bits) 2520 ¢ 2511 ¢
Absorbing with r = 1024 9.8 ¢/b 9.8 ¢/b
2 x (KEccak-f and XORing 1088 bits) 2528 ¢ 2520 c
Absorbing with » = 1088 9.3 ¢/b 9.3 ¢/b

Table 9.6: Performance of KECCAKTREE[r + ¢ = 1600,G = LI, H = 1,D = 2, B = 64] on a
single core using SSE2 instructions to compute two KECCAK-f[1600] permutations in parallel
(“c” is for cycles and “c/b” for cycles per byte)

matches how the data are organized in the SSE2 registers, where 64 bits are used to compute
one instance of KECCAK-f[1600] and the other 64 bits to compute the second instance.

This way of working allows speeds below 10 cycles/byte/core on the reference platform.
Furthermore, one may consider the case r = 1088 and ¢ = 512, for which the claimed security
level is 2256, While losing the power of two for the rate, the final node needs to absorb only
one block (Dc < r) and the overhead remains reasonable: one extra evaluation of KECCAK- f
per message. This benefits also to long messages, for which the number of cycles per byte
is further reduced by 6%. The performance figures for r = 1024 and r» = 1088 are given in
Table 0.6

9.3.4 Protection against side channel attacks

If the input to KECCAK includes secret data or keys, side channel attacks may pose a
threat. One can protect against timing attacks and simple power analysis by coding the
KEccaAK-f permutation as a fixed sequence of instructions in a straightforward way. More-
over, KECCAK-f does not make use of large lookup tables so that cache attacks pose no
problem. (The interleaving method of Section can be implemented with table lookups,
which depend on the input message only. Of course, it can also be implemented without any
table at all.)

Protection against differential power analysis (DPA) can be obtained by applying several
mechanisms, preferably at the same time. One of the mechanisms is called state splitting.
This method was proposed in [48] and [25] and consists in splitting the state in two parts—one
of which is supposed to be random—that give XORed back the actual state value. If properly
implemented, this method eliminates any correlation between values inside the machine and
any intermediate computation result, thereby removing the possibility for first-order DPA.
We have shown how this can be applied to BASEKING in [37]. It turns out that for the linear
steps the computations can be done independently on the two split parts of the state. An
additional overhead is in the non-linear steps, in which operations must be performed using
parts of both split states. As discussed in [12], the mechanisms described in [37] apply equally
well to x, the only non-linear part of KECCAK-f.

9.3.5 Estimation on 8-bit processors

We have estimated the performance of KECCAK on the Intel 8051 microprocessor. The 8051
is an 8-bit processor equipped with an 8-bit data bus and a 16-bit address bus. Initially
the 8051 could only address 128 bytes of internal RAM memory, but later versions were

103 /[121]

KECcAK 9. Implementation

Step Performance
0 34560 cycles
p 20808 cycles
s 0 cycles
X 30048 cycles
L 384 cycles
Words re-ordering 15000 cycles
Total 100800 cycles

Table 9.7: Performance estimates of the KECCAK-f[1600] permutation on the
8XC51RA/RB/RC

released to allow accessing more internal RAM using a technique called Expanded RAM [29].
Nowadays many manufacturers propose variants of the original 8051 with various levels of
improvements, including even more powerful addressing modes, security features and shorter
instruction cycles. The variant we have selected for our estimation is the 80C51RA/RB/RC
microcontroller from Intel [28], with 512 bytes of on-chip RAM, split in 3 segments: 128 bytes
of low internal RAM (direct and indirect access), 128 bytes of high internal RAM (indirect
access only), and finally 256 bytes of external RAM (indirect access only).

The first problem to solve when implementing KECCAK on such a constrained platform
like the 80C51RA/RB/RC is the memory mapping. The performance of memory accesses
depends on which memory segment is addressed, and so a careful mapping must be done
to ensure that most operations are done in the low internal segment. This is particularly
difficult for 6 for which in-place evaluation requires additional temporary storage. However
by following a tight schedule of operations, it is possible to maintain the complete state of
KECCAK in internal RAM, hence maximizing the performance.

Another problem is the implementation of 64-bit rotations in p using 8-bit rotate oper-
ations. At first the 8051 does not offer specific instructions to optimize this step, and so
rotations are merely done by iterating several times rotate-through-carry instructions (with
the exception of 4-bits rotation which can be done by swapping the byte digits). However
using efficient memory transfer instructions like XCH that exchanges the accumulator with a
byte in memory, it is actually possible to reduce the average number of cycles for rotation to
only 4.3 cycles/byte.

The performance estimates for KECCAK including the details for each step are given in
Table for 24 rounds. One cycle refers to the number of controller clock oscillation periods,
which is 12 in the case of our selected variant. It must be noted that the figures are the result
of a best-effort paper exercise. Figures for an actual implementation might vary, in particular
if it uses specific manufacturer improvements available on the platform.

9.4 Hardware Implementations
In this section we report on our hardware implementations of KECCAK. For an overview
and links to third-party hardware implementations of KECCAK we refer to http://keccak.

noekeon.org/third_party.htmll
KEccak allows to trade off area for speed and vice versa. Different architectures reflect

104 /[121]

http://keccak.noekeon.org/third_party.html
http://keccak.noekeon.org/third_party.html

9. Implementation KEccAK

different trade-offs. The two architectures we have investigated and implemented reflect
the two ends of the spectrum: a high-speed core and a low-area coprocessor. Thanks to the
symmetry and simplicity of its round function, KECCAK allows to trade off area for speed and
vice versa. Different architectures reflect different trade-offs. We have concentrated on two
architectures at the two ends of the spectrum: a high-speed core and a low-area coprocessor.

We have coded our architectures in VHDL for implementation in ASIC and FPGA. For
more details on the VHDL code, refer to the readme.txt file in the VHDL directory of the
SHA-3 submission package.

In these efforts we have concentrated on two instances of KECCAK:

KECCAK[r = 1024, ¢ = 576] : the instance of KECCAK with default parameter values. It is
built on top of KECCAK-f[1600], the largest instance of the KECCAK-f family.

KECCAK][r = 40, ¢ = 160] : the instance of KECCAK with the smallest instance of the KECCAK- f
family such that the capacity still provides a security level that is sufficient for many
applications. It makes use of KECCAK-f[200].

It should be noted that during the design of KECCAK particular effort has been put to
facilitate the hardware implementation. The round function is based only on simple Boolean
expressions and there is no need for adders or S-boxes with complex logic (typically used
in many cryptographic primitives). Avoiding these complex sub-blocks allow having a very
short critical path for reaching very high frequencies. Another beneficial aspect of KECCAK
is that, unless intentionally forced, a general architecture implementing KECCAK-f and the
sponge construction can easily support all variants (rates, capacities) and use cases (MAC,
MGF, KDF, PRNG) for a given lane size.

9.4.1 High-speed core

The architecture of the high-speed core design is depicted in Figure It is based on the
plain instantiation of the combinational logic for computing one KECCAK-f round, and use
it iteratively.

The core is composed of three main components: the round function, the state register
and the input/output buffer. The use of the input/output buffer allows decoupling the core
from a typical bus used in a system-on-chip (SoC).

In the absorbing phase, the I/O buffer allows the simultaneous transfer of the input
through the bus and the computation of KECCAK-f for the previous input block. Similarly,
in the squeezing phase it allows the simultaneous transfer of the output through the bus and
the computation of KECCAK-f for the next output block.

These buses typically come in widths of 8, 16, 32, 64 or 128 bits. We have decided to
fix its width to the lane size w of the underlying KECCAK-f permutation. This limits the
throughput of the sponge engine to w per cycle. This imposes only a restriction if r/w (i.e.,
the rate expressed in number of lanes) is larger than the number of rounds of the underlying
KEccAk-f.

In a first phase the high-speed core has been coded in VHDL, test benches for the per-
mutation and the hash function are provided together with C code allowing the generation
of test vectors for the test benches. We were able to introduce the lane size as a parameter,
allowing us to generate VHDL for all the lane sizes supported by KECCAK.

These first VHDL implementations have been tested on different FPGAs by J. Strémbergson [81],
highlighting some possible improvements and problems with the tools available from FPGA

105 /[121]

KECcAK 9. Implementation

hash_ready
1
State register
Input 9
d d
W <+
\ J

i
i
10 Buffer %
]
" 1 & v
\

Output Buffer_ready R

r+c

Figure 9.1: The high-speed core

vendors. We have improved the VHDL code for solving the problems, and this has resulted
in better results in ASIC as well.

The core has been tested using ModelSim tools. In order to evaluate the silicon area and
the clock frequency, the core has been synthesized using Synopsys Design Compiler and a 130
nm general purpose ST technology library, worst case 105°C.

9.4.2 Variants of the high-speed core

The high-speed core can be modified to optimize for different aspects. In many systems the
clock frequency is fixed for the entire chip. So even if the hash core can reach a high frequency
it has to be clocked at a lower frequency. In such a scenario KECCAK allows instantiating two,
three, four or even six rounds in combinatorial logic and compute them in one clock cycle.

In the high-speed core we have decided to instantiate a separate buffer for the input/output
functions. This allows performing the KECCAK-f rounds simultaneous with the input during
the absorbing phase or output during the squeezing phase. An alternative for saving area
is to execute the storing of the lanes composing the input blocks and extracting the lanes
composing the output blocks directly in the state register.

9.4.2.1 KECCAK[r = 1024, ¢ = 576]

In this instantiation the width of the bus is 64 bits. The bitrate of 1024 bits and the number
of rounds of KECCAK-f[1600] being 24 implies a maximum rate of 43 bits per cycle.

106 / [121]

9. Implementation KEccAK

Number of round instances Size Critical Path | Frequency | Throughput
n=1 48 kgates 1.9 ns 526 MHz 22.44 Gbit/s
n=2 67 kgates 3.0 ns 333 MHz 28.44 Gbit/s
n=23 86 kgates 4.1 ns 244 MHZ | 31.22 Gbit/s
n=4 105 kgates 5.2 ns 192 MHz 32.82 Gbit/s
n==~6 143 kgates 6.3 ns 135 MHZ 34.59 Gbit/s
Table 9.8: Performance estimation of variants of the high speed core of

KEcCAK][r = 1024, ¢ = 576].

The critical path of the core is 1.9 nanoseconds, of which 1.1 nanoseconds in the combina-
torial logic of the round function. This results in a maximum clock frequency of 526MHz and
throughput of 22.4 Gbit/s. The area needed for having the core running at this frequency
is 48 kgate, composed of 19 kgate for the round function, 9 kgate for the I/O buffer and 21
kgate for the state register and control logic.

An alternative without separate I/O buffer allows saving about 8 kgate and decreases the
throughput to 12.8 Gbit/s at 500MHz.

Thanks to the low critical path in the combinational logic, it is possible to instantiate two
or more rounds per clock cycle. For instance, implementing two rounds gives a critical path of
3 nanoseconds, allowing to run the core at 333MHz reaching a throughput of 28Gbit/s. Such
a core will consume 1024 bits every 12 clock cycle, thus the bus width must grow too to keep
up with the throughput per cycle. Note that contrary to many cryptographic algorithm, in
KEccAK the processing does not impose the bottleneck in term of hardware implementation.
Table summarizes the throughputs for different variants.

9.4.2.2 KECCAK[r = 40, c = 160]

In this instantiation the width of the bus is 8 bits. The bitrate of 40 bits and the number of
rounds of KECCAK-f[200] being 18 implies a maximum rate of 2.2 bits per cycle.

The critical path of the core is 1.8 nanoseconds, of which 1.1 nanoseconds in the combina-
torial logic of the round function. This results in a maximum clock frequency of 555MHz and
throughput of 1.23 Gbit/s. The area needed for having the core running at this frequency is
6.5 kgate, composed of 3 kgate for the round function, 3.1 kgate for the state register and
control logic and less than 400 gates for the I/O buffer.

An alternative without separate I/O buffer allows saving about 400 gate and decreases
the throughput to 0.96 Gbit/s at 555MHz.

9.4.3 Low-area coprocessor

The core presented in Section [9.4.1] operates in a stand-alone fashion. The input block is
transferred to the core, and the core does not use other resources of the system for performing
the computation. The CPU can program a direct memory access (DMA) for transferring
chunks of the message to be hashed, and the CPU can be assigned to a different task while
the core is computing the hash. A different approach can be taken in the design of the
hardware accelerator: the core can use the system memory instead of having all the storage

107 / [121]

KECcAK 9. Implementation

System memory COPROCESSOR

hs

i

) 4

- L

\ J

data

address

Y

FSM

A A?

read/write

Figure 9.2: The low area coprocessor

capabilities internally. The state of KECCAK will be stored in memory and the coprocessor is
equipped with registers for storing only temporary variables.

This kind of coprocessor is suitable for smart cards or wireless sensor networks where
area is particularly important since it determines the cost of the device and there is no rich
operating system allowing to run different processes in parallel.

The architecture is depicted in figure where memory buffer labeled with A is reserved
for the state, and B is reserved for temporary values. For the width of the data bus for
performing memory access different values can be taken. We consider it equal to the lane size
as a first assumption, and discuss later the implications if a smaller width is taken.

Internally the coprocessor is divided in two parts, a finite state machine (FSM) and a data
path. The data path is equipped with 3 registers for storing temporary values. The FSM
computes the address to be read and set the control signals of the data path. The round is
computed in different phases.

e First the sheet parities are computed, and the 5 lanes are stored in a dedicated area of
the memory.

108 /[121]

9. Implementation KEccAK

e The second phase consists in computing the 6 transformation, reading all the lanes of the
state, and computing the XOR, with the corresponding sheet parities. After computing
a lane in this way, it is rotated according to p and written to the position defined by .
Now the intermediate state is completely stored in the buffer B.

e The last step is to compute y and add the round constant, ¢, to the lane in position
(0,0). For doing this the coprocessor reads 3 lanes of a plane from the intermediate
state, computes y and writes the result to the buffer A, reads another element of the
intermediate value and writes the new y, and so on for the 5 elements of the plane.

The computation of one round of the KECCAK-f permutation takes 215 clock cycles, and
55 out of these are bubbles where the core is computing internally and not transferring data
to or from the memory.

In a variant with memory words half the lane size, the number of clock cycles doubles but
only for the part relative to read and write, not for the bubbles. In such an implementation
one round of KECCAK-f requires 375 clock cycles.

The buffer A, where the input of the permutation is written and where the output of the
permutation is written and the end of the computation has the size of the state (25 times
the lane size), while the memory space for storing temporary values has the size of the state
times 1.2.

The low-area coprocessor has been coded in VHDL and simulated using Modelsim. As
the core depicted in Section the coprocessor has been synthesized using ST technology
at 130 nm.

9.4.3.1 KECCAK[r = 1024, ¢ = 576]

In this instantiation the computation of the KECCAK-f permutation takes 5160 clock cycles.
The coprocessor has a critical path of 1.5 nanoseconds and can run up to 666.7 MHz resulting
in a throughput of 132 Mbit/s. The area needed for attaining this clock frequency is 6.5 kgate.
If the core is synthesized for a clock frequency limited to 200MHz, the area requirement is
reduced to 5 kgate and the corresponding throughput is 39 Mbit/s. In both cases the amount
of area needed for the registers is about 1 kgate.

It is interesting to note that the low area coprocessor is capable of reaching higher fre-
quencies than the high speed core.

9.4.3.2 KECCAK][r = 40, ¢ = 160]

In this instantiation the computation of the KECCAK-f permutation takes 3870 clock cycles.
The coprocessor has a critical path of 1.4 nanoseconds and can run up to 714 MHz resulting in
a throughput of of 6.87 Mbit/s. The area for attaining this clock frequency is 1.6 kgate, If the
core is synthesized for a clock frequency limited to 200MHz (500MHz), the area requirement
is reduced to 1.3 (1.4) kgate and the corresponding throughput is 1.9 (4.8) Mbit/s. In both
cases the amount of area needed for the registers is in the order of 100 gates.

9.4.4 FPGA implementations

We have used Altera Quartus II Web Edition version 9 [27] and Xilinx ISE WebPACK version
11.1 [32] to evaluate VHDL with the tools for FPGA. These tools provide estimations of the
amount of resources needed and the maximum clock frequency reached.

109 /[121]

KECcAK 9. Implementation
Device Logic Registers | Max Freq. | Throughput
Altera StratixIII 4684 (38000) ALUTSs | 2641 (38000) 206 MHz 8.7 Gbit/s
EP3SE50F484C2
Altera Cyclone III 5770 (10320) LEs | 2641 (10320) 145 MHz 6.1 Gbit/s
EP3C10F256C6
Virtex 5 1330 (7200) slices 2640 (28800) 122 MHz 5.2 Gbit/s
XC5VLX50FF324-3

Table 9.9: Performance estimation of the high speed core of KECCAK[r = 1024, ¢ = 576] on
different FPGAs, and in brackets the resources available in the different cases.

Device Logic Registers | Max Freq. | Throughput
Altera StratixIII 594 (38000) ALUTSs | 333 (38000) 206 MHz 412 Mbit/s
EP3SE50F484C2

Altera Cyclone II1 732 (10320) LEs | 333 (10320) 145 MHz 290 Mbit /s
EP3C10F256C6

Virtex 5 190 (7200) slices 340 (28800) 122 MHz 244 Mbit /s
XC5VLX50FF324-3

Table 9.10: Performance estimation of the high speed core of KECCAK[r = 40, c = 160] on
different FPGAs, and in brackets the resources available in the different cases.

9.4.4.1 High-speed core

We report in Tables and the estimation of the completed place and route for the

high-speed core for the large and small versions respectively.

9.4.4.2 Low-area coprocessor

In the case of FPGA, the estimations are reported in tables and

Device Logic Registers | Max Freq. | Throughput
Altera StratixIII 855 (38000) ALUTSs | 242 (38000) 359 MHz 71.2 Mbit /s
EP3SE50F484C2

Altera Cyclone II1 1570 (5136) LEs 242 (5136) 183 MHz 36.3 Mbit /s
EP3C5F256C6

Virtex 5 448 (7200) slices 244 (28800) 265 MHz 52.5 Mbit/s
XC5VLX50FF324-3

Table 9.11: Performance estimation of the low area coprocessor of KECCAK[r = 1024, ¢ = 576|
on different FPGAs, and in brackets the resources available in the different cases.

110 / [121]

9. Implementation KEccAK

Device Logic Registers | Max Freq. | Throughput
Altera StratixIII 131 (38000) ALUTSs | 32 (38000) 359 MHz 3.7 Mbit /s
EP3SE50F484C2

Altera Cyclone III 205 (5136) LEs 30 (5136) 183 MHz 1.9 Mbit/s
EP3C5F256C6
Virtex 5 62 (7200) slices 30 (28800) 265 MHz 2.7 Mbit/s

XC5VLX50FF324-3

Table 9.12: Performance estimation of the low area coprocessor of KECCAK[r = 40, ¢ = 160]
on different FPGAs, and in brackets the resources available in the different cases.

9.4.5 Protection against side channel attacks

Due to the simplicity of the round logic, and the use of simple 2-input gates, it is possible
to use logic gates resistant to power analysis, like WDDL [82] or SecLib [49]. These types
of logic are evolutions of the dual rail logic, where a bit is coded using two lines in such a
way that all the logic gates consume the same amount of energy independently of the values.
Additionally, the fact that the non-linear component of KECCAK-f is limited to binary AND
gates, it lends itself very well for the very powerful protection techniques based on secret
sharing proposed in [77] that can offer effective protection against glitches.

111 /[121]

KECCcAK 9. Implementation

112 /[121]

Bibliography

1]

J.-P. Aumasson, I. Dinur, W. Meier, and A. Shamir, Cube testers and key recovery
attacks on reduced-round MD6 and Trivium, Fast Software Encryption (O. Dunkelman,
ed.), Lecture Notes in Computer Science, vol. 5665, Springer, 2009, pp. 1-22.

J.-P. Aumasson and D. Khovratovich, First analysis of Keccak, Available online, 2009,
http://131002.net/data/papers/AK09. pdfl

J.-P. Aumasson and W. Meier, Zero-sum distinguishers for reduced Keccak-f and for the
core functions of Luffa and Hamsi, Available online, 2009, http://131002.net/data/
papers/AM09. pdf.

T. Baigneres, J. Stern, and S. Vaudenay, Linear cryptanalysis of non binary ciphers,
Selected Areas in Cryptography (C. M. Adams, A. Miri, and M. J. Wiener, eds.), Lecture
Notes in Computer Science, vol. 4876, Springer, 2007, pp. 184-211.

M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentica-
tion, Advances in Cryptology — Crypto '96 (N. Koblitz, ed.), LNCS, no. 1109, Springer-
Verlag, 1996, pp. 1-15.

D. J. Bernstein, The Salsa20 family of stream ciphers, 2007, Document ID:
31364286077dcdff8e4509f9ft3139ad, http://cr.yp.to/papers.html#salsafamily.

D. J. Bernstein and T. Lange (editors), eBACS: ECRYPT Benchmarking of cryptographic
systems, http://bench.cr.yp.to, accessed 21 December 2008.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, RADIOGATUN, a belt-and-
mill hash function, Second Cryptographic Hash Workshop, Santa Barbara, August 2006,
http://radiogatun.noekeon.org/|

, Sponge functions, Ecrypt Hash Workshop 2007, May 2007, also available as pub-
lic comment to NIST from http://www.csrc.nist.gov/pki/HashWorkshop/Public_
Comments/2007_May.html.

, On the indifferentiability of the sponge construction, Advances in Cryptology
— Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol. 4965,
Springer, 2008, http://sponge.noekeon.org/, pp. 181-197.

, KECCAK specifications, version 2, NIST SHA-3 Submission, September 2009,
http://keccak.noekeon.org/.

113 /[121]

http://131002.net/data/papers/AK09.pdf
http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf
http://cr.yp.to/papers.html#salsafamily
http://bench.cr.yp.to
http://radiogatun.noekeon.org/
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://keccak.noekeon.org/

KEccAk BIBLIOGRAPHY

[12] , Note on side-channel attacks and their countermeasures, Comment
on the NIST Hash Competition, May 2009, http://keccak.noekeon.org/

NoteSideChannelAttacks.pdfl

, Sufficient conditions for sound tree and sequential hashing modes, Cryptology
ePrint Archive, Report 2009/210, 2009, http://eprint.iacr.org/.

, KECCAKTOOLS software, June 2010, http://keccak.noekeon.org/.

, Note on KECCAK parameters and usage, Comment on the
NIST Hash Competition, February 2010, http://keccak.noekeon.org/
NoteOnKeccakParametersAndUsage.pdf.

, Note on zero-sum distinguishers of KECCAK-f, Comment on the NIST Hash
Competition, January 2010, http://keccak.noekeon.org/NoteZeroSum. pdf.

, Sponge-based pseudo-random number generators, CHES (S. Mangard and F.-X.
Standaert, eds.), Lecture Notes in Computer Science, vol. 6225, Springer, August 2010,
pp- 33-47.

[18] E. Biham, O. Dunkelman, and N. Keller, The rectangle attack - rectangling the ser-
pent, Advances in Cryptology — Eurocrypt 2001 (B. Pfitzmann, ed.), Lecture Notes in
Computer Science, vol. 2045, Springer, 2001, pp. 340-357.

[19] A. Biryukov and D. Wagner, Slide attacks, in Knudsen [56], pp. 245-259.

[20] C. Bouillaguet and P.-A. Fouque, Analysis of the collision resistance of RadioGatin
using algebraic techniques, Selected Areas in Cryptography, Lecture Notes in Computer
Science, vol. 4876, Springer, 2008.

[21] C. Boura and A. Canteaut, Zero-sum distinguishers on the Keccak-f permutation with 20
rounds (working draft), private communication, 2010.

, A zero-sum property for the Keccak-f permutation with 18 rounds, Available on-
line, 2010, http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_
sum.pdfl

[23] M. Brickenstein and A. Dreyer, PolyBoRi: A framework for Grébner-basis computations
with Boolean polynomials, Journal of Symbolic Computation 44 (2009), no. 9, 1326-1345,
Effective Methods in Algebraic Geometry.

[24] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, Pro-
ceedings of the 30th Annual ACM Symposium on the Theory of Computing, ACM Press,
1998, pp. 209-218.

[25] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, Towards sound approaches to counteract
power-analysis attacks, Advances in Cryptology — Crypto '99 (M. J. Wiener, ed.), Lecture
Notes in Computer Science, vol. 1666, Springer, 1999, pp. 398-412.

[26] The Python community, Python Programming Language, Python Software Foundation,
2009, http://www.python.org/.

114 /[121]

http://keccak.noekeon.org/NoteSideChannelAttacks.pdf
http://keccak.noekeon.org/NoteSideChannelAttacks.pdf
http://eprint.iacr.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/NoteZeroSum.pdf
http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf
http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf
http://www.python.org/

BIBLIOGRAPHY KEccak

[27]

[28]

[29]

[30]

[31]

[32]
33]

[34]

[35]

[36]

[37]

Altera corporation, Quartus II web edition software, http://www.altera.com.

Intel Corporation, Intel 8XC51RA/RB/RC hardware description, http://wuw.intel.
com/design/mcsb51/manuals/272668.htm.

, Intel MCS 51/251 microcontrollers - expanded RAM, http://www.intel.com/
design/mcsbl/er_51.htm.

, Intel® Core™2 Duo Desktop Processor E6600, http://processorfinder.
intel.com/details.aspx?sSpec=SL9IS8.

—, Intel® Xeon® Processor 5150, http://processorfinder.intel.com/

details.aspx?sSpec=SLIORU.
Xilinx corporation, ISE WebPACK software, http://www.xilinx.com.

D. A. Cox, J. B. Little, and D. O’Shea, Ideals, varieties, and algorithms, third ed.,
Springer, 2007.

J. Daemen, Cipher and hash function design strategies based on linear and differential
cryptanalysis, PhD thesis, K.U.Leuven, 1995.

J. Daemen and C. S. K. Clapp, Fast hashing and stream encryption with PANAMA, Fast
Software Encryption 1998 (S. Vaudenay, ed.), LNCS, no. 1372, Springer-Verlag, 1998,
pp- 60-74.

J. Daemen, L. R. Knudsen, and V. Rijmen, The block cipher Square, Fast Software
Encryption 1997 (E. Biham, ed.), Lecture Notes in Computer Science, vol. 1267, Springer,
1997, pp. 149-165.

J. Daemen, M. Peeters, and G. Van Assche, Bitslice ciphers and power analysis attacks,
in Schneier [79], pp. 134-149.

J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen, Nessie proposal: the block cipher
NOEKEON, Nessie submission, 2000, http://gro.noekeon.org/\

J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption
standard, Springer-Verlag, 2002.

, Probability distributions of correlation and differentials in block ciphers, Journal
of Mathematical Cryptology 1 (2007), no. 3, 221-242.

I. Dinur and A. Shamir, Cube attacks on tweakable black box polynomials, Cryptology
ePrint Archive, Report 2008/385, 2008, http://eprint.iacr.org/.

N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker, The Skein hash function family, Submission to NIST, 2008, http:
//skein-hash.info/.

E. Filiol, A new statistical testing for symmetric ciphers and hash functions, Proc. In-
formation and Communications Security 2002, volume 2513 of LNCS, Springer, 2002,
pp. 342-353.

115 /[121]

http://www.altera.com
http://www.intel.com/design/mcs51/manuals/272668.htm
http://www.intel.com/design/mcs51/manuals/272668.htm
http://www.intel.com/design/mcs51/er_51.htm
http://www.intel.com/design/mcs51/er_51.htm
http://processorfinder.intel.com/details.aspx?sSpec=SL9S8
http://processorfinder.intel.com/details.aspx?sSpec=SL9S8
http://processorfinder.intel.com/details.aspx?sSpec=SL9RU
http://processorfinder.intel.com/details.aspx?sSpec=SL9RU
http://www.xilinx.com
http://gro.noekeon.org/
http://eprint.iacr.org/
http://skein-hash.info/
http://skein-hash.info/

KEccAk BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

IETF (Internet Engineering Task Force), RFC 3629: UTF-8, a transformation format
of ISO 10646, 2003, http://www.ietf.org/rfc/rfc3629.txt.

, RFC 3986: Uniform resource identifier (URI): Generic syntaz, 2005, http:
//www.letf.org/rfc/rfc3986.txt.

G. Gielen and J. Figueras (eds.), 2004 design, automation and test in Europe confer-
ence and exposition (DATE 2004), 16-20 February 2004, Paris, France, IEEE Computer
Society, 2004.

M. Gorski, S. Lucks, and T. Peyrin, Slide attacks on a class of hash functions, Asiacrypt
(J. Pieprzyk, ed.), Lecture Notes in Computer Science, vol. 5350, Springer, 2008, pp. 143~
160.

L. Goubin and J. Patarin, DES and differential power analysis (the duplication method),
CHES (C. K. Kog and C. Paar, eds.), Lecture Notes in Computer Science, vol. 1717,
Springer, 1999, pp. 158-172.

S. Guilley, P. Hoogvorst, Y. Mathieu, R. Pacalet, and J. Provost, CMOS structures
suitable for secured hardware, in Gielen and Figueras [46], pp. 1414-1415.

IEEE, P1363-2000, standard specifications for public key cryptography, 2000.

A. Joux, Multicollisions in iterated hash functions. Application to cascaded constructions,
Advances in Cryptology — Crypto 2004 (M. Franklin, ed.), LNCS, no. 3152, Springer-
Verlag, 2004, pp. 306-316.

J. Kelsey, T. Kohno, and B. Schneier, Amplified boomerang attacks against reduced-round
mars and serpent, in Schneier [79], pp. 75-93.

J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less than
2" work, Advances in Cryptology — Eurocrypt 2005 (R. Cramer, ed.), LNCS, no. 3494,
Springer-Verlag, 2005, pp. 474-490.

D. Khovratovich, Two attacks on RadioGatin, 9th International Conference on Cryptol-
ogy in India, 2008.

L. R. Knudsen, Truncated and higher order differentials, Fast Software Encryption 1994
(B. Preneel, ed.), Lecture Notes in Computer Science, vol. 1008, Springer, 1994, pp. 196—
211.

L. R. Knudsen (ed.), Fast software encryption, 6th international workshop, fse 99, rome,
italy, march 24-26, 1999, proceedings, Lecture Notes in Computer Science, vol. 1636,
Springer, 1999.

L. R. Knudsen and V. Rijmen, Known-key distinguishers for some block ciphers, Ad-
vances in Cryptology — Asiacrypt 2007, 2007, pp. 315-324.

D. E. Knuth, The art of computer programming, vol. 2, third edition, Addison-Wesley
Publishing Company, 1998.

116 /[121]

http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

BIBLIOGRAPHY KEccak

[59]

[60]

[61]

[69]

[70]

[71]

[72]

T. Kohno and J. Kelsey, Herding hash functions and the Nostradamus attack, Advances
in Cryptology — Eurocrypt 2006 (S. Vaudenay, ed.), LNCS, no. 4004, Springer-Verlag,
2006, pp. 222-232.

RSA Laboratories, PKCS # 1 v2.1 RSA Cryptography Standard, 2002.

S. K. Langford and M. E. Hellman, Differential-linear cryptanalysis, Advances in Cryp-
tology — Crypto '94 (Y. Desmedt, ed.), Lecture Notes in Computer Science, vol. 839,
Springer, 1994, pp. 17-25.

J. Lathrop, Cube attacks on cryptographic hash functions, Master’s thesis, Available
online, 2009, http://www.cs.rit.edu/~jal6806/thesis/.

L.Knudsen, C. Rechberger, and S. Thomsen, The Grindahl hash functions, FSE
(A. Biryukov, ed.), Lecture Notes in Computer Science, vol. 4593, Springer, 2007, pp. 39—
57.

U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology, Theory of Cryptography
- TCC 2004 (M. Naor, ed.), Lecture Notes in Computer Science, no. 2951, Springer-
Verlag, 2004, pp. 21-39.

R. C. Merkle, Secrecy, authentication, and public key systems, PhD thesis, UMI Research
Press, 1982.

Pawel Morawiecki and Marian Srebrny, A sat-based preimage analysis of reduced KEC-
CAK hash functions, Cryptology ePrint Archive, Report 2010/285, 2010, http://
eprint.iacr.org/.

NIST, Federal information processing standard 186-3, digital signature standard (DSS),
March 2006.

, Announcing request for candidate algorithm nominations for a new cryptographic
hash algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212, 62212—
62220, http://csrc.nist.gov/groups/ST/hash/index.html.

, NIST special publication 800-106 draft, randomized hashing digital signatures,
July 2007.

, NIST special publication 800-56a, recommendation for pair-wise key establish-
ment schemes using discrete logarithm cryptography (revised), March 2007.

, NIST special publication 800-90, recommendation for random number generation
using deterministic random bit generators (revised), March 2007.

, ANSI C cryptographic API profile for SHA-3 candidate algorithm submissions,
revision 5, February 2008, available from http://csrc.nist.gov/groups/ST/hash/
sha-3/Submission_Reqs/crypto_API.html.

, Federal information processing standard 198, the keyed-hash message authenti-
cation code (HMAC), July 2008.

117 /[121]

http://www.cs.rit.edu/~jal6806/thesis/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html

KEccAk BIBLIOGRAPHY

[74]

[75]

[76]

[77]

, NIST special publication 800-108, recommendation for key derivation using pseu-
dorandom functions, April 2008.

R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, The RC6 block cipher, AES
proposal, August 1998.

P. Sarkar and P. J. Schellenberg, A parallelizable design principle for cryptographic hash
functions, Cryptology ePrint Archive, Report 2002/031, 2002, http://eprint.iacr.
org/.

M. Schlaffer, Masking non-linear functions based on secret sharing, Echternach Symmet-
ric Cryptography seminar, 2008, http://wiki.uni.lu/esc/.

B. Schneier, Applied cryptography, second ed., John Wiley & Sons, 1996.

B. Schneier (ed.), Fast software encryption, 7th international workshop, fse 2000, new
york, ny, usa, april 10-12, 2000, proceedings, Lecture Notes in Computer Science, vol.
1978, Springer, 2001.

W. A. Stein et al., Sage Mathematics Software, The Sage Development Team, 2009,
http://www.sagemath.org/.

J. Strombergson, Implementation of the Keccak hash function in FPGA devices, http:
//www.strombergson.com/files/Keccak_in_FPGAs.pdf.

K. Tiri and I. Verbauwhede, A logic level design methodology for a secure DPA resistant
ASIC or FPGA implementation, in Gielen and Figueras [46], pp. 246-251.

W3C, Namespaces in XML 1.0 (second edition), 2006, http://www.w3.org/TR/2006/
REC-xml-names-20060816.

D. Wagner, The boomerang attack, in Knudsen [56], pp. 156-170.

R. Wernsdorf, The round functions of Rijndael generate the alternating group, Fast Soft-
ware Encryption 2002 (J. Daemen and V. Rijmen, eds.), Lecture Notes in Computer
Science, vol. 2365, Springer, 2002, pp. 143-148.

Wikipedia, Cryptographic hash function, 2008, http://en.wikipedia.org/wiki/
Cryptographic_hash_functionl

, Impossible differential cryptanalysis, 2008, http://en.wikipedia.org/wiki/
Miss_in_the_middle_attackl

, Random permutation statistics, 2008, http://en.wikipedia.org/wiki/
Random_permutation_statistics.

M. R. Z’aba, H. Raddum, M. Henricksen, and E. Dawson, Bit-pattern based integral
attack, Fast Software Encryption 2008 (K. Nyberg, ed.), Lecture Notes in Computer
Science, vol. 5086, Springer, 2008, pp. 363-381.

118 /[121]

http://eprint.iacr.org/
http://eprint.iacr.org/
http://wiki.uni.lu/esc/
http://www.sagemath.org/
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Miss_in_the_middle_attack
http://en.wikipedia.org/wiki/Miss_in_the_middle_attack
http://en.wikipedia.org/wiki/Random_permutation_statistics
http://en.wikipedia.org/wiki/Random_permutation_statistics

Appendix A

Change log

A.1 From 2.0 to 2.1

A.1.1 Restructuring of document

The chapter on usage has now become Chapter [4] and comes right after Chapter [3| on
the sponge construction, as its content is not specific for KECCAK but rather generic
for sponge functions.

The chapter on the KECCAK-f permutations has been split in three:

— Chapter [} explaining the properties of the building blocks of KECCAK-f and
motivating the choices made in the design.

— Chapter [7} dedicated to propagation of differential and linear trails in KECCAK-f.

— Chapter |8t covering all other analysis and investigations of KECCAK-f.

A.1.2 Addition of contents

Added a reference to [15] in Section [3.3.3

Added explanation on our new upper bounds for the success probability of state recovery

[17] in Section

Added the reseedable pseudo-random bit generator mode of use in Table

Modified statement on safety margin of KECCAK-f with respect to structural distin-
guishers reflecting recent zero-sum distinguishers, in Section

New techniques for determining lower bounds on the weight of differential and linear
trails in Chapter

New bounds on differential and linear trails in Section [7.3.4]

Results of new tests on the algebraic normal form in Section 8.1} amongst others focusing

on symmetry properties in Sections and
Results of new experiments of algebraically solving CICO problems in Section

119 /[121]

KEccAK A. Change log

e New hardware implementation results for a version of KECCAK with width 200 in Sec-
tion

e Added references to new third-party cryptanalysis results where applicable.

A.1.3 Corrections and editorial changes

e Abandoned right pairs terminology in favor of more natural terminology pairs in a
differential or trail starting from Section

e Abandoned selection vector terminology in favor of more generally used terminology
mask starting from Section [5.2.2

e Corrected expressions for correlation weight in Section by removing the division
by two.

e Introduced a consistent KECCAK-oriented terminology for trail propagation in Sec-
tion [6.5.1]

A.2 From 1.2 to 2.0

e Adaptation of the specifications summary to the modified number of rounds of KECCAK- f
in Section [L.1]

e Update of the acknowledgements in Section [1.3
e Update of Section [2.4] to reflect the modified parameters.

e Addition of Section [2.5| motivating the parameter change between version 1 and version
2 of KECCAK.

e Update of Section to reflect the new choice for capacity and bitrate for the fixed-
output-length SHA-3 candidates

e Update of Section to include an introduction of cube attacks and testers.

e Update of our estimates for the required number of rounds in KEcCcAk-f for providing
resistance against different types of distinguishers and attacks in Section |6.4

e Addition of two entries in Table [(.3]in Section [7.3.4]
e Mentioning of the CICO-solving results of [2] in Section

e Addition of Section discussing third-party cryptanalysis based on low-degree poly-
nomials.

e Addition of Section [7.4] reporting on our results of particular trails called tame trails.
e Encoding of B in bytes (instead of multiples of 64 bits) in Section
e Discussion on soundness of the tree hashing mode in Section

e Update of performance figures in Chapter [9}

120 /[121]

A. Change log KECCAK

A.3 From 1.1 to 1.2

In Chapter [T, we added Section [[.I] with a 2-page specifications summary of KECCAK.

In Section[6.3.1] we provide more explanations on difference propagation and correlation
properties of .

In Section [8.1] we present ANF tests also on the inverse of KECCAK-f.

In Section [9.3 updates have been made to the software performance in general and
regarding SIMD instructions in particular, see Sections and

A.4 From 1.0 to 1.1

e Sections and now explicitly mention the hermetic sponge strategy.

e Chapter [4 proposes additional usage ideas for KECCAK, including input formatting
and diversification (see Section [4.3]), and parallel and tree hashing (see Section [4.4)).
Section [4.1] now also mentions a slow one-way function.

e New techniques and updated implementation figures are added to Chapter [9}

— Section presents the lane complementing transform.
— Section shows how to use the bit interleaving technique.

— Section has been reorganized to show the results on the two platforms side by
side.

Section display updated performance figures.

— Sections [0.4.1] and [9.4.3] report updated performance figures on ASIC and new
figures on FPGA.

121 /[121]

	Introduction
	Specifications summary
	NIST requirements
	Acknowledgments

	Design rationale summary
	Choosing the sponge construction
	Choosing an iterated permutation
	Designing the Keccak-f permutations
	Choosing the parameter values
	The difference between version 1 and version 2 of Keccak

	The sponge construction
	Security of the sponge construction
	Indifferentiability from a random oracle
	Indifferentiability of multiple sponge functions
	Immunity to generic attacks
	Randomized hashing
	Keyed modes

	Rationale for the padding
	Sponge input preparation
	Multi-capacity property
	Digest-length dependent digest

	Parameter choices
	Capacity
	Width
	The default sponge function Keccak[]

	The four critical operations of a sponge
	Definitions
	The operations

	Usage
	Usage scenario's for a sponge function
	Random-oracle interface
	Linking to the security claim
	Examples of modes of use

	Backward compatibility with old standards
	Input block length and output length
	Initial value
	HMAC
	NIST and other relevant standards

	Input formatting and diversification
	Parallel and tree hashing
	Definitions
	Soundness
	Discussion

	Sponge functions with an iterated permutation
	The philosophy
	The hermetic sponge strategy
	The impossibility of implementing a random oracle
	The choice between a permutation and a transformation
	The choice of an iterated permutation

	Some structural distinguishers
	Differential cryptanalysis
	Linear cryptanalysis
	Algebraic expressions
	The constrained-input constrained-output (CICO) problem
	Multi-block CICO problems
	Cycle structure

	Inner collision
	Exploiting a differential trail
	Exploiting a differential
	Truncated trails and differentials

	Path to an inner state
	Detecting a cycle
	Binding an output to a state
	Classical hash function criteria
	Collision resistance
	Preimage resistance
	Second preimage resistance
	Length extension
	Pseudo-random function
	Output subset properties

	The Keccak-f permutations
	Translation invariance
	The Matryoshka structure
	The step mappings of Keccak-f
	Properties of chi
	Properties of theta
	Properties of pi
	Properties of rho
	Properties of iota
	The order of steps within a round

	Choice of parameters: the number of rounds
	Differential and linear cryptanalysis
	A formalism for describing trails adapted to Keccak-f
	The Matryoshka consequence
	The column parity kernel
	One and two-round trails
	Three-round trails: kernel vortices
	Beyond three-round trails: choice of
	Truncated trails and differentials
	Other group operations
	Differential and linear cryptanalysis variants

	Solving CICO problems
	Strength in keyed mode
	Symmetry weaknesses

	Trail propagation in Keccak-f
	Relations between different kinds of weight
	Propagation properties related to the linear step
	Exhaustive trail search
	Upper bound for the weight of two-round trails to scan
	Constructing two-round trails
	Extending trails
	Linear and differential trail bounds for w8

	Tame trails
	Construction of tame trails
	Bounds for three-round tame trails
	Bounds for four-round tame trails

	Analysis of Keccak-f
	Algebraic normal form
	Statistical tests
	Symmetric trails
	Slide attacks

	Solving CICO problems algebraically
	The goal
	The supporting software
	The experiments
	Third-party analysis

	Properties of Keccak-f[25]
	Algebraic normal statistics
	Differential probability distributions
	Correlation distributions
	Cycle distributions

	Distinguishers exploiting low algebraic degree

	Implementation
	Bit and byte numbering conventions
	General aspects
	The lane complementing transform
	Bit interleaving

	Software implementation
	Optimized for speed
	Using SIMD instructions
	SIMD instructions and KeccakTree
	Protection against side channel attacks
	Estimation on 8-bit processors

	Hardware Implementations
	High-speed core
	Variants of the high-speed core
	Low-area coprocessor
	FPGA implementations
	Protection against side channel attacks

	Change log
	From 2.0 to 2.1
	Restructuring of document
	Addition of contents
	Corrections and editorial changes

	From 1.2 to 2.0
	From 1.1 to 1.2
	From 1.0 to 1.1

