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Abstract

We introduce a cryptographically based countermea-
sure against connection depletion attacks. Connection
depletion is a denial-of-service attack in which an at-
tacker seeks to initiate and leave unresolved a large
number of connection requests to a server, erhausting
its resources and rendering it incapable of servicing le-
gitimate requests. TCP SYN flooding is a well-known
example of such an attack. We introduce a counter-
measure that we refer to as a client puzzle protocol.
The basic idea is as follows. When a server comes
under attack, it distributes small cryptographic puzzles
to clients making service requests. To complete its re-
quest, a client must solve its puzzle correctly. In this
paper, we describe the client puzzle protocol and its
proper parameterization, and give a Tigorous proof of
its security characteristics.

1 Introduction

The Internet has fulfilled much of its early promise of
enabling a single computer to service the requests of
many millions of geographically dispersed users. In
consequence, however, the Internet has introduced se-
curity concerns of a new magnitude, making a single
computer potentially vulnerable to attack from many
millions of sources. As a number of recent incidents
have illustrated, even if a server is effectively protected
against intrusive security breaches, it may still be vul-
nerable to a range of denial-of-service attacks, such as
connection depletion attacks. A connection depletion
attack is one in which the attacker seeks to initiate and
leave unresolved a large number of connection (or ser-
vice) requests to a server, exhausting its resources and
rendering it incapable of servicing legitimate requests.

The well-known TCP SYN flooding attack is one of the
best publicized of these attacks. Other attacks in the
same genre include so-called “e-mail bomb” attacks,
in which many thousands of e-mail deliveries are di-
rected at a single target, as well as attacks mounted
using high volume read or write traffic via FTP con-
nections with the aim of saturating storage space or
bandwidth. Also potentially vulnerable to serious con-
nection depletion attacks is the SSL (Secure Socket
Layer) protocol [12].

In this paper, we present a new approach that we
refer to as the client puzzle protocol, the aim of which
is to defend against connection depletion attacks. The
idea is quite simple. When there is no evidence of
attack, a server accepts connection requests normally,
that is, indiscriminately. When a server comes under
attack, it accepts connections selectively. In particu-
lar, the server hands out to each client wishing to make
a connection a unique client puzzle. A client puzzle is
an quickly computable cryptographic problem formu-
lated using the time, a server secret, and additional
client request information. In order to have server re-
sources allocated to it for a connection, the client must
submit to the server a correct solution to the puzzle it
has been given. Client puzzles are deployed in conjunc-
tion with conventional time-outs on server resources.
Thus, while legitimate clients will experience only a
small degradation in connection time when a server
comes under attack, an attacker must have access to
large computational resources to create an interrup-
tion in service. Cryptographic puzzles have been used
in the literature for several related tasks, such as de-
fending against junk e-mail [10], creating digital time
capsules [19], and metering Web site usage [11].



1.1 TCP SYN flooding

The TCP SYN flooding attack serves as a good exam-
ple to illustrate some of the issues surrounding connec-
tion depletion attacks, as well as some of the proposed
defenses.

On the 12th September 1996, the New York Times
[1] and other major newspapers, e.g., [21], reported
that a hacker mounting a TCP SYN flooding attack
had succeeded in crippling Panix, a major New York
Internet service provider. Later that month, the Web
site of the New York Times itself was the target of a
similar attack [2], and other serious attacks followed,
such as that against WebCom [7]. In response to the
Panix attack, CERT [4] issued an advisory stating
that automated tools for mounting the TCP SYN at-
tack had been published by several underground maga-
zines, and also warning of possible future attacks. The
CERT report indicated that, “There is, as yet, no com-
plete solution for this problem.”

The TCP SYN flooding attack aims to exploit a
weakness in the TCP connection establishment proto-
col whereby a connection may be left “half-open.” The
protocol normally proceeds as a three-way handshake.
A client wishing to initiate a TCP connection with
a server begins by sending the server a SYN message.
The server replies to the client by sending a SYN-ACK
message, and then prepares the connection by allocat-
ing buffer space. The client completes the protocol by
responding with an ACK message. At this point, the
connection is established, and service-specific data can
be exchanged between client and server. Full details
of the TCP protocol are available at [6]. To mount
a TCP SYN flooding attack, the attacker initiates a
large number of connections, but leaves them uncom-
pleted. In other words, the attacker repeatedly fails
to send the final ACK message which completes the
connection. Since the server allocates buffer space for
each incomplete connection, the attacker may exhaust
server memory designated for TCP requests, causing
the server to deny legitimate connection requests. A
more detailed description of the attack may be found
in [4] or [5].

Note that when used, as is common, without client-
side certificates, the SSL protocol [12] is subject to a
similar form of connection depletion attack. A connec-
tion depletion attack against SSL, however, is more
effective when based on exhaustion of the computa-
tional, rather than the memory resources of a server.
This is because the SSL protocol requires the server to
perform a computationally expensive public-key-based
decryption operation. An attacker may seek to exploit
this feature and overload a server by initiating many
invalid SSL connections. Connection depletion attacks

against SSL are less well-studied than those against
TCP, perhaps because SSL is a newer protocol.

A number of mechanisms have been proposed to de-
fend against the TCP SYN attack. Most of these are
based on one of three different approaches: time-out,
random dropping, or “syncookies”. The time-out ap-
proach discards a half-opened TCP connection after a
short period of time if the ACK packet from the client
has not been received. While easy to implement in
existing TCP servers, this approach can be defeated
by an attacker who sends the SYN packets at a rate
fast enough to fill the connection buffer. Moreover,
a short time-out may be problematic for legitimate
users whose network connections have long latency. In
the random dropping approach, half-open connections
are discarded at random when the connection buffer
reaches a certain percentage of its capacity. This pre-
vents a complete denial of service, since the server
buffer is never completely full. On the other hand,
legitimate connections are as likely to be discarded as
those of an attacker, so substantial degradation in ser-
vice may result. This is particularly the case when
the attacker is capable of sending service requests at
a substantially higher rate than legitimate users, as is
possible in such environments as an internal network.

To date, the most successful defense against TCP
SYN flooding has been the use of so-called “syncook-
ies.” In the syncookie approach, for each client request
i, the server sets the sequence number in its SYN /ACK
message to a value V; calculated by hashing various
connection parameters with a secret value known only
to the server. Only upon receiving an ACK containing
V; from the client making request 7 does the server al-
locate resources for the connection. The primary limi-
tation of the syncookie approach is its assumption that
an attacker performing IP spoofing will not receive the
SYN/ACK message sent to the spoofed address, and
therefore will not be able to provide the server with
the value V;. This assumption is not always correct,
particularly on an internal network, such as an Eth-
ernet, on which intercepting packets is relatively easy.
The ISAKMP key management protocol, used in the
IETF’s IP Security standard, provides for the use of
cookies to defend against TCP SYN attacks [14]. The
details of this approach are described in, e.g., [3, 13].

1.2 Advantages of client puzzles

The approaches described above for defending against
TCP SYN flooding, namely the syncookie and dropped
connection schemes, can of course be applied to any
underlying service protocol vulnerable to a connection
depletion attack, including those mentioned above.



The client puzzle protocol has several advantages over
other such defenses. Most important is its robust-
ness in a stronger attack model than the standard ap-
proaches. Recall that the syncookie approach to de-
fending against TCP SYN flooding (and other connec-
tion depletion attacks) presumes that an attacker can-
not intercept messages sent to spoofed IP addresses.
The client puzzle protocol requires no such assump-
tion, and is therefore useful for defending against in-
ternal attacks in cases where the syncookie approach
fails. Similarly, the client puzzle protocol is capa-
ble of handling attacks mounted at very high speeds,
which the dropped connection approaches cannot al-
ways do effectively. The client puzzle protocol also al-
lows for graceful degradation in service when an attack
is mounted: the size of the puzzles can be increased as
an attack becomes more severe. This makes the proto-
col quite flexible. The client puzzle protocol can either
be built straightforwardly into the underlying service
protocol it seeks to defend, or can be layered on top.
It can even be used in conjunction with dropped con-
nection or other approaches.

The principal disadvantage of the client puzzle pro-
tocol by comparison with the standard approaches is
its requirement for special client-side software. The
syncookie or dropped connection approaches merely
require a modification to the underlying service pro-
tocol on the server side. The client puzzle approach
requires that the client already have a program capa-
ble of solving a client puzzle. Such a program, how-
ever, can be built into a browser, made available as a
plug-in, or distributed by any one of a variety of other
means. For an internal environment, in which soft-
ware is homogenous or centrally distributed, the re-
quirement for special-purpose software does not pose
a problem.

1.3 Organization of this paper

The remainder of this paper is organized as follows.
Section 2 describes the attack model in which we for-
mulate the client puzzle protocol, and provides nota-
tion. We give the details of the client puzzle protocol
in Section 3. We explain and give an example of how
to choose an appropriate server buffer size for our pro-
tocol in Section 4. We conclude in Section 5. Since
the time required for a client to solve a client puzzle
varies randomly, it is important to demonstrate that
the client puzzle protocol is not subject to probabilistic
forms of attack. We prove this in the appendix.

2 Attack Model

In this section, we describe the attack model in which
we formulate the client puzzle protocol. We assume a
network with clients {C;}, a server Ser, and an ad-
versary Ad. We consider any setting in which the
adversary Ad seeks to mount a connection depletion
attack against a client/server protocol M. We assume
that Ad seeks to exploit the protocol M so as to over-
load either the memory or computational resources of
a server Ser. We make the following five assumptions
about the adversary Ad. The first three of these as-
sumptions state restrictions on the capability of the
adversary required for our protocol to be useful, while
the latter two describe adversarial attack capabilities
to which our protocol is resistant.

Assumption 1 Ad cannot modify packets sent from
any C; to Ser.

Any attacker who can modify packets at will can
mount a denial-of-service attack simply by corrupting
packets. If Assumption 1 did not hold, then, an ad-
versary would not need to attack a server by means
of connection depletion. If we alter Assumption 1
slightly, though, and assume that the adversary can
modify only a limited number of packets, our client
puzzle protocol and the analyses in this paper are still
germane.

Assumption 2 Ad cannot significantly delay pack-
ets sent from any C; to Ser.

We make Assumption 2 for essentially the same reason
as we make Assumption 1. In particular, if an adver-
sary can delay packets arbitrarily, then she can mount
a denial-of-service attack without having to overload
the server. Again, some relaxation of this assumption
is possible. The time-out parameters 77, 15, and T3 in
our client puzzle protocol as described below may be
adjusted to accommodate possible adversarial delays.

Assumption 3 Ad cannot saturate the server, the
network, or any port.

In order for an adversary to mount a connection deple-
tion attack, she must be able to inject a large number
of packets into a network. We assume, however, that
the adversary cannot disable a server or a port simply
by the sheer volume of her requests. In other words,
we assume the adversary incapable of sending requests
to the server so quickly that the server cannot effec-
tively reject these requests. If the adversary could do



so, she would not need to resort to a connection de-
pletion attack.

Assumption 4 Ad can perform IP spoofing. In par-
ticular, Ad can simulate any IP address of its choice
in messages sent to the server.

As remarked above, IP spoofing is a component of
many connection depletion attacks (as well as other
denial-of-service attacks). Most attack models assume,
as in Assumption 4, that an attacker can simulate an
arbitrary IP address in its messages to the server. The
client puzzle protocol is resistant to IP spoofing.

Assumption 5 Ad can read any messages sent to
any [P address.

The syncookie approach fails under this assumption, as
it means that access to cookies is no longer privileged.
Unless packets are encrypted, however, Assumption 5
may be realizable by an adversary on a public network.
It is certainly relevant in the case in which an adver-
sary is mounting an attack on an internal network such
as an Kthernet.

Note that an additional assumption behind our ex-
ploration of the client puzzle protocol, as indeed be-
hind all of the defenses against connection depletion
(TCP SYN flooding) attacks mentioned above, is the
unavailability of a public-key infrastructure (PKI). If
all entities in a network can authenticate one another
by means of trusted certificates, then an effective basis
already exists for mitigating or preventing connection
depletion and other denial-of-service attacks. (This as-
sumes of course, that anonymity is not desired on the
part of network entities.)

3 The Client Puzzle Protocol

In this section we describe our solution, using client
puzzles, for defending a protocol M (such as TCP
or SSL) against connection depletion attacks. We de-
scribe our solution as a protocol which is layered inde-
pendently on top of the protocol M. It is also easily
possible, however, to integrate it directly into M.
The idea behind our defense protocol may be sum-
marized as follows. In order to execute protocol M
with the server, a client first asks whether the server
is under attack. If the server is not under attack, it
answers “no”, and protocol M is executed normally. If
the server is under attack, it answers “yes”, and sends
the client a puzzle to solve. In order to initiate the
protocol M with the server, the client must solve the

puzzle in a specified time interval. For an adversary
Ad to mount a connection depletion attack against a
server, Ad must solve a large number of puzzles in a
short space of time — too many to handle with limited
computational resources.

3.1 Protocol notation

Let M; denote the it" execution of the protocol M on
the server by a legitimate client or by the attacker. We
denote by M the d'* message sent in the ' execution
of protocol M. To simplify our notation, we assume
that the protocol M is client-initiated, e.g., the first
message in the protocol is sent from the client to the
server, and subsequent messages alternate direction.
Hence, M} is sent from the client to the server, M2
from the server to the client, and so forth. (Note that
our scheme can be straightforwardly adapted, though,
to the case where M is a server-initiated protocol.)

We require some additional notation. Let z <7>
denote the " bit of a bitstring z, and let z <i,j>
denote the sequence of bits z <i>, z<i + 1>,...,2<
7>. Let h denote a non-invertible hash function whose
output is of length [. (Since we won’t require that h
be collision resistant, A might be a fast hash function
like MD4 [17, 18], which is known to be vulnerable to
collision searches, but as yet still resistant to inversion
[9].) Let 7 denote the current time according to the
server clock. Let s be a secret seed of appropriate
length (say, 128 bits) held by the server.

3.2 Client puzzle construction and pro-
tocol parameters

A client puzzle P; consists of a number of independent,
uniformly sized sub-puzzles. The reason for composing
a puzzle of multiple sub-puzzles is to increase the diffi-
culty for an attacker in guessing solutions. For exam-
ple, a (k + 3)-bit puzzle with one sub-puzzle requires
the same average work factor for brute-force solution
as a puzzle with eight different k-bit sub-puzzles. It is
possible, though, to guess a solution to the former with
probability 2~*+3) but only 278% for the latter. The
effect of having multiple sub-puzzles is apparent in the
proofs in the appendix, particularly in Lemma 4.

We denote the j'* sub-puzzle in P; by P;[j]. We let
the variable m specify the number of sub-puzzles in
a client puzzle. Hence a puzzle P; consists of sub-
puzzles P;[1], B;[2],..., P;lm]. A sub-puzzle P;[j] is
constructed as follows. A bitstring z;[j] is computed as
the hash of a set of service parameters and a server se-
cret s. (This is described in more detail below.) This
bitstring x;[j] is hashed in turn to yield a bitstring



yilj] = h(z;[j]). The sub-puzzle consists of a portion
x;[j] <k + 1,1> of the bitstring x;[j] along with the
bitstring y;[j]. The solution to the sub-puzzle P;[j] —
which we may generally assume to be unique — con-
sists of the missing bits of z;[j], i.e., the k-bit sub-
string z;[j] <1, k>. Thus the computational hardness
of a sub-puzzle (under appropriate assumptions about
the properties of h) is equivalent to the hardness of
searching a space of size 2%, where one search step re-
quires the computation of a hash. The solution to the
complete puzzle P; consists of the m different k-bit so-
lutions to all of the component sub-puzzles. Thus, k
and m together represent a joint security parameter
governing the difficulty of solving a client puzzle P;.
Throughout the remainder of this paper, we drop the
subscript ¢ from puzzle variables as convenient. The
construction of a sub-puzzle P[j] in a client puzzle P
is depicted in Figure 1.

Server secret s and other data

-

i<tk ! X[]]

Solution to sub-puzzIE[j] h Sub-puzzleP[j]

ylil

Figure 1. Constuction of sub-puzzle P[j]

We shall denote by B the size of the server buffer
devoted to simultaneous executions of the protocol M.
We refer to as a slot the buffer resources devoted to
a single execution of M. Thus, the number of slots
in B is the maximum number of simulataneous execu-
tions of M supported by the server. We let maxcon
denote the maximum number of simultaneous execu-
tions of M (i.e., connections) supported by the server
during normal usage, i.e., the total number of slots
in B reserved for normal usage with M. Finally we
let b denote the number of extra slots in B, i.e., the
number of slots for executions of M anticipated during
an attack, and thus set aside in support of the client
puzzle protocol. Hence the total number of slots in
B is maxcon + b. Note that the distinction between
normal and extra slots is one of convenience and does
not indicate any difference in functionality. The value
b may be regarded as a defense parameter and repre-
sents in some sense the overhead associated with the
client puzzle protocol.

As an example, if the protocol M is TCP, then the

number of slots in B represents the amount of memory
reserved for half-open connections. If the protocol M
is SSL, then the number of slots in B represents the
number of simultaneous SSL sessions (initiations) the
server can support, and hence the computing power of
the server reserved for such sessions. Hence the buffer
B can represent either the memory or computational
resource limitations of the server.

The client puzzle protocol includes three time pa-
rameters, 11, 15, and T3. The parameter T; is the
time for which a puzzle is valid before it expires, i.e.,
the time permitted to a client to solve and submit a
client puzzle. The parameter T is the time which
the client has to initiate M; after it has submitted a
successfully solved puzzle. The parameter T3 is the
duration for which a buffer slot allocated for protocol
M; remains in memory before being purged. We let
T=T1+T15+1Ts.

3.3 Client puzzle protocol description

Let us now describe the details of the client puzzle pro-
tocol. Prior to initiating protocol M, the client first
sends message M} to the server, along with a query
as to whether or not the server is distributing client
puzzles. If the server is not under attack, it indicates
to the client that no puzzles are being distributed, and
records in memory, i.e., in a slot of B, the fact that
initiation M; of protocol M should be permitted. This
permission is valid for a period of time T5, after which
it expires, and initiation of M; is no longer permitted.
If the client responds before expiration of the permis-
sion, it is free to execute initiation of M; under M
as normal. This execution must be completed in time
T3. The client puzzle protocol under normal server
operation is depicted in Figure 2.

Client Server

M, “Puzzle?”
—>

“No puzzle.” . o
<« Registers permission of M;

M
“«——»

Figure 2. Protocol when server is operating normally

The server is deemed to be under attack if the server
memory B begins to fill so that more than maxcon
buffer slots are allocated at one time. In this case, on
requesting permission to initiate M;, the client receives



from the server a client puzzle P. In order to have the
server permit initiation of M;, the client must submit a
correct solution to P within time 77. Once it has done
so, the server sets aside a slot in B for M;. In other
words, the server records permission for the client to
execute M;, leaving the client free to proceed with the
protocol M as normal.

Recall from above that a client puzzle P consists of
a collection of m independent sub-puzzles. Each sub-
puzzle P[j] consists of a hash image with a partially
revealed pre-image, while solving a sub-puzzle puzzle
involves finding the remaining part of the pre-image.
The client puzzle protocol requires that the server con-
struct puzzles with two properties. First, the puzzle
must be time-dependent, so that the client has only a
limited time in which to solve the puzzle. Second, the
puzzle must be able to be constructed in a stateless
way. In particular, the server must be able to verify
without the use of a database that a puzzle solved by
a client is legitimate.

To satisfy these requirements, the server first gen-
erates a long-term, locally held secret s. This secret
should be of length sufficient to forestall cryptanalytic
attacks (e.g., 128 bits). When it receives a request
from a client to initiate M;, the server creates a puzzle
P. For each sub-puzzle P;[j], the server computes the
bitstring z[j] as h(s,t, M}, j), where t is a timestamp
set to the current time 7. (If M} is not unique to ser-
vice requests, it may be desirable to include a nonce
in the hash as well, this nonce effectively becoming an
addition to the puzzle P.) Recall from above that the
sub-puzzle P[j] consists of the bits z[j] <k +1,I> and
the hash y[j]. The server sends the puzzle P to the
client along with the timestamp ¢.

The client computes the solution to P by solving
each sub-puzzle in turn. To solve a sub-puzzle, the
client performs a brute force search of possible solu-
tions. Searching a given solution will require the client
to perform a single hash. We refer to the interval of
time associated with this computation, i.e, the com-
putation of a hash for trying a sub-puzzle solution, as
a time step. A given k-bit sub-puzzle P[j] will have
2% possible solutions. Hence, the expected number of
time steps for a client (or adversary) to solve a sub-
puzzle will be 2% /2 = 2k=1while the maximum time
will be 2%, Since a puzzle contains m sub-puzzles, the
expected number of time steps for a client (or adver-
sary) to solve a puzzle P will be m x 2=, while the
maximum will be m x 2%,

When the client sends ¢ and M} along with its pur-
ported solution to P, the server can check in a state-
less fashion that all sub-puzzles, and thus the entire
puzzle P is correctly solved. It also checks, by com-

paring the timestamp ¢ with the current time 7, that
the puzzle has not expired. Hence the server need
not store any puzzle information itself. In Figure 3,
we denote by solution the (purported) solution data
({zlj]<1,k>}7,, M} t). Figure 3 shows the client
puzzle protocol when the server under attack. We as-
sume in Figure 3 that a correct solution is submitted.
If an incorrect solution is submitted, it will, of course,
be rejected.

Client Server
M, “Puzzle?”
“Yes, puzzle.”P, t

«—
solution

Verifiesthat -t < T,

Computes {x[] = h(st MLj)} 1":11
Verifies that solution is correct
Registers permission of M;in B

Figure 3. Protocol when server is under attack

Note that to prevent an attacker from using the
same solved puzzle for multiple allocations, the server
must ensure that only one slot in B is allocated for
each request M;. One way to accomplish this is to let
some unique identifier derived from M. be associated
with the slot allocated for M;. On receiving a correctly
solved puzzle corresponding to M;, the server checks
that no slot has been allocated for it already. One
means of enabling a rapid search for already-used iden-
tifiers would be to assign slots through bucket hashing
on identifiers.

Since a puzzle includes inversion problems of very
limited size, and we are therefore not concerned with
collision attacks, we can use relatively short hash im-
ages and pre-images. In determining the size of a sub-
puzzle pre-image z[j] , we are principally concerned
with the possibility of dictionary attacks. To avert
such attacks, a 64-bit pre-image is sufficient in most
settings. In considering the size of a sub-puzzle image
y[j], we wish to ensure, for the sake of our analyses,
that the sub-puzzle is very likely to have only a single
solution. We assume, in fact, in our proofs that this is
the case. Under this constraint, it is reasonable like-
wise to make the sub-puzzle image 64 bits long. Given
sub-puzzles of these proposed sizes, the size of a puzzle
will be somewhat less than 16m bytes.



3.4 Puzzle efficiency: Improved puz-

zles

For the sake of simplicity, we assume in our exposi-
tion above that sub-puzzles are constructed indepen-
dently of one another. If we allow some “overlap” in
sub-puzzle construction, however, it is possible to con-
struct puzzles that are substantially more compact and
easy to verify, at the expense of some complexity and
less easily demonstrable cryptographic properties. To
construct a puzzle in this way, we allow the server
to compute a value z of, say, [/2 bits derived from
h(s,t,M}). The value z alone is sufficient to define
m distinct sub-puzzles P[1], P[2],..., P[m] as follows.
We let sub-puzzle P[i] consist of the task of finding an
(1/2)-bit value z; such that the first & bits of (z || @ || 2;)
match the first k bits of h(x || i || z;); here || denotes
bitstring concatenation and ¢ represents a fixed-length
encoding of the sub-puzzle index i. An (I/2)-bit sub-
string z; with the desired property constitutes a correct
solution to sub-puzzle P[i].

To construct a puzzle of this sort, the server need
only compute a single hash. As with the less efficient
puzzle construction in which sub-puzzles are computed
individually, we require only resistance to inversion
and not collision-resistance in the hash function. Thus,
it would still be suitable to use MD4. Since comput-
ing an MD4 hash requires only about 400 instructions,
construction of a puzzle of this more efficient type re-
quires only about 400 instructions on the part of the
server. In a typical setting such as that described in
Section 5, a puzzle would be roughly 8 bytes long (plus
service values), while a puzzle solution would be about
64 bytes long.

Complete verification of a correct puzzle of this type
requires m + 1 hash computations: one hash to com-
pute x and another m to verify sub-puzzle solutions.
On the other hand, if a puzzle is incorrect, it must con-
tain at least one incorrectly solved sub-puzzle. Hence,
by checking sub-puzzles in random order, the server
can be assured of performing at most m/2 + 1 hash
computations on average to verify an incorrectly solved
puzzle. In a typical setting, such as that described in
Section 5, in which m = 8, this would correspond to
about 2,000 instructions.

Alternative embodiments of this puzzle construction
are achievable using a fast block cipher, e.g., RC6 [16],
in lieu of a hash function. In fact, it would be ac-
ceptable to use a reduced-round block cipher for this
purpose, provided that it is still not worthwhile for
an attacker to mount a cryptanalytic attack. Find-
ing more efficient puzzle constructions represents an
interesting research problem.

3.5 Graceful degradation

In the simple implementation of the client puzzle pro-
tocol described above, the security parameters k and
m are fixed. In other words, when the server comes
under attack (i.e., maxcon buffer slots are allocated in
B), it distributes puzzles of uniform difficulty to clients
requesting initiation of protocol M. Note, though,
that it is possible for the server to scale puzzle sizes
and thus impose variably sized computational loads on
the client. In particular, a client puzzle protocol might
scale the hardness of puzzles according to the sever-
ity of the attack on the server: the more the server
buffer becomes filled, the harder the puzzles it issues.
It is also to make changes to the time-out parameters
T, Ty, and T3. Through modification of client puzzle
parameters, server performance can be caused to de-
grade gracefully, and in proportion to the severity of
the threat to the server.

4 Choosing a Correct Size for
the Buffer B

Recall that maxcon is the number of connections made
available to clients by the server under normal operat-
ing conditions. When implementing the client puzzle
defense against connection depletion attacks, we let
the buffer B contain maxcon +b slots. Our purpose in
this section is to determine an appropriate size for b.
Recall that, on average, it will take an expected m2k~!
time steps for the adversary to solve a puzzle. Hence
the expected number of time steps for the adversary
to solve b puzzles is bm2F~1. If the buffer B contains
mazxcon—+b slots, then the adversary must solve b puz-
zles in T" seconds to mount a successful connection de-
pletion attack, where, again, T' = T} + 15 + T3. Let
g represent the number of adversarial time steps per
second, i.e., the number of hashes the adversary can
compute per second. Thus T'g represents the number
of time steps the adversary has to carry out its attack.
Since the expected number of time steps for the adver-
sary to solve b puzzles is bm2*~!, we would expect that
b > Tg/(m2k~1) would be likely to foil the adversary
most of the time.

The problem with this reasoning is that it does not
take into account some complicating factors. First of
all, it is possible that if the adversary mounts a sus-
tained attack, she will get lucky at some point and
encounter a succession of easy puzzles. In addition,
a crafty adversary may not explicitly solve all of the
puzzles she submits. Instead, she may try to guess
the solutions to some puzzles, or attack puzzles by
partially solving and partially guessing at them. We



therefore require rigorous proof to establish the size of
the buffer required for a successful client puzzle pro-
tocol. Let us define ¢ = bm2*~1/Tg. Recall that the
expected time for the adversary to solve b puzzles is
bm2F—1. Intuitively, therefore, ¢ expresses roughly the
number of times larger the value b is than we would
expect to need. We have the following theorem, whose
proof is given in the Appendix. Note that 108 MIPS
represents an arbitrary upper bound on the power of
the adversary, and is given only to simplify the form
of the theorem.

Theorem 1 Assume an adversary with at most 108
MIPS of computing power that mounts a connection
depletion attack for mo more than a year. Assume
further that puzzles are constructed such that m > 8.
Then if ¢ > 7/2 and b > 1100, the probability that the
adversary is able to mount a successful attack is less
than 27199, O

Note that the size of k is determined by ¢ and by
the parameter T. In order to simplify our analysis,
Theorem 1 is proven for parameters larger than would
be needed in practice, i.e., with a rather conservative
approach to security. In practice, designers are en-
couraged instead to make use of the following heuris-
tic. Again, the upper bound of 108 MIPS is selected
arbitrarily to simplify the form of the theorem.

Heuristic 1 Assume an adversary with at most 10°
MIPS of computing power that mounts a connection
depletion attack for mo more than a year. Assume
further that puzzles are constructed such that m > 8.
Then if ¢ > 4/3 and b > 1000, the probability that the
adversary is able to mount a successful attack is less
than 27100, a

Note that Theorem 1 and Heuristic 1 are quite
crude: for the sake of simplicity, they rely on a num-
ber of assumptions which can be relaxed somewhat in
a real system design. For example, sizes of m larger
than 8 reduce the required buffer size. By appealing
to Corollary 2, as given in the Appendix, a protocol
designer can obtain tighter bounds on buffer sizes.

5 An Example

As a demonstration of how the client puzzle protocol
ought to be parameterized, let us consider a scenario
in which an attacker wishes to mount a TCP SYN
flooding attack. Suppose the system under consider-
ation is one in which clients typically have 100 MIPS
of computing power, and an adversary is anticipated
to be able to harness the full power of 20 client ma-

chines. Thus the adversary has 2,000 MIPS of com-
puting power at her disposal.

Let us assume that MD4 is the hash function used
to construct puzzles. One MD4 computation requires
about 400 instructions. Hence, a client can perform
250,000 MD4 computations/second. The number of
time steps per second g for the adversary, which we
assume to have 2,000 MIPS of computing power, is 5 X
108. The DEC archive note “Performance Tuning Tips
for Digital Unix” [8] suggests that half-open TCP SYN
connections be permitted to persist for a period of time
on the order of 75 seconds, i.e., T3 = 75 seconds. Let us
assume that 17 + 75 is also about 75 seconds. In other
words, a client has 75 seconds to receive and submit
a solved puzzle and initiate a TCP connection. Hence
T = 150 seconds. This corresponds to 150 x 5 x 106 =
7.5 x 10® time steps for the adversary.

Suppose we client puzzles consisting of 8 sub-
puzzles, each with 16 bits. Thus, m = 8 and k = 16.
The search space associated with a puzzle is of size
8 x 216 =524, 288. Hence, on average, a client should
take just under a second to solve a puzzle.

A server in the 100 MIPS class has a typical max-
imum processing speed of between 1,000 and 2,000
TCP connections per second [20]. Thus a back-of-
the-envelope calculation reveals that the roughly 400
instruction overhead associated with construction of a
puzzle (see section 3.4) translates into a performance
penalty of less than 1% relative to TCP connection
computation time. Verification of an incorrect puzzle
takes at most an average of 2,000 instructions, equiv-
alent to at most 4% of the time required to establish
a TCP connection. As noted in Section 3.4, puzzles
can be constructed to be about 8 bytes in size (plus
service information) while solutions are about 64 bytes
in size. These penalties are small and, of course, paid
only when the server is under attack.

Now, by Theorem 1, we require at least ¢ > 7/2 and
b > 1100. Since b = cT'g/(m2F~1), this means that we
require b > (7/2x7.5x10%)/(8x2!%) ~ 10,000. Hence
we need B to contain about 10,000 + maxcon buffer
slots. Heuristic 1, however, specifies that ¢ > 4/3 and
b > 1000. This instead gives us b > (4/3 x 7.5 X
108)/(8 x 21%) ~ 3,750. Hence, in practice, we would
want B to contain on the order of 3,750 4+ maxcon
buffer slots. Again, by appealing to Corollary 2, as
given in the Appendix, more careful analysis would
yield a smaller value of b.

In conventional environments, it is standard to
adopt a minimum server TCP buffer size of 2048
slots [8]. This includes buffer slots devoted to defense
against TCP SYN flooding attacks. Hence the client
puzzle protocol does not yield a substantially larger



buffer size than current recommendations.

Of course, the example above is based on a simple
client puzzle protocol in which puzzles are of uniform
difficulty, requiring just over a second for a client ma-
chine. Graceful degradation would lead to a better
client puzzle parameterization, and consequently to a
smaller requirement on the server buffer size.

6 Conclusion

We have presented a protocol in which small crypto-
graphic puzzles may serve as a deterrent against con-
nection depletion attacks. This protocol is especially
valuable against attackers capable of depleting connec-
tions at a fast rate, such as attackers on internal net-
works or attackers exploiting resource-intensive con-
nection protocols like SSL.

There is a great deal of room for further exploration
of the techniques we have presented here. Through a
more detailed consideration of the properties of hash
functions and the time/space tradeoffs faced by an at-
tacker, for example, it may be possible to develop a
form of more compact and/or more efficiently com-
putable client puzzle. Further investigation might also
yield better theoretical results, perhaps narrowing the
gap between the protocol settings suggested in our
main theorem (Theorem 1) and those which we suggest
in practice (Heuristic 1).
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A Appendix: Proofs

In this appendix, we analyze and prove results about
the level of defense provided by the client puzzle pro-
tocol. At first glance, this would seem simple, as we
can easily compute the average time required by the
adversary to solve a puzzle, and we know the number
of puzzles required to overload the server. Two facts,
however, make the analysis tricky. The first is that
the time required to solve a client puzzle is a random
variable. Since solving a client puzzle involves a search
of the space of potential solutions, it is possible that
an adversary may, with luck, happen upon the solu-
tions to a large number of puzzles in a short space
of time. The second fact is that it is possible for an
adversary to guess at the solution to a client puzzle.
With some small probability, an adversary’s guess will
be correct, and the server will allocate buffer memory
for a connection. Together, these two facts mean that
even an adversary with limited computing resources
can mount a successful attack against the client puz-
zle protocol with some probability. By mixing the pro-
cesses of solving and guessing appropriately, it might
in principal be possible for a clever adversary to mount
a successful attack. Our aim in this section is to prove
that when the client puzzle protocol is correctly pa-
rameterized, the probability of mounting a successful
attack in a reasonable space of time is negligible for
any adversary.

A.1 Preliminaries: notation and as-

sumptions

Let P be a puzzle of the form described above, and
let P[j] be the j!* sub-puzzle of P. Let S[j] be the
set of possible solutions to P[j], i.e., the 2% possible
assignments to bits z[j]<1, k>. Since z[j] and y[j] are
of equal length, we assume in our analysis that h, the
hash function used to generate the sub-puzzles in P,
is a random permutation. (In other words, we assume
that h is 1-1 when input and output are of equal length,
and we also make a random oracle assumption on h.)
Thus a sub-puzzle has a unique solution, and the most
effective strategy for solving a sub-puzzle P[j] is brute
force, i.e., an arbitrarily ordered (but non-redundant)
search of the space S[j]. As above, we define a time
step to be the examination of a single element of S[j].
Recall that the expected number of time steps for a
brute force search to yield a solution to P[j] is 251,
and the expected number of time steps for a brute force
search to yield a solution to P is m2*~!. We assume
that the time for the adversary to guess at and submit
a solution to a puzzle is one time step. As the applica-

tion of a hash function such as MD4 requires about 400
instructions, this assumption is accurate (and perhaps
even conservative) for real-world settings.

Let us denote by S the set of possible solutions to
the puzzle P. Let us use X to denote the product
of sets. The set S of possible solutions to P con-
sists of solutions to all of the sub-puzzles in P, i.e.,
S = S[1] x S[2] x ... x S[m]. Hence the set S is iso-
morphic to the set of all bitstrings of length km. Let
S* denote the subset of S containing all solutions to
P which the adversary has not yet eliminated from
its search.! Suppose, for example, that the adver-
sary has solved sub-puzzle P[1], and has unsuccess-
fully searched a set consisting of half of the possi-
ble solutions to sub-puzzle P[2]. Then S* = z; <
1...k> x(S[2] — S*[2]) x S[3] x ... x S[m], so S*
effectively contains 2¢™~k=1 bitstrings. Let us define
s(P) =m—3_:(IS*[j]|/IS[j]l). Hence, in our example
here, s(P) = 3/2. The quantity s(P), which we refer
to as the solution level of P, may be loosely regarded
as the number of sub-puzzles which the adversary has
solved in P. We may define s(P[j]) analogously to be
the portion of sub-puzzle P[j] which the adversary has
solved. In particular, s(P[j]) =1 — (|S*[5]|/1S[7]])-

In the client puzzle protocol as described above,
there are three expiration times: expiration time T}
on client puzzles, T5 on permission to initiate pro-
tocol execution M;, and T5 on the buffer associated
with M;. An attacker seeks to solve as many client
puzzles as possible subject to these constraints. Let
T =T, + 15 + T3. It is easy to see that at a given
point in time 7, there will correspond to each allo-
cated buffer slot in B a solved client puzzle which was
requested at the latest at time 7 — T'. Therefore, the
maximum number of buffer slots an adversary can have
allocated in B is bounded above by the number of
client puzzles she can solve in time T'. If b buffer slots
in B are devoted to defending against an adversary,
the probability of success of attack of an adversary is
bounded above probability that she can solve b puz-
zles in an interval of time T. We make the assumption
that the adversary can request and receive solved puz-
zles instantaneously, and also submit solved puzzles
instantaneously. Other, more important bounding as-
sumptions are enumerated below.

Let us consider a scenario in which an entity
seeks to perform a computation C' in discrete time
steps, starting with time step t = 1. We de-

INote that when |S*| = 1, the adversary has solved the puz-
zle in question, so that |S*| = 1 and |S*| = 0 are, for all intents
and purposes, equivalent conditions. We let either |S*| = 1 or
|S*| = 0 denote a finished puzzle - whichever is convenient for
notation and mathematical consistency in a given context. We
do likewise for S*[j] for any sub-puzzle.



fine an optimal algorithm or strategy for an per-
forming computation C in U time steps as fol-
lows. Let ¢; be the state of the computation in
time step ¢, and let pr[(X,U,C)] be the probability
that algorithm X completes computation C' by time
U. Algorithm X is optimal if for all algorithms Y
and times t < U, pr[(X,U,C) | ¢,ci—1,y-..,¢1] >
pr[(Y,U,C) | ¢t,¢i—1,...c1]. In other words, employing
algorithm X yields the highest probability of success
at any time irrespective of the history of the compu-
tation.

Finally, we let BF' denote the brute force strategy
for solving sub-puzzles. In this strategy, the adver-
sary works on the (or an) unsolved sub-puzzle SP such
that s(SP) is maximal. In particular, the adversary
searches an arbitrary, unexamined solution to SP. Ob-
serve that if the adversary employs BF from the start,
then BF means solving sub-puzzles in strict sequential
order. In other words, the adversary requests a sub-
puzzle, works on it until it is solved, and only then
requests another puzzle.

A.2 Bounding assumptions

We consider an adversary with limited computational
resources seeking to attack a server over some inter-
val of time U. The adversary can submit attempted
puzzle solutions with variable solution levels. The ad-
versary can, for instance, perform no computational
effort, submit a random solution to P with solution
level s(P) = 0, and hope that it has guessed correctly.
With this strategy, the adversary can submit many
potential solutions in a short space of time, but few of
these solutions are likely to be correct. Alternatively,
the adversary may invest the full computational ef-
fort to solve puzzles completely, i.e., submit puzzles
with solution level s(P) = m. With this strategy, the
adversary is assured that its submitted solution to a
given puzzle P is correct, but it can submit solutions
to relatively few puzzles within a given space of time.
There is, of course, also a continuum of intermediate
levels of computational investment the adversary may
make in submitting attempted puzzle solutions. For
the purposes of simplifying our proof, we divide this
continuum into two parts. Those solutions that the
adversary submits to puzzles P with s(P) < m/2 we
refer to as short solutions. Solutions to such puzzles
are short in the sense that the portion of the solution
that is computed, rather than guessed at, is short. In
contrast, we refer to solutions such that s(P) > m/2
as long solutions. Such puzzles have a high solution
level, i.e., most of the attempted solution has been
worked out, rather than guessed at. Of course, we

could partition the continuum of solution levels on a
puzzle into more than two parts, but the classification
into short and long solutions is sufficient for the pur-
poses of our proof. Given this classification, we make
use of the following bounding assumption to achieve
an upper bound on the power of the adversary. This
assumption is implicit throughout our proof.

Bounding assumption 1 If the adversary submits
a short solution to a puzzle P (i.e., s(P) < m/2), then
we assume s(P) = m/2. (Thus, even if the adver-
sary invests no computation in a solution, we assume
that it has correctly solved m/2 sub-puzzles.) If the
adversary submits a long solution to a puzzle P (i.e.,
s(P) > m/2), then we assume s(P) = m, i.e., that the
adversary has solved the puzzle completely.

To simplify our proof further, we make two additional
bounding assumptions. These assumptions likewise
have the effect of yielding an upper bound on the power
of on an adversary mounting an attack over a time in-
terval of length U. We apply this next bounding as-
sumption to long solutions, simplifying the task of the
adversary in submitting such solutions.

Bounding assumption 2 We relax the requirement
that sub-puzzles be grouped in puzzles. Instead, when
the adversary must submit X long solutions in a given
time interval, we assume that it is sufficient for the ad-
versary simply to submit mX/2 correctly solved sub-
puzzles of its choice.

Normally, to mount a successful attack over a pe-
riod of time U against a buffer B, the adversary must
submit at least b correctly solved puzzles. We parti-
tion the b slots devoted to the client puzzle protocol in
buffer B into two buffers By and B with (arbitrary)
sizes b/8 and 7b/8 respectively. We then render the
task of the adversary easier as follows.

Bounding assumption 3 We allow the adversary
to attempt the following two tasks, assuming that the
adversary is successful if it performs either one suc-
cessfully: (1) Fill buffer By in time U by submitting
enough correct short solutions, or (2) Fill buffer By in
time U by submitting enough long solutions. (Note
that our use of Bounding Assumption 2 is such that
we don’t require long solutions to be correct to cause
allocations in buffer Bs.)

A.3 Proof outline

To summarize, then, we allow the adversary time U to
try to fill buffer B; by means of short solutions and



time U to try to fill buffer By by means of long solu-
tions. We show that short solutions are unlikely to be
correct (Lemma 1). This leads us to show that the ad-
versary has a very low probability of successfully filling
buffer By (Lemma 4). For the adversary to fill buffer
B; successfully, we relax the requirement that the ad-
versary submit the required number of correct long
solutions. Instead, under Bounding Assumption 2, we
allow the adversary to submit an appropriate number
of independent sub-puzzles. An adversary may seek to
exploit variations in solution time of sub-puzzles — per-
haps by means of a probabilistic strategy — to reduce
the computational power it requires to mount a suc-
cessful attack. We show, however, that the brute force
algorithm (BF) is optimal for the adversary in solving
independent sub-puzzles (Lemma 2). We show further
that the time for BF to solve the necessary number of
sub-puzzles is long enough so that it is very unlikely
the adversary can do so in time U (Lemma 5). Since
the adversary is likely to be able to fill neither buffer
B nor buffer By, we obtain our main theorem, The-
orem 1, stating that the adversary is very unlikely to
be able to mount a successful denial of service attack
by overloading buffer B in a feasible interval of time
U.

A.4 Proofs

We begin by showing that short solutions are, in gen-
eral, unlikely to be correct.

Lemma 1 The probability that a short solution is cor-
rect is < 27km/2,

Proof:  Suppose that s(P[j]) + s(P[y’']) < 2. In
other words, suppose that the adversary has not solved
sub-puzzles P[j] and P[j'] completely. Let ¢ be the
probability that if the adversary guesses at a so-
lution to P, it will guess correct solutions to P[j]
and P[j’]. Tt is straightforward to see that ¢ =
1/(S*(PEDIS*(P'DD. I s(Pj]) + s(P[j]) < 1,
then |S*(P[j])| + |S*(P[j'])] > 2F. Tt is easy to
show that ¢ is maximized when |S*(P[j'])| = 2* and
|S*(P[4])| is minimized, i.e., when s(P[j]) = s(P[j]) +
s(P[j']), and s(P[j’)) = 0. 1f s(P[j]) + s(P[']) > 1,
then ¢ is similarly maximized when |S*(P[j])| = 1,
i.e., when s(P[j]) = 1. All of this is to say, in loose
terms, that ¢ is maximized when the search of the ad-
versary has been concentrated as much as possible on
one sub-puzzle. By a straightforward inductive argu-
ment, it follows that the probability that an adversary
makes a correct guess on a puzzle P is maximized
when the search of the adversary has been concen-
trated on as few sub-puzzles as possible. Call this

probability . The probability r is maximized when
s(P[1]) = s(P[2]) = ... = s(P[[s(P)]]) = 1 and
s(P[[s(P)]] = s(P) — [s(P)]). Tt is easy to show now
that for any short solution, r < 9=k(m=s(P))  The
Lemma follows. O

Observation 1 Let SP and SP’ be two sub-puzzles.
Let p be the probability that the adversary solves SP on
the next step of work on that sub-puzzle, and p’ be the
probability that the adversary solves SP' on the next
step of work on SP'. If s(SP) < s(SP'), then p < p'.

Proof: The probability that an adversary solves a
unsolved sub-puzzle SP by working on it for one time
step is 1/(]S*(SP)|), and thus increasing with respect
to s(SP). The observation follows. O

Observation 1 means that the work the adversary
works on a sub-puzzle, the more it pays to continue to
work on that sub-puzzle. This observation is crucial
to our proofs, suggesting as it does that the optimal
strategy for the adversary is to work on puzzles in a
strictly sequential fashion. We proceed to prove that
this is the case.

Lemma 2 Let SPy,SPs,... be a sequence of (par-
tially solved) sub-puzzles, and z > 0. Then for any
n, BF is an optimal algorithm for an adversary to
achieve ), s(SP;) > z in n time steps.

Proof: Let n be an arbitrary number of time steps,
and let C' denote computation achieving >, s(SF;) >
z. Let H be the history of computation of all
computation performed by the adversary on puzzles
SP;,SP,,.... Let c be the current state of computa-
tion. We shall prove inductively on j that for all Y, it
is the case that pr[(BF, j,C) | H] > pr[(Y,4,C) | H].
In other words, BF is optimal. Consider j = 1. If
the state of the computation ¢ at this point is such
that >, s(SP;) > z — 1/2F, then any algorithm which
works on an unsolved sub-puzzle will complete com-
putation C. If 3", s(SP;) < z — 1/2*, then either C
cannot be achieved, or else the only way that C' can be
achieved by time step n is for the adversary to solve
an unsolved sub-puzzle in the next time step. Let us
assume the latter. By Observation 1, the adversary
maximizes its probability of achieving this by working
on the unsolved sub-puzzle SP; such that s(SP;) is
maximal. In other words, BF' is optimal.

Let us assume inductively that BF' is optimal for
7 < n, and now consider 7 = n. Let us refer to the
first time step at this point as the initial time step.
Let us denote by W (1) those unsolved sub-puzzles
which have received the maximal amount of work prior
to the initial time step, i.e., all unsolved sub-puzzles



SP such that s(SP) is maximal among unsolved sub-
puzzles. Let us denote by W (2) those unsolved sub-
puzzles which have received the second largest quan-
tity of work, etc. The algorithm BF would, in this ini-
tial time step, work on some sub-puzzle in W(1). Let
us suppose instead that there is an optimal algorithm
X which works on some sub-puzzle which has received
less than the maximal amount of work, i.e., some sub-
puzzle SP’ € W(z) for z > 1. This, of course, either
promotes SP’ to W(z — 1) or solves it. Let us regard
the partitioning of sub-puzzles defined by W as frozen
from this point on.

By induction, BF will be optimal after this time
step, so we may assume that X runs BF for all of
the n — 1 remaining time steps. This means that the
adversary is working on sub-puzzles in W (1), then sub-
puzzles in W (2), etc. We can examine the progress of
the adversary in these remaining time steps in terms
of two cases.

Case 1: The adversary never finishes W (z — 1), i.e.,
doesn’t solve all sub-puzzles in W (z —1). In this case,
the adversary applies only one step of work to SP’.
If the adversary had not worked on SP’ in the initial
time step, and had pursued algorithm BF' instead of
X, it would have been instead able to devote one more
step of work to some puzzle SP in W (z — ¢) for some
i > 1. In other words, the adversary could have worked
on some puzzle SP such that s(SP) > s(SP’). By
Observation 1, this would have meant at least as high
a probability of success of completing computation C.
Hence employing BF' in the initial time step yields at
least as high a probability of success as employing X.

Case 2: The adversary finishes W(z — 1). In this
case, the adversary has merely shuffled the order of
its work. The adversary has applied one initial step
of work to SP’, either solving SP’ or promoting it to
W (z—1). If the adversary promoted SP’ to W(z—1),
then it subsequently applied w additional steps of work
to complete SP’. In either case, if the adversary had
instead not worked on SP’ in the initial time step, leav-
ing SP’ in W(z), it would have reserved at least one
extra step until after it had completed W (z — 1). In
this case it would have applied at least w + 1 steps to
a sub-puzzle in W (z), which we may assume, w.l.0.g.
is SP’. Hence, in either case, SP’ would have been
solved (with the same amount of work, of course).
Hence employing BF' in the initial time step yields
at least as high a probability of success as employing
X. O

The following corollary is now immediate.

Corollary 1 The optimal algorithm for computing a
long solution to puzzle P is to apply BF to its compo-
nent sub-puzzles until m/2 sub-puzzles are solved. 0O

Corollary 1 would seem to imply that an optimal
adversarial strategy for computing as many long solu-
tions as possible in a given interval of time is to work
on puzzles sequentially. This is not necessarily the
case, however. Corollary 1 tells us that an optimal ad-
versary will apply BF to the sub-puzzles in any given
puzzle. A crafty adversary, however, might increase
its efficiency by interleaving work on a number of puz-
zles, and concentrating more work on those puzzles on
which it is making the best progress. Rather than at-
tempting to analyze an adversary of this sort, we make
use of the following, simple observation.

Observation 2 In order to submit z long solutions,
an optimal adversary must correctly solve at least
zm/2 sub-puzzles. O

Observation 2 enables us to invoke Bounding As-
sumption 2 from above. Now, instead of requiring the
adversary to submit z long solutions in a given space of
time, we allow the adversary instead to submit zm /2
sub-puzzles. We permit the adversary to request and
solve these sub-puzzles independently of one another.

As noted above, in order for an adversary to have
b buffer slots allocated at a given time t, the adver-
sary must have submitted correct solutions to at least
b puzzles requested in the previous time interval T
Some of these solutions may be short, and some may
be long. We bound the power of the adversary sepa-
rately with respect to short and long. To do this, we
invoke Bounding Assumption 3.

Recall that under Bounding Assumption 3, we parti-
tion the b slots in buffer B devoted to the client puzzle
protocol into memory spaces By and By. Buffer mem-
ory Bj is reserved for the submission of correct short
solutions. We allocate to By (somewhat arbitrarily) a
1/8-fraction of the buffer slots b in B, i.e., the number
of buffer slots in B; is equal to b/8. Buffer memory
B, is reserved for the submission of long solutions. We
allocate to By the remaining 7b/8 buffer slots. In or-
der to mount a successful attack, the adversary must
overload either buffer B; or buffer By (or both). We
show that an adversary is unlikely to be able to do
either.

We first require the following lemma, based on the
Hoeffding inequalities presented in McDiarmid [15].

Lemma 3 (Hoeffding Inequalities) Let

X1, Xo,..., X, be a set of independent, identically dis-
tributed random variables in [0,1], and let X =3 . X;.
Then:



1. priX — E[X] > e¢E[X]] < exp(—1/3e?E[X]) and

2. pr[X — E[X] £ —eE[X]] < exp(—1/2e2E[X]).
O

Let us first turn our attention to buffer By, the
buffer devoted to correct short solutions. The follow-
ing lemma states that if b is sufficiently large, then pp,,
the probability that the adversary mounts a successful
attack against Bj, is small. In accordance with our
notation above, let us denote by g the number of time
steps per second for the adversary, i.e., the number of
hashes per second the adversary can perform.

Lemma 4 Let us denote by pp, the probability that
the adversary mounts an attack successfully on By in
time U. Then pg, < Ug(exp(—1/3(b2Fm/2)=3/Tg —
1)2Tg27km/2),

Proof: By assumption, an adversary can submit
at most Tg short solutions in an interval of time
Tg. Let X; be a random variable equal to 1 if the
i*? short solution submitted by the adversary is cor-
rect, and 0 otherwise. Let X = Z?:] gX;. By
Lemma 1, the probability that a short solution is cor-
rect is < 27%¥™/2 hence E[X] = Tg¢2 *™/2. The
attack on buffer memory B; is deemed successful if
X > b/8. Thus the probability of a successful at-
tack on By is at most pr[X — E[X] > b/8 — E[X]] =
pr(X —E[X] > (b/(8E[X] 1)) E[X]] = pr[X — E[X] >
(b2F™/2 /8T g —1)E[X]]. By Lemma 3 (inequality (1)),
then pp, < exp(—1/3(b2k™/2)=3 /Tg—1)2Tg2-km/2),
Since puzzle guess successes are independent of one
another, the result follows by a union bound. a

The proof of Lemma 4 relies on the fact that an ad-
versary is unlikely to be able to guess solutions cor-
rectly. Lemma 5 treats the case of long solutions.
Lemma 5 essentially expresses the fact that an adver-
sary working on many long solutions is likely to take
about the expected amount of time to do so.

Lemma 5 Let us denote by pp, the probability that
the adversary mounts an attack successfully on B
in time U. Then pp, < Ug(exp(—(Tbm/64)(1 —
Tg/(Tbm*"=%))?)).

Proof: In order to attack buffer memory By success-
fully, the adversary must submit at least 7/8b correct
long solutions. By Observation 2, this means that the
adversary must submit at least 7bm/16 solved sub-
puzzles. By Lemma 2, an optimal adversary will solve
these sub-puzzles in strict, sequential order. Recall
that the time to solve a sub-puzzle is a uniform random
variable uniform on the interval of integers [1,2*]. Let

X; be a random variable denoting the time required
to solve the ith sub-puzzle divided by 2¢. Hence X;
is uniform over [0,1]. Let X = Zzbm/w X;. Thus
the time required for the adversary to solve the sub-
puzzles is 28X steps, and E[X]| = Tbm/32. In or-
der for the adversary’s attack to be successful, there-
fore, it must be the case that 2*X < Tg. Now,
by the Hoeffding inequality given in Lemma 3 (in-
equality (2)), pri2"X < Tg] = pr[X < Tg27*] =
pr[X — E[X] < —(1 - Tg/(2FE[X]))E[X]] is bounded
above by exp(—1/2(1 — Tg/(2FE[X]))?E[X]) =
exp(—(7bm/64)(1 — Tg/(Tbm2k=5))?).

Suppose that the adversary has been successful in
overloading B> in time step t — 1. Since the adversary
submits at most one puzzle per time step, at most one
puzzle can expire in any given time step, and hence
only one of the buffer slots in By will expire in time
step t. Hence, the probability that the adversary is
successful in overloading B; again in time step t is
equal to the probability that it solves a new sub-puzzle
in time step ¢, which is at least 2%, This is more than
the a priori probability that the adversary successfully
overloads Bs in time step t. In other words, the proba-
bility of success in time step ¢ conditional on success in
t —1 is greater than the a priori probability. It follows
that the probability that the adversary overloads Bs
in time step t conditional on failure to overload By in
time step ¢t — 1 must be less than the a priori probabil-
ity. Therefore the result follows by a union bound. O

We can now bound the success probability of the
adversary by combining Lemmas 4 and 5. This yields
a somewhat complicated expression in the parameters
b,k,m,T,g, and U, and implicitly on the ratio of the
computing power of the adversary to that of clients. In
particular, it is easy to see that a union bound yields
the following.

Corollary 2 Let p be the probability that an ad-
versary mounts a successful attack against the

client puzzle protocol in U time steps. Then
p < Uglexp(—1/3(b26m/2)=3 /g — 1)2Tg2km/2) 1
exp(—(7bm/64)(1 — Tg/(7bm2F=5))2)]. 0

In the interest of producing a simpler, if less general
main theorem, we make the following three assump-
tions on the parameters in the expression of Corollary
2. These assumptions describe a conventional attack
model and usage parameters.

1. The adversary has a total computing power of no
more than 108 MIPS. A time step is defined to be
the time for the adversary to execute 400 instruc-
tions (i.e., one MD4 computation). It follows that



the adversary executes no more than 2 x 10! time
steps / sec, i.e., that g <2 x 10!

2. The adversary devotes no more than a year to
mounting a connection depletion attack. (This

combined with the previous assumption yields
Ug < 2%.)

3. Puzzles are constructed such that m > 8.

Finally, we use the average time required to solve a
puzzle in order to parameterize the number b of buffer
slots in B devoted to defending against adversarial at-
tack. Since the expected time to solve a sub-puzzle is
2k=1 steps, and a puzzle contains m sub-puzzles, the
number of buffer slots an adversary can force the server
to allocate “on average” in time T is Tig/(m2F~1). We
let ¢ = b/(Tg/m2F=1) = bm2*~1/Tg. The variable c
thus represents the ratio of the chosen buffer size to
the buffer size we would expect an adversary to attack
successfully on average.

Theorem 1 Assume an adversary with at most 108
MIPS of computing power that mounts a connection
depletion attack for mo more than a year. Assume
further that puzzles are constructed such that m > 8.
Then if ¢ > 7/2 and b > 1100, the probability that the
adversary is able to mount a successful attack is less
than 27199,

Proof: Given the conditions m > 8, ¢ > 7/2, and
b > 1100, straightforward application of algebra to
Lemma 4 shows that pg, < Uge™'1® (in fact, pp, is
substantially less than Uge~11%). Observe that appro-
priate substitution of ¢ into the exponent in Lemma 5
yields pp, < Ug(exp(—(7bm/64)(1—16/7c)?)). There-
fore, when ¢ > 7/2 and b > 1100, it is easily seen
that pp, < Uge™''5. By Corollary 2, we can bound
the probability that the adversary is able to mount a
successful attack by p < 2Uge 5. By assumption
Ug < 2%3. The theorem follows. a

Remark Theorem 1 requires that ¢ > 7/2 for the
client puzzle protocol to be successful. In other words,
the buffer B must be 7/2 times larger than we would
expect to defend against an adversary with average
success in solving client puzzles. By means of a more
fine-grained analysis, it is possible to show that The-
orem 1 holds for substantially smaller c. In fact, it
holds for ¢ slightly more than 1. Such detailed analy-
sis, though, would result in a much longer proof.
Roughly speaking, there are two factors that enlarge
the size of ¢ required by Theorem 1. The first arises
from Bounding Assumption 1: we assume that submit-
ting any long solution to a puzzle (rather than a correct

long solution) is sufficient to cause a buffer allocation
in the server. This assumption enlarges ¢ by about
a factor of 2. The second factor arises from Bound-
ing Assumption 3. Our division of B into buffers B
and By in the proportion 1 : 7 enlarges ¢ by a fac-
tor of about 8/7. (Hence, we would expect the expo-
nent in Lemma 5, for instance, really to be close to
(bm/4(1 —1/¢)).) The minimum buffer size b in The-
orem 1 is subject to a similar enlargement due to our
bounding assumptions. Rather than making direct use
of Theorem 1, we recommend that designers of real-
world client puzzle protocols make use of the following
heuristic.

Heuristic 1 Assume an adversary with at most 108
MIPS of computing power that mounts a connection
depletion attack for mo more than a year. Assume
further that puzzles are constructed such that m > 8.
Then if ¢ > 4/3 and b > 1000, the probability that the
adversary is able to mount a successful attack is less
than 27199, O



