Home
Overview
Papers

News

Mailing List
Related Works
Bibliography

People

Tor

Mixminion

Free Haven

Related Works:
Anonymous Communications Systems

David Molnar <dmolnar (at) fas_harvard edu=
Michael J. Freedman <mfreed (at) mit. edu=

= Proxy Services
= Anonymizer.com
= Lucent's Proxymate
= Proxomitron
= Chaumian Mix-nets
= Chaum'’s Digital Mix
= |ISDN Mixes
= Remailers: SMTP Mix-nets
= Type 0: anon.penet fi
= Type 1. Cypherpunks Remailers
= Type 2. Cotirell's Mixmaster
= Nymservers and nym_.alias.net
= Remailer User Interfaces
= Recent Mix-Net Designs
= TAZ/Rewebber
= Babel
Stop and Go Mixes
Variable Implicit Addresses
Jakobsson's Practical Mix
Universally Verifiable Mix-nets
Onion Routing
Zero Knowledge Systems
Web Mixes
= Other Anonymous Channels
= The Dining Cryptographers
= Crowds
= (Ostrovsky's Anonymous Broadcast via XOR-Trees
= About this document ..

We earlier described several major implementations of
anonymous communications channels. This appendix serves to
give a more detailed survey of research and development in the
area of anonymous communications. Some of these projects are
not implemented; some exist more as a proof-of-concept by their
respective designers; and still others repeat design and
functionality provided by like systems.

We review three main types of design: proxy-servers, mix-nets,
and other anonymous communications channels

Proxy Services

Proxy services provide one of the most basic forms of
anonymity, inserting a third party between the sender and
recipient of a given message. Proxy services are characterized
as having only one centralized layer of separation between
message sender and recipient. The proxy serves as a “trusted
third party," responsible for sufficiently stripping headers and
other distinguishing information from sender requests

Proxies only provide unlinkability between sender and receiver,
given that the proxy itself remains uncompromised. This
unlinkability does not have the quality of perfect forward
anonymity, as proxy users often connect from the same IP
address. Therefore, any future information used to gain linkability
between sender and receiver (i.e., intersection attacks, traffic
analysis) can be used against previously recorded
communications.

Sender and receiver anonymity is lost to an adversary that may
monitor incoming traffic to the proxy. While the actual contents of
the message might still be computationally secure via
encryption, the adversary can correlate the message to a
sender/receiver agent.

This loss of sender/receiver anonymity plagues all systems
which include external clients which interact through a separate
communications channel - that is, we can define some distinct
edge of the channel. If an adversary can monitor this edge link or
the first-hop node within the channel, this observer gains agent-
message correlation. Obviously, the ability to monitor this link or
node depends on the adversary's resources and the number of
links and nodes which exist. In a proxy system, this number is
small. In a globally-distributed mixnet, this number could be very
large. The adversary's ability also depends on her focus
whether she is cbserving messages and agents at random, or if
she is monitored specific senders/receivers on purpose

Anonymizer.com

The Anonymizer was one of the first examples of a form-based
web proxy [#lanonymizerl#]. Users point their browsers at the
Anonymizer page at www.anonymizer.com Once there, they
enter their destination URL into a form displayed on that page
The Anonymizer then acts as an http proxy for these users,
stripping off all identifying information from http requests and
forwarding them on to the destination URL.

The functionality is limited. Only http requests are proxied, and
the Anonymizer does not handle cgi scripts. In addition, unless
the user chains several proxies together, he or she may be
vulnerable to an adversary which tries to correlate incoming and
outgoing http requests. Only the data stream is anonymized,
not the connection itself. Therefore, the proxy does not prevent
traffic analysis attacks like fracking data as it moves through the
network.

Lucent's Proxymate

Chaining multiple proxies together by hand is a tedious
business, requiring many preliminaries before the first web page
is reached. Lucent's Proxymate software automates the process
[#llucentl#]. The software looks like a proxy sitting on the user's
computer. By setting software to use the Proxymate proxy, the



user causes the software's requests and traffic to go to the
software, which then automatically negotiates a chain of proxies
for each connection.

Proxomitron

Another piece of software which helps manage many distinct
proxies in a transparent manner is Proxomitron[#lproxomitronk#].
In addition to basic listing and chaining of proxies, Proxomitron
allows users to write filter scripts. These filters can then be
applied to incoming and outgeing traffic to do everything from
detecting a request for the user's e-mail address by a web site to
automatically changing colors on incoming web pages.

Chaumian Mix-nets

The project of anonymity on the Internet was kicked off by David
Chaum in 1981 with a paper in Communications of the ACM
describing a system called a “"Mix-net." This system uses a very
simple technique to provide anonymity: a sender and receiver
are linked by a chain of servers called Mixes. Each Mix in the
chain strips off the identifying marks on incoming messages and
then sends the message to the next Mix, based on routing
instructions which encrypted with its public key. Comparatively
simple to understand and implement, this Mix-net (or ~mix-net”
or “mixnet”) design is used in almost all of today's practical
anonymous channels.

Chaum's Digital Mix

Chaum's original paper introduced the basic concept of a Mix as
a sort of “"permutation box " On the incoming side is a list of
messages representing the messages which have arrived at the
Mix server, each of which is identified with a particular sender.
On the outgoing side 1s a randomly permuted list ot messages,
which have lost their identification with the sender. The
assumption is that if the Mix works correctly, no adversary can
do better than guessing to link an incoming message with an
outgoing message.

ISDN Mixes

Chaum's original Digital Mix was described in terms of a series
of Mix nodes which passed idealized messages over a network
The first proposal for the practical application of mixes came
from Pfitzmann et. al. [#ISDN-mixl#], who showed how a mix-
net could be used with ISDN lines to anonymize a telephone
user's real location. Their motivation was to protect the privacy of
the user in the face of a telephone network owned by a state
telephone monopoly.

Their paper introduced a distinction between explicit and implicit
addresses. An explicit address is something about & message
which clearly and unambiguously links it to a recipient and can
be read by everyone, such as a To: header. An implicit address
is an attribute of a message which links it to a recipient and can
only be determined by that recipient. For example, being
encrypted with the recipient's public key in a recipient-hiding
public key is an implicit address.

Remailers: SMTP Mix-nets

Unfil the rise of proxy-based and TCP/IP-based systems, the
most popular form of anonymous communication was the
anonymous remailer. a form of mix which works for e-mail sent
over SMTP. Remailers are informally divided into three
categories, called Type O, Type 1, and Type 2

Type 0: anon.penet.fi

One of the first and most popular remailers was

ancn.penet. £i, run by Johan Helsingius. This remailer was
very simple to use. A user simply added an extra header to
e-mail indicating the final destination, which could be either an
e-mail address or a Usenet newsgroup. This e-mail was sent to
the anon.penet. £i server, which stripped off the return
address and forwarded it along. In addition, the server provided
for return addresses of the form ““anXXXX@anon.penet.fi"; mail
sent fo such an address would automatically be forwarded to
another e-mail address. These pseudonyms could be set up with
a single e-mail to the remailer; the machine simply sent back a
reply with the user's new pseudonym

The anon.penet. £1 remailer is referred to as a Type 0
remailer for two reasons. First, it was the original “"anonymous
remailer." More people used anon.penst. £i than are known
to have used any following type of remailer. Exact statistics are
hard to come by, but X number of accounts were registered at
penet.£i, and only Y are currently registered at
nym.zalias.net.

Second, anon.penet. £i did not provide some of the features
which motivated the development of “Type I" and ~Type II"
remailers. In particular, it provided a single point of failure and
the remailer administrator had access to each user's “'real"
e-mail address. In general, any remailer system which consists
of a single hop is considered Type O

This last feature proved to be the service's undoing. The Church
of Scientology, a group founded by the science fiction writer L.
Ron Hubbard, sued a penet. £i pseudonym for distributing
materials reserved for high initiates to a Usenet newsgroup
Scientology claimed that the material was copyrighted
““technology.” The poster claimed it was a fraud used to extort
money from gullible and desperate fools. Scientology won a
court judgment requiring the anon.penet. £i remailer to give
up the true name of the pseudenymous poster, which the
operator eventually did. This incident, plus several allegations of
traffic in child pornography, eventually convinced Johan
Helsingius to close the service in 1995[#lhelsingiusi#]

Services similar to Type 0 remailers now exist in the form of
““free e-mail” services such as Hotmail, Hushmail, and ZipLip,
which allow anyone to set up an account via a web form.
Hushmail and ZipLip even keep e-mail in encrypted form on their
server. Unfortunatelv. these services are not sufficient by



themselves, as an e'e{vesdropplng adversary can determine
which account corresponds to a user simply by watching him or
her login

Type 1: Cypherpunks Remailers

The drawbacks of anon_penet fi spurred the development of
““cypherpunks” or “"Type 1" remailers, so named because their
design took place on the cypherpunks mailing list. This
generation of remailers addressed the the two major problems
with anon. penet . £i: first, the single point of failure, and
second, the vast amount of information about users of the
service collected at that point of failure. Several remailers exist;
a current list can be found at the Electronic Frontiers Georgia
site [#lmixmasterl#] or on the newsgroup alt.privacy.anon-server.

Each cypherpunk remailer has a public key and uses PGP for
encryption. Mail can be sent to each remailer encrypted with its
key, preventing an eavesdropper from seeing it in fransit. A
message sent to a remailer can consist of a request to remail to
another remailer and a message encrypted with the second
remailer's public key. In this way a chain of remailers can be
built, such that the first remailer in the chain knows the sender,
the last remailer knows the recipient, and the middle remailers
know neither.

Cypherpunk remailers also allow for reply blocks. These consist
of a series of routing instructions for a chain of remailers which
define a route through the remailer net to an address. Reply
blocks allow users to create and maintain pseudonyms which
receive e-mail. By prepending the reply block to a message and
sending the two together to the first remailer in the chain, a
message can be sent to a party without knowing his or her real
e-mail address.

Type 2: Cottrell's Mixmaster

While Cypherpunk remailers represented a major advance over
anon.penet.fi, they fell short of the anonymity provided by the
ideal mix_In 1995, Lance Cottrell cutlined some of the problems
with " Type I" remailers [#mixmasterl]:

= Traffic Analysis: Cypherpunk remailers tend fo send
messages as soon as they arrive, or after some specified
amount of delay. The first option makes it easy for an
adversary to correlate messages across the mix-net. It's
not clear how much delay helps protect against this attack

Does Not Hide Length: The length of messages is not
hidden by the encryption used by cypherpunk remailers.
This allows an adversary to track a message as it passes
through the mixnet by looking for messages of
approximately the same length. [Nofe that the definitions of
semantic securtty and non-malleability do not seem fo
imply “length-hiding"” either]

Cottrell wrote the Mixmaster, or “"Type II", remailer to address
these problems. Instead of using PGP, Mixmaster uses its own
client software (which is also the server software), which
understands a special Mixmaster packet format. All Mixmaster
packets are the same length. Every message is encrypted with a
separate 3DES key for each mix node in a chain between the
sender and receiver, these 3DES keys are in turn encrypted with
the RSA public keys of each mix node.

When a message reaches a mix node, it decrypts the header,
decrypts the body of the message, and then places the message
in a “message pool " Once enough messages have been placed
in the pool, the node picks a random message to forward

As of this writing, Mixmaster is in version 2.9b22[#Imixmaster-
codel#]. Discussion of the project can be found on the mix-I
mailing listf#Imix-I1#] A Mixmaster version 3 is planned in which
nodes will communicate with each other via TCP/IP connections.
All traffic will be encrypted with a key derived by a Diffie-Hellman
key exchange and then destroyed immediately after the
transaction is ended, thereby providing perfect forward secrecy.
Unfortunately, the prototype specification for this protocol is only
available in German and is not finished.

Nymservers and nym.alias.net

The reply blocks used by cypherpunks remailers are important
for providing for return traffic, but they must be sent to every
correspondent individually. In addition, using a reply block
requires that a correspondent be familiar with the use of
specialized software. This problem is addressed by nymservers,
which act as holding and processing centers for reply blocks

To use a nymserver, a user simply registers an e-mail address of
the form ~nym@nymserver net" and associates a reply block
with it. This association can be carried out via anonymous

e-mail. Then whenever a message is sent to
““nym@nymserver.net," the nymserver automatically prepends
the associated reply block, encrypts the aggregate, and sends it
off to the appropriate anonymous remailer.

The most popular nymserver may be the one run at
nym.alias.net, which is hosted at MIT's Lab for Computer
Science. A recent report by Mazieres and Kaashoek details the
technical and social details of running the nymserver, including
problems of abuse[#Inymserverl#].

Remailer User Interfaces

The major reason for the massive popularity of anon . penet. fi
was that it was extremely easy to use. Anyone who could type
“"Request-Remailing-To:" at the top of an e-mail message could
send anonymous e-mail. With the advent of remailers which
required the use of PGP or the Mixmaster software, the difficulty
of using remailers increased. This difficulty was aggravated by
the fact that for years, both PGP and Mixmaster were only
available as command-line applications with a bewildering array
of options.

Recent Mix-Net Designs

TAZ | Dauahhar



1M T INGYWS G

Goldberg and Wagner applied Mixes to the task of designing an
anonymous publishing network called Rewebber[#ltaz-rewebber!
#). Rewebber uses URLs which contain the name of a Rewebber
server and a packet of encrypted information. When typed info a
web browser, the URL sends the browser to the Rewebber
server, whch decrypts the associated packet to find the address
of either another Rewebber server or a legitimate web site. In
this way, web sites can publish content without revealing their
location

Mapping between intelligible names and Rewebber URLs is
performed by a name server called the Temporary Autonomous
Zone(TAZ), named after a novel by Hakim Bey The point of the
““Temporary" in the name of the nameserver (and the novel) is
that static structures are vulnerable to attack. Continually
refreshing the Rewebber URL makes it harder for an adversary
to gain information about the server to which it refers.

Babel

Contemporary with Cotrell's Mixmaster is an effort by Gulcu and
Tsudik called " Babel"[#lbabell#] Babel uses a modified version
of PGP as its underlying encryption engine. This modified
version does not include normal headers, which would include
the identity of the receiver, the PGP version number, and other
identifying information.

The Babel paper defines quantities called the ““guess factor” and
the “"mix factor" which model the ability of an adversary to match
messages passing through the mix with their original senders
Then several attacks are presented, including the trickle and
flooding attack, along with some countermeasures. The paper is
noteworthy in that it attempts to give an analysis of just how
much the practice of batching messages helps the untraceability
of a mix-net node.

Stop and Go Mixes

The next step in probabilistic analysis for mixnets comes in the
work of Kesdogan, Egner, and Buschkes [#lsg-mixI#], who
proposed the " Stop and Go Mix." They divide networks into two
kinds: “closed" networks, in which the number of users is small,
known in advance, and all users can be made distinct, and
““open” networks like the Internet with extremely large numbers
of users. They claim that perfect anonymity cannot be achieved
in these open networks, because there is no guarantee that
every single client of the mix node is not the same person
coming under different names.

Instead, they define and consider a notion of probabilistic
anonymity: given that the adversary controls some percentage of
the clients, some other set of mix servers, and is watching a Mix,
can the probability of correlating messages be quantified in
terms of some security parameter? They consider queueing
theory as an inspiration for a statistical model and manage to
prove thecrems about the adversary's knowledge in this model

Variable Implicit Addresses

Later, Kesdogan et. al. applied Mixes to the GSM mobile
telephone setting[#lkesdogan-vill#]. Here, the point is fo allow for
GSM roaming from cell to cell while still protecting the user's real
location from discovery by the phone company or an outside
intruder. This is done by the use of variable implicit addresses,
which work as follows : each roaming area has a publically
known and static explicit address. When the client GSM phone
comes online or crosses the boundaries of a cell, it queries the
surrounding cells and downloads these addresses. Then it
creates a new address for itself which combines the addresses
of its surrounding cells

Then, instead of sending the entirety of the new address, the
phone sends only some characters, say log n, of the address to
the network to identify itself. The network then directs traffic
intended for the phone to any cell which has those log n
characters in its address. A refinement process then takes place
in which the phone gives out slightly more information to the
system to improve performance by sending information to fewer
cells, but not so much as fo allow its location to be restricted to
only one cell.

Jakobsson's Practical Mix

At EUROCRYPT '98, Jakobsson proposed a mixnet which was
both practical and could be proved to mix correcfly as long as
less than 1/2 of the servers were corrupted[#ljakobsson-
practical-mixl#]. The crucial idea is to treat the mixing as a
secure multiparty computation in which each party is
collaborating to make the collective mix look like a ““random
enough// permutation on a batch of messages. Then techniques
of zero-knowledge proof are used by which each server can
prove to all other servers that they are in fact conforming to the
mix protocol. Deviating servers cannot produce valid proofs, and
50 can be caught and excluded from future mixing. Jakobsson's
original protocel requires in the neighborhood of 160 modular
exponentiations per message per server.

AtPODC '99, Jakobsson showed how the use of precomputation
could reduce the cost even further[#ljakobsson-flash-mix!#]. This
new ““flash mix" required only around 160 modular
multiplications per message per server. This level of efficiency
makes flash mixing competitive with the encryption used in
anonymous remailers, and a serious candidate for low-latency
mixing.

At Eurocrypt '00, “"How to Break a practical mix, and fix it."

Universally Verifiable Mix-nets

With Jakobsson's design, the correctness of a mix-net can only
be verified by the mix servers themselves. When more than a
thresheld of servers is corrupt, the verification fails. Because a
user of the mix-net may not be aware of the corruption, this
failure may be silent and therefore dangerous. One solution to
this problem is a universally verifiable mix-net - a mix-net whose
correctness can be verified by anyone, regardless of their status



@ BEIVEl Ul Udsl

The concept was introduced by Killian [#luniversal-verifiable-
mix-11], and recently a design of this type was proposed at
EUROCRYPT '88 by Abe [#labe-mix}#]. This design works along
the similar bread lines as the Jakobsson design; each mix server
uses zero-knowledge proofs to prove that it is acting in
accordance with some protocol to randomly mix messages. The
difference here is that these proofs are posted publically by the
mix nodes instead of being mulficast only to other mix nodes.
The novel feature of Abe's design is that the work necessary to
verify these proofs grows in a fashion independent of the number
of servers. Unfortunately, verifying these proofs requires on the
order of 1600 modular exponentiations per message.

Onion Routing

The Onion Routing system designed by Syverson, et. al. creates
a mix-net for TCP/IP connections [#lonion-routing-paperl# #l
onion-routerk#]. In the Onion Routing system, a mixnet packet, or
““onion”, is created by successively encrypting a packet with the
public keys of several mix servers, or ~"onion routers.”

When a user places a message into the system, an ““onion
proxy" determines a route through the anonymous network and
onion encrypts the message accordingly. Each onion router
which receives the message peels the topmost layer, as normal,
then adds some key seed material to be used to generate keys
for the anonymous communication. As usual, the changing
nature of the onion - the “"peeling" process - stops message
coding attacks. Onions are numbered and have expire times, to
stop replay attacks. Onion routers maintain network topology by
communicating with neighbors, using this information to initially
build routes when messages are funneled into the system. By
this process, routers also establish shared DES keys for link
encryption.

The routing is performed on the application layer of onion
proxies, the path between proxies dependent upen the
underlying IP network. Therefore, this type of system is
comparable to loose source routing

Onion Routing is mainly used for sender-anonymous
communications with noen-anonymous receivers. Users may wish
to Web browse, send email, or use applications such as
rlogin. In most of these real-time applications, the user
supplies the destination hostname/port or IP address/port.
Therefore, this system only provides receiver-anonymity from a
third-party, not from the sender.

Furthermore, Onion Routing makes no attempt to stop timing
attacks using traffic analysis at the network endpoints. They
assume that the routing infrastructure is uniformly busy, thus
making passive intra-network timing difficult. However, the
network might not be statistically uniformly busy, and attackers
can tell if two parties are communicating via increased traffic at
their respective endpoints. This endpoint-linkable timing attack
remains a difficulty for all low-latency networks

Zero Knowledge Systems

Recently, the Canadian company Zero Knowledge Systems has
begun the process of building the first mix-net operated for profit,
known as Freedom [#lzksl#]. They have deployed two major
systems, one for e-mail and another for TCP/IP. The e-mail
system is broadly similar fo Mixmaster, and the TCF/IP system
similar to Onion Routing.

ZKS's “"Freedom 1.0" application is designed to allow users to
use a nym to anonymously access web pages, use IRC, etc. The
anonymity comes from two aspects: first of all, ZKS maintains
what it calls the Freedom Network, which is a series of nodes
which route traffic amongst themselves in order to hide the origin
and destination of packets, using the normal layered encryption
mixnet mechanism. All packets are of the same size. The
second aspect of anonymity comes from the fact that clients
purchase “"tokens" from ZKS, and exchange these token for
nyms - supposedly even ZKS isn't able to correlate identities
with their use of their nyms

The Freedom Network looks like it does a good job of actually
demonstrating an anonymous mixnet that functions in real-time.
The system differs from Onion Routing in several ways.

First of all, the system maintains Network Information Query and
Status Servers, which are databases which provide network
topology, status, and ratings information. Nodes also query the
key servers every hour to maintain fresh public keys for other
nodes, then undergo authenticated Diffie-Hellman key exchange
to allow link encryption. This system differs from online inter-
node querying that occurs with Onion Routing. Combined with
centralized nym servers, time synchronization, and key
update/query servers, the Freedom Network is not fully
decentralized [#lfreedom-architecturel].

Second, the system does not assume uniform traffic distribution,
but instead uses a basic “heartbeat" function that limits the
amount of inter-node communication. Link padding, cover traffic,
and a more robust traffic-shaping algorithm have been planned
and discussed, but are currently disabled due to engineering
difficulty and load on the servers. ZKS recognizes that statistical
traffic analysis is possible [#freedom-securityl#].

Third, Freedom loses anonymity for the primary reason that it is
a commercial network operated for profit. Users must purchase
the nyms used in pseudonymous communications. Purchasing is
performed out-of-band via an online Web store, through credit-
card or cash payments. ZKS uses a protocol of issuing serial
numbers, which are reclaimed for nym tokens, which in turn are
used to anonymously purchase nyms. However, this system
relies on ““trusted third party" security: the user must trust that
ZKS is not logging IP information or recording serial-token
exchanges that would allow them to correlate nyms to users [#!
freedom-nymsk]. The future adoption of anonymous ecash
purchasing should remove this weakness, and allow truely
anonymous nym issuing.

Web Mixes

Another more recent effort to apply a Mix network to web

hrrwcina ie dna tn Cadarrath at al [#huah mivi#l whn eall thair



LUy 1 UUG U U AU St T
system, appropriately enough, ~"Web Mixes." From Chaum's mix
model, similar to other real-time systems, they use: layered
public-key encryption, prevention of replay, constant message
length within a certain time period, and reordering outgoing
messages.

The Web Mixes system incorporates several new concepts.

First, they use an adaptive ~"chop-and-slice" algorithm that
adjusts the length used for all messages between time periods
according to the amount of network traffic. Second, dummy
messages are sent from user clients as long as the clients are
connected to the Mix network. This cover traffic makes it harder
for an adversary to perform traffic analysis and determine when
a user sends an anonymous message, although the adversary
can still tell when a client is connected to the mixnet. Third, Web
Mixes attempt to restrict insider and outsider flooding attacks by
limited either available bandwidth or the number of used time
slices for each user. To do this, users are issued a set number of
blind signature tickets for each time slice, which are spent to
send anonymous messages. Lastly, this effort includes an
attempt to build a statistical model which characterizes the
knowledge of an adversary attempting to perform traffic analysis.

Other Anonymous Channels

The Dining Cryptographers

The Dining Cryptographers protocol was introduced by David
Chaum[#lchaum-dcl#] and later improved by Pfitzmann and
Waidner as a means of guaranteeing untraceability for the
sender and receiver of a message, even against a
computationally all-powerful adversary. The protocol converts
any broadcast channel into an anonymous broadcast channel. In
the context of Free Haven, however, we have a problem : the
participants in the protocol are identified, even though the sender
and receiver of any given message is not. If the only long-term
participants in the protocol are likely to be Free Haven servnet
nodes, then we do not achieve the server-anonymity we desire.
Less serious, but still important, problems are the efficiency of
the protocol and the difficulty of correct implementation.

Therefore we have not seriously considered using the dining
cryptographers protocol to provide Free Haven's anonymous
channel. If we were to do 50, we might consider running a dining
cryptographer protocol using Mixes to hide the legal identity of
each participant. In that case, while a failure of the Mix would
reveal a participant's identity, the anonymous broadcast would
prevent him or her from being linked to any particular message.

Crowds

The Crowds system was proposed and implemented by AT&T
Research, named for collections of users that are used to
achieve partial anonymity for Web browsing [#lcrowds!#]. A user
initially joins some crowd and her system begins acting as a
node, or anonymous jondo, within that crowd. In order to
instantiate communications, the user creates some path through
the crowd by a random-walk of jondos, in which each jondo has
some small probability of sending the actual http request fo the
ond server. Once established, this path remains static as long as
the user remains a member of that crowd. The Crowds system
does not use dynamic path creation so that colluding crowd
eavesdroppers are not able to probabilistically determine the
initiator (i.e., the actual sender) of requests, given repeated
requests through a crowd. The jondos in a given path also share
a secret path key, such that local listeners, not part of the path
only see an encrypted end server address until the request is
finally sent off. The Crowds system also includes some
optimizations to handle timing attacks against repeated requests,
as certain HTML tags cause browsers to automatically issue re-
requests.

Similar to other real-time anonymous communication channels
(Onion Routing, the Freedom Network, Web Mixes), Crowds is
used for senders to communicate with a known destination. The
system attempts to achieve sender-anonymity from the receiver
and a third-party adversary. Receiver-anonymity is only meant fo
be kept from adversaries, not from the sender herself

The Crowds system serves primarily to achieve sender and
receiver anonymity from an attacker, not provide unlinkability
between the two agents Due to high availibility of data - real-
time access is faster that mix-nets as Crowds does not use
public key encryption - an adversary can more easily use traffic
analysis or timing attacks. However, Crowds differs from all other
systems we have discussed, as users are members of the
communications channel, rather than merely communicating
through it. Sender-anonymity is still lost to a local eavesdropper
that can observe all communications to and from a node.
However, other colluding jondos along the sender's path - even
the first-hop - cannot expose the sender as originated the
message. Reiter and Rubin show that as the number of crowd
members goes to infinity, the probable innocence of the last-hop
being the sender approaches one

Ostrovsky's Anonymous Broadcast via
XOR-Trees

In CRYPTO '97, Ostrovsky considered a slightly different model
of anonymous broadcast. In this model, there are n servers
broadcasting into a shared broadcast channel One of the
servers is a special “Command and Control" server; the rest are
broadcasting dummy traffic. Then there is an adversary who has
control of some of the servers and wants to know which server is
the "Command and Control." Ostrovsky shows how to use
correlated pseudo-random number generators whose output
reveals a certain message when XORed together to create a
protocol which prevents the adversary from discovering which
server is the correct one, even if he can eavesdrop on all
communications and corrupt up to k servers, where kis a
security parameter which affects the efficiency of the protocol

About this document ...

This document was generated using the LaTeX2uTML translator
Version 98.1 release (February 19th. 1988)



Copyright © 1993, 1994 1995, 1996, 1997, Nikos Drakos,
Computer Based Learning Unit, University of Leeds.

The command line arguments were:
latex2html fh-related-comm-appendix.tex

The translation was initiated by Michael J Freedman on 2000-07-

Site last updated on June 12th, 2009
Check the News section for information on the latest content updates.



