
A Practical Scheme for Non-interactive Verifiable Secret Sharing

Paul Feldman

Massachusetts Institute of Technology

AbJtract: This paper presents an extremely efficient,
non-interactive protocol for verifiable secret sharing.
Verifiable secret sharing (VSS) is a way of bequeathing
information to a set of processors such that a quorum of
processors is needed to access th.e information. VSS is a
fundamental tool of cryptograpby and distributed com­
puting. Seemingly difficult problems such as secret bid­
ding, fair voting, leader election:, and flipping a fair coin
have simple one-round reductions to VSS. There is a
constant-round reduction from l~yzantine Agreement to
non-interactive VSS. Non-interactive VSS provides
asynchronous networks with a constant-round simula­
tion of simultaneous broadcast n.etworks whenever even
a bare majority of processors are good. VSS is constantly
repeated in the simulation of fault-free protocols by
faulty systems. As verifiable secret sharing is a
bottleneck for so many results~, it is essential to find
efficient solutions.

1. Introduction

1.1 TIle Problem

Informally, verifiable secret sharing is a protocol in
which a distinguished processor" or dealer, selects and
encrypts a "secret message", s, and gives a "share" of s
to each of n processors. Ther,e exist parameters t,u
such that no t processors can recover s, but any set of
u processors are guaranteed that they can easily com­
pute s. When u=t+l, we say t is a threshhold. The
efficiency of a VSS protocol 1s measured by other
parameters as well:

1. The number of rounds of com:munication required.

2. The number of bits which must be communicated
between processors.

3. The number of computations the processors must do.

Another important characteristic is the way in
which the processors are guaranteed that they can
recover the secret from their shares. All previous
schemes have been interactive; the validity -of a share is
proven by an interactive protocol. Here we introduce

0272-5428/87/0000/0427$OI.00© 1987 IEEE

the concept of a non-interactive VSS, in which a share
"proves its own validity". This widens the applicability
of VSS to scenarios in which interaction is infeasible,
such as sharing a secret among an entire nation. Also,
several executions of non-interactive protocols may be
run in parallel. By contrast, interactive schemes may
have to be run serially. Thus, non-interaction allows us
to use VSS as a subroutine without increasing the round
complexity.

1.2 History of the Problem

Chor, Goldwasser, MicaH, and Awerbuch [CGMA]
introduced the notion of VSS. They present a constant
round interactive scheme for verifiable secret sharing
based on the assumed intractability of factorization. In
their solution, t=O(logn), u=O(n); the communica­
tion complexity is exponential in t.

The powerful zero-knowledge proof system of Gol­
dreich, Micali and Wigderson [GMW] can be used to
create a constant round interactive verifiable secret shar­
ing protocol for any threshhold t. Their solution may be
based on the existence of any one-way function.

Benaloh [Be] assumes a reliable public "beacon",
and uses it to demonstrate a verifiable secret sharing for
any threshhold t running in a constant number of
rounds. The beacon may be replaced by an interactive
verification. This VSS assumes the existence of hard-to­
invert encryption functions with certain properties.

Our contribution is the first non-interactive VSS
protocol. Our protocol measures favorably on all of the
above parameters. The protocol works for any thresh­
hold t and requires 2 rounds of communication. The
communication and computation complexity are small,
O(nk) and O((nlogn+k)(nk logk)) respectively, where
k is a security parameter (we assume unit cost for
broadcasts). We assume the existence of hard-to-invert
encryption functions with certain properties; we show
that discrete log encryption in either finite fields or on
e1liptic curves, encryption based on r-th residues, and
RSA -all have the required properties.

427

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

2. Preliminaries

2.1 TIle Network

We consider a network of n processors with identi­
ties 1,2, ... ,n. Each processor, or player, is a probabilis­
tic polynomial-time algorithm (PPTA). We assume that
every processor has a broadcast channel; a message sent
on such a channel is received by all processors. Addi­
tionally, we assume that there is a private channel from
each processor to every other processor. We consider a
semi- synchronous network. Messages sent at the r-th
pulse are received by the r+l-st pulse. The period
between the r-th and r+1st pulses is called the r-th
round. We shall see, in Section 7, that the assumptions
of the broadcast channels and private channels may be
relaxed; a complete network is sufficient. A processor
may initiate a protocol P with common input x by broad­
casting P,x. A protocol is non- interactive if all mes­
sages are sent by one processor (the leader).

A processor is considered good as long as he has
followed the protocol, and 1aulty once he has deviated
from the protocol. The most general (and difficult to
guard against) faulty behavior occurs when an adversary
coordinates the faulty processors.

Definition: A (static) t-adversary acting on P is a PPTA
A, which need not be one of the n processors, such that

1. A can immediately read any message sent on a non­
private channe1.

2. At pulse 0, A takes as input the common input x and
outputs a t-tuple of processor identities, (al, ... ,at),
which are immediately corrupted. When i is corrupted,
his current state and the contents of his tapes become
inputs of A. A can replace i's finite state control with
any other finite state control. Without loss of generality,
A sends messages to i, which i copies instantaneously
onto its output tapes.

As a PP'fA, A has an output tape; this enables us
to formalize the concept that A must "know" something
by saying that A outputs it.

We say that A is a dynamic t- adversary if A may
corrupt as many as t processors in the network at any
time. When A corrupts a processor i during P, A
receives as input only i's current (and future) state (s)
and tapes.

2.. 2 Polynomial TIme and the Security Parameter

r\ll cryptographic protocols must assume bounds on
the computational power of the players. A parameter of
the protocol is a security parameter k. Informally, any
parti~ula.r adversary has a good chance of "defeating"
the protocol only for sufficiently small values of k.

428

We assume the existence of polynomials
Qo= Qo(n,k), Q1= Ql(n,k) such that all processors
can execute Qo(n,k) steps between pulses, and no pro­
cessor, or the adversary, can execute Ql(n,k) steps
between pulses. An algorithm is polynomial- time if
there exists a polynomial Q such that Q(s) is an upper
bound on its running time on inputs of length s. When­
ever we say that k is an input to an algorithm, we refer
to the k-bit string 111...1.

2.3 Mathematical Notation
For a language L, L k consists of all k-bit strings in

L. For a string a, la I is the num ber of bits in a. Impli­
cit in the notation {a,b, ...}CS is the fact that a,b, ...
are distinct members of S.

A function U is a probability distribution if it assigns
to each YE{O,l}* a non-negative value U(Y) such that
EU(Y)=l.

A poly-size lamily 01 circuits is a family C={LJ Ck }
kEZ

of probabilistic circuits such that for some polynomial
Q, Ck has at most Q(k) inputs and gates.

To emphasize that an algorithm A receives one
input we write A (.); if it receives two inputs we write
A (.,.) and so on. If U is a probability distribution, then
y +- U denotes the algorithm which assigns to Y an ele­
ment randomly selected according to U; that is, Y is
assigned the value X with probability U(X). If S is a
finite set, then (Yl,. •. ,Yd)+-S assigns to (Yl, ... ,Yd) a d­
tuple of elements of S with uniform probability. We let
Pr[J(X, Y, ...): X+-S; Y+-T(X); ...] denote the probabil­
ity that the predicate J(X, Y, ...) will be true, after the
ordered (left to right) execution of X+-S, Y+-T(X) ,
etc.

2.4 Indistinguishability of Probability Distributions
and Zero-Knowledge

Goldwasser, MicaH, and Rackoff [GMR] define the
notion of computational indistinguishability; we shall
adapt their definition to our needs.

Let U= {U Ux } and V {U Vx } be families of
xEL xEL

probability distributions. Let C be a poly-size family of
circuits, and let
P(C,U,x)=Pr[b=O: Y+-Ux;b+-Clxl(Y)]. Intuitively,

U and V are indistinguishable if, for large x, C Ix I can­
not distinguish the output of Ux from the output of Vx •

Definition: Two families of probability distributions U
and V over a language L are indistinguishable if for any
poly-size family of circuits C, Y c >0, 3 ko·:;,-·k ~ko~
Pr[IP(C,U,x)- P(C,V,x) I>k- c: x+-L,,] <k- c.

This notion had already been used by Goldwasser
and MicaH [GM] in the context of encryption. and by
Yao [Y] in the context of pseudo-random num ber gen­
eration.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Intuitively, a protocol is zero-knowledge if for any
dynamic adversary A acting on it, there is a PPTA
which could output strings indistinguishable from those
output by A. If all processors have initially blank tapes,
then all protocols are zero-knowledge by this definition,
since one can construct a PPTA simulating the entire
network, including the adversary. Zero-knowledge
becomes meaningful when we allow processors to start
with private auxiliary inputs which are not easily com­
putable functions of the common input. For example,
assuming NP is not contained in BPP, one processor
may start with a satisfying assignment of a SAT for­
mula, where the formula is given as input to the net­
work.

We define zero-knowledge for a non-interactive
protocol P in which all processors except the leader start
with blank tapes. The leader, i, runs a PPTA Start on
input (k,n), where k is the security parameter and n is
the size of the network. The outputs of Start are the
common input to P, x, and an auxiliary input for i. We
assume that A may not corrupt i. Let A output strings
according to probability distribution Us when P is ini­
tiated on input x.

Definition: A non-interactive protocol P is t-zero­
knowledge if for every dynamic t- adversary A, there
exists a PPTA A' which takes as input xEL and outputs
strings according to Vs such that the families of proba­
bility distributions {Us} and {Vs } are indistinguishable.

3.VeriflaNeS~retSharing

We begin by describing ordinary secret sharing in a
framework which generalizes naturally to VSS.

3.1. Ordinary Secret Sharing
Ordinary secret sharing enables a dealer to split

information among a network so that a quorum of pro­
cessors is needed to recover the information. An
(n, t, 11,) secret sharing is a pair of PPTAs
(Share(·,.),Recover(...)); Recover takes 11,+1 inputs
and is deterministic. The first input of both Share and
Recover is xEL for some language L. We call
MESs =D omain(Share (x,.» the message space;
IMESs 1>1. ClPHs=Range(Share(x,» is the cypher­
text space. We consider a particular xEL and omit the
argument x. The input of Share is a secret wE MES ,
and Share outputs an ordered n-tuple
(d1,···,dn)ECYPH. Each di is called a piece, or share,
of w. The input of Recover is a u-tuple of ordered pairs
«al,cl),···,(au'cu»' where aiE [l,n], ciECYPH, and
the ai are distinct. The output is an element of MES.
When the input to Recover is any labelled subset of u
pieces output by Share on input wEMES, Recover out­
puts w. Formally,

{61'...,4,.)......SAare(w)+V {cz--t-t.nt,au }ell,nJ, (2.1)

-&COt1er{< 61 ,441-h••·'-{ .4fI ,-aa;,)1 = w.

Finally, we require that w be hard to compute given
only t pieces output by Share; no static adversary
should be able to guess w significantly better than ran­
domly given t labelled pieces.

Definition: We say (Share (·,.),Recover(...)) is an
(n, t,u) secret sharing if for a language L ,

1. V xEL V wEMESs ,(dl, ... ,dn).-Share(x ,w)=>
V {a 1" •• ' au}C [I,n1, Recover(x ,(a I' da1) , ••• ,(au, da.))=w.

2. V PPTAs A(.), Guess(...), V c >0,3 ko, Ix l2::ko9
Pr[w= Guess(x,(al,da), ••• ,(at,da,)): (al, ... ,at).-A(x);
w.-MESs ;(d1,. .. ,dn).-Share(x,w)] <1/ IMESz 1+ Ix 1- c.

Later, we shall strengthen property 2, by allowing a
dynamic adversary to choose which pieces of the secret
to take as input.

Shamir [S) presents an (n,t,t+I) secret sharing for
any threshhold t. Let L be the set of prime numbers
greater than n. For pEL, we define Share=Share(p,.)
as follows. The domain is MES=Zp. Protocol Share,
on input wEMES, sets yo=w and lets (Yl' ...'Yt)'-Zp'

t .
Let Q(8) be the polynomial L; Yis·. Then the output of

i=O
Share is Q(1),Q(2), ..•,Q(n) mod p. Recover is polyno-
mial interpolation, which is used to find Q(O)=w.
Informally, we argue that t pieces are no help in recov­
ering w. Given the value of Q at any t points, then the
value at 0, namely Yo= w, uniquely specifies a polyno­
mial Q. Since all other coefficients were chosen uni­
formly, the chance that a particular polynomial was
picked is directly proportional to the probability that its
constant term was the secret chosen. Therefore, seeing t
pieces gives no additional information.

An (n, t, u) secret sharing (Share ,Recover) suggests
a non-interactive protocol in which the leader, or dealer,
can "split" a secret among n players in such a way that
only a quorum of 11 can recover the secret. Namely, the
dealer broadcasts x and sends piece di to player i via
private channel. When 'U players wish to recover the
secret, each broadcasts his labeled piece, and Recover
can be run to return the secret.

Can this protocol be used if t players may be
faulty? No! It is true that no set of t faulty players can
recover the secret themselves. However, even if
'U <n- t, in which case there are enough good players to
recover the secret, bad players may interfere. For

example, a bad player i may broadcast a spurious value
in place of die Good players cannot distinguish good
pieces from spurious pieces. If t=O(n), then a random
u-tuple consists entirely of good players with exponen­
tially small probability.

429

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Indeed, the dealer can prevent this problem by
authenticating the pieces. In this way, good players
could recognize which pieces truly came from the
dealer. However, a more endemic problem is the follow­
ing: what happens if the dealer is faulty? The good
players themselves might get authenticated yet spurious
pieces, and they will not be able to recover the secret.
Depending on the behavior of Recover on "invalid"
inputs, the good players may not be aware that different
sets of pieces would return different secrets. The secret
returned could depend on which bad players chose to
broadcast their authenticated, spurious pieces. The best
kind of secret sharing would allow any player to verify
during Share whether or not his piece is valid; more­
over, he should be able to check during Recover
whether or not the piece another player broadcast is
valid.

3.2 Verifiable Secret Sharing

Informally, a verifiable secret sharing protocol must
meet the following two requirements:

1. Verifiablility constraint: upon receiving a share of the
secret, a player must be able to test whether or not it is
a valid piece. If a piece is valid, there exists a unique
secret which will be output by Recover when it is run on
any 11 distinct valid pieces.

2. Unpredictability: there is no polynomial-time strategy
for picking t pieces of the secret, such that they can be
used to predict the secret with any perceivable advan­
tage.

This framework allows for an interactive protocol
proving validity of the pieces. A VSS protocol is non­
interactive if there is a polynomial-time algorithm Check
which tests validity of the pieces. Obviously, the same
pieces are not valid for different secrets; we introduce a
PPTA Encrypt to handle this.

Informal Definition: An (n, t, u) non-interactive verifiable
secret sharing is a quadruple of PPTAs
(Share ,Recover, Check ,Encrypt) such that

1. (Share ,Recover) is an (n, t,u) secret sharing over a
language L.

2. YxEL,VwEMESz,YI$.j$.n, Y~Encrypt(x,w);

(d1,···,dft)+-Share(x,w)::;>, Checlc(x. Y,.t',d.,.)=1. ·

3. VxEL ,V YERange(Encrypt(x,)), 3 wEMESz ·=::;-·

V {at, ...,au}C[I,n],V d1, ... ,du EMESz ,

(Check(x, Y,ai,di)=1 Vl~i~u)=>

Recover(x,(a1,d1), ... ,(au, du))= w.

Remark: Actually, we require that (Share,Recover)
remains an (n, t, u) secret sharing even when
Y~Encrypt(x,w) is given; Share itself may take Y as
an input. To formalize the definition, Share itself would
set Y+-Encrypt(x,w) and append Y to each piece.

3.3 Applications of Verifiable Secret Sharing
Verifiable secret sharing enables a communication

network to simulate a simultaneous broadcast network.
Informally, every processor is required to share his
round r message before any round r message is
revealed. This trivializes the design of protocols such as
secret bidding, leader election, and flipping a fair coin.

In the simulation of a simulataneous broadcast net­
work, each processor acts as dealer. For an interactive
VSS such as [GMW] , Chor and Rabin [CR] show that
logn rounds are sufficient for n processors to prove the
validity of their pieces; it is not known whether this can
be done in a constant number of rounds. In a non­
interactive VSS, all processors may deal secrets in paral­
lel; therefore, our protocol gives constant round solu­
tions to all these problems.

Another application is achieving a fast Byzantine
Agreement without any preprocessing. The best previ­
ously known algorithm which could tolerate a linear
number of faulty processors, due to Chor and Coan
[Ce] ,[C], required expected O(n /logn) rounds. Feld­
man and MicaIi [FM] show that running non-interactive
verifiable secret sharing without broadcast channels,
using Crusader Agreement instead, yields a constant
expected time Byzantine Agreement protocol.

Even beyond the protocols which directly follow
trom it, verifiable secret sharing now plays a central role
in cryptographic protocol design in a most dramatic way.
In [GMW] it is shown that all protocols can be designed
to resist t faulty players out of 2t+l. Verifiable secret
sharing is one of the three main blocks needed for their
simulation. This highlights even more the need for an
efficient verifiable secret sharing, as it may enter as a
key subroutine in a large class of protocols.

4. Motivation for Our Solution
The motivation behind our solution is to utilize

homomorphic relationships which may exist between
values and their encryptions. For a certain class of
encryption schemes, which we shall call homomorphic,
we can construct an algorithm Check which enables a
player to verify the validity of his piece.

4.1. Probabilistic Encryption

A problem with deterministic encryption schemes is
that it is easy to check whether or not a given ciphertext
is the encryption of any given message. Goldwasser and
Micali [GM] showed how to overcome this problem by
probabilistic encryption. They define the notion of a
family of unapproximable predicates. Let
H={Hardz : xEL} be a family of predicates, each Hardz
maps CYPHz --+ {O,1}. Elements which map to 0 (1) are
considered encryptions of 0 (1). Intuitively, such an

430

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

encryption is secure if there is no efficient way of com­
puting Hardz on random elements; H is unapproximable
if no poly-size family of circuits can compute Hardz(y)
significantly better than randomly guessing when x and
'Yare randomly selected.

Let C= {Ok: k E Z} be a poly-size family of circuits,
C/c{·") takes as inputxEL/c and yEOYPHz and outputs
a bit. For xELk , let
P{ C,k ,x)=Pr[Ok (x ,y)=Hardz(y): y+-CYPHz].

Definition: The predicate H is unapproximable if

VC={Ck : kEZ},V c >0, 3 ko·5·k ~k09 (4.1)

Pr[P(C,k,x».5+k- c : x+-L/c] <k- c,

To probabilistically encrypt a bi·t using HardEH, there
must be a way for the encrypter to find "random" ele­
ments which map to 0 (or 1). One possibility is if Hard
is a trapdoor function, that is, IIard is easy to compute
given a short string Hint. In this scenario, the encrypter
generates a pair x,Hintz ; he can then compute Hardz on
random elements of CYPHz , and picks one which maps
to the desired bit.

Another method exists if Hard is an easy predicate
composed with a one-way function, as we now explain.
Let MES be a message space, and let Encrypt be an
injection from MES --+ CYPH. Informally, Encrypt is
one-way if Encrypt is easy to cOJnpute, but Encrypt- 1 is
hard to compute. Let Predicat,e: MES--+ {O,I} be an
easily computable function. Suppose
Hard=Predicate(Encrypt- 1). Then the encrypter can
randomly pick yE CYPH, and c:ompute z=Encrypt(y)
and b=Predicate(y). By construction, Hard(z)=b,
hence z is a probabilistic encryption of b. All encryp­
tions we shall consider will be c:omputed by this latter
method, even though some are also trapdoor schemes.

Example: RSA probabilistic en(~ryption, developed by
Rivest, Shamir, and Adleman [R.SA] may be computed
either way. Let m be a product of large primes, and e a
number such that (e,<!J(m))=I. Let d=e- 1 mod
t,b(m); d, which is not easy to cOlnpute without knowing
the factorization of m, is the trapdoor hint. We define
CYPH=Z:n. For yEZ:n, we define Hard{y) to be the
parity of yd mod m. This is easy to compute for anyone
knowing d, but it is believed to be hard to compute oth­
erwise. We shall focus on the mt~thod of encrypting bits
without knowing d. Let Encrypt(y)=ye mod m and
Predicate (y) be the parity of y; both are easy to com­
pute. A 0 (1) is encrypted by raising a random even
(odd) element of Z:n to the e po,ver mod m.

We shall find it convenien't to generalize this notion
by enlarging the range of Predica te, and hence Hard, to
[1,1]; the value of 1 is a paranleter of the particular
encryption function.

431

4.2 Homomorphic Encryption Functions

Often, a rich algabraic structure underlies an
encryption scheme. Relations among cleartext values
may imply relations among the encryptions. For exam­
pIe, in RSA encryption, Encrypt(yz) = (yz) e mod
m=Encrypt(y)Encrypt(z). More generally, when both
the domain and range of Encrypt are groups, Encrypt
may be a homomorphism of the groups. Benaloh [Be]
utilized such homomorphisms in his secret sharing, and
pointed out that our VSS extends to such a class of
encryption functions [Be2]. Let
MES=Domain(Encrypt) be an additive group, and
CYPH =Range(Encrypt) be a multiplicative group. The
key property is that for all B,CEMES,

Encrypt(B+C)=Encrypt(B)·Encrypt(C) (4.2)

For cEZ, we define the scalar product
c·B=B+B+...+B with c summands. Induction may be
used to show that V BEMES, V cEZ,
Encrypt (c'B) = (Encrypt(B)) C •

Security can only be achieved by picking among a
family of encryption functions. Let Generator (',') be a
PPTA which, on input k,n, selects x+-(Lkn L n) for
some language L; we define L n cL below. We impose
uniformity constraints by requiring a PPTA Encrypt(,,.)
such that Encrypt(x,.)=Encryptz(·)' and similarly for
Predicate(·,,). Likewise, there must be uniform algo­
rithms for computing the group operations, uniformly
sampling MES, and the following function Divide,
whose purpose will first become clear in Section 5.3. For
all BEMESz , Divide(x,n,n!·B)=Predicate(x,B). Since
scalar multiplication by n! need not be a 1-1 function,
the existence of Divide imposes a certain structure on
Predicate. Moreover, this says that Predicatez{B) is
easily computable given only n!'B as input. We define
MES:={BEMESz: Predicate (B)=s }. We define
L n={xEL: (Divide(x,n,.) is well defined) and

(IRange(Predicate (x,') I~ n) }.

If these properties are satisfied, and
Hard=Predicate(Encrypt- 1) is unapproximable, we say
Generator is a homomorphic probabilistic encrypt~'on scheme
generator. Equation (4.1) implies that NP is not con­
tained in BPP, so we will need to make certain unpro­
ven complexity assumptions to assert that we have such
generators.

In Section 8, we construct homomorphic probabilis­
tic encryption scheme generators based on different
problems. One is based on the difficulty of taking
discrete logs in a finite field; a suitable restriction of the
domain is required. The same method lets us base a
generator on the difficulty of taking discrete logs on a
elliptic curves. Benaloh [Be2] has pointed out that a
generator may be based on the difficulty of distinguish­
ing r-th powers in Z~, where r is a prime dividing
4> (m); the nature of these probabilistic ~ncryptions

differs slightly from the description given here. RSA is

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

sufficiently homomorphic for our purposes if we define
the "addition" on the domain MES=Z:n to be multipli-
cation mod m.

4.3. Using a Homomorphic Probabilistic Encryption
Scheme to Produce a Non-interactive (n,t,t+l) VSS

We restrict the rest of this chapter to an informal
discussion of our protocol. The formal presentation is
given in Section 5.

Given Encrypt, we show how to share a secret in
[1,l]; a longer secret may be shared by sharing blocks of
Il ~bit secrets in parallel. We convert Shamir's secret
sharing into a non-interactive VSS 9S follows. The dealer
uniformly picks a secret 8-+-[I,l), and YoEMES 8 and
sets Yo to be the constant term of a degree t polynomial
Q. He chooses the t other coefficients of Q uniformly
in MES. He then broadcasts encryptions of the
coefficients of Q, Encrypt(Yo), ••• ,Encrypt(Yt). As in
Shamir's scheme, he sends Q(i) to player i via a
private channel. The point is that i can verify his piece
by checking that

Encrypt(Q(i))= (4.3)

(Encrypt(Yo))·(Encrypt(YI)) j ... (Encrypt(Yt)) j'

Even for probabilistic encryption schemes, we must
still prove that broadcasting the encryptions does not
allow an adversary to guess the secret advantageously.
This is done by showing that the adversary can simulate
his view by himself. To facilitate the simulation, we
alter the protocol slightly by having the dealer encrypt a
certain multiple of the coefficients, as will be described
below.

4.4 Tolerating a Dynamic Adversary

It would seem that a non-interactive VSS could not
be zero-knowledge with respect to a dynamic adversary.
On the one hand, by the intractability assumption, a
simulator cannot reconstruct the secret. On the other
hand, we wish that he can simulate the output of an
adversary, who could corrupt any t players and output
valid pieces with those indices. How,ever, if the sim ula­
tor knew all the pieces, he could compute the secret,
The resolution of this difficulty is to permute the shares
in a way unknown to the adversary; the adversary does
not know which share a player should have before cor­
rupting him. In this way, a simulator knowing t shares
can "fool" an adversary into thinking that these are the
correct shares for the players corrupted. Of course, this
leaves the problem of how to convince a player that he
is receiving the proper share.

This latter problem is solved by having the dealer
probabilistically ,encrypt a random permutation 1r ESn.
The dealer lets (AI-+-MES~(I)),...,(An+-MEs~(n)) and
broadcasts Encrypt(AI)' ... ,Encrypt(An). The dealer
sends Ah on theprlvate ~hannel to player i, wh-ere
h~7r-l(j); i eanverify that Prdi06te{Ah)==i. ~is
d~signatestha;t playerj -shouid subsequently r~-eeive

432

Q(h). Player J IS not convinced that the dealer
encrypted a real permutation, but he knows that the
h-th piece is designated exclusively for him, since only
Ah can encrypt to Encrgpt(Ah) and Predicate (Ah)= i.
To facilitate the simulation, this step will precede the
broadcast or the encrypted variables.

With respect to a static adversary, the simulation
may be done without permuting the shares. We argue
without proof, in Section Q.2, that the shares need not
be permuted even against a dynamic adversary,
although there are problems with the simulation in that
case.

5. Our Protocol

5.1 Initialization

Let Generator be a homomorphic probabilistic
encryption scheme generator. The dealer i sets
x+-Generator(k,n), where k is the security parameter,
and n is the size of the network. We omit the depen­
dence on x. Let MES=Domain(Encrypt) ,
CYPH =Range(EncryptJ.

The dealer i uniformly picks a secret 8+-[l,l], sets
yo+-MES', and computes Y=Encrypt(yo). The VSS is
initialized with common input i,x, Y. All players store
i,x, Y on a work tape; i additionally stores Yo as his
auxiliary input.

5.2. TIle Protocol Share

The dealer broadcasts messages in steps 1 and 3;
the players perform calculations in steps 2 and 4.

1. The dealer i selects 1r +-Sn, a uniformly chosen per­
mutation of [1,n]. He sets Aj +-MES1f (j) for each i and
broadcasts the probabilistic encryption this specifies,
Encrypt(A1), ...,Encrgpt(An). He sends h,Ah on the
private channel to i, where h=1r- I(i).

2. Each player i lets A=(Encrypt(AI), ...,Encrypt(An))
denote the values he received on i's broadcast channel
and h and C denote the values he received on the
private channel from i in round 1. We define
Checkid(i,h,C,A)=l iff Encrypt(C)=Encrypt(Ah) and
Predicate (C)=i.When this .is the case, i stores h but
not C=Ah ; if this fails, i immediately rejects the dealer
as faulty.

3. The dealer sets (Yl,. .. ,Yt)+-MES. He computes and
broadcasts
(Y I,···, yt)=(Encrypt(n! ·YI) ,••. ,Encrypt(n! ·Yt)). Let
Q: Z-+MfS denote the "polynomial" function,

Q(a)=Ea'·y,. The dealer privately sends Mh=Q(h)
1=0

to player i=1r(h).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

2. Likewise, A I perfectly sim ulates A and all other
players in step 2.
3. Let il, ... ,ito denote the players A corrupts by the end
of step 2, and let 1r(h

'
)=JI for IE[I,to]. A' picks

hto+1, ••• ,ht uniformly among the as-yet unselected
indices in [1,n], so h1, ...,ht are all distinct. Let ho=O,

I ho...(h o)t
I h l···(h l)t

.....
1ht ... (ht) t

matrix, and its determinant is D = IT (h e- hi).
°sl<est

Lemma. 6.1: Let H={h,e }, where 1 and e range from °
to t and h,e=hl; let G=H-1={G,e }. Then the denom­
inator of O'e divides IT (hj - he) ·

j~e

This is proved by showing that IT IT (h j - hl)
i:fe lfl.{i,e}

divides the determinant of the l,e minor of H. Since
{ho, ... ,ht}C[O,n], the denominator of G'e divides n! for
anye.

A' sets (Ml, ...,Mt)~MES. We implicitly set
Mo=yo (which is well defined as E- I (Y)).

We define the *-inner product by
d

(CI' •.. ' Cd) *(B 1,. .. ,Bd)-E c(Bi , for CI,··., cdE Z and
i=1

B1, ... ,BdEMES. This extends to a *-matrix product in
the natural way. Observe that the conditions
M h,= Q(h,), for lE[O,t] may be written as a matrix

M o Yo
n n M 1 Y1

equation M =HiifI, where M = . and y = . are. .
M t Yt

considered as column vectors. By *-IDultiplying both
sides by G=H- I, we 0 btain
G*M=G*(H:Iifl)={G·H)tlf!=y (the associative law fol­
lows from direct calculation). Denote row 1 of (n!)' G

t
by the integers g,O, ... ,glt, so ~ g'e,Me=n!·Yl. Applying

e=O
Encrypt to both sides and using equation 4.2,

t
IT (Encrypt(Me)) g/, = Encrypt(n! 'Yl) (6.1)
e=O

Observe that A' can compute the left hand side, since
Encrypt(M0)= Y is part of the common input and Me
was chosen by A' fore >0. The right hand side is the
definition of Yj. Therefore, at step 3, A I broadcasts
(Y1, ••• , yt) and sends M , to Jl for l::;l::;to. By construc­
tion, Check (Y,Mb Ji)=I.

Let Jto+l be the next player A corrupts; A' simu­
lates Jt

o
+l starting from the end of round 2, with

i,x, Y,hto+ I '.1 as the only values on Jto+1'S work tape.
By construction, A I is able to give the proper piece
M to+ l at round 3. In like manner, the next player cor-
rupted will have stored the value hto+2' and so on.

4. Each player i computes Yo= yn!. Let
Y=(Yo, Y1, ••• , Yt) denote Yo and the values broadcast
last round; let Nh be the ValUE! i just received on the
private channel. Define Check (Y,Nh,h)= 1 iff

Encrypt(n!·Nh)=(Yo)·(Y~)... (lth'). When this is true, j
stores h ,Nh ; otherwise, he rejects the dealer as faulty.

Remark: As we mentioned in Section 4.2, scalar m ulti­
plication by n! need not be 1-1. Therefore, coefficient
114 is not uniquely determined by the encryption
Y4=Encrypt(n!·Y4). However, Encrypt is 1-1, so n!'Ya
is uniquely determined by Yo. • Therefore, if
Check(Y,N,h)=I, this only guarantees that
n!·N=n!·Q(h). Fortunately, this is good enough, since
it suffices to find n! ·Yo to recover the secret.

5.3 'The Protocol Recover

At any time after Share was executed on input
(i,x, Y), Recover may be initiated' on the same input.
Each player i retrieves and broadcasts the private values
he stored for that execution, h ,Nh • Each j runs
Check (Y,N"Z) to test whether an indexed piece which
was broadcast, 1,N" is valid. Assume that i can find
t+l valid indexed pieces ((al,Na:1), ... ,(at+l,Nat+J). The
polynomial Q is found by interpolation,

t+l((x-ah)]Q=E IT () ·Nat , We observe that this formula
l=l h=l=l a,- ah

would give a polynomial-time algorithm for computing
Q if we could perform scalar division. In particular,

Yo=Q(O) t~(IT «(ala))].Na, . Although we cannot
1=1 h=1=1 ah - a,

necessarily do arbitrary scalar division, the denominator
of each term of the sum divides nt, so n!·yo may be
computed by additions and scalar multiplications by
integers. Therefore, i can compute n!'Yo and hence
Divide (n,n! 'Yo) = Predicate (YO)=8.

5.4 An Extension of Share

In [F], we modify Share by :allowing each player to
broadcast a single termination message. On the basis of
these messages, the players can determine whether or
not enough good players received good pieces to ensure
recovery of the secret. This determination is based
solely on broadcast messages, hence all good players
reach the same conclusion.

6. A Proof of the Security

6.1. The Zero-Knowledge Simulation

Let A be any dynamic t- adversary. We construct a
PPTA A' which simulates the whole network, including
A, without benefit of the auxiliary input. Assume that
Share is initiated with common input i,x, Y; henceforth,
we omit the argument x.

1. Since i does not utilize the auxiliary input; namely
Yo, in round 1, A' simulates z' (and A) perfectly at step
1.

and let H= This is a Vandermonde

433

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

4. A' simulates corrupted players by running A ansd
outputs the output of A.

6.2 Indistinguishability or the Output or A from the
Output or A'

Actually, Share is zero-knowledge even if Encrypt
is easy to invert, in which case to'S auxiliary input is
easily computable, and A' can perfectly simulate the
entire network and output what A outputs. For simpli­
city, we shall prove that Share is zero-knowledge assum­
ing equation 4.1, which implies that Encrypt is hard to
invert. If the output of A is distinguishable from the
output of A', then A distinguishes the probability distri­
butions on its inputs. Thus, it suffices to show that the
inputs to A acting on Share are indistinguishable from
the inputs to A in the sim ulation.

The selection of 11" ,AI, ...,An is done exactly as in
Share. Also, the probability distribution on Y=Yl, ... ,Yt,
which is the uniform one when A acts on Share, is also
uniform in the simulation for the following reason. A'
selected all elements of M =MI,. ••,Mt uniformly in
MES. Given fixed values of k!..sJ and Yo, there is a 1-1
onto map between choices of M and choices of y -- H
sends M=(Mo,M) to Y=(Yo,y), so the uniform distri­
bution on one implies the uniform distribution on the
other. In Share, the elements of Y=Yl, ... ,Yt were
selected uniformly. Since in both cases, M is uniquely
determined by y, this also has identical distribution.

There is only one difference in the inputs to A in
the two cases. When A acts on Share, if player j is cor­
rupted after round 2, j stored h where
h=Predicate(Aj)=Hard(Encrypt(Aj)). In the simula­
tion, the l-th player j corrupted by A after round 2 will
have stored the value hto+l ' regardless of the actual
value Hard(Encrypt(A j)). Therefore, any PPTA which

can distinguish the views can determine
Hard(Encrypt(Aj)) better than randomly guessing,
given only Encrypt(Aj). However, by (4.1), A cannot
guess Hard(E(A j)) better than randomly. Therefore,
the inputs to A are indistinguishable.

7. Extending the Protocol to a Larger Class of Net­
works

We informally remark that Share,Recover may be
implemented without private channels and/or broadcast
channels; a complete network is sufficient. Formal
proof of the claims in this section will appear in [F].

We first observe that random pads can be used to
simulate private channels. Assume that the dealer once
privately sent a long string of random bits, rj, to each
player i, but all future messages may be input by an
adver~ary. To privately send message mj to ;'~ he sends
m~rj, a bitwise exclusive-or--of the real message and an
"unused" -portion of Jihe random pad. Player J', who
knows rj, e~ily computes mj. The adversary, who does
not know 1"j cannot distinguish the sent message from
random noise.

A random pad rj may be sent privately by the use
of trapdoor encryption functions. Suppose that player j
broadcasts an encryption function, Encryptj for which he
knows a trapdoor hint, Hinlj • The dealer picks a ran­
dom pad rj and computes a probabilistic encryption of
it, Encryptj('j) and sends this to j. Player j decrypts to
find the pad rjo Assuming Encryptj is secure, an adver­
sary, on input Encryptj(rj), cannot guess any bit of rji
significantly better than at random.

Although our algorithm only required that the
dealer send messages along a private channel, this tech­
nique can be used to simulate, simultaneously, a com­
plete network of private channels. In particular, all
players may still" deal" secrets simultaneously.

The assumption of a broadcast channel is very
strong. We can eliminate this assumption by simulating
the broadcast channel by Crusader Agreement, which is
a weak form of Byzantine Agreement. The simplest ver­
sion requires the assumption that t<n/3; a more
involved version tolerates any value of t < n /2, provided
that the processors start with secure signature sche mes.

8. Candidates tor Homomorphic Encryption Schemes

8.1 Encryption Based on Discrete L0g9 in Finite
Fields

Generator, on input (k, n) uniformly selects a k -bit
prime p and the prime factorization of p-l subject to
the eondition below. (Bach [Ba] shows how to uni­
formly generate numbers of known factorization.) Let
dr, n= II (q r, r), that is, the largest divisor of r

q<n
qpnme

without a prime factor exceeding n. We require that
dp_ I ,n<n3• For random k-bit numbers r, dr,n approxi­
mates a normal distribution with expected value n " so
dp_ I, n < n3 for all but an exponentially small fraction of
p, and this remains true when we restrict p to k-bit
primes. (We could use any polynomial in place of n3).

Since the only fast algorithms for taking discrete logs
require that p- 1 has only small prime factors, any p
which did not satisfy this condition would not be con­
sidered a good choice for discrete log encryption in any
case.

Generator uniformly selects a generator of the m ul­
tiplicative group Z;, g. The index x is the concatenation
p,g; we omit reference to it. The domain of Encrypt is
Zp-l' and the range is Z;. For YEZ,,_l' Encrypt(y)=gll
mod p. This satisfies the homomorphism property,
Encrypt(B+C)=gB+C mod p=Encrypt(B)'Encrypt(C).
It is easy to design PPTAs for the group operations and
sampling MES; we describe Predicate and Divide below.
We make the following intractability assumption for tak­
ing discrete logs:

V c >O,V n >O,VPPTALogarithm{ o~.,,), 18.1)

3 "oo::::Jok ? ko=>Priy=Logarithm(p ,g ,z):

(p,g)+-Generalor(k,n);lI+- Z "_l;Z=gll mod p] <k- C

434

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Notice that nt, being even, does not have a multiplica­
tive inverse in MES=Zp_l. A necessary condition for
the existence of Dtvide is that
V

B,CEMES,n!·B=n!·C >Predicate (B)=Predicate(C).
Let e=(p-I)/dp_1,n. We partition MES into
equivalence classes mod e, so B=C mod e~
Predicate (B) = Predicate (C). By construction,
(e,n!)=I, so n!o(B- C)=O mod p-I~B=C mod e.
Division by n! is easy mod e, so Divide is no harder to
compute than Predicate.

Long and Wigderson [LW),[L] show the
equivalence of computing discreoo logs and guessing
whether or not the log is in the top half of the residues
mod 1'-1. In fact, the ability to guess a.ny predicate of
the top O(log II' I) bits of the log bet~r than at random
is equivalent to computing the log. Kaliski [Ka] gen­
eralizes this result to apply to logarithms in arbitrary
commutative groups. There is a correlation between the
most significant bits of f +-Zp_l and the most significant
bits of f mod e, hence the ability to predict one better
than guessing implies the same for the other.

Set 1, the size of MES, to be 2 1k I. For fEZ e'
define Predicate(f)=[(f mod e)l/e]. Then equation
8.1 implies equation 4.1, that Hard is hard to compute.

8.2 Discrete Lop on Elliptic Curves
A homomorphic probabilistic encryption scheme for

which no sub-exponential inverting algorithms are
known involves taking discrete logarithms on an elliptic
curve. Miller [M2] suggested the "supersingular" case,
which is the simplest and most efficient;, the interested
reader should see [MI]. Everything is analogous to the
previous section. Generator, on input (k, n), uniformly
selects a k-bit prime p such that 1'=3 mod 4 and
dp+1,n<n3 • Let Curvep={(x,y)EZ,.: y2=i3+x mod p}
and a point called 00. The points on CurveI' form a
cyclic group of order 1'+1. A generator PE CurveI' is
chosen; x=(p,P). For yEMES=Zp+l' let
Encrypt(y)=yop. This satisfies the homomorphism pro­
perty,
Encrypt(B+C) =(B+C) oP=Encrypt(B)Encrypt(C).
Set e=p+l/dp+1,n. Let Predicate(y) be the most
significant Ik 1 bits of y mod e. By Kaliski [KaJ, guess­
ing Hard better than randomly is equivalent to comput­
ing discrete logs on (supersingular) elliptic curves. We
could have Generator select a general elliptic curve (sub­
ject to some restrictions), but this would entail high
(polynomial) computation and lengthier analysis.

8.3 Encryption Based on the Difficulty of Distinguish­
ing r-th Powers

The following probabilistic encryption scheme was
~rst· suggeste~ by Cohen and Fisher [CF] with applica­
tIon to a votIng protocol; Benaloh [Be2] suggested its
use for our VSS.

Generator, on input (n,k), uniformly selects an
In I+I-bit prime r, k-bit primes p and q such that
rip-I, and Z+-{1J,EZ;: 1J,(p-l)/r mod p~I}, that is, a
non-r-th power modulo p. Set m=pq; x=r,m,z.
Here, Encrypt itself is probabilistic. The domain of
Encrypt, MES, is [I,r]; the range, CYPH, is Z~. For
sElI,r], Encrypt(s)+-{Z'lIr mod m: vEZ~};
Predicate(s)=s. No way of computing Hard without
knowing the factorization of m is known. To check the
homomorphism property, let (zB vr mod
m)+-Encrgpt(B) and
(zOw r mod m)+-Encrypt(C), and observe that their
product, (zB+C(vw)r mod m), is a possible encryption
of B+C.

In this scheme, division by n! is easy in MES.
However, this method of probabilistic encryption
requires the dealer to append to each piece M, a string
V, enabling the recipient to verify equation 4.3, that the
appropriate product of the encrypted coefficients is a
possible encryption of M,. A real problem is how to
convince the players that z is not an r-th power without
revealing the factorization of m. This apparently
requires prefacing an interactive zero-knowledge proto­
col proving that z is not an r-th power.

8.4RSA

As we mentioned in Section 4.1, the RSA encryp­
tion scheme behaves sufficiently homomorphic to be
used in the VSS. An advantage of RSA is that
numerous attempts to "break" the scheme have been
made. The only successes have been for the special case
of a very small exponent, which, we shall see, could not
be used for VSS in any case. Alexi, Chor, Goldreich,
and Schnorr [ACGS] prove a reduction from advanta­
geously guessing Hard (as defined in Example 4.1) to
inverting the RSA function Encrypt. They extend the
reduction to the case where the predicate Hard contains
O(Ik Dbits.

Generator, on input (k, n), uniformly selects k -bit
primes p and q and a 2k-bit prime e, e >n. Set m=pq;
x=e,m. The domain and range of Encrypt are both
Z~. For YEZ~, Encrypt(y)=ye mod m. The "addi­
tion" for RSA is multiplication mod m, so the
homomorphism property is
Encrypt(BC) . (Bc)e mod m=Encrypt(B)Encrypt(C).
Since (e,4>(m))=I, Encrypt is I-I. We set Predicate(y)
to be the Ik I least significant bits of y.

We defined Divide (n, n! 0y) = Predicate (y). For
RSA, this is inherently ill-defined, since n!oy=ynl mod
m= n! o(m-y) but Predicate (y)~Predicate(m- y)
(exactly one of them is even). We remedy the situation
by making Encrypt(y) an additional input to Divide.
Since (e,n!)= I, we can find u ,v such that
ue+v(n!)=I. Notice that Encrypt(y) and yn! mod m
uniquely determine y and show how to compute i~
e~i~y: y=yue+tm'=(Encrypt(y)u)«yn!)tJ) mod m, so
D.mde (n, n!·y ,Encrypt(y)) is easily computable.

435

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

9. Other Variations

0.1 Basing the VSS on Multiple Homomorphic
Encryption Functions

Note that one can easily combine the security of
multiple homomorphic encryption schemes. For exam­
ple to encode a secret 8 using Encrypt and Encrypt', the
dealer picks 8' at random, shares the secret 8' using
Encrypt' and the secret 83)8' using Encrypt. The good
players can recover both 8' and 83)8', and hence 8. The
adversary cannot recover 8 unless he can invert both
Encrypt and Encrypt'.

0.2 Efficiency
The communicational complexity of VSS for all

homomorphic encryption schemes proposed is very rea­
sonable. The dealer initiates Share by broadcasting his
identity, the index of Encrypt, x, and an encryption ofa
secret, Y. In step 1, he broadcasts the encrypted Aj's. In
round 3, he broadcasts encryptions of the other t
coefficients, the Ya's. Each broadcast has O(nk) bits.
Also, O(k) bits are privately sent to each. player. For
all homomorphic encryption schemes proposed here,
we feel that 1000 is a reasonable value for k given
sufficient for discrete logs on elliptic curves.

We shall examine the computational complexity'in
the case where discrete logs in finite fields are used. We
ignore the cost of finding p. This is a one-time cost
which is not large if we allow non-uniform selection; it
may be avoided entirely by choosing p from a list of
known very large primes. In such a case the security of
the protocol hinges on a bolder assumption than the
discrete log assumption (equation 8.1).

The most costly part of the computations is
exponentiation. Evaluating Encrypt(x) = 9 % mod p can
be performed in at most 21x 1~21p I=2k multiplications
mod p and at most k additions. The complexity will be
determined by the speed of multiplication, which we
take to be O(klogk). The dealer must encrypt a total
of O(n) values, hence this can be done in O(nk 2Iogk)
steps. This term swallows the cost of randomly selecting
the values and evaluating the polynomial at n points.

For the other players, the most costly steps are run­
ning Checkpiece and Recover. A reasonable way to com-
pute the product (Yo) o(Y~) o. o(yt' ') is the following:

1. Set xo= yt.

2. Set xI+l= l't_I_l o
(XI)h.

3. Reset I to 1+1; if 1< t return to step 2.
The desired product is Xt. Since Ih I$logn, step 2

requires at most O(logn) multiplications, hence Check­
piece requires O(nlogn+k) multiplications. (The Ie are
for the exponentiation of the piece itself.) In Recover,
finding t+l good pieces can require running Checkpiece
2t times. Having found t+l good pieces, a 'player can
perform the polynomial interpolation using at most
O(n2) multiplications and divisions. Thus, a player may
recover the secret in O(n(nlogn +k)k logk) steps.

0.3 Must We Permute the Pieces!
We believe that our protocol may be simplified to 1

round of communication. The pieces were permuted to
facilitate the zero-knowledge simulation in the proof;
indeed, we do not know how to do this simulation in
the simpler setting for a dynamic adversary. (The simu­
lation for a static adversary is straightforward.)
Nevertheless, we conjecture that the simplified protocol
is secure against a dynamic ad~ersary as well.

We see no way that knowledge of encryptions of
the coefficients of Q, or any subset of the pieces, can
make certain other pieces "more useful". In fact, we
could try the simulation for the simplified protocol with
respect to a dynamic adversary A, and we would
succeed whenever we guessed the t players that A cor­
rupts; however, this happens with probability inverse
exponential in n. This would contradict a strong intrac­
tability assumption; that is, if we assumed that any algo­
rithm inverting Encrypt with significant probability must
run in time exponential in n. This may apply to discrete
logs on elliptic curves whenever k > n, and to all the
other schemes described when Ie is a sufficiently large
function of n.

10. Conclusion
We have presented a noninteractive verifiable

secret sharing, optimal in that it tolerates up to (n- 1) /2
bad players, which is provably bitwise secure, assuming
the intractability of taking discrete logarithms (or one of
the other homomorphic encryption schemes). As we
observed in Section 3.3, verifiable secret sharing can be
used as a subroutine to simulate a simultaneous broad­
cast network, which makes protocols such as secret bid­
ding as efficient as the best verifiable secret sharing. We
have also remarked that our VSS enables a network to
reach Byzantine Agreement in constant expected time
without any preprocessing. Moreover, the work of
[GMW] suggests that verifiable secret sharing may enter
as a key subroutine in protecting any protocol from
faulty players, making the search for an efficient one
even more important. The bitwise communication and
local computation complexity of our protocols are small
enough, O(nk) and O((nlogn+k)nk logk) respectively,
making them feasible to implement. We believe that the
proof technique introduced to prove security may have
application to many other cryptographic protocols.

Acknowledgement: I would like to thank the many peo­
ple who greatly contributed to the writeup of this paper.
I participated in an interactive proof of the results of
this paper with Silvio Micali, whose suggestions
immeasurably helped both the technical proof and
presentation. Josh Benaloh suggested basing the proto­
colon arbitrary encryption functions with the homomor­
phism property. Shaft Goldwasser helped simplify the

436

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

presentation by pointing out that certain complIcatIons
were unnecessary. David Shmloys spent much time
proofreading drafts so other readers wouldn't have to;
the text was greatly clarified by his suggestions. Sugges­
tions of Lance Fortnow and Joe Halpern have also been
incorporate d.

[ACGS] W. Alexi, B.Chor, c). Goldreich, and C.
Schnorr, RSA/Rabin Bits are 1/2+1/poly(logn) Secure,
1984 FOCS.

[Ba] E. Bach, How to Generate Random Integers With
Known Factorization, 1983 STO(j.

[Be] J. Benaloh, Secret Sharing IIomomorphisms: Keep­
ing Shares of a Secret Secret, 1986 Crypto.

[Be2] J. Benaloh, personal comm unication.

[C] B. Coan, Achieving Consensus in Fault-Tolerant
Distributed Computer Systerrls: Protocols, Lower
Bounds, and Simulations, PhD. thesis, MIT, 1987.

[CC] B. Chor and B. Coan, A Simple and Efficient Ran­
domized Byzantine Agreement .A.lgorithm, IEEE Tran­
sactions on Software Engineerlng, Vol. SE-ll, No.6
1985.

[CF] J. Cohen and M. Fischer, }\. Robust and Verifiable
Cryptographically Secure Election Scheme, 1985 FOCS.

[CGMA] B. Chor, S. Goldwasser, S. MicaH, and B.
Awerbuch Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of F'aults, 1985 FOCS.

[CR] B. Chor and M. Rabin, Achieving Independence in
Logarithmic Number of Rounds, to appear in POD C
1987.

[F] P. Feldman, MIT thesis, to appear.

[FM] P. Feldman and S. Micali, Byzantine Agreement
From Scratch in Constant Expected Time, manuscript.

[GM] S. Goldwasser and S. Mica.li, Probabilistic Encryp­
tion, JCSS, Vol. 28, No.2, April 1984.

[GMW] O. Goldreich, S. MicaH, and A. Wigderson,
Proofs that Yield Nothing but Their Validity and a
Methodology of Cryptographic Protocol Design, 1986
FOCS.

[Ka] B. Kaliski, MIT thesis, to appear.

[L] D. Long, The Security of Bits in the Discrete Loga­
rithm, Princeton Thesis, 1984.

[LW] D. Long and A. Wigderson, How Discrete is the
Discrete Log? , 1983 STOC.

[Ml] V. Miller, Elliptic Curves and Cryptography,
Crypto 1985.

[M2] V. Miller, personal communication.

[RSA] R. Rivest, A. Shamir, and L. Adleman, A
Method for Obtaining Digital Sig;nature and Public Key
Cryptosystems, Comm. of the ACM, Vol. 21, Feb.
1978.

[8] A. Shamir, How to Share a Secret, CACM Vol.22
N'o.11, 1979.

[YJ A. Yao, Theory and Applicatlons of Trapdoor Func­
tions, 1982 FOCS.

437

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

