
Attacks and Security Proofs of EAX-Prime⋆

Kazuhiko Minematsu1, Stefan Lucks2, Hiraku Morita3, and Tetsu Iwata4

1 NEC Corporation, Japan, k-minematsu@ah.jp.nec.com
2 Bauhaus-Universität Weimar, Germany, stefan.lucks@uni-weimar.de

3 Nagoya University, Japan, h morita@echo.nuee.nagoya-u.ac.jp
4 Nagoya University, Japan, iwata@cse.nagoya-u.ac.jp

Abstract. EAX′ (EAX-prime) is an authenticated encryption (AE) specified by ANSI C12.22 as
a standard security function for Smart Grid. EAX′ is based on EAX proposed by Bellare, Rogaway,
and Wagner. While EAX has a proof of security based on the pseudorandomness of the internal
blockcipher, no published security result is known for EAX′.
This paper studies the security of EAX′ and shows that there is a sharp distinction in security
of EAX′ depending on the input length. EAX′ encryption takes two inputs, called cleartext and
plaintext, and we present various efficient attacks against EAX′ using single-block cleartext and
plaintext. At the same time we prove that if cleartexts are always longer than one block, it is
provably secure based on the pseudorandomness of the blockcipher.

Keywords: Authenticated Encryption, EAX, EAX′, Attack, Provable Security.

1 Introduction

ANSI C12.22 [3] specifies a blockcipher mode for authenticated encryption (AE) as the standard
security function for Smart Grid. It is called EAX′ (or EAX-prime)5. As its name suggests,
EAX′ is based on EAX proposed by Bellare, Rogaway, and Wagner at FSE 2004 [8]. Though
EAX is already efficient with a small amount of precomputation, EAX′ aims at even reducing
the amount of precomputation and memory, for making it suitable to the resource-constrained
devices, typically smart meters. ANSI submitted EAX′ to NIST [15] and NIST called for the
public comments on the proposal to approve EAX′. Following ANSI C12.22, IEEE 1703 [6] and
MC1222 [4] included EAX′. There is also an RFC [5] related to ANSI C12.22.

Though EAX′ is similar to EAX, to the best of our knowledge, its formal security analysis
has not been published to date. In this paper, we investigate the security of EAX′ and show
that there is a sharp distinction depending on the input length. The encryption algorithm of
EAX′ takes two inputs, called cleartext and plaintext. In the standard AE terminology, the
cleartext serves as a nonce, or a combination of nonce and associated data (the latter is also
called header).

First, we show that if the lengths of cleartext and plaintext are not exceeding one block,
there exist attacks against EAX′ for both privacy and authenticity. Specifically, we present

– forgeries, i.e., cleartext/ciphertext pairs with valid authentication tags,

– chosen-plaintext distinguishers, distinguishing the EAX′ encryption from a random encryp-
tion process, and

– chosen-ciphertext plaintext recovery attacks, decrypting ciphertexts by asking for the decryp-
tion of another ciphertext with a valid authentication tag.

⋆ A part of the result was presented at DIAC [14], and a preliminary version of this paper appears in the
proceedings of FSE 2013. This is the full version.

5 The authors of [15] exchangeably use the three names, EAX′, EAX’, and EAX-prime, to mean their proposal.
To avoid any confusion by overlooking the tiny prime symbol or apostrophe, which could be misunderstood as
claiming an attack on EAX, we prefer the longer name “EAX-prime” for the title. In the text we prefer the
name EAX′.

Our attacks are simple and efficient as they require only one or two queries. The simplest one
even produces a successful forgery without observing any valid plaintext/ciphertext pair. Our
forgery and distinguishing attacks strictly require the target system to accept one-block cleartext
and plaintext. The plaintext recovery attacks relax this condition, and given any ciphertext with
one-block cleartext it works for any circumstance where ciphertext is decrypted without checking
the cleartext length. This makes the possibility of attack even larger. Our attacks imply that,
while the original EAX has a proof of security, the security of EAX′ has totally collapsed as a
general-purpose AE.

Next, we show that if the cleartext is always longer than one block, it recovers the provable
security based on the pseudorandomness of the blockcipher for both privacy and authenticity
notions. The security proof is obtained by combining previous proof techniques of EAX by Bel-
lare, Rogaway, and Wagner [8] with some non-trivial extensions, such as Iwata and Kurosawa’s
one used for proving the security of OMAC [11].

One may naturally wonder if our attacks are applicable to ANSI C12.22. Unfortunately we
do not know if ANCI C12.22 protocols exclude one-block cleartexts or not, hence we have no
clear answer. Still, considering the effect of our attacks, we conclude that EAX′ must be used
with cleartext length check mechanisms at both ends of encryption and decryption.

2 Preliminaries

Basic Notations. Let N = {0, 1, . . . }. Let {0, 1}∗ be the set of all finite-length binary strings,
including the empty string ε. The bit length of a binary string X is written as |X|, and let

|X|n
def
= ⌈|X|/n⌉. Here |ε| = 0. A concatenation of X,Y ∈ {0, 1}∗ is written as X∥Y or simply

XY . A sequence of a zeros (ones) is denoted by 0a (1a). For k ≥ 0, let {0, 1}>k def
=

∪
i=k+1,...{0, 1}i

and ({0, 1}n)>k def
=

∪
j=k+1,...({0, 1}n)j , and ({0, 1}n)+ def

= ({0, 1}n)>0. We also define {0, 1}≥k,

({0, 1}n)≥k, {0, 1}<k, ({0, 1}n)<k, {0, 1}≤k, and ({0, 1}n)≤k analogously. For X,Y ∈ {0, 1}n,
X + Y or X − Y is considered as an addition or a subtraction modulo 2n.

For X ∈ {0, 1}∗, let X[1]∥X[2]∥ . . . ∥X[m]
n← X denote the n-bit block partitioning of X,

i.e., X[1]∥X[2]∥ . . . ∥X[m] = X where m = |X|n, and |X[i]| = n for i < m and |X[m]| ≤ n. For
X,Y ∈ {0, 1}∗, let X ⊕end Y be the XOR of X into the end of Y if |X| ≤ |Y |, i.e. X ⊕end Y =
(0|Y |−|X|∥X)⊕ Y . Otherwise X ⊕end Y = X ⊕ (0|X|−|Y |∥Y).

For a finite set X , if X is uniformly chosen from X we write X
$← X .

Random Function and Random Permutation. Let Func(n,m) be the set of all functions
{0, 1}n → {0, 1}m. We may abbreviate Func(n, n) to Func(n). In addition, let Perm(n) be the
set of all permutations over {0, 1}n. A uniform random function (URF) having n-bit input and
m-bit output is the set Func(n,m) with uniform distribution over Func(n,m). It is denoted by

R, and the corresponding sampling is written as R
$← Func(n,m). An n-bit uniform random

permutation (URP) is the set Perm(n) with uniform distribution over Perm(n). It is denoted

by P, and the corresponding sampling is written as P
$← Perm(n).

Galois Field. Following [8], an n-bit string X may be viewed as an element of GF(2n) by taking
X as a coefficient vector of the polynomial in GF(2n). We write 2X to denote the multiplication
of 2 and X over GF(2n), where 2 denotes the generator of the field GF(2n). This operation is
called doubling. We also write 4L to denote 2(2L). The doubling is efficiently implemented by
one-bit shift with conditional XOR of a constant, see e.g. [11].

2

3 Specification of EAX-Prime

We describe the encryption and decryption algorithms of EAX′. We changed the original nota-
tions of EAX′ [3,15] following those of EAX [8]. This illustrates the similarities and the differences
of EAX and EAX′ (See also the last part of this section).

EAX′ is a mode of operation based on an n-bit blockcipher, E. Here we typically assume
(n,E) = (128,AES-128), however other choice is possible [15]. The key of E is written as
K. Formally, the encryption function of EAX′ accepts a cleartext, N ∈ {0, 1}∗ with N ̸= ε,
a plaintext, M ∈ {0, 1}∗, and a secret key, K, to produce the ciphertext, C ∈ {0, 1}∗, with
|C| = |M | and the tag T ∈ {0, 1}32. The decryption function, which we also call the verification
function, accepts N , C, T , and K and generates the decrypted plaintext M if (N,C, T) is valid,
or the flag ⊥ if invalid. Cleartext N contains information that needs to be authenticated, but not
encrypted. ANSI document requires that N must be unique for all encryptions using the same
key6. Hence N can be seen as a combination of a nonce and associated data in the standard
terminology of AE (e.g., see [8]). The plaintext M can be the empty string ε, corresponding to
the null string in [15], and in this case EAX′ works as a message authentication code for N .

For generality we assume that the tag length is specified by a predetermined parameter,
τ ∈ {1, . . . , n}. The original definition employs τ = 32. Let EAX′[E, τ] be EAX′ using n-bit
blockcipher E with τ -bit tag. The corresponding encryption and decryption algorithms are
written as EAX′-EK,τ and EAX′-DK,τ . If τ is clear from the context we may write EAX′[E]
and EAX′-EK and EAX′-DK . These algorithms and their components are shown in Fig. 1. The
encryption algorithm of EAX′ is depicted in Fig. 2. In Fig. 1, α denotes an n-bit constant,
(1n−32∥0115∥0115). Note that CBC′

K(0n,M) is equivalent to the standard CBC-MAC using EK

with input M , denoted by CBCK(M). In our description, we fixed an apparent error in line
72 of the original definition of EAX′.encryptK in [3, 15]. Some editorial errors of [15] were also
pointed out by [1].

EAX′ and the Original EAX. The major differences between EAX′ and the original EAX
are summarized as follows. For other minor differences, see Section 3 of [15]. For the definition
of EAX, see [8].

1. Role of N . Inputs to EAX′-EK consist of a cleartext N and a plaintext M , whereas those to
the original EAX consist of a nonce N , a header (or associated data) H, and a plaintext M .
EAX′ requires N to be unique, hence it works as a nonce. EAX′ does not explicitly define a
header H; information corresponding to the header is included in the cleartext N .

2. Tweaking method for CMAC. For inputM , CMAC [2] using EK is defined as CMACK(M) =
CBCK(pad(M ;D,Q)). The original EAX uses the tweaked CMAC having an n-bit tweak
t, defined as CMACK(t∥M), for t ∈ {0n, 0n−11, 0n−210}, to process N , H, and C. For fast
operation we need to precompute EK(t) for all t and store them to RAM. EAX′ employs a

different way to tweak CMAC accepting two tweak values (i = 0, 1) to generate CMAC′(0)
K

and CMAC′(1)
K for processing N and C. For fast operation we can precompute L = EK(0n).

This reduces the precomputation time and RAM consumption from the original EAX.

3. Counter mode incrementation. The original EAX uses CMACK(0n∥N) as an initial counter

block for CTR mode, while that of EAX′ is CMAC′(0)
K (N) ∧ α to set some bits to zero. One

can find a similar zeroing-out in the deterministic authenticated encryption called SIV [17].
As explained by [17], this contributes to a slight simpler operation.

6 In ANSI C12.22, the uniqueness of N is guaranteed by including time information with a specific format.

3

Algorithm EAX′-EK,τ (N,M)

1. N ← CMAC′
(0)
K (N)

2. C ← CTR′K(N,M)

3. T ← N ⊕ CMAC′
(1)
K (C)

4. T ← msbτ (T)
5. return (C, T)

Algorithm EAX′-DK,τ (N,C, T)

1. N ← CMAC′
(0)
K (N)

2. T ← N ⊕ CMAC′
(1)
K (C)

3. T̂ ← msbτ (T)

4. if T̂ ̸= T return ⊥
5. M ← CTR′K(N,C)
6. return M

Algorithm CMAC′
(i)
K (M) (for i ∈ {0, 1})

1. L← EK(0n)
2. D ← 2L, Q← 4L
3. if i = 0 then
4. return CBC′K(D, pad(M ;D,Q))
5. if i = 1 then
6. return CBC′K(Q, pad(M ;D,Q))

Algorithm CTR′K(N,M)

1. m← |M |n
2. N∧ ← N ∧ α
3. S ← EK(N∧)∥ · · · ∥EK(N∧ +m− 1)
4. C ←M ⊕msb|M|(S)
5. return C

Algorithm CBC′K(I,M) (for M ∈ ({0, 1}n)+)

1. M [1]∥M [2]∥ . . . ∥M [m]
n←M

2. C[0]← I
3. for i← 1 to m do
4. C[i]← EK(M [i]⊕ C[i− 1])
5. return C[m]

Algorithm pad(M ;B1, B2)

1. if |M | ∈ {n, 2n, 3n, . . . , }
2. then return M ⊕end B1

3. else
4. return (M∥10n−1−(|M| mod n))⊕end B2

Fig. 1. (Upper) The encryption and decryption algorithms of EAX′[E, τ], originally with τ = 32. (Lower) Com-
ponent algorithms of EAX′[E, τ]. Here, α = (1n−32∥0115∥0115).

4 Attacks Based on One-Block Cleartext

4.1 Chosen-Message Forgeries

We first describe forgery attacks against EAX′[E, τ]. Throughout the section D and Q denote
2L and 4L with L = EK(0n). The adversary A we consider here can access both encryp-
tion and decryption (verification) oracles, namely EAX′-EK and EAX′-DK . Suppose A (pos-
sibly adaptively) asks q queries to the encryption oracle, (N1,M1), . . . , (Nq,Mq), and receives
(C1, T1), . . . , (Cq, Tq), and then asks (N,C, T) to the decryption oracle. We say A is successful if
A receives a string other than ⊥ and (N,C, T) ̸= (Ni, Ci, Ti) for any 1 ≤ i ≤ q (see also Section
5). Here we assume the nonce-respecting adversary [16]; it is allowed to query any (Ni,Mi) to
the encryption oracle as long as Ni is unique.

Suppose M ∈ {0, 1}≤n. Then pad(M ;D,Q) = M ⊕end D = M ⊕ D when |M | = n and
pad(M ;D,Q) = M∥10n−1−|M | ⊕end Q = M∥10n−1−|M | ⊕ Q when 0 ≤ |M | < n. Therefore, the

definition of CMAC′(i)
K in the previous section conforms to that

CMAC′(0)
K (M) =

{
EK(M) if |M | = n

EK(M∥10n−1−|M | ⊕D ⊕Q) if 0 ≤ |M | < n

CMAC′(1)
K (M) =

{
EK(M ⊕D ⊕Q) if |M | = n

EK(M∥10n−1−|M |) if 0 ≤ |M | < n

The above observation immediately gives the following attacks:

Forgery attack 1 (|N | = n and |C| < n).

1. Prepare (N,C) such that |N | = n and |C| < n and C∥10n−1−|C| = N .

4

EK EK EK

bp

+1

EK EKEK

+1

CTR K

EK EK EK

bp

CMAC
(0)
K

CMAC
(1)
K

N [1] N [2] · · · N [b]

D D/Q

N

N

∧α

M [1]

M [2]

·
·
·

M [m]

msb|M [m]|

C[1] C[2] · · · C[m]

C[1] C[2] · · · C[m]

Q D/Q

N msbτ T

Fig. 2. The encryption algorithm of EAX′. In the figure, |N |n = b and |M |n = m. bp(x) = x if |x| = n and
bp(x) = x∥10n−1−(|x| mod n) if |x| < n.

2. Query (N,C, T) to the verification oracle, where T = 0τ .

This attack always succeeds as the “valid” tag for (N,C) is msbτ (EK(N)⊕EK(C∥10n−1−|C|)) =
0τ .

Forgery attack 2 (|N | < n and |C| = n).

1. Prepare (N,C) such that |N | < n, |C| = n, and N∥10n−1−|N | = C.

2. Query (N,C, T) to the verification oracle, where T = 0τ .

The attack is again successful as the valid tag for (N,C) is msbτ (EK(D⊕Q⊕N∥10n−1−|N |)⊕
EK(Q⊕D⊕C)) = 0τ . These attacks use only one forgery attempt and no encryption query. By
using one encryption query the forgery attack is possible even when |N | = n and |C| = n:

Forgery attack 3 (|N | = |M | = n).

1. Query (N,M) with |N | = |M | = n and N ̸= 0n to the encryption oracle.

2. Obtain (C, T) (where |C| = n) from the oracle and see if C ̸= 0n (quit if C = 0n).

3. Query (Ñ , C̃, T̃) to the verification oracle, where |Ñ | < n, Ñ∥10n−1−|Ñ | = C, |C̃| < n,

C̃∥10n−1−|C̃| = N , and T̃ = T .

The above attack is almost always successful; unless C = 0n we have T = msbτ (EK(N) ⊕
EK(Q⊕D ⊕ C)) and the valid tag for (Ñ , C̃) is

msbτ (EK(D ⊕Q⊕ Ñ∥10n−1−|Ñ |)⊕ EK(Q⊕Q⊕ C̃∥10n−1−|C̃|))

= msbτ (EK(D ⊕Q⊕ C)⊕ EK(N)),

thus equals to T . The converse of Forgery attack 3 is also possible for |N | < n and |M | < n:

Forgery attack 4 (|N | < n and |M | < n).

5

1. Query (N,M) with |N | < n and |M | < n to the encryption oracle.

2. Obtain (C, T) (where |C| = |M | < n) from the oracle.

3. Query (Ñ , C̃, T̃) to the verification oracle, where |Ñ | = |C̃| = n, Ñ = C∥10n−1−|C|, C̃ =
N∥10n−1−|N |, and T̃ = T .

We have T = msbτ (EK(D⊕Q⊕N∥10n−1−|N |)⊕EK(Q⊕Q⊕C∥10n−1−|C|)) and the valid tag
for (Ñ , C̃) is

msbτ (EK(D ⊕D ⊕ Ñ)⊕ EK(Q⊕D ⊕ C̃))

= msbτ (EK(C∥10n−1−|C|)⊕ EK(Q⊕D ⊕N∥10n−1−|N |)) = T.

Partially Selective Forgeries. A forgery is selective instead of existential, if the adversary can
determine the content of the message to be forged. Since EAX′ provides authenticated encryption
with associated data (AEAD), the content of the message consists of both the confidential plain-
text M and the non-confidential associated data (or cleartext) N . While the above attacks do
not allow to choose M , the adversary can arbitrarily choose N (restricted to |N | ≤ n and, for
|N | = n, N ̸= 0n). In this sense, the forgery attacks above are partially selective.

4.2 Chosen-Plaintext Distinguishers

The forgery attacks above are based on the idea of generating (N,C) that makes the tag T = 0τ .
To distinguish EAX′-EK from a random encryption process, which produces (|M |+τ)-bit random
sequence on receiving (N,M), one can similarly make (N,M) so that EAX′-EK will generate
(C, T) with T = 0τ .

Distinguishing attack 1 (|N | = n and |M | = 0).

1. Query (N,M) to the encryption oracle, where N = 10n−1 and M = ε.

2. Obtain (C, T) from the oracle with C = ε.

3. If T = 0τ then return 1, otherwise return 0.

As EAX′-EK returns T = 0τ with probability 1 while the same event occurs with probability
1/2τ with a random encryption process, this enables us to easily distinguish T from random
with the distinguishing advantage almost 1, using only one encryption query.

Distinguishing attack 2 (|N | = n, 1 ≤ |M | < n, and fixed i for 1 ≤ i ≤ n− 1).

1. Fix M ∈ {0, 1}i, and query (N,M) to the encryption oracle with N = M∥10n−1−|M |.

2. Obtain (C, T) from the oracle.

3. If C = M and T = 0τ then return 1, otherwise return 0.

In this case, we have C = M with probability 1/2i for both EAX′-EK and a random encryption
process. Given the event C = M , we have

T = msbτ (EK(N)⊕ EK(C∥10n−1−|C|)) = 0τ

with probability 1 for EAX′-EK , while T = 0τ occurs with probability 1/2τ for the random en-
cryption process. Thus, with probability 1/2i the distinguisher succeeds with a high probability,
which is non-negligible when i is small.

6

4.3 Chosen-Ciphertext Plaintext Recovery Attacks

Consider a triple (N∗, C∗, T ∗) of cleartext N∗, ciphertext C∗ and tag T ∗. The corresponding
plaintext M∗ is unknown. The adversary can ask a decryption oracle, for the decryption of any
(N,C, T) under its choice, except for (N,C, T) = (N∗, C∗, T ∗) (otherwise, finding M∗ would be
trivial). The adversary receives either ⊥ (if verification fails) or the decryption M of C. This is
the setting in a chosen ciphertext attack. Below, we focus on plaintext recovery attacks, where
the adversary actually finds (a part of) M∗. We describe two attacks: the first for |N∗| = n, the
second for |N∗| < n.

Plaintext recovery attack 1 (|N∗| = n).

1. Obtain (N∗, C∗, T ∗) for unknown plaintext M∗.

2. Prepare C with |C| < n and C∥10n−1−|C| = N∗ and T = 0τ .

3. Query (N∗, C, T) to the decryption oracle. Let M be the answer.

4. Compute the keystream KS = C ⊕M ∈ {0, 1}|C|.

Since the decryption of (N∗, C∗, T ∗) uses the same keystream KS, we now can compute the first
|C| bits of M∗, or the full M∗ if |M∗| ≤ |C|. It succeeds for the same reason as Forgery attack
1 (unless N∗ = 0n, in which case there is no C in Step 2, or C∗∥10n−1−|C∗| = N∗ and T ∗ = 0τ ,
in which case the decryption query in Step 3 makes the attack trivial).

Plaintext recovery attack 2 (|N∗| < n).

1. Obtain (N∗, C∗, T ∗) for unknown plaintext M∗.

2. Prepare C with |C| = n and N∗∥10n−1−|N∗| = C and T = 0τ .

3. Query (N∗, C, T) to the decryption oracle. Let M be the answer.

4. Compute the keystream KS = C ⊕M ∈ {0, 1}n.

Unless N∗∥10n−1−|N∗| = C∗ and T ∗ = 0τ , the attack succeeds for the same reason as Forgery
attack 2.

4.4 Remarks

The Source of Attacks. Not to mention, our attacks cannot be applied on the original EAX
having the proof of security. Our attacks exploit the wrong tweaking method of CMAC in
EAX′. While the tweaking method in the original EAX provides a set of computationally in-

dependent PRFs, the tweaking method of EAX′ fails to do this. For instance CMAC′(0)
K (M) =

CMAC′(1)
K (M ′) holds with probability 1 for any (M,M ′) such that |M | = n and |M ′| < n and

M ′∥10n−1−|M ′| = M , which is unlikely to occur if CMAC′(0)
K and CMAC′(1)

K were computation-
ally independent. The SIV-like counter incrementation also increases the collision probability of
counter blocks, however this only leads to a small degradation in security, as mentioned by [3],
hence our attacks do not rely on this fact.

Applicability to ANSI C12.22 Protocols. All our attacks require |N | ≤ n. The forgery
and distinguishing attacks also require |M |, |C| ≤ n, and the plaintext recovery attacks actually
require at most the first n bits of the ciphertext. In addition, the forgery and plaintext recovery
attacks could not be prevented by restricting the input length at encryption: one must implement
the input length check at decryption as well.

One can find some examples that have |M | = n or |M | = 0 (i.e. the authentication of N)
with n = 128 in communication examples of ANSI C12.22 (Annex G of [3]) or test vectors7

7 One can find test vectors with n-bit cleartexts in [15]. However, they seem to contain an editorial error; the
cleartext may mean the plaintext and vice versa.

7

of EAX′ (Section V of [15]). At the same time, we do not know8 whether |N | > n holds for
ANSI C12.22 protocols, even though the specification [15] does not, at least explicitly, regulate
the length of cleartext. The reference code of EAX′ given by [3, 6] has no restriction on input
lengths, and we verified our attacks with that code.

A natural question arises from the above observation: whether EAX′ is provably secure under
the restriction |N | > n. In the next section we provide a positive answer to this question.

5 Provable Security for More-than-One-Block Cleartext

Now we are going to prove that EAX′ provides the provable security when the cleartext N
is always more than n bits for both encryption and decryption. Combined with the attacks
described in the previous section, the result of this section draws a sharp distinction on the
security between the case |N | > n and the case |N | ≤ n.
Security Notions. Following [8,16], we introduce two security notions, privacy and authenticity,
to model the security of EAX′. For c oracles, O1, O2, . . . , Oc, we write AO1,O2,...,Oc to represent
the adversary A accessing these c oracles in an arbitrarily order. If F and G are oracles having
the same input and output domains, we say they are compatible.

A CPA-adversary A against EAX′[E, τ] accesses EAX′-EK,τ . The encryption queries made
by A are denoted by (N1,M1), . . . , (Nq,Mq). We define A’s parameter list as (q, σN , σM), where

σN
def
=

∑q
i=1 |Ni|n and σM

def
=

∑q
i=1 |Mi|n if all |Mi|n > 0. For convention, if |Mi| = 0 for some

i ≤ q, σM
def
= (

∑q
i=1 |Mi|n) + 1. We also define random-bit oracle, $, which takes (N,M) ∈

{0, 1}∗×{0, 1}∗ and returns (C, T)
$← {0, 1}|M |×{0, 1}τ . The privacy notion for CPA-adversary

A is defined as

Adv
priv

EAX′[E,τ]
(A) def

= Pr[K
$← K : AEAX′-EK ⇒ 1]− Pr[A$ ⇒ 1]. (1)

We assumeA in the privacy notion is nonce-respecting, i.e., allNis are distinct. Similarly, a CCA-
adversaryA against EAX′[E, τ] accesses EAX′-EK,τ and EAX′-DK,τ . The encryption and decryp-

tion queries made byA are denoted by (N1,M1), . . . , (Nq,Mq) and (Ñ1, C̃1, T̃1), . . . , (Ñqv , C̃qv , T̃qv).

We defineA’s parameter list as (q, qv, σN , σM , σ
Ñ
, σ

C̃
), where σ

Ñ

def
=

∑qv
i=1 |Ñi|n, σC̃

def
=

∑qv
i=1 |C̃i|n

when all |C̃i|n > 0 and σ
C̃

def
= (

∑qv
i=1 |C̃i|n) + 1 otherwise. The definitions of σN and σM are the

same as above. The authenticity notion for a CCA-adversary A is defined as

AdvauthEAX′[E,τ](A)
def
= Pr[K

$← K : AEAX′-EK ,EAX′-DK forges], (2)

where A forges if EAX′-DK returns a bit string (other than ⊥) for a query (Ñi, C̃i, T̃i) for
some 1 ≤ i ≤ qv such that (Ñi, C̃i, T̃i) ̸= (Nj , Cj , Tj) for all 1 ≤ j ≤ q. We assume A in the
authenticity notion is always nonce-respecting with respect to encryption queries; using the same
N for encryption and decryption queries is allowed, and the same N can be repeated within
decryption queries, i.e. Ni is different from Nj for any j ̸= i but Ñi may be equal to Nj or Ñi′

for some j and i′ ̸= i.
Bounds. We denote EAX′ using an n-bit URP as a blockcipher by EAX′[Perm(n), τ] and
the corresponding encryption and decryption functions by EAX′-EP and EAX′-DP. Similarly,

the subscript K in the component algorithms is substituted with P, e.g. CMAC′(i)
P . We here

provide the security bounds for EAX′[Perm(n), τ]; the computational counterpart for EAX′[E, τ]
is trivial. The security bound for the privacy notion is as follows.
8 In [15], “Justification” of Issue 6 (in page 3) states that “The CMAC′ computations here always involve CBC
of at least two blocks”. This looks odd since M or C can be null (as stated by ANSI) and CMAC′ taking the
empty string certainly operates on the single-block CBC, but it may be a hint that |N | > n would hold for any
legitimate ANSI C12.22 messages.

8

Theorem 1. Let A be the CPA-adversary against EAX′[Perm(n), τ] who does not query clear-
texts of n bits or shorter and has parameter list (q, σN , σM). Let σpriv = σN + σM . Then we
have

Adv
priv

EAX′[Perm(n),τ]
(A) ≤

18σ2
priv

2n
.

The security bound for the authenticity notion is as follows.

Theorem 2. Let A be the CCA-adversary against EAX′[Perm(n), τ] who does not query clear-
texts of n bits or shorter for both encryption and decryption oracles, and has parameter list
(q, qv, σN , σM , σ

Ñ
, σ

C̃
). Let σauth = σN + σM + σ

Ñ
+ σ

C̃
. Then we have

AdvauthEAX′[Perm(n),τ](A) ≤
18σ2

auth

2n
+

qv
2τ

.

6 Proofs of Theorem 1 and Theorem 2

6.1 Overview

The proofs of Theorems 1 and 2 are bit long, hence we first provide the overview. The ba-
sic strategy follows from the proof of the original EAX [8] with some extensions taken from
OMAC proofs [11, 12]. We first break down the algorithm of EAX′[Perm(n), τ] into a pair of
functions, which we call OMAC-extension, OMAC-e[P] = (OMAC-e[P](0),OMAC-e[P](1)), where
OMAC-e[P](0) : {0, 1}>n × N → ({0, 1}n)>0 and OMAC-e[P](1) : {0, 1}∗ → {0, 1}n. It uses an
n-bit random permutation P and an additional independent and random value, U ∈ {0, 1}n. In-
tuitively, OMAC-e[P](0) is a function that takes (N, d), where d = |M |n (d = |C|n) for encryption
(decryption), and produces N ⊕U and the d-block keystream before truncation, i.e., S of Fig. 1

(See also Fig. 2). Similarly, OMAC-e[P](1) takes a ciphertext, C, and produces CMAC′(1)
P (C)⊕U .

Since (N ⊕ U) ⊕ (CMAC′(1)
P (C) ⊕ U) = N ⊕ CMAC′(1)

P (C), such a function pair can perfectly
simulate EAX′[Perm(n), τ]. We introduce U to make the remaining analysis less involved. Then,
the bound evaluation for EAX′[Perm(n), τ] is mostly reduced to that of the indistinguishability
between OMAC-e[P] and a random function pair RND = (RND(0),RND(1)). Here RND(0) takes

(N, d) and samples Y
$← ({0, 1}n)dmax+1 if N is new, and outputs the first (d + 1) blocks of

Y , where dmax is the maximum possible value of d implied by the game we consider. Similarly

RND(1) takes C ∈ {0, 1}∗ and outputs Y ′ $← {0, 1}n if C is new. To bound the indistinguisha-
bility between OMAC-e[P] and RND, we further break down OMAC-e[P] into a set of ten small
functions, Q = {Qi}i=1,...,10, following the proof of OMAC [11]. Using two random values in
addition to U , these functions are built so that they behave close to a set of independent URFs
or URPs, and at the same time have the capability to perfectly simulate OMAC-e[P] (hence
EAX′[Perm(n)]). The indistinguishability of Q from the set of URPs/URFs is relatively easy to
derive, and as a result the following analysis becomes much easier.

6.2 Proof

Setup. Without loss of generality and for simplicity this section assumes that the space of valid
cleartexts of EAX′ is {0, 1}>n, rather than restricting the adversary’s strategy.

For convenience we introduce the following notions. Let FK : X → Y and GK′ : X → Y be
two keyed functions with K ∈ K and K ′ ∈ K′, and let A be the CPA-adversary. We define

Adv
cpa
F,G(A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1]. (3)

9

Note that this definition can be naturally extended when GK′ is substituted with the random-
bit oracle compatible with FK . Moreover, when FK and GK′ are compatible with EAX′-EK , we
define Adv

cpa-nr
F,G (A) as the same function as Adv

cpa
F,G(A) but CPA-adversary A is restricted to

be nonce-respecting. Let F = (F e
K , F d

K) and G = (Ge
K′ , G

d
K′) be the pairs of functions that are

compatible with (EAX′-EK ,EAX′-DK). We define

Advcca-nrF,G (A) def
= Pr[K

$← K : AF e
K ,F d

K ⇒ 1]− Pr[K ′ $← K′ : AGe
K′ ,G

d
K′ ⇒ 1], (4)

where the underlying A is assumed to be nonce-respecting for encryption queries. Note that we
have Adv

priv

EAX′[E,τ]
(A) = Adv

cpa-nr

EAX′-EK ,$
(A) for any nonce-respecting CPA-adversary A.

Step 1: OMAC-extension. For x ∈ {0, 1}≤n, let bp(x) = x if |x| = n and bp(x) = x∥
10n−1−(|x| mod n) if |x| < n. If x = ε then bp(x) = 10n−1. We first define OMAC-extension using
an n-bit URP, denoted by OMAC-e[P] : {0, 1} × {0, 1}∗ × N → ({0, 1}n)>0. The definition is
given in Fig. 3. See also Fig. 4. Actually it consists of two functions, written as

OMAC-e[P](0) : {0, 1}>n × N→ ({0, 1}n)>0, and (5)

OMAC-e[P](1) : {0, 1}∗ → {0, 1}n, (6)

where the first argument to OMAC-e[P], t ∈ {0, 1}, specifies which function to be used, i.e.,
OMAC-e[P](0, X, d) = OMAC-e[P](0)(X, d) and OMAC-e[P](1, X, d) = OMAC-e[P](1)(X) (d is
discarded). Here |OMAC-e[P](0)(X, d)| = (d + 1)n. For simplicity we assume the input domain
of OMAC-e[P] is a set of (t,X, d) ∈ {0, 1} × {0, 1}∗ × N that is acceptable for OMAC-e[P](t).
More formally, when t = 0 we assume |X| > n and d ∈ N, and when t = 1 we assume d is fixed
(say 0). As described in Section 6.1, OMAC-e[P] enables us to simulate EAX′-EP and EAX′-DP;

note that the simulator only needs to compute the sum of two outputs from CMAC′(0)
P and

CMAC′(1)
P , and not to compute the output itself. For instance, if we want to perform EAX′-EP for

N = (N [1]∥N [2]) and M = (M [1]∥M [2]) with |N [1]| = |N [2]| = |M [1]| = n and |M [2]| = n− 2,
then the procedure is (1) Y ∥S[1]S[2] ← OMAC-e[P](0, N, 2), (2) C ← msb2n−2(S[1]S[2]) ⊕M ,
(3) Y ′ ← OMAC-e[P](1, C, 0), where the last argument is arbitrary, (4) T ← msbτ (Y ⊕Y ′), and
(5) output (C, T). The following proposition is easy to check.

Proposition 1. There exist deterministic procedures, fe(·) and fd(·), that use OMAC-e[P] as
a black box and perfectly simulate EAX′-EP and EAX′-DP. That is, we have9 EAX′-EP ≡
fe(OMAC-e[P]) and EAX′-DP ≡ fd(OMAC-e[P]).

A keyed function F compatible with OMAC-e[P] is said to have OMAC-e profile, and we de-
note F (t,X, d) by F (t)(X, d). Suppose an adversary querying F of OMAC-e profile has q queries
(t1, X1, d1), . . . , (tq, Xq, dq) and corresponding answers are Y1, . . . , Yq. Such an adversary is called

to be with parameter list (q, σin, σout) where σin
def
=

∑
i=1,...,q |Xi|n and σout

def
=

∑
i=1,...,q;ti=0 |Yi|n.

To further analyze OMAC-e[P], we define a set of ten functions, Q = {Qi}i=1,...,10.

9 Here F ≡ G means the equivalence of the output probability distribution functions, i.e. Pr[F (x1) =
y1, . . . , F (xq) = yq] = Pr[G(x1) = y1, . . . , G(xq) = yq]) for any fixed possible x1, . . . , xq and y1, . . . , yq. The
probabilities are defined over F and G’s randomness.

10

Algorithm OMAC-e[P]:
Initialization
00 L← P(0n), U

$← {0, 1}n
On query (t,X, d) ∈ {0, 1} × {0, 1}∗ × N
10 X[1]∥X[2]∥ . . . ∥X[m]

n← X
11 if |X| mod n ̸= 0 or X = ε then w ← 1, else w ← 0 (note: w ← w(X))

12 if t = 0 (note: m ≥ 2 holds for valid queries)

13 Y [1]← P(2L⊕X[1])
14 for i = 1 to m− 2 do Y [i+ 1]← P(Y [i]⊕X[i+ 1])
15 V ← P(Y [m− 1]⊕ bp(X[m])⊕ 2w+1L)
15 Y ← V ⊕ U
16 if d = 0 return Y
17 else V ∧ ← V ∧ α
18 for j = 0 to d− 1 do S[j + 1]← P(V ∧ + j)
19 return Y ∥S[1]S[2] . . . S[d]
20 if t = 1
21 if |X| ≤ n then Y ′ ← P(bp(X)⊕ 4L⊕ 2w+1L)⊕ U ; return Y ′

22 else Y ′[1]← P(4L⊕X[1])
23 for i = 1 to m− 2 do Y ′[i+ 1]← P(Y ′[i]⊕X[i+ 1])
24 Y ′ ← P(Y ′[m− 1]⊕ bp(X[m])⊕ 2w+1L)⊕ U
25 return Y ′

Fig. 3. OMAC-extension using an n-bit URP, P.

Definition 1. Let Qi : {0, 1}n → {0, 1}n for i = 1, 2, 3, 4, 7, 8, 9 and let Qj : {0, 1}n × N →
({0, 1}n)>0 for j = 5, 6, and let Q10 : {0, 1}n \ {0n} → {0, 1}n. These functions are defined as

Q1(x)
def
= P(2L⊕ x)⊕ Rnd1, Q2(x)

def
= P(4L⊕ x)⊕ Rnd2,

Q3(x)
def
= P(Rnd1 ⊕ x)⊕ Rnd1, Q4(x)

def
= P(Rnd2 ⊕ x)⊕ Rnd2,

Q5(x, d)
def
= GP,U (P(2L⊕ Rnd1 ⊕ x), d), Q6(x, d)

def
= GP,U (P(4L⊕ Rnd1 ⊕ x), d)

Q7(x)
def
= P(2L⊕ Rnd2 ⊕ x)⊕ U, Q8(x)

def
= P(4L⊕ Rnd2 ⊕ x)⊕ U,

Q9(x)
def
= P(2L⊕ 4L⊕ x)⊕ U, Q10(x)

def
= P(x)⊕ U,

where P is an n-bit URP, and L = P(0n), and Rnd1 and Rnd2 are independent n-bit random
sequences, and U is another random n-bit value. Here, GP,U (v, d) is v ⊕ U if d = 0 and (v ⊕
U∥P(v ∧ α)∥P((v ∧ α) + 1)∥ . . . ∥P((v ∧ α) + (d − 1))) if d > 0. The sampling procedures for
P, Rnd1, Rnd2, and U are shared by all Qis.

We also treat Q as a tweakable function with tweak t ∈ {1, . . . , 10} by writing Q(t, x, d) =
Qt(x, d) when t ∈ {5, 6} and otherwise Q(t, x, d) = Qt(x). We can easily see that OMAC-e[P]
can be simulated with black-box access to Q, just the same as Q functions appeared in the proof
of OMAC [11] that simulate OMAC.

We next define Q̃ = {Q̃i}i=1,...,10. For all i = 1, . . . , 10, Q̃i is compatible with Qi.

Definition 2. Let P1, . . . ,P4 be four independent n-bit URPs, and let R7, . . . ,R10 be four inde-
pendent n-bit URFs, and let R5 and R6 be two independent URFs with n-bit input and (dmax+1)n-

11

bp

+1 +1

OMAC-e[P](0)

OMAC-e[P](1)
bp

· · ·

D D/Q
∧α

· · ·

Q D/Q

S[1] S[2] S[d]

P

X[1] X[2] X[m]

P P

PP P
U

Y

V

V

· · ·

P

X[1] X[2] X[m]

P P

U

Y

Fig. 4. Component Functions of OMAC-extension. Here D and Q denote 2L and 4L with L = P(0n), and U is
uniformly random over n bits.

bit output. Using them we define

Q̃1(x)
def
= P1(x), Q̃2(x)

def
= P2(x),

Q̃3(x)
def
= P3(x), Q̃4(x)

def
= P4(x),

Q̃5(x, d)
def
= Rd+1

5 (x), Q̃6(x, d)
def
= Rd+1

6 (x)

Q̃7(x)
def
= R7(x), Q̃8(x)

def
= R8(x),

Q̃9(x)
def
= R9(x), Q̃10(x)

def
= R10(x),

where Rd+1
i (x) = msbn(d+1)(Ri(x)) for i = 5, 6. Here dmax is the maximum possible value of

queried d, which will be determined by the underlying game and the adversary’s parameter.

We say a function compatible with Q is said to have Q profile. An adversary querying a
function of Q profile is characterized by the number of queries, q, and the total sum of output
n-bit blocks for t ∈ {5, 6}, σout. The next lemma shows the CPA-advantage in distinguishing Q
and Q̃.

Lemma 1. Let A be the adversary querying a function of Q profile with parameter list (q, σout).
Then we have Adv

cpa

Q,Q̃
(A) ≤ (3.5q2 + 10σoutq + 2.5σ2

out)/2
n.

The proof is given in Appendix A.
Step 2: Modified CBC-MAC. For any n-bit (keyed) permutations, G and G′, let CBCG,G′ :
({0, 1}n)>0 → {0, 1}n be defined as

CBCG,G′(X[1]∥ . . . ∥X[m]) =

{
G(X[1]) if m = 1

CBCG′(G(X[1])∥X[2]∥ . . . ∥X[m]) if m ≥ 2,

12

where CBCG′ is the standard CBC-MAC using G′. We then define a function compatible with
OMAC-e[P], denoted by CBC. For any X ∈ {0, 1}∗, let w(X) = 1 if |X| mod n ̸= 0 or X = ε
and otherwise w(X) = 0. For |X| > n, CBC(0)(X, d) is computed as follows.

1. X[1]∥X[2]∥ . . . ∥X[m]
n← X and w ← w(X)

2. Z ← CBCP1,P3(X[1]∥ . . . ∥X[m− 1])

3. Output Y ∥S[1]∥ . . . ∥S[d]← Rd+1
5+w(Z ⊕ bp(X[m]))

Here, if d = 0 the output is Y . Similarly, for X ∈ {0, 1}∗, CBC(1)(X) is computed as follows.

1. X[1]∥X[2]∥ . . . ∥X[m]
n← X and w ← w(X)

2. If |X| ≤ n output Y ′ ← R9+w(bp(X)),

3. Otherwise Z ′ ← CBCP2,P4(X[1]∥ . . . ∥X[m− 1]), and output Y ′ ← R7+w(Z
′ ⊕ bp(X[m])).

The pseudo-code of CBC (combining CBC(0) and CBC(1)) is presented in Fig. 5. Here, Ri
j(X)

for j = 5, 6 denotes msbni(Rj(X)). One can simulate OMAC-e[P] via black-box accesses to Q,
including the final mask by U . For example, to simulate OMAC-e[P](0, N, 2) for |N | = 3n,
we first perform N [1]∥N [2]∥N [3]

n← N and then proceed as (1) Y [1] ← Q1(N [1]), (2) Y [2] ←
Q3(N [2]⊕Y [1]), and (3) Y [3]∥S[1]S[2]← Q5(N [3]⊕Y [2]). If |N [3]| = n−2 then Q5(N [3]⊕Y [2])
is replaced with Q6(N [3]∥10 ⊕ Y [2]). For more examples, OMAC-e[P](1, C, 0) for |C| = n can
be simulated via calling Q9(C). For |C| < n, OMAC-e[P](1, C, 0) can be simulated via calling
Q10(bp(C)) = Q10(C∥10 . . . 0). Formally, we have the following proposition.

Proposition 2. There exists a procedure h(·) that uses Q as a black box and perfectly simulates
OMAC-e[P], i.e. h(Q) ≡ OMAC-e[P]. Moreover, we have h(Q̃) ≡ CBC for this h(·).

Let RND(0) and RND(1) be the independent random functions compatible with OMAC-e[P](0)

and OMAC-e[P](1). Here, RND(0) takes (N, d) ∈ {0, 1}>n × N and samples Y
$← ({0, 1}n)dmax+1

if N is new, and outputs msbn(d+1)(Y), where dmax is the same as CBC. Similarly RND(1) takes

C ∈ {0, 1}∗ and outputs Y ′ $← {0, 1}n if C is new. We define RND as a function consisting of
RND(0) and RND(1) and taking t = 0, 1 as a tweak. Then, we have the following lemma. The
proof is in Appendix B.

Lemma 2. Let A be an adversary querying a function of OMAC-e profile with parameter list
(q, σin, σout). Then, Adv

cpa
CBC,RND(A) ≤ 2σ2

in/2
n.

Step 3: Derivation of PRIV Bound. Combining the above lemmas and propositions, our
PRIV bound is derived. Let A be the CPA-adversary against AE with parameter list (q, σN , σM).
Then there exist adversary B querying to a function of OMAC-e profile with 2q queries, σin =
σN + σM input blocks, and σout = σM + 2q output blocks, and adversary C querying to a set of
ten functions with Q profile, using σN + σM queries and σM + q output n-bit blocks for queries
with t = 5, 6, such that

13

Adv
priv

EAX′[Perm(n)]
(A) = Adv

cpa-nr

EAX′-EP,$
(A) = Adv

cpa-nr

fe(OMAC-e[P]),$(A) (7)

≤ Adv
cpa-nr

fe(OMAC-e[P]),fe(CBC)(A) + Adv
cpa-nr

fe(CBC),fe(RND)(A) + Adv
cpa-nr

fe(RND),$(A)︸ ︷︷ ︸
=0

(8)

≤ Adv
cpa

OMAC-e[P],CBC(B) + Adv
cpa
CBC,RND(B) (9)

= Adv
cpa

h(Q),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) (10)

≤ Adv
cpa

Q,Q̃
(C) + 2(σN + σM)2

2n
(11)

≤ 3.5(σN + σM)2 + 10(σM + q)(σN + σM) + 2.5(σM + q)2

2n
+

2(σN + σM)2

2n
(12)

≤ 18(σN + σM)2

2n
=

18σ2
priv

2n
, (13)

as q ≤ σN . Here, the second equality in Eq. (7) follows from Prop. 1, Eq. (10) follows from
Prop. 2, Eq. (11) follows from Lemma 2, and Eq. (12) follows from Lemma 1. In addition,
Adv

cpa-nr

fe(RND),(A) = 0 holds because whenA queries (N,M) to fe(RND) the output is a subsequence
of RND(0)(N, |M |n) with the first n bits XORed by the output of RND(1) (whose input is a part
of RND(0)(N, |M |n)). As N is always fresh, the output is always random. This concludes the
proof of Theorem 1.
Step 4: Derivation of AUTH Bound. The AUTH bound is derived in a similar way. Let
EAX′ be the AE algorithm compatible with EAX′[Perm(n)] using fe(RND) and fd(RND) for
the encryption and decryption algorithms. We let A be the CCA-adversary against AE with
parameter list (q, qv, σN , σM , σ

Ñ
, σ

C̃
). Then we have the following bound.

AdvauthEAX′(A) ≤ qv/2
τ . (14)

The proof of Eq. (14) is in Appendix C. Then, there exist adversary B querying to a function of
OMAC-e profile with 2(q+qv) queries with σin = σN+σM+σ

Ñ
+σ

C̃
and σout = σM+2q+σ

C̃
+2qv,

and adversary C querying to a function of Q profile with σN + σM + σ
Ñ

+ σ
C̃

queries and
σM + q + σ

C̃
+ qv output blocks for queries with t = 5, 6, such that

AdvauthEAX′[Perm(n)](A)

≤ Advcca-nr(EAX′-EP,EAX′-DP),(fe(RND),fd(RND))(A) + AdvauthEAX′(A) (15)

≤ Advcca-nr(fe(OMAC-e[P]),fd(OMAC-e[P])),(fe(RND),fd(RND))(A) +
qv
2τ

(16)

≤ Adv
cpa

OMAC-e[P],RND(B) +
qv
2τ

(17)

≤ Adv
cpa

OMAC-e[P],CBC(B) + Adv
cpa
CBC,RND(B) +

qv
2τ

(18)

= Adv
cpa

h(Q),h(Q̃)
(B) + Adv

cpa
CBC,RND(B) +

qv
2τ

(19)

≤ Adv
cpa

Q,Q̃
(C) +

2(σN + σM + σ
Ñ
+ σ

C̃
)2

2n
+

qv
2τ

(20)

≤
3.5(σN + σM + σ

Ñ
+ σ

C̃
)2 + 10(σM + q + σ

C̃
+ qv)(σN + σM + σ

Ñ
+ σ

C̃
)

2n

+
2.5(σM + q + σ

C̃
+ qv)

2

2n
+

2(σN + σM + σ
Ñ
+ σ

C̃
)2

2n
+

qv
2τ

(21)

≤
18σ2

auth

2n
+

qv
2τ

, (22)

14

Algorithm CBC (given dmax):
Initialization
00 for i = 1 to 4 do Pi

$← Perm(n)

01 R5
$← Func(n, dmax), R6

$← Func(n, dmax)

02 for j = 7 to 10 do Rj
$← Func(n) (note: R10’s actual input is in {0, 1}n \ {0n})

On query (t,X, d) ∈ {0, 1} × {0, 1}∗ × N
10 X[1]∥X[2]∥ . . . ∥X[m]

n← X
11 if |X| mod n ̸= 0 or X = ε then w ← 1, else w ← 0 (note: w ← w(X))

12 if t = 0 (note: m ≥ 2 holds for valid queries)

13 Y [1]← P1(X[1])
14 for i = 1 to m− 2 do Y [i+ 1]← P3(Y [i]⊕X[i+ 1])
15 if d = 0 then Y ← R1

5+w(Y [m− 1]⊕ bp(X[m])); return Y
16 else Y ∥S[1]∥S[2]∥ . . . ∥S[d]← Rd+1

5+w(Y [m− 1]⊕ bp(X[m]))
17 return Y ∥S[1]∥S[2]∥ . . . ∥S[d]
18 if t = 1
19 if |X| ≤ n then Y ′ ← R9+w(bp(X)); return Y ′

20 else Y ′[1]← P2(X[1])
21 for i = 1 to m− 2 do Y ′[i+ 1]← P4(Y

′[i]⊕X[i+ 1])
22 Y ′ ← R7+w(Y

′[m− 1]⊕ bp(X[m]))
23 return Y ′

Fig. 5. CBC using four n-bit URPs, four n-bit URFs, and two n-bit input, (dmax + 1)n-bit output URFs.

since q ≤ σN and qv ≤ σ
Ñ
. Here, Eq. (16) follows from Prop. 1 and Eq. (14), Eq. (19) follows

from Prop. 2, Eq. (20) follows from Lemma 2, and Eq. (21) follows from Lemma 1. This concludes
the proof of Theorem 2.

7 Fixing the Flaw

There would be ways to fix the flaw of EAX′ to make it as a secure general-purpose AE accepting
cleartexts of any length. Below, we provide some of them, naming it to EAX′′. The concept here
is not to touch the inside of EAX′, instead using it as a black box. We only propose the fixes
for encryption, as the corresponding decryptions are fairly straightforward.

Method 1: EAX′′
1-EK(N,M)

def
= EAX′-EK(0n∥N,M).

Method 2: Use two keys for E, K and K ′, and let

EAX′′
2-EK,K′(N,M)

def
=

{
EAX′-EK(N,M) if |N | > n,

EAX′-EK′(0n∥N,M) if |N | ≤ n,

where K and K ′ are independent or K ′ = K ⊕ cst for a non-zero constant cst. The choice
of cst must be done with care to avoid related-key attacks. For instance, letting cst = 1|K|

seems natural while this is problematic with DES due to the complementary property of the
key schedule. One option is to use a random-looking constant, say the first few digits of π.

Method 3: Use a key for E, K, and an independent n-bit key, L, and let

EAX′′
3-EK,L(N,M)

def
=

{
EAX′-EK(N,M) if |N | > n,

EAX′-E⊕K,L(0
n∥N,M) if |N | ≤ n,

where EAX′-E⊕K,L is EAX′ encryption with blockcipher ẼK,L defined as ẼK,L(X) = EK(X⊕
L).

15

The security bounds of the above methods are easily derived from the results of Theorems
1 and 2. For the latter option of Method 2 we also need a very restricted form of related-
key security of E, and for Method 3 we need the theory of tweakable blockcipher [13]. Each
method has its own pros and cons: Method 1 is the simplest but needs additional blockcipher
calls irrespective of |N |. Methods 2 and 3 keep the original operation for |N | > n, but need
additional key or a stronger security requirement on E. We also warn that Method 3 allows a
partial key recovery attack with birthday complexity.

8 Concluding Remarks

Practical Implications. Attacks as those described in the current paper are often turned down
by non-cryptographers as “only theoretical” or “don’t apply in practice”. Indeed, none of our
attacks is applicable if the cleartext size exceeds n bits. But even if ANSI C12.22 prohibited
any cleartexts of size n = 128 bits or shorter, including EAX′ in the standard would be like an
unexploded bomb – waiting to go off any time in the future. Remember that EAX′ is intended for
Smart Grid, i.e., for the use in dedicated industrial systems such as electrical meters, controllers
and appliances. It hardly seems reasonable to assume that every device will always carefully
check cleartexts and plaintexts for validity and plausibility. Also, vendors may be tempted to
implement their own nonstandard extensions avoiding “unnecessarily long” texts.

For a non-cryptographer, assuming a “decryption oracle” may seem strange – if there were
such an oracle, why bother with message recovery attacks at all? However, experience shows
that such theoretical attacks are often practically exploitable. For example, some error messages
return the input that caused the error: “Syntax error in ‘xyzgarble’.” Even if the error message
does not transmit the entire fake plaintext, any error message telling the attacker whether the
fake message followed some syntactic conventions or not is potentially useful for the attacker.
See [10] for an early example.

Also note that our forgery attacks allow a malicious attacker to create a large number of
messages with given single-block cleartexts and random single-block plaintexts, that appear to
come from a trusted source, because the authentication succeeded. What the actual devices will
do when presented with apparently valid random commands is a source of great speculation.

Our Recommendation.Whenever possible, avoid adopting EAX′ in new applications. If EAX′

cannot be avoided, then this has to be carefully implemented to exclude one-block cleartexts.
We note that specifying the minimum data length in standard documents does not necessar-
ily prevent the adversary from using short cleartexts. Therefore, the cleartext length checking
mechanisms are needed at both ends of encryption and decryption. Instead, one can safely use
EAX′′ which allows the re-use of EAX′ implementations. Other provably secure authenticated
encryptions, including the original EAX, are also safe options.

Acknowledgments. The authors thank the anonymous FSE 2013 reviewers for helpful com-
ments. This paper is based on the collaboration started at Dagstuhl Seminar 12031, Symmetric
Cryptography. We thank participants of the seminar for useful comments, and discussions with
Greg Rose were invaluable for writing Section 8. We also thank Mihir Bellare and Jeffrey Walton
for feedback. The work by Tetsu Iwata was supported by MEXT KAKENHI, Grant-in-Aid for
Young Scientists (A), 22680001.

References

1. Comment for EAX’ Cipher Mode (by Toshiba Corporation), http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/comments/EAX%27/Toshiba_Report2NIST_rev051.pdf

16

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/EAX%27/Toshiba_Report2NIST_rev051.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/EAX%27/Toshiba_Report2NIST_rev051.pdf

2. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication. NIST Special
Publication 800-38B (2005)

3. American National Standard Protocol Specification For Interfacing to Data Communication Networks. ANSI
C12.22-2008. (2008)

4. Measurement Canada, Specification for Local Area Network/Wide Area Network (LAN/WAN) Node Com-
munication Protocol to Complement the Utility Industry End Device Data Tables. MC1222, 2009. (2009)

5. ANSI C12.22, IEEE 1703, and MC12.22 Transport Over IP. RFC 6142 (2011)

6. IEEE Standard for Local Area Network/Wide Area Network (LAN/WAN) Node Communication Protocol
to Complement the Utility Industry End Device Data Tables. IEEE 1703-2012. (2012)

7. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message Authentication and
Authenticated Encryption. Cryptology ePrint Archive, Report 2004/309 (2004), http://eprint.iacr.org/

8. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy and Meier [18], pp. 389–407

9. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. In: Bellare,
M. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1880, pp. 197–215. Springer (2000)

10. Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard
PKCS #1. In: Krawczyk, H. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 1–12. Springer
(1998)

11. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE. Lecture Notes in Com-
puter Science, vol. 2887, pp. 129–153. Springer (2003)

12. Iwata, T., Kurosawa, K.: Stronger Security Bounds for OMAC, TMAC, and XCBC. In: Johansson, T., Maitra,
S. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 2904, pp. 402–415. Springer (2003)

13. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptology 24(3), 588–613 (2011)

14. Minematsu, K., Lucks, S., Morita, H., Iwata, T.: Cryptanalysis of EAX-Prime. DIAC - Directions in Authen-
ticated Ciphers (2012), http://hyperelliptic.org/DIAC/

15. Moise, A., Beroset, E., Phinney, T., Burns, M.: EAX’ Cipher Mode (May 2011). NIST Sub-
mission (2011), http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax-prime/

eax-prime-spec.pdf

16. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy and Meier [18], pp. 348–359

17. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: Vaudenay, S. (ed.)
EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 373–390. Springer (2006)

18. Roy, B.K., Meier, W. (eds.): Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers, Lecture Notes in Computer Science, vol. 3017. Springer (2004)

A Proof of Lemma 1

Let Qr = {Qr
i }i=1,...,10 be the set of ten functions defined in the same way as Q but the internal

n-bit URP, P, is substituted with n-bit URF, R. For example, Qr
1(x) = R(2L⊕x)⊕ Rnd1, where

L = R(0n) and Rnd1 is independent and random.

From the PRF/PRP switching lemma (e.g. [9]), we have

Adv
cpa
Q,Qr(A) ≤

(q + σout + 1)2

2n+1
, (23)

for any adversary A with parameter list (q, σout) since the underlying n-bit function (P or R) is
invoked at most q + σout + 1 times.

Next, let R = {Ri}i=1,...,10 be defined in the same way as Q̃, except that R1 to R4 are inde-
pendent n-bit URFs. That is, eachRi is compatible withQi and outputs are completely random.
We consider the advantage in distinguishing between Qr and R. Let mask(i, L, Rnd1, Rnd2) be
the input masking value used by Qr

i , as follows:

17

http://eprint.iacr.org/
http://hyperelliptic.org/DIAC/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax-prime/eax-prime-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax-prime/eax-prime-spec.pdf

mask(i, L, Rnd1, Rnd2) =



2L if i = 1

4L if i = 2

Rnd1 if i = 3

Rnd2 if i = 4

2L⊕ Rnd1 if i = 5

4L⊕ Rnd1 if i = 6

2L⊕ Rnd2 if i = 7

4L⊕ Rnd2 if i = 8

2L⊕ 4L if i = 9

0n if i = 10

(24)

Similarly let omask(t, Rnd1, Rnd2, U) be the outer masking value applied to the leftmost n
bits of the output, defined as;

omask(i, Rnd1, Rnd2, U) =


Rnd1 if i ∈ {1, 3}
Rnd2 if i ∈ {2, 4}
U if i ∈ {5, 6, 7, 8, 9, 10}

(25)

We may abbreviate mask(i, L, Rnd1, Rnd2) and omask(j, Rnd1, Rnd2, U) to mask(i) and omask(j).
Clearly R(mask(i)⊕x)⊕omask(i) corresponds to Qr

i (x) when i ̸= 5, 6 and msbn(Q
r
i (x, d)) when

i = 5, 6.
From the property of Galois field it is easy to see that

max
1≤i<j≤10,
δ∈{0,1}n

Pr[L
$← {0, 1}n, Rnd1

$← {0, 1}n, Rnd2
$← {0, 1}n : mask(i)⊕mask(j) = δ] ≤ 1

2n
. (26)

In Eq. (26) we note that the choice of U is irrelevant since U is not used by mask function. For
any adversary querying Qr or R, let (ti, Xi, di) ∈ {1, . . . , 10} × {0, 1}n × N be the i-th query.
Without loss of generality, we assume di is fixed to 0 whenever ti ̸∈ {5, 6}, and all queries are
distinct, i.e. (ti, Xi, di) ̸= (tj , Xj , dj) for any 1 ≤ i < j ≤ q. Also we do not allow the adversary
to query X = 0n with t = 10 (as the input domain is {0, 1}n \ {0n} when t = 10).

For query (t,X, d), we define XE = X ⊕mask(t) which is an actual input to the underlying
random function when Qr is queried.

Fig. 6 defines two games, GameQr and GameR. It is easy to observe that GameR behaves
identically to R. As we assume that a collision in (t,X, d) is not allowed the output of GameR is
always independent and uniformly random. The output distribution of the game GameQr is also
identical to Qr. Note that the generation procedure of Y and V in GameQr is opposite to that
of Qr; in GameQr, if XE is a new value, Y is uniformly sampled and then Y = V ⊕ omask(t) is
determined, while Qr first samples V and computes Y = V ⊕ omask(t). Both yield the identical
marginal distribution of (Y, V). If XE has a collision, both GameQr and Qr take V from the
set of previously determined values, and Y is determined as Y ← V ⊕ omask(t).

We define the flag bad and set it when two inputs with input maskings collide. Then both
games are identical until bad gets set to true, thus we have

AdvQr,R(A) ≤ Pr[AGameQr

⇒ 1]− Pr[AGameR ⇒ 1] ≤ Pr[AGameR sets bad]. (27)

That is, what we need is to bound the last probability.

18

We first focus on bad at line 12. For the variables appeared at the game, let us attach the
subscript i to denote the variable defined at the i-th query, e.g., (ti, Xi, di), Yi and XEi, and
V ∧
i + h (where the latter only appears when ti ∈ {5, 6} and di ≥ 1). The bad at line 12 implies

the occurrence of one of the three sub-events,

– [XEi = XEj] for i ≤ q, j < i, and
– [XEi = 0n] for i ≤ q, and
– [XEi = V ∧

j + h] for i ≤ q and j < i and 0 ≤ h ≤ dj − 1.

The first two events are equivalent to [Xi⊕Xj = mask(ti)⊕mask(tj)] and [mask(ti) = Xi]. The
third event is equivalent to

[Xi ⊕mask(ti) = (Vj ∧ α) + h] = [Xi ⊕mask(ti) = ((Yj ⊕ U) ∧ α) + h]

= [Xi ⊕mask(ti) = ((Yj ∧ α)⊕ (U ∧ α)) + h]

= [((Xi ⊕mask(ti))− h)⊕ (Yj ∧ α) = U ∧ α]. (28)

Recall that when ti = 10, we have mask(ti) = 0n and Xi ̸= 0n.
We observe that L, Rnd1, Rnd2, and U have no effect on the output distribution of GameR,

thus they are independent of adversary’s choice, X1, . . . , Xq. Combined with Eq. (26), this fact
shows that the probability of the each of the first two events is at most 1/2n. For the third event
(Eq. (28)), the independence of U from mask(ti) shows that the probability is at most the point
probability of U ∧ α. As α fixes two bits of U to 0, it is at most 1/2n−2.

We next focus on bad at line 19, which implies the occurrence of one of the three sub-events
(when ti, tj ∈ {5, 6}),

– V ∧
i + h = XEj for some i ≤ q, j ≤ i, 0 ≤ h ≤ di − 1 and

– V ∧
i + h = 0n for some i ≤ q and 0 ≤ h ≤ di − 1, and

– V ∧
i + h = V ∧

j + h′ for some (i, h) ̸= (j, h′), i, j ≤ q and 0 ≤ h ≤ di − 1 and 0 ≤ h′ ≤ dj − 1.

Each event is equivalent to [((Yi ⊕U)∧ α) + h = Xj ⊕mask(tj)], [((Yi ⊕U)∧ α) + h = 0n], and
[((Yi ⊕ U) ∧ α) + h = ((Yj ⊕ U) ∧ α) + h′]. For the first two events, the probability is bounded
by 1/2n−2 from the independent distribution of U . For the third one, without loss of generality
we assume i < j (when i = j the probability is trivially 0). Then Yj is independent of Yi and U ,
implying that the probability is bounded by 1/2n−2.

Thus, each sub-event occurs with probability at most 1/2n−2.
By counting the number of sub-events, we have

Pr[AGameR sets bad] ≤
(
q

2

)
1

2n︸ ︷︷ ︸
XEi=XEj

+
q

2n︸︷︷︸
XEi=0n

+
σoutq

2n−2︸ ︷︷ ︸
XEi=V ∧

j
+h

for both i < j and j ≤ i

+
σout
2n−2︸ ︷︷ ︸

V ∧i +h=0n

+

(
σout
2

)
1

2n−2︸ ︷︷ ︸
V ∧i +h=V ∧j +h′

(29)

≤ (q2 + 8σoutq + 2σ2
out)

2n
. (30)

We also need to evaluate the distinguishing advantage of R and Q̃. The difference between
them is that R uses n-bit URFs for t = 1, . . . , 4 while Q̃ uses n-bit URPs. For t = 5, . . . , 10 their
behaviors are identical and independent of the responses for t = 1, . . . , 4. Hence we only need to
consider the advantage in distinguishing (P1, . . . ,P4) from (R1, . . . ,R4) using q queries with tweak
t ∈ {1, . . . , 4}. Assume the adversary queries the i-th component for qi times. Here

∑
i=1,...,4 qi =

q. A simple combination of the PRP/PRF switching lemma and the hybrid argument shows that

Adv
cpa

R,Q̃
(A) ≤ max

q1,...,q4,
∑

qi=q

∑
i=1,...,4

q2i
2n+1

≤ q2

2n+1
. (31)

19

Initialization
00 L← ρ(0n)

$← {0, 1}n

01 Rnd1
$← {0, 1}n, Rnd2

$← {0, 1}n, U $← {0, 1}n
On query (t,X, d) ∈ {0, 1} × {0, 1}n × N
10 XE ← mask(t, L, Rnd1, Rnd2)⊕X

11 Y
$← {0, 1}n

12 V ← Y ⊕ omask(t, Rnd1, Rnd2, U)

13 if XE ∈ Dom(ρ) then bad← true, V ← ρ(XE), Y ← V ⊕ omask(t, Rnd1, Rnd2, U)

14 else ρ(XE)← V
15 if t ̸∈ {5, 6} or t ∈ {5, 6} and d = 0 then return Y
16 else V ∧ ← V ∧ α
17 for i = 0 to d− 1 do
18 S[i+ 1]

$← {0, 1}n

19 if V ∧ + i ∈ Dom(ρ) then bad← true, S[i+ 1]← ρ(V ∧ + i)

20 else ρ(V ∧ + i)← S[i+ 1]
21 return Y ∥S[1]∥S[2]∥ . . . ∥S[d]

Fig. 6. GameQr contains the boxed arguments, while GameR does not.

Combining Eqs. (23), (31), (30), and (27), we have

Adv
cpa

Q,Q̃
(A) ≤ Adv

cpa
Q,Qr(A) + Adv

cpa
Qr,R(A) + Adv

cpa

R,Q̃
(A) (32)

≤ (q + σout + 1)2

2n+1
+

q2 + 8σoutq + 2σ2
out

2n
+

q2

2n+1
(33)

≤ 2q2 + 9σoutq + 2.5σ2
out + q + σout + 0.5

2n
≤ 3.5q2 + 10σoutq + 2.5σ2

out

2n
, (34)

which concludes the proof.

B Proof of Lemma 2

For the purpose of convenience, we define CBC⊕
G,G′ : ({0, 1}n)≥2 → {0, 1}n as the function

CBC⊕
G,G′(X[1]∥ . . . ∥X[m]) = CBCG,G′(X[1]∥ . . . ∥X[m − 1]) ⊕ X[m] for m ≥ 2, i.e. CBCG,G′

without the final application of G′.
Let us focus on the case t = 1. Then CBC can be seen as an information-theoretic variant

of Carter-Wegman MAC, that is, CBC(1) : {0, 1}∗ → {0, 1}n is a composition of two functions,
where the first one (called hashing) takes an input to hash it into n bits, and the second one
(called finalizing) takes that hashed value to compute the n-bit output. The hashing function
applies CBCP2,P4 with bp(∗) for the final input block, or just applies bp(∗) to the input itself
if the input is at most n bits. The finalizing function applies one of the 4 independent n-bit
URFs, R7 to R10, depending on the input length. For a pair of distinct inputs to CBC(1), let
X = X[1]∥X[2]∥ . . . ∥X[m] andX ′ = X ′[1]|∥X ′[2]∥ . . . ∥X ′[m′], let Z and Z ′ be the corresponding
hash values and Rκ and Rκ′ be the URFs for the finalizing function. From the definition of CBC
a simultaneous collision (Z, κ) = (Z ′, κ′) occurs only if both X and X ′ are more than n bits
(and non-empty), and therefore (Z, κ) = (Z ′, κ′) implies

CBC⊕
P2,P4

(X[1]∥ . . . ∥X[m− 1]∥bp(X[m])) = CBC⊕
P2,P4

(X ′[1]∥ . . . ∥X ′[m− 1]∥bp(X ′[m′])) (35)

satisfying X[1]∥ . . . ∥X[m− 1]∥bp(X[m]) ̸= X ′[1]∥ . . . ∥X ′[m− 1]∥bp(X ′[m′]) and m,m′ ≥ 2.
For a keyed function F : X → Y, let CollF (q, σ) be the maximum collision probability of F ’s

outputs when accessed via q non-adaptive chosen-plaintext queries with total σ n-bit blocks.

20

Now, from the above observation and (a slight generalized version of) Lemma 2 of [9], we have

Adv
cpa

CBC(1),RND(1)(A) ≤ CollCBC⊕P2,P4
(q, σin), (36)

for any (possibly adaptive) A that has parameter list (q, σin, σout). Moreover, Lemma 4.2 of
Iwata and Kurosawa [12] (called MOMAC-E Collision Bound) proves

CollCBC⊕P2,P4
(q, σin) ≤

(σin − q)2

2n
. (37)

Thus we have

Adv
cpa

CBC(1),RND(1)(A) ≤
(σin − q)2

2n
. (38)

Similarly, we have

Adv
cpa

CBC(0),RND(0)(A) ≤
(σin − q)2

2n
, (39)

as CBC(0) has the same structure as CBC(1); it uses CBC⊕
P1,P3

for hashing and two URFs for
finalization, where the input length determines which URF is to be used. The finalization is
done by URF of variable-output length, however this apparently does not gain the advantage in
distinguishing it from RND(0). Note that the internal URP/URFs of CBC(0) and CBC(1) have
no overlap, thus their probability spaces are independent. Therefore, using the hybrid argument
and Eqs. (38) and (39) we have

Adv
cpa
CBC,RND(A) = Adv

cpa

(CBC(0),CBC(1)),(RND(0),RND(1))
(A)

≤ Adv
cpa

(CBC(0),CBC(1)),(RND(0),CBC(1))
(A) + Adv

cpa

(RND(0),CBC(1)),(RND(0),RND(1))
(A)

≤ 2(σin − q)2

2n
≤ 2σ2

in

2n
. (40)

This completes the proof.

C Proof of Eq. (14)

We observe that, if fe(RND) given (N,M) outputs (C, T), then T can be written as

T = msbτ (msbn(RND(0)(N, |M |n))⊕ RND(1)(C)) (41)

= msbτ (RND(0)(N, |C|n))⊕msbτ (RND(1)(C)) (42)

Note that C can be ε and RND(1) treats ε as an input (i.e. outputs random n bits).

We first consider the case qv = 1. Without loss of generality we assume that the single
decryption query, (Ñ , C̃, T̃), is issued after obtaining q pairs of encryption queries and answers,
((N1,M1, C1, T1), . . . , (Nq,Mq, Cq, Tq)). Now, the success probability of a forgery is 1/2τ when

Ñ ̸= Ni for all i = 1, . . . , q. Otherwise, we have a unique j ∈ {1, . . . , q} such that Ñ = Nj and
the successful forgery corresponds to the event that

[T̃ = msbτ (RND(0)(Ñ , |C̃|n))⊕msbτ (RND(1)(C̃))] (43)

⇔ [T̃ = msbτ (RND(0)(Nj , |Cj |n))⊕msbτ (RND(1)(C̃))] (44)

⇔ [T̃ ⊕ Tj = msbτ (RND(1)(Cj)⊕ RND(1)(C̃))]. (45)

21

As (C̃, T̃) ̸= (Cj , Tj) holds true, the probability of Eq. (45) is at most 1/2τ . Here, note that the

choice of C̃ (e.g. choosing C̃ = Cj′ for some j′ ̸= j) and the distribution of C1, . . . , Cq, which
can contain collisions on Cis, do not contribute to gaining the probability since the transcript
obtained by the encryption queries completely hides the information on RND(1)(∗) no matter
what C1, . . . , Cq are, as N1, . . . , Nq are unique10. This implies that AdvauthEAX′(A) = 1/2τ , when
qv = 1.

From Theorem B.2 of [7], any AE scheme having the maximum forgery probability being ϵ
when qv = 1 has the maximum forgery probability ϵ · qv when qv ≥ 1. Combining this with the
above analysis of the case qv = 1, the proof is completed.

10 In other words, the posteriori probability distribution of RND(1)(Ci) for any i, given ((N1,M1, C1, T1),
. . . , (Nq,Mq, Cq, Tq)), is always independent and uniform over {0, 1}n.

22

