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Abstract

   This document specifies OCB, a shared-key blockcipher-based
   encryption scheme that provides privacy and authenticity for
   plaintexts and authenticity for associated data.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78  and BCP 79 .

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/ .

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 15, 2013.
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1.  Introduction

   Schemes for authenticated encryption (AE) simultaneously provide for
   privacy and authentication.  While this goal would traditionally be
   achieved by melding separate encryption and authentication
   mechanisms, each using its own key, integrated AE schemes intertwine
   what is needed for privacy and what is needed for authenticity.  By
   conceptualizing AE as a single cryptographic goal, AE schemes are
   less likely to be misused than conventional encryption schemes.
   Also, integrated AE schemes can be significantly faster than what one
   sees from composing separate privacy and authenticity means.

   When an AE scheme allows for the authentication of unencrypted data
   at the same time that a plaintext is being encrypted and
   authenticated, the scheme is an authenticated encryption with
   associated data (AEAD) scheme.  Associated data can be useful when,
   for example, a network packet has unencrypted routing information and
   an encrypted payload.

   OCB is an AEAD scheme that depends on a blockcipher.  This document
   fully defines OCB encryption and decryption except for the choice of
   the blockcipher and the length of authentication tag that is part of
   the ciphertext.  The blockcipher must have a 128-bit blocksize.  Each
   choice of blockcipher and tag length specifies a different variant of
   OCB. Several AES-based variants are defined in Section 3.1 .

   OCB encryption and decryption employ a nonce N, which must be
   selected as a new value for each message encrypted.  OCB requires the
   associated data A to be specified when one encrypts or decrypts, but
   it may be zero-length.  The plaintext P and the associated data A can
   have any bitlength.  The ciphertext C one gets by encrypting P in the
   presence of A consists of a ciphertext-core having the same length as
   P, plus an authentication tag.  One can view the resulting ciphertext
   as either the pair (ciphertext-core, tag) or their concatenation
   (ciphertext-core || tag), the difference being purely how one
   assembles and parses ciphertexts.  This document uses concatenation.
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   OCB encryption protects the privacy of P and the authenticity of A,
   N, and P. It does this using, on average, about a + m + 1.02
   blockcipher calls, where a is the blocklength of A and m is the
   blocklength of P and the nonce N is implemented as a counter (if N is
   random then OCB uses a + m + 2 blockcipher calls). If A is fixed
   during a session then, after preprocessing, there is effectively no
   cost to having A authenticated on subsequent encryptions, and the
   mode will average m + 1.02 blockcipher calls.  OCB requires a single
   key K for the underlying blockcipher, and all blockcipher calls are
   keyed by K. OCB is on-line: one need not know the length of A or P to
   proceed with encryption, nor need one know the length of A or C to
   proceed with decryption.  OCB is parallelizable: the bulk of its
   blockcipher calls can be performed simultaneously.  Computational
   work beyond blockcipher calls consists of a small and fixed number of
   logical operations per call.  OCB enjoys provable security: the mode
   of operation is secure assuming that the underlying blockcipher is
   secure.  As with most modes of operation, security degrades in the
   square of the number of blocks of texts divided by two to the
   blocklength.

   The version of OCB defined in this document is a refinement of two
   prior schemes.  The original OCB version was published in 2001 [OCB1]
   and was listed as an optional component in IEEE 802.11i.  A second
   version was published in 2004 [OCB2] and is specified in ISO 19772.
   The scheme described here is called OCB3 in the 2011 paper describing
   the mode [OCB3]; it shall be referred to simply as OCB throughout
   this document.  See [OCB3] for complete references, timing
   information, and a discussion of the differences between the
   algorithms.

2.  Notation and Basic Operations

   There are two types of variables used in this specification, strings
   and integers.  Although most data processed by implementations of OCB
   will be byte-oriented, a number of bit-level operations are used in
   this specification, and so strings are here considered strings of
   bits rather than strings of bytes.  String variables are always
   written with an initial upper-case letter while integer variables are
   written in all lower-case.  Following C’s convention, a single equals
   ("=") indicates variable assignment and double equals ("==") is the
   equality relation.  Whenever a variable is followed by an underscore
   ("_"), the underscore is intended to denote a subscript, with the
   subscripted expression requiring evaluation to resolve the meaning of
   the variable.  For example, when i == 2, then P_i refers to the
   variable P_2.

   c^i         The integer c raised to the i-th power.

   bitlen(S)   The length of string S in bits (eg, bitlen(101) == 3).

   zeros(n)    The string made of n zero-bits.
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   ntz(n)      The number of trailing zero bits in the base-2
               representation of the positive integer n.  More formally,
               ntz(n) is the largest integer x for which 2^x divides n.

   S xor T     The string that is the bitwise exclusive-or of S and T.
               Strings S and T will always have the same length.

   S[i]        The i-th bit of the string S (indices begin at 1).

   S[i..j]     The substring of S consisting of bits i through j,
               inclusive.

   S || T      String S concatenated with string T (eg, 000 || 111 ==
               000111).

   str2num(S)  The base-2 integral interpretation of bitstring S (eg,
               str2num(1110) == 14).

   double(S)   If S[1] == 0 then double(S) == (S[2..128] || 0);
               otherwise double(S) == (S[2..128] || 0) xor (zeros(120)
               || 10000111).

3.  OCB Global Parameters

   To be complete, the algorithms in this document require specification
   of two global parameters: a blockcipher operating on 128-bit blocks
   and the length of authentication tags in use.

   Specifying a blockcipher implicitly defines the following symbols.

   KEYLEN         The blockcipher’s key length, in bits.

   ENCIPHER(K,P)  The blockcipher function mapping 128-bit plaintext
                  block P to its corresponding ciphertext block using
                  KEYLEN-bit key K.

   DECIPHER(K,C)  The inverse blockcipher function mapping 128-bit
                  ciphertext block C to its corresponding plaintext
                  block using KEYLEN-bit key K.

   As an example, if 128-bit authentication tags and AES with 192-bit
   keys are to be used, then KEYLEN is 192, ENCIPHER refers to the
   AES-192 cipher, DECIPHER refers to the AES-192 inverse cipher, and
   TAGLEN is 128 [AES].

3.1 .  Named OCB Parameter Sets and RFC 5116  Constants

   The following table gives names to common OCB global parameter sets.
   Each of the AES variants is defined in [AES].
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         +----------------------------+-------------+--------+
         | Name                       | Blockcipher | TAGLEN |
         +----------------------------+-------------+--------+
         | AEAD_AES_128_OCB_TAGLEN128 |   AES-128   |  128   |
         | AEAD_AES_128_OCB_TAGLEN96  |   AES-128   |   96   |
         | AEAD_AES_128_OCB_TAGLEN64  |   AES-128   |   64   |
         | AEAD_AES_192_OCB_TAGLEN128 |   AES-192   |  128   |
         | AEAD_AES_192_OCB_TAGLEN96  |   AES-192   |   96   |
         | AEAD_AES_192_OCB_TAGLEN64  |   AES-192   |   64   |
         | AEAD_AES_256_OCB_TAGLEN128 |   AES-256   |  128   |
         | AEAD_AES_256_OCB_TAGLEN96  |   AES-256   |   96   |
         | AEAD_AES_256_OCB_TAGLEN64  |   AES-256   |   64   |
         +----------------------------+-------------+--------+

   RFC 5116  defines an interface for authenticated encryption schemes
   [ RFC5116].  RFC 5116  requires the specification of certain constants
   for each named AEAD scheme.  For each of the OCB parameter sets
   listed above: P_MAX, A_MAX, and C_MAX are all unbounded; N_MIN is 1
   byte and N_MAX is 15 bytes.  The parameter-sets indicating the use of
   AES-128, AES-192 and AES-256 have K_LEN equal to 16, 24 and 32 bytes,
   respectively.

4.  OCB Algorithms

   OCB is described in this section using pseudocode.  Given any
   collection of inputs of the required types, following the pseuduocode
   description for a function will produce the correct output of the
   promised type.

4.1 .  Associated-Data Processing: HASH

   OCB has the ability to authenticate unencrypted associated data at
   the same time that it provides for authentication and encrypts a
   plaintext.  The following hash function is central to providing this
   functionality.  If an application has no associated data, then the
   associated data should be considered to exist and to be the empty
   string.  HASH, conveniently, always returns zeros(128) when the
   associated data is the empty string.
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   Function name:
     HASH
   Input:
     K, string of KEYLEN bits                      // Key
     A, string of any length                       // Associated data
   Output:
     Sum, string of 128 bits                       // Hash result

   Sum is defined as follows.

     //
     // Key-dependent variables
     //
     L_* = ENCIPHER(K, zeros(128))
     L_$ = double(L_*)
     L_0 = double(L_$)
     L_i = double(L_{i-1}) for every integer i > 0

     //
     // Consider A as a sequence of 128-bit blocks
     //
     Let m be the largest integer so that 128m <= bitlen(A)
     Let A_1, A_2, ..., A_m and A_* be strings so that
       A == A_1 || A_2 || ... || A_m || A_*, and
       bitlen(A_i) == 128 for each 1 <= i <= m.
       Note: A_* may possibly be the empty string.

     //
     // Process any whole blocks
     //
     Sum_0 = zeros(128)
     Offset_0 = zeros(128)
     for each 1 <= i <= m
        Offset_i = Offset_{i-1} xor L_{ntz(i)}
        Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i)
     end for

     //
     // Process any final partial block; compute final hash value
     //
     if bitlen(A_*) > 0 then
        Offset_* = Offset_m xor L_*
        CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_*
        Sum = Sum_m xor ENCIPHER(K, CipherInput)
     else
        Sum = Sum_m
     end if

4.2 .  Encryption: OCB-ENCRYPT
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   This function computes a ciphertext (which includes a bundled
   authentication tag) when given a plaintext, associated data, nonce
   and key.
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   Function name:
     OCB-ENCRYPT
   Input:
     K, string of KEYLEN bits                      // Key
     N, string of fewer than 128 bits              // Nonce
     A, string of any length                       // Associated data
     P, string of any length                       // Plaintext
   Output:
     C, string of length bitlen(P) + TAGLEN bits   // Ciphertext

   C is defined as follows.

     //
     // Key-dependent variables
     //
     L_* = ENCIPHER(K, zeros(128))
     L_$ = double(L_*)
     L_0 = double(L_$)
     L_i = double(L_{i-1}) for every integer i > 0

     //
     // Consider P as a sequence of 128-bit blocks
     //
     Let m be the largest integer so that 128m <= bitlen(P)
     Let P_1, P_2, ..., P_m and P_* be strings so that
       P == P_1 || P_2 || ... || P_m || P_*, and
       bitlen(P_i) == 128 for each 1 <= i <= m.
       Note: P_* may possibly be the empty string.

     //
     // Nonce-dependent and per-encryption variables
     //
     Nonce = zeros(127-bitlen(N)) || 1 || N
     bottom = str2num(Nonce[123..128])
     Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
     Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
     Offset_0 = Stretch[1+bottom..128+bottom]
     Checksum_0 = zeros(128)

     //
     // Process any whole blocks
     //
     for each 1 <= i <= m
        Offset_i = Offset_{i-1} xor L_{ntz(i)}
        C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i)
        Checksum_i = Checksum_{i-1} xor P_i
     end for

     //
     // Process any final partial block and compute raw tag
     //
     if bitlen(P_*) > 0 then
        Offset_* = Offset_m xor L_*
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        Pad = ENCIPHER(K, Offset_*)
        C_* = P_* xor Pad[1..bitlen(P_*)]
        Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
        Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
     else
        C_* = <empty string>
        Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
     end if

     //
     // Assemble ciphertext
     //
     C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]

4.3 .  Decryption: OCB-DECRYPT

   This function computes a plaintext when given a ciphertext,
   associated data, nonce and key.  An authentication tag is embedded in
   the ciphertext.  If the tag is not correct for the ciphertext,
   associated data, nonce and key, then an INVALID signal is produced.
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   Function name:
     OCB-DECRYPT
   Input:
     K, string of KEYLEN bits                      // Key
     N, string of fewer than 128 bits              // Nonce
     A, string of any length                       // Associated data
     C, string of at least TAGLEN bits             // Ciphertext
   Output:
     P, string of length bitlen(C) - TAGLEN bits,  // Plaintext
          or INVALID indicating authentication failure

   P is defined as follows.

     //
     // Key-dependent variables
     //
     L_* = ENCIPHER(K, zeros(128))
     L_$ = double(L_*)
     L_0 = double(L_$)
     L_i = double(L_{i-1}) for every integer i > 0

     //
     // Consider C as a sequence of 128-bit blocks
     //
     Let m be the largest integer so that 128m <= bitlen(C) - TAGLEN
     Let C_1, C_2, ..., C_m, C_* and T be strings so that
       C == C_1 || C_2 || ... || C_m || C_* || T,
       bitlen(C_i) == 128 for each 1 <= i <= m, and
       bitlen(T) == TAGLEN.
       Note: C_* may possibly be the empty string.

     //
     // Nonce-dependent and per-decryption variables
     //
     Nonce = zeros(127-bitlen(N)) || 1 || N
     bottom = str2num(Nonce[123..128])
     Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
     Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
     Offset_0 = Stretch[1+bottom..128+bottom]
     Checksum_0 = zeros(128)

     //
     // Process any whole blocks
     //
     for each 1 <= i <= m
        Offset_i = Offset_{i-1} xor L_{ntz(i)}
        P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i)
        Checksum_i = Checksum_{i-1} xor P_i
     end for

     //
     // Process any final partial block and compute raw tag
     //
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     if bitlen(C_*) > 0 then
        Offset_* = Offset_m xor L_*
        Pad = ENCIPHER(K, Offset_*)
        P_* = C_* xor Pad[1..bitlen(C_*)]
        Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
        Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
     else
        P_* = <empty string>
        Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
     end if

     //
     // Check for validity and assemble plaintext
     //
     if (Tag[1..TAGLEN] == T) then
        P = P_1 || P_2 || ... || P_m || P_*
     else
        P = INVALID
     end if

5.  Security Considerations

   OCB achieves two security properties, privacy and authenticity.
   Privacy is defined via "indistinguishability from random bits",
   meaning that an adversary is unable to distinguish OCB-outputs from
   an equal number of random bits.  Authenticity is defined via
   "authenticity of ciphertexts", meaning that an adversary is unable to
   produce any valid (N,C,T) triple that it has not already acquired.
   The security guarantees depend on the underlying blockcipher being
   secure in the sense of a strong pseudorandom permutation.  Thus if
   OCB is used with a blockcipher that is not secure as a strong
   pseudorandom permutation, the security guarantees vanish.  The need
   for the strong pseudorandom permutation property means that OCB
   should be used with a conservatively designed, well-trusted
   blockcipher, such as AES.

   Both the privacy and the authenticity properties of OCB degrade as
   per s^2 / 2^128, where s is the total number of blocks that the
   adversary acquires.  The consequence of this formula is that the
   proven security vanishes when s becomes as large as 2^{128/2}. Thus
   the user should never use a key to generate an amount of ciphertext
   that is near to, or exceeds, 2^64 blocks.  In order to ensure that
   s^2 / 2^128 remains small, a given key should be used to encrypt at
   most 2^48 blocks (2^55 bits or 4 petabytes), including the associated
   data.  To ensure these limits are not crossed, automated key
   management is recommended in systems exchanging large amounts of data
   [ RFC4107].
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   It is crucial that, as one encrypts, one does not repeat a nonce.
   The inadvertent reuse of the same nonce by two invocations of the OCB
   encryption operation, with the same key, but with distinct plaintext
   values, undermines the confidentiality of the plaintexts protected in
   those two invocations, and undermines all of the authenticity and
   integrity protection provided by that key.  For this reason, OCB
   should only be used whenever nonce uniqueness can be provided with
   certainty.  Note that it is acceptable to input the same nonce value
   multiple times to the decryption operation.  We emphasize that the
   security consequences are quite serious if an attacker observes two
   ciphertexts that were created using the same nonce and key values,
   unless the plaintext and AD values in both invocations of the encrypt
   operation were identical.  First, a loss of confidentiality ensues
   because he will be able to infer relationships between the two
   plaintext values.  Second, a loss of authenticity ensues because the
   attacker will be able to recover secret information used to provide
   authenticity, making subsequent forgeries trivial.  Note that there
   are AEAD schemes, particularly SIV [ RFC5297], appropriate for
   environements where nonces are unavailable or unreliable.  OCB is not
   such a scheme.

   Nonces need not be secret, and a counter may be used for them.  If
   two parties send OCB-encrypted plaintexts to one another using the
   same key, then the space of nonces used by the two parties must be
   partitioned so that no nonce that could be used by one party to
   encrypt could be used by the other to encrypt (eg, odd and even
   counters).

   When a ciphertext decrypts as INVALID it is the implementor’s
   responsibility to make sure that no information beyond this fact is
   made adversarially available.

   OCB encryption and decryption produce an internal 128-bit
   authentication tag.  The parameter TAGLEN determines how many bits of
   this internal tag are used for authentication.  The value of TAGLEN
   impacts the adversary’s ability to forge: it will always be trivial
   for the adversary to forge with probability 2^{-TAGLEN}. It is up to
   the application designer to choose an appropriate value for TAGLEN.
   Long tags cost no more computationally than short ones.

   Timing attacks are not a part of the formal security model and an
   implementation should take care to mitigate them in contexts where
   this is a concern.  To render timing attacks impotent, the amount of
   time to encrypt or decrypt a string should be independent of the key
   and the contents of the string.  The only explicitly conditional OCB
   operation that depends on private data is double(), which means that
   using constant-time blockcipher and double() implementations
   eliminates most (if not all) sources of timing attacks on OCB. Power-
   usage attacks are likewise out of scope of the formal model, and
   should be considered for environments where they are threatening.
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   The OCB encryption scheme reveals in the ciphertext the length of the
   plaintext.  Sometimes the length of the plaintext is a valuable piece
   of information that should be hidden.  For environments where
   "traffic analysis" is a concern, techniques beyond OCB encryption
   (typically involving padding) would be necessary.

   Defining the ciphertext that results from OCB-ENCRYPT to be the pair
   (C_1 || C_2 || ... || C_m || C_*, Tag[1..TAGLEN]) instead of the
   concatenation C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]
   introduces no security concerns.  Because TAGLEN is fixed, both
   versions allows ciphertexts to be parsed unambiguously.

6.  IANA Considerations

   The Internet Assigned Numbers Authority (IANA) has defined a registry
   for Authenticated Encryption with Associated Data parameters.  The
   IANA has added the following entries to the AEAD Registry.  Each name
   refers to a set of parameters defined in Section 3.1 .

   +----------------------------+-------------+--------------------+
   | Name                       |  Reference  | Numeric Identifier |
   +----------------------------+-------------+--------------------+
   | AEAD_AES_128_OCB_TAGLEN128 | Section 3.1  |         XX         |
   | AEAD_AES_128_OCB_TAGLEN96  | Section 3.1  |         XX         |
   | AEAD_AES_128_OCB_TAGLEN64  | Section 3.1  |         XX         |
   | AEAD_AES_192_OCB_TAGLEN128 | Section 3.1  |         XX         |
   | AEAD_AES_192_OCB_TAGLEN96  | Section 3.1  |         XX         |
   | AEAD_AES_192_OCB_TAGLEN64  | Section 3.1  |         XX         |
   | AEAD_AES_256_OCB_TAGLEN128 | Section 3.1  |         XX         |
   | AEAD_AES_256_OCB_TAGLEN96  | Section 3.1  |         XX         |
   | AEAD_AES_256_OCB_TAGLEN64  | Section 3.1  |         XX         |
   +----------------------------+-------------+--------------------+
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Appendix A .  Sample Results

   This section gives sample output values for various inputs when using
   the AEAD_AES_128_OCB_TAGLEN128 parameters defined in Section 3.1 . All
   strings are represented in hexadecimal (eg, 0F represents the
   bitstring 00001111).

   Each of the following (A,P,C) triples show the ciphertext C that
   results from OCB-ENCRYPT(K,N,A,P) when K and N are fixed with the
   values

   K : 000102030405060708090A0B0C0D0E0F
   N : 000102030405060708090A0B

   An empty entry indicates the empty string.
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     A:
     P:
     C: 197B9C3C441D3C83EAFB2BEF633B9182

     A: 0001020304050607
     P: 0001020304050607
     C: 92B657130A74B85A16DC76A46D47E1EAD537209E8A96D14E

     A: 0001020304050607
     P:
     C: 98B91552C8C009185044E30A6EB2FE21

     A:
     P: 0001020304050607
     C: 92B657130A74B85A971EFFCAE19AD4716F88E87B871FBEED

     A: 000102030405060708090A0B0C0D0E0F
     P: 000102030405060708090A0B0C0D0E0F
     C: BEA5E8798DBE7110031C144DA0B26122776C9924D6723A1F
        C4524532AC3E5BEB

     A: 000102030405060708090A0B0C0D0E0F
     P:
     C: 7DDB8E6CEA6814866212509619B19CC6

     A:
     P: 000102030405060708090A0B0C0D0E0F
     C: BEA5E8798DBE7110031C144DA0B2612213CC8B747807121A
        4CBB3E4BD6B456AF

     A: 000102030405060708090A0B0C0D0E0F1011121314151617
     P: 000102030405060708090A0B0C0D0E0F1011121314151617
     C: BEA5E8798DBE7110031C144DA0B26122FCFCEE7A2A8D4D48
        5FA94FC3F38820F1DC3F3D1FD4E55E1C

     A: 000102030405060708090A0B0C0D0E0F1011121314151617
     P:
     C: 282026DA3068BC9FA118681D559F10F6

     A:
     P: 000102030405060708090A0B0C0D0E0F1011121314151617
     C: BEA5E8798DBE7110031C144DA0B26122FCFCEE7A2A8D4D48
        6EF2F52587FDA0ED97DC7EEDE241DF68

     A: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F
     P: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F
     C: BEA5E8798DBE7110031C144DA0B26122CEAAB9B05DF771A6
        57149D53773463CBB2A040DD3BD5164372D76D7BB6824240

     A: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F
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     P:
     C: E1E072633BADE51A60E85951D9C42A1B

     A:
     P: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F
     C: BEA5E8798DBE7110031C144DA0B26122CEAAB9B05DF771A6
        57149D53773463CB4A3BAE824465CFDAF8C41FC50C7DF9D9

     A: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F2021222324252627
     P: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F2021222324252627
     C: BEA5E8798DBE7110031C144DA0B26122CEAAB9B05DF771A6
        57149D53773463CB68C65778B058A635659C623211DEEA0D
        E30D2C381879F4C8

     A: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F2021222324252627
     P:
     C: 7AEB7A69A1687DD082CA27B0D9A37096

     A:
     P: 000102030405060708090A0B0C0D0E0F1011121314151617
        18191A1B1C1D1E1F2021222324252627
     C: BEA5E8798DBE7110031C144DA0B26122CEAAB9B05DF771A6
        57149D53773463CB68C65778B058A635060C8467F4ABAB5E
        8B3C2067A2E115DC

   Next are several internal values generated during the OCB-ENCRYPT
   computation for the last test vector listed above.

   bottom    : 11
   Checksum_1: 000102030405060708090A0B0C0D0E0F
   Checksum_2: 10101010101010101010101010101010
   Checksum_*: 30313233343536379010101010101010
   Ktop      : 43E111498C0582BF99F1D966CEFCBCC6
   L_*       : C6A13B37878F5B826F4F8162A1C8D879
   L_$       : 8D42766F0F1EB704DE9F02C54391B075
   L_0       : 1A84ECDE1E3D6E09BD3E058A8723606D
   L_1       : 3509D9BC3C7ADC137A7C0B150E46C0DA
   Offset_0  : 088A4C602C15FCCF8ECB3677E5E63517
   Offset_1  : 120EA0BE322892C633F533FD62C5557A
   Offset_2  : 270779020E524ED5498938E86C8395A0
   Offset_*  : E1A6423589DD155726C6B98ACD4B4DD9
   Stretch   : 43E111498C0582BF99F1D966CEFCBCC6A2F058C589873D26

   The following algorithm tests a wider variety of inputs.  Results are
   given for each of AEAD_AES_128_OCB_TAGLEN128,
   AEAD_AES_192_OCB_TAGLEN128 and AEAD_AES_256_OCB_TAGLEN128. Let <i> be
   the 8-bit base-2 representation of i (eg, <3> == 00000011 and <255>
   == 11111111).
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   K = zeros(KEYLEN)           // Keylength of AES in use
   for i = 0 to 127 do
      S = zeros(8i)            // i bytes of zeros
      N = zeros(88) || <i>     // 11 byte zero followed by 1 byte i
      C = C || OCB-ENCRYPT(K,N,S,S)
      C = C || OCB-ENCRYPT(K,N,<empty string>,S)
      C = C || OCB-ENCRYPT(K,N,S,<empty string>)
   end for
   N = zeros(96)
   Output : OCB-ENCRYPT(K,N,C,<empty string>)

   Iteration i of the loop adds 2i + 48 bytes to C, resulting in an
   ultimate length for C of 22,400 bytes.  The final OCB-ENCRYPT has an
   empty plaintext component, so serves only to authenticate C. The
   output should be:

   AEAD_AES_128_OCB_TAGLEN128 Output: B2B41CBF9B05037DA7F16C24A35C1C94
   AEAD_AES_192_OCB_TAGLEN128 Output: 1529F894659D2B51B776740211E7D083
   AEAD_AES_256_OCB_TAGLEN128 Output: 42B83106E473C0EEE086C8D631FD4C7B
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