Network Working Group Adam Back
draft—hashcash-back-00.txt Category: INTERWNET-DRAFT Created: Jun 2003
Expires: Dec 2003

The Hashcash Procf-of-Weork Functicn
draft-hashcash-back-00.txt

Copyright 2002 by The Internet Society. A1l Rights Reserved.
Status of this Memo

This document is an Intermet-Draft. Internet-Drafts are draft
documents walid for a maximum of six months and may be updated,
replaced, or cbscleted by cother dccuments at any time. It is
inappreopriate to use Internet-Drafts as reference material or to cite
them other than as "werk in progress.™

The list of current Internet-Drafts can be accessed at
http://www.ietf.crg/ietf/lid-abstracts. txt

The list of Internet-Draft Shadew Directories can be accessed at

http://www.ietf.org/shadow.html.
Abstract
Hashcash is a denial-ocf-service counter measure toocl. It's main

current use is te help hashcash users avoid losing email due to
content based and blacklist based anti-spam systems.

Email senders attach hashcash tokens with the X-Hashcash: header.
Vendors and authcrs of anti-spam tools are enccuraged to exempt mail
sent with hashcash from their blacklists and content based filtering
rules.

This memo describes how to use hashcash to increase email
reliability.

Distribution of this memo is unlimited.
1. Intreduction
The Hashcash Procf-of-Work functicn is an algorithm that can be used

as a building bleck in the construction of network protocols with
defenses against Denial-of-Service attacks.

The Hashcash function can be used th any iterative cryptographic
hash functicn, e.g., SHRL. The cryptographic strength of Hashcash

Back [Page 1]
draft-hashcash-back-TOhOe.tHxatshcash Procf-cf-Work Function 29 Jun
depends on the properties of the underlying hash function. This

draft specifies 5HA&]l for the underlying hash function.

The Hashcash procf-of-werk functicn is non—interactive and so is
suitable for use in store-and-feorward systems such as email and
USENET news. Senders attach Hashcash teokens teo their sent email and
USENET posts. Mail Filtering Agents verify the hashcash tckens
attached to email and alter their filtering behavior in some way.
For example a spam detecting system such as SpamfAssassin may choose
to exempt all mail sent th hashcash from octher filtering rules. 2
mail-client may filter mail without hashcash inte a potential spam
folder.

2. Definition of Hashcash

The definition of Hashcash requires a cryptegraphic hash functien,
and the wversicn 0 format Hashcash token specifies the SEAL [5HAIL]
hash function. SHA] hashes variable length octet—-strings to produce
a 160 bit (or 20 octet) output. We denote the bit-length of SHAIL
hash output L=160 bits.

Hashcash is parameterised by:

work facter w, is an integer 0 <= w <= L

version numb ver (this document specifies wersion '0")
time-stamp parameter: time

resource identifier: resource (variable length ascii string)
trial wvalue string: trial (wvariable length ascii string)

XU < U)

The hashcash token has a number of fields separated by the
character.

The token has form:

token = ver:time:resource:trial

The wver and time paramters are defined as the first two ":' delimited
fields. The trial parameter is defined as the last ':' delimited
field. The resource string is the string between the ':' fellowing

the time field and the ':' preceding the trial field. This
definition allows the resource string te contain ':' characters.

JEE€ 8150 TAe SeCTloh DELlOoW O dcuble—Spendlng [Or a use ol TAe Time
parameter which MAY be used te reduce the sgize of the double-spending
database.

The trial parameter is a variable length ascii strings consisting of

Back [Page 2]

[
w
g
=

draft-hashcash-back-TOhOe.tHxatshcash Procf-cf-Work Function

any printable character except whitespace, linefeed, newline and the
subset of walid trial characters cf a specific length (for example
hex or baset4 encoding characters only, say being an enceding of a &4
bit number), however all implementations MUST accept any valid
characters, and MUST acecept trial strings of any length up to a
maximum cof 128 characters.

We define a target string 'target' against which partial hash
collisions are feund, and arbitrarily set this teo the L-bkit all 0

string which we denote: 0*L (the binary string compesed of L 0 bkits):

chal = 0L

We define a w-bit partial collision between the hash of the trial
token and the zero string chal where the w most significant bits of
trial value hash are equal. We use msb(w, s) to denote the w most-
significant bits of bit string s. The client tries different trial
values until a w-bit partial ecollision is found such that:

msb(w, SHAl({ token)) == 0"w;

An example algorithm to find such a token is given by the following
pseudo—-code:

trial = random start(); REFPEAT trial := trial + 1
UNTIL msb(w, SHAl(vers:time:rescurce:trial }) == 0

In practice trial may be for example a €4 bit number and the addition
would be mod 2+64. 1In this case the trial used in the SHAL hash
would be some intable encoding of a 64 bit number (for example hex
or base64 encoding).

ial were net

The trial walue MUST be chosen randomly. If the
chosen randemly collisions may accidentally cccur, or be malicicusly
be induced between different senders toc the same recipient.

The length cof the trial walue SHOULD be chosen te be large encugh
that the prcbability of collisicn between to senders to the same
recipient is negligible. It iz recommended that a range of at

minimum 2°64 possible values be used.

[

Double-spending

Tokens SHOULD NOT be accepted more than once. In the non-interactive
setting to implement this the server MAY implement a double—spend
database. As tokens are spent they are added to the double—spend
database. Tokens SHOULD only considered walid if they have not been

Back [Page 3

draft-hashcash-back-TOhOe.tHxatshcash Procf-cf-Work Function 29 Jun

already spent (if they are not in the double-spend database).
3.1 Reducing the size of the double-spend database

To reduce the storage requirements for the double-spend database non-
interactive tokens MAY use the optional time-stamp parameter. The
server will then define an expiry pericd for a tcken based on it's
time—stamp, and can purge from it's database any tokens which are
explired.

Servers MAY elect to communicate the expiry pericd they impose on
tokens they receive tec the clients.

Servers SHOULD NOT expire tokens earlier than the typical worst case
on delay for the asscciated message.

communic

The time-stamp format shall be based on UTCTime: 2-12 digits with the
trailing 'Z' character omitted. Reading frem left to right in pairs
of digits the date/time stamp is: year (meduleo 100), month, day, heur
{24 hour), minute, seconds. The timezcne is GMT (UTC). {The 2 digit
year SHOULD be converted into a 4 digit year by comparing te the
current year. The interpretaticn that is closest tc the current date
SHOULD be used.)

Zuthor's Address

Adam Back
Email: adam@cypherspace.org

Copyright 19%F8 by The Internet Society. A1l Rights Reserved.

This decument and translations of it may be copied and furnished te
others, and derivative works that comment on or ctherwise explain it
or assist in its implementation may be prepared, copied, published and
Adatvrikhntad in whnle Ar in nart withrnt reaatrictrinn Af anw Find

__________ . el et hs pney flit dn eap e
provided that the above copyright n ce and this paragraph are
included on all such copies and derivative works. Howewver, this
document itself may net be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined
in the Internet Standards process must be followed, or as required to
translate it inte languages other than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or

T2 successcrs or asaiqns.

Back [Page 4]

draft-hashcash-back-TOhOe.tHxatshcash Procf-cf-Work Function 29 Jun 2003

EBack [Page 5]

