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Abstract. Proof-of-work schemes are economic measures to deter denial-
of-service attacks: service requesters compute moderately hard functions
the results of which are easy to check by the provider. We present such a
new scheme for solution-verification protocols. Although most schemes to
date are probabilistic unbounded iterative processes with high variance
of the requester effort, our Merkle tree scheme is deterministic with an
almost constant effort and null variance, and is computation-optimal.

1 Introduction

Economic measures to contain denial-of-service attacks such as spams were first
suggested by Dwork and Naor [I]: a computation stamp is required to obtain
a service. Proof-of-work schemes are dissymmetric: the computation must be
moderately hard for the requester, but easy to check for the service provider.
Applications include having uncheatable benchmarks [2], helping audit reported
metering of web sites [3], adding delays [4J5], managing email addresses [6],
or limiting abuses on peer-to-peer networks [7)§]. Proofs may be purchased in
advance [9]. These schemes are formalized [I0], and actual financial analysis is
needed [I1IT2] to evaluate their real impact. There are two protocol flavors:

1. request service '
E 3 challenge 2. choose —
4. solve 5. response
7. grant service 6. verify I

Requester Provider

Fig. 1. Challenge-Response Protocol

Challenge-response protocols in Figure[Ilassume an interaction between client
and server so that the service provider chooses the problem, say an item with
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some property from a finite set, and the requester must retrieve the item in
the set. The solution is known to exist, the search time distribution is basically
uniform, the solution is found on average when about half of the set has been
processed, and standard deviation is about 2\1/3 ~ 0.3 of the mean.

E 1. compute H—
2. solve 3. send
4. verify

Requester Provider

Fig. 2. Solution-Verification Protocol

Solution-verification protocols in Figure [2] do not assume such a link. The
problem must be self-imposed, based somehow on the service description, say
perhaps the intended recipient and date of a message. The target is usually a
probabilistic property reached by iterations. The verification phase must check
both the problem choice and the provided solution. Such iterative searches have
a constant probability of success at each trial, resulting in a shifted geometrical
distribution, the mean is the inverse of the success probability, and the standard
deviation nearly equals the mean. The resulting distribution has a long tail as
the number of iterations to success is not bounded: about every 50 searches
an unlucky case requires more than 4 times the average number of iterations
to complete (the probability of not succeeding in 4 times the average is about
e =eta L)

We present a new proof-of-work solution-verification scheme based on Merkle
trees with an almost constant effort and null variance for the client. When con-
sidering a Merkle tree with N leaves, the solution costs about 2N, P - In(N)
data is sent, and the verification costs P - In(IN) with P = 8 - Ina(N) a good
choice. This contribution is theoretical with a constant requester effort, which
is thus bounded or of possibly low variance, but also practical as our scheme is
computation-optimal and has an interesting work-ratio.

Section [2 discusses proof-of-work schemes suggested to date and analyzes
their optimality and the computation distribution of solution-verification vari-
ants. Section [B] describes our new scheme based on Merkle trees built on top of
the service description. This scheme is shown computation-optimal, but is not
communication-optimal. The solution involves the computation of most of the
tree, although only part of it is sent thanks to a feedback mechanism which
selects only a subset of the leaves. Section Fl computes a cost lower bound for a
proof, then outlines two attacks beneficial to the service requester. The effort of
our scheme is constant, thus bounded and with a null variance. However we show
an iterative attack, which is not upper-bounded, and which results in a small
gain. Together with the demonstrated lower-bound cost of a proof, it justifies
our almost claim.
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2 Related Work

We introduce two optimality criteria to analyze proof-of-work schemes, then
discuss solution-verification protocols suggested to date with respect to these
criteria and to the work distribution on the requester side. Challenge-response
only functions [T3IT4ITH] are not discussed further here.

Let the effort E(w) be the amount of computation of the requester as a func-
tion of provider work w, and the work-ratio the effort divided by the provider
work. Proof-of-work schemes may be: (a) communication-optimal if the amount
of data sent on top of the service description D is minimal. For solution-
verification iterative schemes it is about In(work-ratio) to identify the found
solution: the work-ratio is the number of iterations performed over a counter
to find a solution, and it is enough to just return the value of this counter for
the provider to check the requester proof. For challenge-response protocols, it
would be In(search space size). This criterion emphasizes minimum impact on
communications. (b) computation-optimal if the challenge or verification work
is simply linear in the amount of communicated data, which it must at least
be if the data is processed. This criterion mitigates denial-of-service attacks on
service providers, as fake proof-of-works could require significant resources to
disprove. A scheme meeting both criteria is deemed optimal.

Three proof-of-work schemes are suggested by Dwork and Naor [I]. One is a
formula (integer square root modulo a large prime p = 3 mod 4), as computing
a square root is more expensive than squaring the result to check it. Assuming
a naive implementation, it costs In(p)® to compute, In(p) to communicate, and
In(p)? to check. The search cost is deterministic, but the w'® effort is not very
interesting, and is not optimal. Better implementations reduce both solution and
verification complexities. If p = 1 mod 4, the square root computation with the
Tonelli-Shanks algorithm involves a non deterministic step with a geometrical
distribution. The next two schemes present shortcuts which allow some partic-
ipants to generate cheaper stamps. They rely on forging a signature without
actually breaking a private key. One uses the Fiat-Shamir signature with a weak
hash function for which an inversion is sought by iteration, with a geometrical
distribution of the effort. The computation costs E -In(IN)?, the communication
In(N) and the verification In(N)?, where N > 2°!2 is needed for the scheme

Table 1. Comparison of Solution-Verification POW

ref effort var comm. work constraints
M1 In(p)? 0 In(p) In(p)® p large prime

M2 Emn(N)® >0 In(N) In(N)> N> 2512

6] £ = In(E) In(E)

[ E¢ = In(k) ¢ typical £ = 2'®

[18] E¢ = In(E) ¢ E<20>2"
[ E = In(E) In(E)

here 2N 0 PIn(N) PIn(N) P =8-1nz(N)



An (Almost) Constant-Effort Solution-Verification Proof-of-Work Protocol 83

security and the arbitrary effort E is necessarily much smaller than IV; thus the
scheme is not optimal. The other is the Ong-Schnorr-Shamir signature broken
by Pollard, with a similar non-optimality and a geometrical distribution because
of an iterative step.

Some schemes [I6I3I20] seek partial hash inversions. Hashcash [16] iterates a
hash function on a string involving the service description and a counter, and is
optimal. The following stamp computed in 400 seconds on a 2005 laptop:

1:28:170319 :hobbes@comics: : 7b7b973c8bdb0cb1 : 147b744d
allows to send an email to hobbes on March 19, 2017. The last part is the hexadec-
imal counter, and the SHA1 hash of the whole string begins with 28 binary zeros.
Franklin and Malkhi [3] build a hash sequence that statistically catches cheaters,
but the verification may be expensive. Wang and Reiter [20] allow the requester
to tune the effort to improve its priority.

Memory-bound schemes [I7IT8ITY] seek to reduce the impact of the computer
hardware performance on computation times. All solution-verification variants
are based on an iterative search which target a partial hash inversion, and
thus have a geometrical distribution of success and are communication-optimal.
However only the last of these memory-bound solution-verification schemes is
computation-optimal.

Table [Tl compares the requester cost and variance, communication cost, and
provider checking cost, of solution-verification proof-of-work schemes, with the
notations used in the papers.

3 Scheme

This section describes our (almost) constant-effort and null variance solution-
verification proof-of-work scheme. The client is expected to compute a Merkle
tree which depends on a service description, but is required to give only part of
the tree for verification by the service provider. A feedback mechanism uses the
root hash so that the given part cannot be known in advance, thus induces the
client to compute most of the tree for a solution. Finally choice of parameters and
a memory-computation implementation trade-off are discussed. The notations
used thoroughly in this paper are summarized in Table[2l The whole scheme is
outlined in Figure

3.1 Merkle Tree

Let h be a cryptographic hash function from anything to a domain of size 2. The
complexity of such functions is usually stepwise linear in the input length. For
our purpose the input is short, thus computations only involve one step. Let D be
a service description, for instance a string such as hobbes@comics:20170319:0001.
Let s = h(D) be its hash. Let hs(x) = h(z||s) be a service-dependent hash.
The Merkle binary hash tree [21] of depth d (N = 2¢) is computed as follows: (1)
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Table 2. Summary of notations

Symbol Definition
w  provider checking work
E(w) requester effort
D service description, a string
h  cryptographic hash function
m  hash function bit width
s service hash is h(D)
hs  service-dependent hash function
d  depth of Merkle binary hash tree
N number of leaves in tree is 2¢
P number of proofs expected
n; a node hash in the binary tree
no  root hash of the tree
r leaf selector seed is hZ (no)

leaf digests ny_14; = hg(i) for i in 0... N — 1; (2) inner nodes are propagated
upwards n; = hg(ng;y1||neire2) for i in N—2...0. Root hash ng is computed with
2N calls to h, half for leaf computations, one for service s, and the remainder for
the internal nodes of the tree. The whole tree depends on the service description
as s is used at every stage: reusing such a tree would require a collision of service
description hashes.

3.2 Feedback

Merkle trees help manage Lamport signatures [22]: a partial tree allows to check
quickly that some leaves belong to the full tree by checking that they actually
lead to the root hash. We use this property to generate our proof of work: the
requester returns such a partial tree to show that selected leaves belong to the
tree and thus were indeed computed. However, what particular leaves are needed
must not be known in advance, otherwise it would be easy to generate a partial
tree just with those leaves and to provide random values for the other branches.
Thus we select returned leaves based on the root hash, so that they depend on
the whole tree computation.

The feedback phase chooses P evenly-distributed independent leaves derived
from the root hash as partial proofs of the whole computation. A cryptographic
approximation of such an independent-dependent derivation is to seed a pseudo-
random number generator from root hash ng and to extract P numbers corre-
sponding to leaves in P consecutive chunks of size J}\i. These leaf numbers and the
additional nodes necessary to check for the full tree constitute the proof-of-work.
Figure M illustrates the data sent for 4 leaf-proofs (black) and the interme-
diate hashes that must be provided (grey) or computed (white) on a 256-leaf tree.
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solution work by requester
define service description: D = hobbes@comics:20170319:0001
compute service description hash: s = h(D) = 36639b2165bcd7c724. ..
compute leaf hashes: foriin0...N —1: ny—143 = hs(i)
compute internal node hashes:  for ¢ in N —2...0: n; = hs(nait1||n2ite2)
compute generator seed 7 = h% (no)
derive leaf numbers in each P chunk for jin0...P —1: ¢; = G(r,j)

communication from requester to provider
send service description D
send P leaf numbers ¢; for j € (0...P —1)
for each paths of selected leaves send intermediate lower tree node hashes
that’s PIny(Y) hashes of width m

verification work by provider
check service description D do I want to provide this service?
compute service hash s = h(D)
compute root hash ng from ¢; and provided node hashes
compute generator seed 7 = h% (no)
derive leaf numbers in each P chunk  for jin 0...P — 1: £; = G(r, j)
check whether these leaf numbers were provided  Vj € (0...P —1), {; =}

Fig. 3. Scheme Outline

They are evenly distributed as one leaf is selected in every quarter of the tree,
so balanced branches only meet near the root.

3.3 Verification

The service provider receives the required service description D, P leaf numbers,
and the intermediate hashes necessary to compute the root of the Merkle tree
which amount to about P-Iny(%) - (m+1) bits: P-Ing(}) for the leaf numbers
inside the chunks, and P - lng(g) -m for the intermediate hashes.

The server checks the consistency of the partial tree by recomputing the hashes
starting from service hash s and leaf numbers and up to the root hash using the
provided intermediate node hashes, and then by checking the feedback choice,
i.e. that the root hash does lead to the provided leaves. This requires about
P-Ina(N) hash computations for the tree, and some computations of the pseudo-
random number generator. This phase is computation-optimal as each data is
processed a fixed number of times by the hash function for the tree and generator
computations.

Note that the actual root hash is not really needed to validate the Merkle tree:
it is computed anyway by the verification and, if enough leaves are required, its
value is validated indirectly when checking that the leaves are indeed the one
derived from the root hash seeded generator.
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Fig. 4. Merkle tree proof (P =4, N = 2%)

3.4 Choice of Parameters

Let us discuss the random generator, the hash function h and its width m, the
tree depth d (N = 29) and the number of proofs P.

The pseudo-random number generator supplies P-Iny () bits (14 = 22—8 bits
per proof for N = 222 and P = 256 = 2%) to choose the evenly-distributed leaves.
Standard generators can be seeded directly with the root hash. To add to the
cost of an attack without impact on the verification complexity, the generator
seed may rely further on h by using seed r = h¥ (ng) (hs composed P times over
itself), so that about P hash computations are needed to test a partial tree, as
discussed in Section Il The generator itself may also use h, say with the j-th
leaf in the j-th chunk chosen as ¢; = G(r, j) = hy(j|r) mod ¥ for jin0...P—1.

The hash width may be different for the description, lower tree (close to the
leaves), upper tree (close to the root), and generator. The description hash must
avoid collisions which would lead to reusable trees; the generator hash should
keep as much entropy as possible, especially as the seed is iterated P times;
in the upper part of the tree, a convenient root hash should not be targetable,
and the number of distinct root hashes should be large enough so that it is
not worth precomputing them, as well as to provide a better initial entropy. A
strong cryptographic hash is advisable in these cases. For the lower tree and
leaves, the smaller m the better, as it drives the amount of temporary data and
the proof size. Tabulating node hashes for reuse is not interesting because they
all depend on s and if 22 > 2N. Moreover it should not be easily invertible,
so that a convenient hash cannot be targeted by a search process at any point.
A sufficient condition is 2™ > 2N: one hash inversion costs more than the whole
computation. For our purpose, with N = 222, the lower tree hash may be folded
to m = 24. The impact of choosing m = Ina(N) + 2 is not taken into account in
our complexity analyses because h is assumed a constant cost for any practical
tree depth: it would not change our optimality result to do so, but it would
change the effort function to eV,



An (Almost) Constant-Effort Solution-Verification Proof-of-Work Protocol 87

The Merkle tree depth leads to the number of leaves N and the expected
number of hash computations 2N. The resource consumption required before
the service is provided should depend on the cost of the service. For emails,
a few seconds computation per recipient seems reasonable. With SHA1, depth
d = 22 leads to 223 hash calls and warrants this effort on my 2005 laptop.
For other hash functions, the right depth depends on the performance of these
functions on the target hardware. The number of leaves also induces the number
of required proofs, hence the total proof size, as discussed hereafter.

The smaller the number of proofs, the better for the communication and
verification involved, but if very few proofs are required a partial computation
of the Merkle tree could be greatly beneficial to the requester. We choose P =
8 - Ingy(NV), maybe rounded up to a power of two to ease the even distribution.
Section .2 shows that this value induces the service requester to compute most
of the tree. With this number of proofs, the solution effort is eV® (verification
work w = O(In(N)?), and provider effort is 2N ~ V™). It is not communication-
optimal: proofs are a little bit large, for instance with SHA1 as a hash and with
N =222 it is about 11 KB (that is 256 - (22 — 8) - (24 + 1) bits), although around
22 bits are sufficient for a counter-based technique.

3.5 Memory-Computation Trade-off

The full Merkle tree needs about 2N -m bits if it is kept in memory, to be able to
extract the feedback hashes once the required leaves are known. A simple trade-
off is to keep only the upper part of the tree, dividing the memory requirement
by 2!, at the price of P - 2!*! hash computations to rebuild the subtrees that
contain the proofs. The limit case recomputes the full tree once the needed leaves
are known.

4 Attacks

In the above protocol, the requester uses 2N hash computations for the Merkle
tree, but the provider needs only P-Iny(N) = 8- (IntwoN)? to verify the extracted
partial tree, and both side must run the generator. This section discusses attacks
which reduce the requester work by computing only a fraction of the tree and
being lucky with the feedback so that required leaves are available. We first
compute a lower bound for the cost of finding a solution depending on the
parameters, then we discuss two attacks.

4.1 Partial Tree

In order to cheat one must provide a matching partial tree, i.e.: (a) a valid partial
tree starting from the service hashes or the tree itself is rejected; (b) with valid
leaves choice based on the root hash or the feedback fails. As this tree is built
from a cryptographic hash function, the successful attacker must have computed
the provided partial Merkle tree root hash and its leaf derivations: otherwise the
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WhN=0O

Fig. 5. Partial Merkle tree (f = 0.5, P = 4)

probability of returning a matching partial tree by chance is the same as finding
a hash inversion.

Let us assume that the attacker builds a partial tree involving a fraction f
of the leaves (0 < f < 1), where missing hash values are filled-in randomly, as
outlined in Figure[}} evenly-distributed proofs result in 4 real hashes at depth 2,
computed from 4 fake hashes (in grey) introduced at depth 3 to hide the non-
computed subtrees, and 4 real hashes coming from the real subtrees. Half leaf
hashes are really computed.

Once the root hash is available, the feedback leaves can be derived. If they
are among available ones, a solution has been found and can be returned. The
probability of this event is f¥. It is quickly reduced by smaller fractions and
larger numbers of proofs. If the needed proof leaves are not all available, no
solution was found. From this point, the attacker can either start all over again,
reuse only part of the tree at another attempt, or alter the current tree. The
later is the better choice. This tree alteration can either consist of changing a
fake node (iteration at constant f), or of adding new leaves (extending f).

We are interested in the expected average cost of the search till a suitable root
hash which points to available leaves is found. Many strategies are possible as
iterations or extensions involving any subset of leaves can be performed in any
order. However, each trial requires the actual root hash for a partial tree and
running the generator. Doing so adds to the current total cost of the solution
tree computation and to the cost of later trials.

4.2 Attack Cost Lower Bound

A conservative lower bound cost for a successful attack can be computed by
assuming that for every added leaf the partial tree is tried without over-cost
for the queue to reach the root nor for computing the seed more than once.
We first evaluate an upper bound of the probability of success for these partial
trees, which is then used to derive a lower bound for the total cost: Whatever
the attack strategy, for our suggested number of proofs and a tree of depth 7 or
more, a requester will have to compute at least 90% of the full Merkle tree on
average to find an accepted proof of work.
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Proof. If we neglect the even distribution of proof leaves, the probability of
success at iteration 4 of constructing a tree (an i-th leaf is added in the tree)
is p; = (J@)P, and the probability of getting there is (1 — 0;—1) where o; is the
cumulated probability of success up to i: 09 =0, 0; = 051 + (1 — 0;_1)p;, and
on = 1, as the last iteration solves the problem with py = 1. The (1 — 0;—1)p;
term is the global probability of success at i: the computation got there (the
problem was not solved before) and is solved at this very iteration. As it is lower

than p;:
j it N . P+1
j+1
~<§ i < NzPdx = 1
in—op/o o P+1(N> .

If ¢(7) is the increasing minimal cost of testing a tree with ¢ leaves, the average
cost C for the requester is:

=1 i=1
-1 N
= c(i)(oi — oi-1) + Z c(i)(oi — 0i-1)
=1 i={
2 0+ C(f)(O'N — 0'571)
> ¢(t)(1 = ar)
The cost is bounded by cutting the summation at ¢ chosen as Zﬁl = ( ]1,) i,

The contributions below this limit are zeroed, and those over are minimized as
c(f) > 20+ P (the f-leaf tree is built and the seed is computed once) and (1 — o)

is bound with Equation () so that (1 —op) > (1— P}H) = Pil hence, as P > 2:

C(N,P Lyop 2N 2

>

oz ()" e ®)

Figure [0l plots this estimation. The back-left corner is empty where the number

of proofs is greater than the number of leaves. With P = 8-Ina(N) and if N > 27,
Equation (@) is simplified:

1
1\¢8 8- IHQ(N)
C(N) > 2N) > 0.9 (2N
(V) = (2) 8~1n2(N)+1( )2 0.9(2N)

Namely the average cost for the requester C(NV) is larger than 90% of the 2N
full tree cost. QED.

4.3 Iterative Attack

Let us investigate a simple attack strategy that fills a fraction of the tree with fake
hashes introduced to hide non computed leaves, and then iterates by modifying
a fake hash till success, without increasing the number of leaves. The resulting
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relative cost
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proofs P

Fig. 6. Relative cost lower bound — Equation ()

average cost is shown in Equation (B]). The first term approximates the hash tree
computation cost for the non-faked leaves and nodes, and is a minimum cost for
the attack with a given fraction f: there are N - f leaves in the binary tree,
and about the same number of internal nodes. The second term is the average
iteration cost for a solution, by trying faked hash values from depth Ing(P) + 1
thanks to the even-distribution, and another P to derive the seed from the root
hash; the resulting cost is multiplied by the average number of iterations which
is the inverse of the probability of success at each trial.

1
#P
If f is small, the second term dominates, and the cost is exponential. If f is
close to 1, the first linear term is more important and the cost is close to the
full tree computation. This effect is illustrated in Figure [ for different number
of proofs P: few proofs lead to very beneficial fractions: many proofs make the
minimum of the functions close to the full tree computation.

P+1 P(P + IHQ(P) + ].)

Fv.py = 7 PP (1)
Equation (), the zero of the derivative of [B]), gives the best fraction of this
iterative strategy for a given size and number of proofs. F(222,256) = 0.981 and
the cost is 0.989 of the full tree, to be compared to the 0.9 lower bound computed
in Section .21 Whether a significantly better strategy can be devised is unclear.
A conservative cost lower bound computed with a numerical simulation and for
the same parameters gives a 0.961 multiplier. In order to reduce the effectiveness
of this attack further, the hash-based generator may cost up to P - Iny(N) to
derive seed r without impact on the overall verification complexity, but at the
price of doubling the verification cost.

This successful attack justifies the almost constant-effort claim: either a full
tree is computed and a solution is found with a null variance, or some partial-
tree unbounded attack is carried out, maybe with a low variance, costing at least
90% of the full tree.

Citer(f) = 2N f + (P +Ing(P) 4 1) (3)
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Fig. 7. Iterative cost for fraction f with N = 2%2

4.4 Skewed Feedback Attack

Let us study the impact of a non-independent proof selection by the pseudo-
random number generator. This section simply illustrates the importance of the
randomness of the generator. We assume an extreme case where the first bits of
the root hash are used as a unique leaf index in the P chunks: the selected leaves
would be {k, k + Jl\l, k+ 211\377 ...}. Then in the partial tree attack the requester
could ensure that any leaf k computed in the first chunk have their corresponding
shifted leaves in the other chunks available. Thus, when hitting one leaf in the
first chunk, all other leaves follow, and the probability of a successful feedback
is f instead of fF. N = 222 and P = 256 lead to 0.002(2N), a 474 speedup of
the attack efficiency.

5 Conclusion

Proof-of-work schemes help deter denial-of-service attacks on costly services such
as email delivery by requiring moderately hard computations from the requester
that are easy to verify by the provider. As solution-verification protocol variants
do not assume any interaction between requesters and providers, the compu-
tations must be self-imposed, based somehow on the expected service. Most of
these schemes are unbounded iterative probabilistic searches with a high vari-
ance of the requester effort. We have made the following contributions about
proof-of-work schemes:

1. two definitions of optimality criteria: communication-optimal if the minimum
amount of data is sent; computation-optimal if the verification is linear in
the data sent;

2. a computation-optimal (but not communication-optimal) proof-of-work solu-
tion-verification scheme based on Merkle trees with a eV¥ effort, for which
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the work on the requester side is bounded and the variance is null: the
requester computes 2N hashes and communicates P Iny(/N) data which are
verified with P lna(N) computations, with P = 81na(NN) a good choice;

3. a conservative lower bound of the cost of finding a solution at 90% of the
full computation, which shows that our chosen number of proofs P is sound;

4. a successful attack with a small 1% gain for our chosen parameter values,
which involves a large constant cost and a small iterative unbounded part,
thus resulting in a low overall variance.

These contributions are both theoretical and practical. Our solution-verifi-
cation scheme has a bounded, constant-effort solution. In contrast to iterative
probabilistic searches for which the found solution is exactly checked, but the
requester’s effort is probably known with a high variance, we rather have a
probabilistic check of the proof-of-work, but the actual solution work is quite
well known with a small variance thanks to the cost lower bound. Moreover our
scheme is practical, as it is computation-optimal thus not prone to denial-of-
service attacks in itself as the verification work is propotional to the data sent
by the requester. Also, although not optimal, the communication induces an
interesting work-ratio. The only other bounded solution-verification scheme is
a formula with a w'® effort, which is neither communication nor computation-
optimal. Whether a bounded fully optimal solution-verification scheme may be
built is an open question.
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