
Dissent: Accountable Anonymous Group Messaging

Henry Corrigan-Gibbs and Bryan Ford
Department of Computer Science

Yale University
New Haven, CT, USA

henry.corrigan-gibbs@aya.yale.edu, bryan.ford@yale.edu

ABSTRACT

Users often wish to participate in online groups anonymously, but
misbehaving users may abuse this anonymity to disrupt the group’s
communication. Existing messaging protocols such as DC-nets
leave groups vulnerable to denial-of-service and Sybil attacks, Mix-
nets are difficult to protect against traffic analysis, and accountable
voting protocols are unsuited to general anonymous messaging.

We present the first general messaging protocol that offers prov-
able anonymity with accountability for moderate-size groups, and
efficiently handles unbalanced loads where few members wish to
transmit in a given round. The N group members first coopera-
tively shuffle an N × N matrix of pseudorandom seeds, then use
these seeds in N “pre-planned” DC-nets protocol runs. Each DC-
nets run transmits the variable-length bulk data comprising one
member’s message, using the minimum number of bits required
for anonymity under our attack model. The protocol preserves
message integrity and one-to-one correspondence between mem-
bers and messages, makes denial-of-service attacks by members
traceable to the culprit, and efficiently handles large, unbalanced
message loads. A working prototype demonstrates the protocol’s
practicality for anonymous messaging in groups of 40+ members.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and Protection; C.2.2 [Computer-Communication Networks]:
Network Protocols—Applications

General Terms

Algorithms, Security

Keywords

Anonymity, Accountability, Denial of Service, Group Communica-
tion, Peer-to-Peer Networks, Verifiable Anonymous Shuffle

1. INTRODUCTION
Anonymous participation is often considered a basic right in free

societies [43]. The limited form of anonymity the Internet provides
is a widely cherished feature [37, 41], enabling people and groups

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

with controversial or unpopular views to communicate and orga-
nize without fear of personal reprisal [34]. Yet anonymity makes it
difficult to trace or exclude misbehaving participants [13]. Online
protocols providing stronger anonymity, such as mix-networks [9,
21] and DC-nets [10,22,32,40], further weaken accountability and
yield forums in which no content may be considered trustworthy
and no defense is available against anonymous misbehavior.

This paper focuses on providing anonymous messaging within
small, private online groups. We assume a group’s membership
is closed and known to its members; creating groups with secret
membership is a related but orthogonal goal [38]. Members may
wish to send messages to each other, to the whole group, or to a
non-member, such that the receiver knows that some member sent
the message but no one knows which member. Members may also
wish to cast secret ballots in votes held by the group, or to create
pseudonyms under which to collaborate with other members.

We also wish to hold members accountable, however, not by
compromising their anonymity and allowing some authority or ma-
jority quorum to unmask a member whose messages prove unpop-
ular, but rather by ensuring that no malicious member can abuse his
(strong) anonymity to disrupt the group’s operation. For example, a
malicious member should be unable to corrupt or block other mem-
bers’ messages, overrun the group with spam, stuff ballots, or cre-
ate unlimited anonymous Sybil identities [17] or sock puppets [36]
with which to bias or subvert the group’s deliberations.

As a motivating example, suppose an international group of jour-
nalists wishes to form a “whistleblowing” publication analogous to
WikiLeaks [42]. To protect journalists and their sources, member
journalists wish to submit leaked documents and related informa-
tion to the group anonymously. Member journalists need assurance
that powerful organizations or governments cannot trace the leak
to an individual journalist or her source. The journalists wish to
prove to their readers that leaked documents come via a trustwor-
thy channel, namely one of the group’s known and reputable mem-
bers, and not from an outsider. The group must be able to analyze
and vet each document thoroughly before collectively approving it
for publication. The group must protect its internal operation and
its members’ anonymity even from adversaries who have planted
colluding spies within the group. And this security must come at
acceptable time and resource costs.

We present an accountable anonymous messaging protocol called
Dissent (Dining-cryptographers Shuffled-Send Network), the first
we know of with the properties needed in scenarios like the one out-
lined above. Dissent offers integrity, anonymity, and accountability
in the face of strong traffic analysis and compromised members.
An experimental prototype shows Dissent to be efficient enough
for latency-tolerant messaging in small distributed groups.

In contrast with mix-networks [9,21] and DC-nets [10,22,32,40],
Dissent implements a shuffled send primitive, whereby each group
member sends exactly one message per round, making it usable for

voting or assigning pseudonyms with a 1-to-1 correspondence to
real group members. Unlike verifiable cryptographic shuffles [20,
26], Dissent uses only readily-available cryptographic primitives,
and handles arbitrarily large messages and unbalanced loads effi-
ciently, such as when one journalist has a multi-gigabyte document
to leak while the others have nothing to send. While group and ring
signatures [4,11,30] can anonymously authenticate messages trans-
mitted via some anonymous transmission channel, signatures offer
no protection against anonymous denial-of-service (DoS) or Sybil
attacks against the transmission channel itself, as Dissent does.

Dissent operates in two stages, shuffle and bulk transfer. The
shuffle protocol builds on a data mining protocol by Brickell and
Shmatikov [7] to permute a set of fixed-length messages, one from
each group member, and broadcast the set of messages to all mem-
bers with cryptographically strong anonymity. Like many anony-
mous messaging protocols, the original data mining protocol was
vulnerable to untraceable DoS attacks by malicious group mem-
bers. Our refinements remove this vulnerability by adding go/no-

go and blame phases, which can trace and hold accountable any
group member maliciously disrupting the protocol.

Dissent’s bulk protocol builds on DC-nets [10,22,32,40] to trans-
mit variable-length messages anonymously. In place of the DoS-
prone slot reservation systems in prior DC-nets schemes, however,
Dissent leverages its shuffle protocol to prearrange the DC-nets
transmission schedule, guaranteeing each member exactly one mes-
sage slot per round. In each round, all group members broadcast bit
streams based on pseudorandom seeds distributed via the shuffle
protocol, so that XORing all members’ bit streams together yields a
permuted concatenation of all members’ variable-length messages.
Cryptographic hashes distributed in the shuffle phase enable mem-
bers to verify the correctness of each others’ bulk transmissions,
ensuring message integrity and DoS protection throughout.

Dissent has limitations, of course. It is not intended for large-
scale, “open-access” anonymous messaging or file sharing [12,21],
although it might serve as a building block in designs like Herbi-
vore [32]. Dissent’s accountability properties assume closed groups,
and are ineffective if a malicious member can leave and rejoin the
group under a new (public) identity after expulsion. Dissent is also
not a general-purpose voting system: for example, it provides only
a limited form of coercion resistance. Finally, the serialized shuf-
fle protocol imposes a per-round startup delay that makes Dissent
impractical for latency-sensitive applications.

We built a working prototype of Dissent and tested it under Emu-
lab [18] on groups of up to 44 nodes connected via simulated wide-
area links. Anonymously distributing messages up to 16MB in size
among 16 nodes with 100ms inter-node delays, Dissent’s shuffle
protocol and other startup costs incur a 1.4-minute latency. Dis-
sent handles large message loads, both balanced and unbalanced, in
about 3.5× the time required for non-anonymized group messag-
ing via TCP. Varying group size, Dissent can send a 1MB message
anonymously in less than 1 minute in a 4-node group, 4 minutes
in a 20-node group, and 14 minutes in a 40-node group. While
not suitable for interactive workloads, Dissent should be usable for
“WikiLeaks”-type scenarios requiring strong security guarantees in
small but decentralized groups.

This paper makes four main technical contributions. First, we
enhance Brickell/Shmatikov’s shuffle protocol [7] to make DoS at-
tackers traceable without compromising anonymity. Second, we
use this shuffle protocol to create a DoS-resistant DC-nets vari-
ant for bulk transfer, which guarantees each member exactly one
transmission slot per round. Third, we introduce the first shuffle
protocol that supports arbitrary-size and unbalanced message loads
efficiently, e.g., when only one member has data to send. Fourth,

we demonstrate through a working prototype the practicality of the
protocol, at least for delay-tolerant applications.

Section 2 outlines Dissent’s communication model, security goals,
and operation. Section 3 describes the shuffle protocol, and Sec-
tion 4 details the bulk transfer protocol. Section 5 informally covers
practical implementation and usage considerations such as protocol
initiation, coercion resistance, and liveness. Section 6 describes our
prototype implementation and experimental results. Section 7 sum-
marizes related work, and Section 8 concludes.

2. PROTOCOL OVERVIEW
This section first introduces the group communication model our

protocol implements, outlines a few applications of this model, and
defines the protocol’s precise security goals, leaving protocol de-
tails to subsequent sections.

Dissent consists of two sub-protocols: a shuffle protocol and a
bulk protocol. The shuffle protocol has two practical limitations:
all messages must be of equal length L, incurring O(NL) extra
communication if only one member wishes to send; and its decrypt-
and-shuffle phase is inherently serial, incurring a long delay if N
or L is large. We currently have no solution if the number of partic-
ipating nodes is large, but our bulk protocol addresses the problem
of sending large, variable-length messages efficiently. Our shuffle
protocol ensures integrity and anonymity exactly as in its precur-
sor [7], but our new go/no-go and blame phases enable all group
members to trace the culprit of any protocol malfunction.

2.1 The Shuffled Send Primitive
Dissent’s purpose is to provide a shuffled send communication

primitive, providing sender anonymity among a well-defined group
of nodes. We assume that the set of members comprising the group
and each member’s public key (or certificate) is agreed upon and
known to all group members. The group may initiate a run of the
shuffled send protocol in any way that preserves anonymity. For ex-
ample, a designated leader, or every group member, might initiate
runs periodically on a fixed or random schedule. Alternatively, a
“client” node not requiring anonymity, within or outside the group,
might initiate a run to request a service provided by the group col-
lectively. For protection against traffic analysis, however, a mem-
ber’s desire to send anonymously must not be the initiation event.

Each Dissent protocol run is independent and permits each group
member to send exactly one variable-length message to some tar-
get designated for that run. Ongoing interaction requires multiple
protocol runs. A run’s designated target may be a particular group
member, all members (for anonymous group multicast), or another
node such as a non-member “client” that initiated the run. Group
members might agree upon the target of a run using a higher-level
“wrapper” protocol, for example, as described in Section 5.

Each protocol run operates as shown in Figure 1. Every group
member i secretly creates a message mi and submits it to the pro-
tocol. The protocol collects all N secret messages, shuffles their
order according to some random permutation π that no one knows,
concatenates the messages in this shuffled order so that mi appears
at position πi, and sends the concatenated sequence of messages to
the target. Each input message mi can have a different length Li,
and the protocol’s output has length

∑
i
Li.

2.2 Applications of Shuffled Send
The shuffled send model combines and generalizes the function-

ality of several classes of anonymity protocols. Although every
participant must submit a message in a given protocol run, mem-
bers with nothing to send can submit a message of length zero,
providing efficient single-sender as well as multiple-sender service.

Figure 1: Shuffled send communication model

The protocol still requires each member to send a similar number
of bits on the underlying network for traffic analysis protection,
but none of these bits are wasted for purposes of padding mes-
sages of unbalanced lengths. Members wishing receiver anonymity
can first anonymously send a public encryption key to establish a
pseudonym, then look for messages encrypted with that key in sub-
sequent shuffled sends targeted at the whole group.

Since each member submits exactly one message per shuffled
send, one run’s messages can serve as ballots in an anonymous vote.
Unlike anonymous voting protocols designed for specific types of
ballots and tallying methods, Dissent supports ballots of arbitrary
type, format, and size. Group members can count and indepen-
dently verify the ballots in any agreed-upon fashion. Ballots need
not be one-shot messages either. A group can use one protocol run
to establish a set of pseudonymous signing keys, one per mem-
ber, then use these pseudonyms in subsequent protocol runs for
pseudonymous deliberation, without permitting members to create
unlimited pseudonyms for Sybil attacks [17] or sock puppetry [36].

Applications to which shuffled send may be suited include whistle-
blowing [42], surveys [7], file sharing [32], accountable Wiki-style
editing [36], and “cocaine auctions” [33]. The current version of
Dissent has some notable limitations: e.g., it may not scale to large
groups, it provides only a limited form of coercion resistance (de-
scribed in Section 5.3), and the latency incurred by its shuffle pro-
tocol may make it unsuitable for interactive or real-time messaging.
Future work may be able to address these limitations.

2.3 Security Goals
We now define Dissent’s attack model and security goals. We

assume the attacker is polynomial-time limited, but can monitor all
network traffic and compromise any subset of group members. A
member is honest if she follows the protocol exactly and is not un-
der the attacker’s control, and is faulty otherwise. Faulty nodes are
byzantine: they may collude and send arbitrary messages. For sim-
plicity, our core protocol descriptions in Sections 3 and 4 assume

that nodes never just go silent; we address liveness using principles
from PeerReview [23] as outlined in Section 5.

The formal security properties we wish the protocol to satisfy are
integrity, anonymity, and accountability, as we define below.

• Integrity: The protocol maintains integrity if, at the end of a
protocol run involving N group members, every honest member
either: (a) obtains exactly N messages, including each message
submitted by an honest group member, or (b) knows that the
protocol did not complete successfully.

• Anonymity: Following Brickell and Shmatikov [7], the protocol
maintains anonymity if a group of k ≤ N−2 colluding members
cannot match an honest participant’s message to its author with
a probability significantly better than random guessing. (If all
but one member colludes, no anonymity is possible.)

• Accountability: As in PeerReview [23], a member i exposes a
member j if i holds third-party verifiable proof of j’s misbehav-
ior. The protocol maintains accountability if no member ever ex-
poses an honest member, and after a run, either: (a) each honest
member successfully obtains every honest member’s message,
or (b) all honest members expose at least one faulty member.

2.4 Simplifying Assumptions
Our core protocol descriptions in Sections 3 and 4 make several

simplifying assumptions, which we will relax and address more re-
alistically later in Section 5. We assume for now that: (a) all mem-
bers know when to initiate a protocol run and how to distinguish
one run from another; (b) all members of a group participate in ev-
ery protocol run; (c) all members have public encryption keys and
nonrepudiable signing keys known to all other members; and (d)
all members remain connected throughout a protocol run and never
stop sending correctly-signed messages until the protocol run has
completed from the perspective of all group members. Assumption
(d) implies that we address only safety properties for now, defer-
ring liveness issues to Section 5—including the important corner
case of a node withholding the last message it is supposed to send,
while collecting all other members’ final messages, thereby learn-
ing a protocol run’s results while denying others those results.

3. SHUFFLE PROTOCOL
This section details the shuffle protocol, first covering its cryp-

tographic building blocks, then formally describing the protocol,
proving its correctness, and analyzing its complexity.

3.1 Cryptographic Primitives
Dissent relies on a conventional, possibly randomized signature

scheme, which consists of: (a) a key generation algorithm produc-
ing a private/public key pair (u, v); (b) a signing algorithm taking
private key u and message m to produce signature σ = SIGu{m};
and (c) a deterministic verification algorithm taking public key v,
message m, and candidate signature σ, and returning true iff σ is
a correct signature of m using v’s associated private key u. The
notation {m}SIGu indicates the concatenation of message m with
the signature SIGu{m}.

We also require a public-key cryptosystem, which must be IND-
CCA2 secure [2]. The cryptosystem must also provide access to
the random bits it uses in key generation and encryption; Dissent’s
accountability mechanisms use this capability for commitment and
verification of behavior, as described below. A software implemen-
tation of RSA-OAEP [19] using a pseudorandom number generator
meets these requirements, for example. The cryptosystem specif-
ically consists of: (a) a key generation algorithm producing a pri-
vate/public key pair (x, y); (b) an encryption algorithm taking pub-

Figure 2: Illustration of bulk protocol operation for 3-member group, shuffled using permutation π = [2, 3, 1].

lic key y, plaintext m, and some random bits R, and producing a ci-
phertext C = {m}Ry ; (c) a deterministic decryption algorithm tak-
ing private key x and ciphertext C, and returning the plaintext m. A
node can save the random bits R it uses during encryption, and can
encrypt deterministically using a given R, such that given inputs y,
m, and R always yield the same ciphertext. We assume that hon-
est nodes can check an arbitrary (x, y) purported to be a key pair,
to verify that this (x, y) is indeed a key pair generated according
to the specified key generation algorithm. The appendix describes
how any public-key cryptosystem can be adapted, if necessary, to
satisfy this assumption. The notation C = {m}R1:RN

y1:yN indicates

iterated encryption via multiple keys: C = {. . . {m}R1

y1
. . . }RN

yN .
We omit R when an encryption’s random inputs need not be saved.

We use a standard definition [35] of a collision-resistant unkeyed

hash function and will denote the hash of message m as HASH{m}.
We use a standard definition [35] of a pseudorandom number

generator (PRNG). We will denote the first L bits generated from
a PRNG seeded with s as PRNG{L, s}.

3.2 Protocol Description
Each group member i (for i = 1, . . . , N) initially has a primary

encryption key pair (xi, yi), a signing key pair (ui, vi), and a secret
message mi of fixed length L to send anonymously.

Before a protocol run, all members agree on a session nonce
nR uniquely identifying this protocol run, the participants’ pri-
mary public encryption and signing keys, and a common ordering
of all members 1, . . . , N . Such agreement might be achieved via
Paxos [25] or BFT [8], as discussed further in Section 5.

The shuffle protocol operates in phases. Each honest member
i sends at most one unique message µiφ per phase φ. A member
i may send the same µiφ to all members, in which case we say i
broadcasts µiφ. An implementation of Dissent may use an under-
lying broadcast transmission primitive for this purpose, if available,
or may simply send the same message N times, once to each group
member. A faulty node might equivocate during a broadcast by
sending different messages to different members.

Each group member maintains a tamper-evident log of all mes-
sages it sends and receives in a protocol run [23]. Member i signs
each µiφ it sends with its private key ui, and includes in each mes-

sage the session nonce nR and a hash hiφ of i’s current log head in
phase φ. Each hiφ depends on all messages i received up to phase
φ, before sending µiφ. Members ignore any messages they receive
containing a bad signature or session nonce.

• Phase 1: Secondary Key Pair Generation. Each member i chooses
an encryption key pair (wi, zi), and broadcasts:

µi1 = {zi, nR, hi1}SIGui

• Phase 2: Data submission. Each member i encrypts her datum
mi with all members’ secondary public keys:

C′

i = {mi}zN :z1

Member i stores C′

i for later use, then further encrypts C′

i with
all members’ primary public keys, this time internally saving the
random bits used in each encryption:

Ci = {C′

i}
RiN :Ri1
yN :y1

If encryption fails at any point, the group moves directly to phase
5b below (“blame”). Member i now sends to member 1:

µi2 = {Ci, nR, hi2}SIGui

• Phase 3: Anonymization. Member 1 collects all ciphertexts into

a vector ~C0 = C1, . . . , CN , randomly permutes its elements,
then strips one layer of encryption from each ciphertext using

private key x1 to form ~C1. Member 1 sends to member 2:

µ13 = { ~C1, nR, h13}SIGu1

Each member 1 < i < N in turn accepts ~Ci−1, permutes it

randomly, strips one encryption layer to form ~Ci, then sends ~Ci

to member i + 1. Member N finally permutes and decrypts
~CN−1 to form ~CN , and broadcasts to all members:

µN3 = { ~CN , nR, hN3}SIGuN

If any member i detects a duplicate or invalid ciphertext during
this phase, member i reports it and the group moves directly to
phase 5b below (“blame”).

• Phase 4: Verification. All members now hold ~CN , which should
be a permutation of C′

1, . . . , C
′

N . Each member i verifies that

her own C′

i is included in the ~CN she received, and sets a flag
GOi to TRUE if so and FALSE otherwise.

Each member i creates a vector ~B of all broadcast messages it
sent or received in prior phases: all members’ public key mes-
sages from phase 1, and member N ’s phase 3 message contain-

ing ~CN . Thus, ~B = µ11, . . . , µN1, µN3. Member i broadcasts:

µi4 = {GOi, HASH{ ~B}, nR, hi4}SIGui

Each member i then waits to receive such a “go/no-go” message
from every other member. If every member j reports GOj =

TRUE for the expected HASH{ ~B}, then member i enters phase
5a below; otherwise i enters phase 5b (“blame”).

• Phase 5a: Decryption. Each member i destroys her copy of C′

i

and the random bits she saved in phase 2, then broadcasts her
secondary private key wi to all members:

µi5 = {wi, nR, hi5}SIGui

Upon receiving all keys w1, . . . , wN , member i checks that each
wj is the private key corresponding to public key zj , and if not,
exposes j using the signed messages from j containing these
invalid keys. Otherwise, i removes the remaining N levels of

encryption from ~CN , resulting in a permutation of the submitted
data m1, . . . ,mN , and the protocol completes successfully.

• Phase 5b: Blame. Each member destroys her secondary pri-
vate key wi, then reveals to all members the random bits Rij

she saved from the primary public key encryptions in phase 2,
and all signed messages she received and sent in phases 1–4.
Each member i uses this information to check the behavior of
each member j in phases 1–4, replaying j’s primary key encryp-

tions in phase 2, and verifying that j’s anonymized output ~Cj

in phase 3 was a decrypted permutation of ~Cj−1. Member i ex-

poses member j as faulty if j signed an invalid zj in phase 1, an
incorrectly encrypted Cj in phase 2, an improperly decrypted or

permuted ~Cj in phase 3, a GOj = FALSE or a wrong HASH{ ~B}
in phase 4 after phases 1–3 succeeded, or if j equivocated by
signing more than one message or log head hjφ in any phase φ.

3.3 Protocol Correctness
The shuffle protocol’s integrity and anonymity derive almost di-

rectly from Brickell/Shmatikov [7], so we only sketch proofs of
these properties, focusing instead on the accountability property
introduced by our enhancements.

3.3.1 Integrity

To preserve integrity, after a protocol run every honest mem-
ber must either: (a) hold the datum mi of every honest member
i, or (b) know that the protocol did not complete successfully. Sup-
pose that a protocol run appears to complete successfully via phase
5a (decryption), but that some honest member i does not hold the
plaintext mj of some other honest member j. Since j is honest,
j’s intermediate ciphertext C′

j must be a correct encryption of mj ,

and C′

j must have appeared in ~CN . Otherwise, j would have sent
GOj = FALSE in phase 4. Since honest member i would not en-

ter phase 5a without receiving GOj = TRUE for the same ~B from

all members, and ~B includes message µN3 containing ~CN , i must
hold C′

j . If all members released correct secondary private keys
w1, . . . , wN during phase 5a, C′

j must then decrypt to mj . If some
member k released a secondary private key wk such that (wk, zk)
is an invalid key pair, all honest members expose member k.

3.3.2 Anonymity

The protocol preserves anonymity if no group of k ≤ N − 2
colluding members can win an anonymity game, determining with
non-negligible probability which of two honest members submitted
which of two plaintexts, as detailed in prior work [7]. The attacker
might gain advantage either by manipulating protocol messages, or
by using only the information revealed by a correct protocol run. In
the first case, the attacker can identify the intermediate ciphertext
C′

i of some honest member i by duplicating or eliminating other
honest members’ ciphertexts in phase 3, but any honest member
will detect duplication in stage 3 and elimination in stage 4, abort-
ing the protocol before the attacker can decrypt C′

i. In the sec-
ond case, an attacker who can win the anonymity game with non-
negligible probability, using only information revealed by correct
protocol runs, can use this ability to win the distinguishing game

that defines an IND-CCA2 secure cryptosystem [2, 7].

3.3.3 Accountability

A member i exposes another member j if i obtains proof of j’s
misbehavior verifiable by a third party. To maintain accountability,
no member may expose an honest member, and at the end of a
protocol run, either: (a) the protocol completes successfully, or (b)
all honest members expose at least one faulty member.

We first show that no member i can expose an honest member
j. A proof of misbehavior by j consists of some “incriminating”
message µjφ signed by j in phase φ, together with all of the mes-
sages in j’s log up through phase φ, and the random bits each node
saved during phase 2 and released in phase 5b. Member i could
“truthfully” expose j only if j signs an incorrect message in phases
1–5a, or signs more than one message per phase, contradicting the
assumption that j is honest. Member i could also falsely accuse j
by exhibiting one of j’s messages µjφ, together with a false “prior”
message m′

kφ′ (for φ′ < φ) signed by some colluding node k, dif-
ferent from the message µkφ′ that j actually used to compute her
message µjφ. In this case, the “proof” will contain both µkφ′ (from
j’s log) and the false m′

kφ′ , exposing the equivocating member k
instead of honest member j.

Suppose a protocol run fails, but some honest member i does not
expose any faulty member. Member i observes a run to fail if it
reaches phase 5a (decryption) but detects a bad secondary private
key, or if it reaches phase 5b (blame). A failure in phase 5a exposes
the sender of the bad secondary key. Member i enters phase 5b
only if it: (a) detects a faulty encryption key in phase 1, (b) detects
a duplicate or faulty ciphertext in phase 3, (c) sees a GOj = FALSE

in phase 4, or (d) sees an incorrect HASH{ ~B} in phase 4. Case (a)
immediately exposes the relevant message’s sender as faulty.

In case (b), member i can encounter a duplicate ciphertext in
phase 3 only if some member 1 ≤ j < i injected it earlier in the
anonymization phase, or if two members j1 and j2 colluded to in-
ject it in phase 2. (Two independently encrypted ciphertexts are
cryptographically unique due to the random bits used in encryp-
tion.) If some member 1 ≤ j < i duplicated a ciphertext, then
using the message logs of members 1 through i and the random
bits from phase 2, member i can replay the decryptions and permu-
tations of each member before i in phase 3 to expose j as faulty.
If no member duplicated a ciphertext in phase 3, then in replaying
phase 3, i identifies the ciphertexts Cj1 and Cj2 (which decrypt to

identical ciphertexts in ~Ci−1), and exposes their senders j1 and j2.
If i cannot decrypt a ciphertext in phase 3, it similarly traces the
bad ciphertext to the member responsible.

In case (c), the sender j of the GOj = FALSE either truthfully
reported its ciphertext missing in phase 4, or sent GOj = FALSE

although its ciphertext C′

j appeared in ~CN . In the former case, i
replays phase 3 to expose the member who replaced j’s ciphertext.

In the latter case, the occurrence of C′

j in ~CN exposes j itself.

In case (d), member i’s ~B does not match the HASH{ ~B′} in an-

other member j’s go/no-go (~B 6= ~B′). Members i and j compare
their respective message logs. If i’s log of prior broadcast messages

does not match its computed ~B, this fact exposes i, and similarly

for j with its ~B′. Otherwise, for some member k and phase φ, there
must be corresponding signed messages that differ between B and
B′, i.e., some µkφ ∈ B and µ′

kφ ∈ B′ such that µkφ 6= µ′

kφ. These
messages expose k as having equivocated during a broadcast.

3.4 Asymptotic Complexity
Since iterated public-key encryptions as performed in phase 2

typically involve plaintext expansion, let L̃ = L + O(N) be the
size of an L-bit input message after these 2N encryptions.

If the underlying network provides efficient broadcast, then each
node transmits O(NL̃) bits during a run, for a total messaging cost

of O(N2L̃). Without efficient broadcast, the “normal-case” phases

1 through 5a still require each node to transmit only O(NL̃) bits,

for O(N2L̃) overall cost, because all broadcasts in these phases

are either single messages of length O(NL̃) or N messages of

length O(L̃). The blame phase in an unsuccessful run may require

O(N3L̃) total communication for all honest members to expose
some faulty member, but an attacker can trigger at most O(N) such
runs before the group exposes and removes all faulty members.

Latency is dominated by the N serial communication rounds in
phase 3, in which each node must send O(NL̃) bits, for a total

latency of O(N2L̃) transmission bit-times. Other phases require a
constant number of unicast messages or parallelizable broadcasts.

Excluding the blame phase, each member’s computational cost
is dominated by the 2N public-key encryptions and decryptions it
performs. Each of these operations is on a plaintext of length O(L̃),

for a processing cost of O(NL̃) per node or O(N2L̃) total. The
blame phase introduces an additional O(N) factor if all members
must replay all other members’ encryptions.

4. BULK PROTOCOL
We now describe Dissent’s bulk protocol in detail, then analyze

its correctness, security properties, and complexity.

4.1 Protocol Description
Members 1, . . . , N initially hold messages m1, . . . ,mN , now

of varying lengths L1, . . . , LN . We reuse the cryptographic prim-
itives described in Section 3.1. As before, each member i has a
signing key pair (ui, vi) and a primary encryption key pair (xi, yi).
All members know each others’ public keys, and have agreed upon
session nonce nR and an ordering of members.

• Phase 1: Message Descriptor Generation. Each member i chooses
a random seed sij for each member j, then for each j 6= i, gen-
erates Li pseudorandom bits from sij to obtain ciphertext Cij :

Cij = PRNG{Li, sij} (j 6= i)

Member i now XORs her message mi with each Cij for j 6= i
to obtain ciphertext Cii:

Cii = Ci1 ⊕ . . .⊕ Ci(i−1) ⊕mi ⊕ Ci(i+1) ⊕ . . .⊕ CiN

Member i computes hashes Hij = HASH{Cij}, encrypts each

seed sij with j’s public key to form Sij = {sij}
Rij
yj , and col-

lects the Hij and Sij for each j into vectors ~Hi and ~Si:

~Hi = Hi1, . . . , HiN

~Si = Si1, . . . , SiN

Finally, member i forms a message descriptor, di:

di = {Li, HASH{mi}, ~Hi, ~Si}

• Phase 2: Message Descriptor Shuffle. The group runs the shuffle
protocol in Section 3, each member i submitting its fixed-length
descriptor di as the secret message to be shuffled. The shuffle
protocol broadcasts all descriptors in some random permutation
π to all members, so di appears at position π(i) in the shuffle.

• Phase 3: Data transmission. Each member j now recognizes its
own descriptor dj in the shuffle, and sets C′

jj = Cjj . From all
other descriptors di (i 6= j), j decrypts Sij with private key xj

to reveal seed sij , computes ciphertext Cij = PRNG{Li, sij},
and checks HASH{Cij} against Hij . If decryption succeeds and
the hashes match, member j sets C′

ij = Cij . If decryption of
Sij fails or HASH{Cij} 6= Hij , then j sets C′

ij to an empty
ciphertext, C′

ij = {}.

Member j now signs and sends each C′

ij to the designated target
for the protocol run, in π-shuffled order:

{C′

π−1(1)j , . . . , C
′

π−1(N)j , nR, hj3}SIGuj
.

• Phase 4: Message Recovery. The designated target (or each
member if the target is the group) checks each C′

ij it receives
from member j against the corresponding Hij from descriptor
di. If C′

ij is empty or HASH{C′

ij} 6= Hij , then message slot
π(i) was corrupted and the target ignores it. For each uncor-
rupted slot π(i), the target recovers i’s message by computing:

mi = C′

i1 ⊕ ...⊕ C′

iN

• Phase 5: Blame. If any messages were corrupted in phase 4,
all members run the shuffle protocol again, during which each
member i whose message was corrupted anonymously broad-
casts an accusation naming the culprit member j:

Ai = {j, Sij , sij , Rij}

Each accusation contains the seed sij that i assigned j and the
random bits i used to encrypt the seed. Each member k verifies

the revealed seed by replaying its encryption Sij = {sij}
Rij
yj ,

and checks that Hij = HASH{PRNG{Li, sij}}. If the accusa-
tion is valid, then k exposes j as faulty. If the shuffle reveals
no valid accusation for a corrupted message slot π(i), then k
does nothing: either the anonymous sender i has corrupted its
own message or has chosen not to accuse the member who did,
which is equivalent to i sending a valid but useless message.

4.2 Protocol Correctness
We now sketch proofs of the bulk protocol’s correctness.

4.2.1 Integrity

The shuffle protocol ensures that the message descriptor di of
each honest member i is correctly included in the shuffled output.
The target can use either the individual ciphertext hashes Hij or
the cleartext hash HASH{mi} from di to verify the integrity of i’s
message in the bulk output. The cleartext hash HASH{mi} is tech-
nically redundant, but enables all members to verify the output if
only one node collects and combines the ciphertexts for efficiency.

4.2.2 Anonymity

Suppose an attacker controls all but two honest members i and
j, and wishes to win the anonymity game [7] by determining with

non-negligible advantage over random guessing which honest mem-
ber sent one of their plaintexts, for example, mi. The attacker
knows which two message slots π(i) and π(j) belong to the honest
members, and must find the exact permutation π. Since the shuf-
fle protocol preserves anonymity (Section 3.3.2) and the shuffled
message descriptors depend only on random bits and the messages
themselves, the attacker learns nothing about π from the message
descriptors. The only other information the attacker obtains about
mi are the ciphertexts C′

ik produced by all members k. But since
each bit of C′

ii and C′

ij is encrypted with a pseudorandom one-time
pad generated from a seed sij that only i and j know, the attacker
learns nothing from these ciphertext bits.

4.2.3 Accountability

We first show that no dishonest member i can expose an hon-
est member j. Since the shuffle protocol maintains accountability,
we need only show that the bulk protocol never exposes an hon-
est member in its blame phase. To expose j, i must anonymously
submit a valid accusation naming j as faulty. This accusation must
include a seed s′ij such that PRNG{Li, s

′

ij} 6= PRNG{Li, sij} and
Hij = HASH{PRNG{Li, s

′

ij}}, thus violating our assumption that
the hash function is collision resistant.

Now suppose the bulk protocol violates accountability, such that
at the end of a protocol run, some honest member j does not hold
the plaintext of another honest member i and does not expose any
dishonest member. Since the shuffle protocol maintains account-
ability, member j must have received i’s message descriptor di, or
have exposed some group member k. Since i is honest, di contains
correctly computed hashes Hik and correctly encrypted seeds Sik

for ciphertexts C′

ik that, XORed together, would reveal i’s message
mi to j. Some member k must therefore have sent an incorrect ci-
phertext in the bulk phase. But since i is honest, i would have sent
a correct accusation of k in the blame phase, exposing k as faulty.

4.3 Asymptotic Complexity
With efficient broadcast, in the normal case each member trans-

mits O(N2) bits to shuffle N message descriptors of length O(N),
then sends Ltot + O(1) bits of bulk ciphertext, where Ltot =∑

i
Li. Normal-case communication complexity is thus O(N2) +

Ltot bits per node. An unsuccessful run may transmit O(N3) +
Ltot bits per node due to the shuffle protocol’s blame phase.

If N is small so that Ltot dominates, only one member wishes
to transmit (Li = Ltot and Lj = 0 for j 6= i), and the transmitted
data is incompressible, then Dissent’s communication efficiency is
asymptotically optimal for our attack model: trivial traffic analy-
sis reveals that any member sending fewer than Ltot bits cannot be
the sender. An interesting question for future work is whether bet-
ter communication efficiency is feasible, while preserving strong
traffic analysis resistance, when several members transmit at once.

The shuffle protocol incurs an O(N3) startup latency, as the
N nodes serially shuffle N descriptors of length O(N), but the
data transmission phase is fully parallelizable, for a total latency of
O(N3 + Ltot) transmission bit-times overall.

Each member i performs N cryptographic operations on O(N)
bits each during the shuffle, N operations on Li bits to compute
Cii, and one operation on Lj bits to compute Cij for each j 6= i.
Computational complexity is thus O(N2 +NLtot) per node.

5. USAGE CONSIDERATIONS
In describing Dissent’s shuffle and bulk protocols, we made a

number of simplifying assumptions, which we now address by plac-
ing these core protocols in the context of a more realistic, high-level
“wrapper” protocol. We merely sketch this wrapper protocol with-

out formal definition or analysis, since it is intended only to illus-
trate one way to deploy Dissent in a realistic environment, and not
to define the “right” way to do so. The wrapper protocol addresses
five practical issues: protocol initiation, member selection, deni-
able keying, liveness assurance, and end-to-end reliability.

5.1 Protocol Initiation
Our shuffle and bulk protocols assume that all group members

“just know” when to commence a protocol run, but in practice some
node must initiate each run. Members must not initiate a protocol
run out of a desire to send anonymously, however, since doing so
would make the sender’s identity obvious to traffic analysis.

In our wrapper protocol, therefore, each protocol run is unilat-
erally initiated by some node, whom we call the leader. To en-
able members to send “spontaneously” without compromising their
anonymity, every group member periodically initiates a protocol
run independently of its own desire to send, on either a fixed or ran-
domized time schedule. Anonymity would be equally well served
if the leader was the same for all protocol runs, but requiring ev-
ery member to act as leader occasionally makes it easier to address
the liveness issues discussed below. If group policy permits, a non-
anonymous outsider may also lead a protocol run, effectively in-
voking the collective services of the group as in anonymous data-
mining applications [7].

5.2 Selecting Available Participants
The core protocols above assume that every group member par-

ticipates in a given protocol run, but in practice at least a few mem-
bers of a long-lived group are likely to be unavailable at any given
time, making it pragmatically important for the group to be able
to make progress in the absence of some members. The wrapper
protocol therefore distinguishes a group’s long-term membership

M from the set of members MR participating in a particular run
R, where MR ⊆ M . In the wrapper protocol, the leader of run
R is responsible for detecting which members are presently avail-
able, and for bringing those members available to a consensus on
the precise set of participants MR for protocol run R.

A key issue in choosing MR is preventing a malicious leader
from packing MR with colluding members to the exclusion of most
honest members, limiting the anonymity of the few honest mem-
bers remaining. Group policy should therefore define some mini-
mum quorum Q, and honest nodes must refuse to participate in a
proposed run where |MR| < Q. If there are at most f ≤ Q − 2
faulty nodes, honest nodes will be guaranteed at least (Q − f)-
anonymity within a run, regardless of how MR is chosen.

If members establish and reuse long-lived pseudonyms across
multiple runs, however, then a quorum requirement may be insuffi-
cient to protect these pseudonyms from intersection attacks [3] by
a malicious leader who selectively exludes different nodes in each
run. As a further defense, honest members might protect each other
against malicious exclusion as follows. If honest member i receives
a proposal from would-be leader lR to initiate run R while exclud-
ing some other member j, but i believes j to be reachable, then i
demands that lR add j to MR—forwarding messages between lR
and j if necessary—as a precondition to i participating in round R.

5.3 Coercion Resistance via Deniable Keying
Dissent’s shuffle protocol assumes each group member i has a

signing key pair (ui, vi) with which it signs all messages, creating
the nonrepudiable “accountability trail” that the blame phase (5b)
requires to trace a misbehaving member. Unfortunately, this non-
repudiable record also enables members to prove to a third party
which message they sent (or didn’t send) in a given protocol run.

In anonymous communication scenarios, we often desire not just
anonymity but also repudiability [6]: after a protocol run, no one
should be able to prove to a third party which message any member
sent, or ideally, whether a member participated at all. In anony-
mous voting applications, we often desire the closely related prop-
erty of resistance to coercion or “vote-buying.”

Our wrapper protocol can provide some repudiability or coercion
resistance as follows. We assume each group member i’s well-
known identity is defined only by its primary encryption key pair
(xi, yi), and members now choose a fresh, temporary signing key
pair (ui, vi) for each protocol run. To initiate a run, the would-be
leader l uses a deniable authenticated key exchange algorithm such
as SKEME [28] to form a secure channel with each potential par-
ticipant i, using l’s and i’s primary encryption keys for this authen-
tication. Each member i uses this pairwise-authenticated channel
to send the leader i’s fresh public signing key vi for the run.

Once l forms a tentative list of N = |MR| participants, l broad-
casts to all participants a round descriptor DR containing a round
nonce, all participants’ primary public keys y1, . . . , yN , and all
participants’ temporary signing keys v1, . . . , vN for the run. Each
member i now forms a challenge cij for each node j, containing
a random seed Sij and a hash of DR keyed on Sij . Member i
encrypts cij with j’s public key yj to yield Cij . Member i sends
its encrypted challenges to the leader, who forwards each Cij to
member j. Member j decrypts Cij , verifies the keyed hash it con-
tains against the DR that j received from the leader, and returns
cij to the leader, who forwards it to i. On a decryption failure or
challenge mismatch, the leader must decide whether to exclude i or
j from a retry attempt; i can prove its innocence by revealing the
random bits it used to encrypt its original challenge to j.

Once all members confirm DR with all other members, the shuf-
fle proceeds using the temporary signing keys in DR. These sign-
ing keys are nonrepudiable only within the protocol run, so the
leader can trace misbehaving members and exclude them from sub-
sequent runs. No node is left with proof that any member i actually
used signing key ui during a given run, however, since anyone can
unilaterally forge all the authenticated key exchanges, challenges,
and subsequent messages in the shuffle and bulk protocols.

Of course, this form of repudiability is useful only against an at-
tacker who actually requires third-party verifiable “proof of respon-
sibility” in order to coerce group members. If the attacker can see
all network traffic, as our attack model assumes, and the attacker’s
traffic logs alone constitute “proof” of which network packets a
given member sent, then we know of no way to achieve deniability
or coercion resistance. Similarly, a member might be coerced be-

fore a protocol run into sending some sufficiently unique, attacker-
supplied message or ballot. If the mere appearance of that mes-
sage/ballot in the run’s output satisfies the attacker that the member
“stayed bought,” then no anonymity mechanism based purely on a
random shuffle will address this form of coercion.

5.4 Ensuring Liveness
As we have seen, tracing active disruptors of the shuffle or bulk

protocols presents particular technical challenges due to the need
to protect the anonymity of honest senders. A member might pas-

sively disrupt either protocol, however, by simply going offline at
any time, either intentionally or due to node or network failure. For-
tunately, given the core protocols’ resistance to both active disrup-
tion and traffic analysis, we can ensure liveness and handle passive
disruption via more generic techniques.

Each phase of the shuffle and bulk protocols demand that partic-
ular members send properly signed messages to other members.
Again borrowing terminology and ideas from PeerReview [23],

when the protocol demands that member i send member j a mes-
sage, and member j has not received such a (properly signed) mes-
sage for some time, we say that j suspects i. Once j suspects i, j
informs another node k (the leader, for example) of j’s suspicion;
k in turn contacts i demanding a (signed) copy of i’s message to j.
If i fails to offer this message to k, then after some time k suspects
j as well and notifies other members in turn, eventually causing all
honest, connected members to suspect i. Member i can dispel any
honest member’s suspicion at any time by offering a copy of the
demanded message. If i honestly cannot send to j due to asymmet-
ric connectivity, for example, then i responds to k’s demand with
the required message, which k forwards back to j, dispelling both
j’s and k’s suspicion and enabling the protocol to proceed.

Since our wrapper protocol makes the leader responsible for ini-
tiating protocol runs, we also make it the leader’s responsibility to
decide when a protocol run has failed due to a suspected node go-
ing offline—or deliberately withholding a required message—for
too long. At this point, the leader starts a new protocol run, exclud-
ing any exposed or persistently suspected nodes from the previous
run, and the remaining members attempt to resend their messages.
If the leader fails, members can retry their sends in a future run
initiated by a different leader.

5.5 End-to-End Reliability
A corner-case liveness challenge for most protocols is closure:

determining when participants may consider the protocol “success-
fully concluded.” In a byzantine model, a malicious member might
intentionally withhold the last message it was supposed to send—
e.g., its own secondary private key in phase 5a of the shuffle proto-
col, or its own ciphertext in the bulk protocol—while collecting the
last messages of other members, thereby learning the results of the
protocol run while denying those results to other members.

We approach this class of problems in general by treating our
shuffle and bulk protocols as a “best-effort” anonymous delivery
substrate, atop which some higher-level protocol must provide end-
to-end reliable delivery and graceful closure if desired. If a faulty
member denies other members a protocol run’s results, the honest
members will soon suspect the faulty member. The same or a differ-
ent leader will eventually start a new protocol run without the faulty
member, in which the members may retransmit their messages. If a
member i wishes to ensure that a message it sends anonymously is
reliably seen by a particular member j, for example, then i must re-
send the message in successive protocol runs until j acknowledges
the message. Member j might sign acknowledgments via public or
pseudonymous keys, or group or ring signatures [4, 11, 30].

If the messages sent in a protocol run are interrelated, such as
the ballots comprising an anonymous vote, the group may wish to
ensure that some quorum of members sees the result. The group
can follow such a voting run with an acknowledgment run, dis-
carding and repeating unsuccessful voting runs (with successively
smaller membership sets as members are exposed or go offline) un-
til the required number of members acknowledges the results. If
the group wishes to provide reliable broadcast semantics or main-
tain some consistent group state across successive protocol runs,
the group can implement byzantine consensus [8] atop the shuf-
fled send primitive, ensuring both liveness and strong consistency
as long as over two thirds of the group members remain live.

6. PROTOTYPE IMPLEMENTATION
To evaluate Dissent’s practicality, we built and tested a simple

proof-of-concept prototype implementing the protocol. The pro-
totype is written in Python, using OpenSSL’s implementations of
1024-bit RSA-OAEP with AES-256 for public-key encryption and

Figure 3: Time required for anonymous broadcast of balanced

and unbalanced message loads among 16 nodes, via shuffle

alone or full Dissent protocol.

signing, AES-256 in counter mode as the bulk protocol’s pseudo-
random number generator, and SHA-1 as the hash algorithm.

We used the Emulab [18] network testbed to test the prototype
under controlled network conditions. We ran the prototype on re-
cent x86 PCs machines running Ubuntu 7.04 and Python 2.5, on a
simulated star topology in which every node is connected to a cen-
tral switch via a 5Mbps connection with a latency of 50ms (100ms
node-to-node latency). We make no claim that this topology is
“representative” of likely deployment scenarios for Dissent, since
we know of no available data on the network properties “typical” of
online groups that might wish to run Dissent. Our simulated topol-
ogy is merely intended to reflect plausible communication band-
widths and delays for wide-area Internet communication.

We rely on the analysis in previous sections to evaluate Dissent’s
security properties, and assume that the accountability measures in
a full implementation of Dissent will deter or eventually exclude
misbehaving members. For experimentation purposes, therefore,
we implement and test only the “normal-case” aspects of the pro-
tocol in the current prototype. The prototype does not use a se-
cure public key infrastructure, and does not implement the “blame”
phases or the full wrapper protocol. Nodes sign and verify all
messages, however, ensuring that performance measurements ac-
curately reflect Dissent’s normal-case costs.

The prototype uses TCP for communication, maintaining TCP
connections throughout a given protocol run to minimize startup
overhead, but closing all connections at the end of each run. Where
Dissent requires broadcast, nodes implement these broadcasts atop
TCP by sending their messages to a leader, who bundles all broad-
casts for that phase and sends each node a copy of the bundle.

6.1 Performance Evaluation
Figure 3 shows the total time the prototype requires to broadcast

messages of varying sizes anonymously among 16 nodes, using
either the shuffle protocol alone or the full Dissent protocol. In each
case, we test two message loads: a Balanced load in which each
node sends 1/16th of the total message data, and a OneSender load
in which one node sends all the data and other nodes send nothing.

For a single node to send a 16MB message, Dissent ran in about
31 minutes on the experimental topology, or 3.6× longer than one
node required to broadcast the same data to the other 15 nodes with
no encryption or anonymization. While significant, a 3–4× slow-
down may be a reasonable price to pay for strong anonymity.

As expected, the full protocol incurs a higher startup delay than
the shuffle protocol alone, but handles unbalanced loads more grace-
fully, maintaining similar performance for a given total message

Figure 4: Time required to send varying message sizes, broken

into shuffle and bulk transfer protocol portions.

Figure 5: Time required to send 1MB of data (balanced) using

shuffle and bulk protocols together, with varying group size.

length regardless of balance. We are not aware of any other verifi-
able shuffles [20, 26] for which working implementations and per-
formance data are available, but given their typical assumption of
small, equal-length messages, we expect their performance on un-
balanced loads to be at best on par with our shuffle protocol alone.

Figure 4 breaks the runtime of the full Dissent protocol into its
shuffle and bulk protocol components, illustrating that the shuffle’s
cost remains constant with message size and becomes negligible as
total message length grows.

The full Dissent protocol still showed some slowdown under
highly unbalanced load: although balance does not affect Dissent’s
communication cost, it does affect computation costs. When only
one node is sending, that node must compute and XOR together
N − 1 pseudorandom streams of message length L, while other
nodes each compute only one L-byte stream. This timing differ-
ence could lead to a side-channel attack if not handled carefully in
implementation, e.g., by pre-computing all required bit strings be-
fore commencing a send. We have made no attempt to analyze the
protocol in detail for side-channel attacks, however.

Figure 5 measures the prototype’s runtime with varying group
sizes. In a successful run, each node sends O(N2) bits in the shuf-
fle and Ltot + O(1) bits in the bulk protocol. As expected, the
shuffle’s runtime increases much more quickly with N than the
bulk protocol, although the superlinear N2 curve manifests only
slightly for the small groups we tested.

7. RELATED WORK
Dissent’s shuffle protocol builds directly on an anonymous data

collection protocol by Brickell and Shmatikov [7], adding DoS re-
sistance via our new go/no-go and blame phases. Dissent’s bulk
protocol is similarly inspired by DC-nets [10], which are compu-

tationally efficient and provide unconditional anonymity. DC-nets
traditionally require nondeterministic “reservation” schemes to al-
locate the anonymous channel’s communication bandwidth, how-
ever, and are difficult to protect against anonymous DoS attacks
by malicious group members. Strategies exist to strengthen DC-
nets against DoS attacks [22, 40], or to form new groups when an
attack is detected [32]. Dissent’s use of a shuffle protocol to set
up a deterministic DC-nets instance, however, cleanly avoids these
DoS vulnerabilities while providing the additional guarantee that
each member sends exactly one message per protocol run, a useful
property for holding votes or assigning 1-to-1 pseudonyms.

Mix-networks [9] offer scalable, practical anonymous unicast
communication, and can be adapted to group broadcast [27]. Un-
fortunately, mix-networks are difficult to protect against traffic anal-
ysis [31] and DoS attacks [16, 24], and in fact, lose security under
DoS attack [5]. Crowds [29] are more computationally efficient
than mix-networks, but are vulnerable to statistical traffic analy-
sis when an attacker can monitor many points across the network.
k-anonymous transmission protocols [39] provide anonymity only
when most members of a group are honest. Dissent, in contrast, is
provably secure against traffic analysis, preserving anonymity even
when up to N − 2 members maliciously collude.

Anonymous voting protocols solve a problem closely related to
group broadcast. Each user casts a ballot whose contents should
be publicly known but whose author should be unknown to both
the election officials and other voters. Many voting protocols allow
transmission of only fixed-length messages, e.g., “Yes” or “No” [1].

Cryptographically verifiable shuffles [20, 26] might replace our
shuffle protocol, making the shuffle verifiable offline. These al-
gorithms require more exotic and complex cryptography, however,
and generally verify only a shuffle’s correctness (i.e., that it is a per-
mutation), and not its randomness (i.e., that it ensures anonymity).
All existing techniques of which we are aware to assure a shuf-
fle’s randomness and anonymity, in the presence of compromised
members, require passing a batch of messages through a series of
independent shuffles, as in Dissent or mix-networks [15].

Group signatures [4,11] and ring signatures [30] provide anony-
mous authentication rather than anonymous transmission. Com-
bining group/ring signatures with classic DC-nets transmission can
meet the first two of Dissent’s three key security goals, integrity and
anonymity (see Section 2.3). Such a combination fails to provide
accountability, however: malicious group members can still anony-
mously disrupt the DC-nets transmission channel, preventing com-
munication from occurring at all. Layering group/ring signatures
atop DC-nets also does not provide the 1-to-1 mapping needed for
anonymous voting or assigning Sybil attack-resistant pseudonyms.

Tor [14] and Herbivore [32] are two well-known practical sys-
tems for providing anonymous communication over the Internet.
These systems scale to far larger groups than Dissent does, and also
permit interactive communication. These systems do not provide
Dissent’s strong guarantees of anonymity or accountability, how-
ever. As a system based on mix-networks, Tor is vulnerable to traf-
fic analysis attacks. Herbivore provides unconditional anonymity,
but only within a small subgroup of the total group of participants.
Dissent may be more suitable for non-interactive communication
between participants willing to sacrifice protocol execution speed
for strong assurances of anonymity and accountability.

8. CONCLUSION
Dissent is a novel protocol for anonymous and accountable group

communication. Dissent allows a well-defined group of partici-
pants to exchange variable-length messages anonymously without
the risks of traffic analysis or anonymous DoS attacks associated

with mix-networks and DC-nets. Dissent improves upon previous
shuffled-send primitives by adding accountability—the ability to
trace misbehaving nodes—and by eliminating the message padding
requirements of earlier schemes. We have reviewed practical con-
cerns associated with a real-world deployment of Dissent, and have
proposed potential solutions for each. Our implementation demon-
strates Dissent to be practical, at least for non-interactive anony-
mous communication within moderate-size groups.

Acknowledgments

We would like to thank Vitaly Shmatikov, Michael Fischer, Bimal
Viswanath, Animesh Nandi, Justin Brickell, Jacob Strauss, Chris
Lesniewski-Laas, Pedro Fonseca, Philip Levis, and the anonymous
CCS reviewers for valuable feedback and discussion. This work
was supported in part by the National Science Foundation under
grant CNS-0916413.

9. REFERENCES

[1] Ben Adida. Advances in cryptographic voting systems. PhD
thesis, Cambridge, MA, USA, 2006.

[2] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip
Rogaway. Relations among notions of security for public-key
encryption schemes. Advances in Cryptology —CRYPTO

’98, pages 549–570, 1998.

[3] Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke.
The disadvantages of free MIX routes and how to overcome
them. In Workshop on Design Issues in Anonymity and

Unobservability, July 2000.

[4] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group
signatures. In CRYPTO, August 2004.

[5] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa
Tabriz. Denial of service or denial of security? How attacks
on reliability can compromise anonymity. In 14th ACM CCS,
October 2007.

[6] Nikita Borisov, Ian Goldberg, and Eric Brewer.
Off-the-record communication, or, why not to use PGP. In
WPES, pages 77–84, October 2004.

[7] Justin Brickell and Vitaly Shmatikov. Efficient
anonymity-preserving data collection. In Tina Eliassi-Rad,
Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos,
editors, KDD, pages 76–85. ACM, 2006.

[8] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In 3rd OSDI, pages 173–186, February 1999.

[9] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 24(2),
February 1981.

[10] David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability. Journal of

Cryptology, 1(1):65–75, January 1988.

[11] David Chaum and Eugène Van Heyst. Group signatures. In
Eurocrypt, April 1991.

[12] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Workshop on

Design Issues in Anonymity and Unobservability, July 2000.

[13] David Davenport. Anonymity on the Internet: why the price
may be too high. Communications of the ACM, 45(4):33–35,
April 2002.

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
the second-generation onion router. In SSYM’04:

Proceedings of the 13th conference on USENIX Security

Symposium, pages 21–21, Berkeley, CA, USA, 2004.
USENIX Association.

[15] Roger Dingledine, Vitaly Shmatikov, and Paul Syverson.
Synchronous batching: From cascades to free routes. In
WPET, May 2004.

[16] Roger Dingledine and Paul Syverson. Reliable MIX cascade
networks through reputation. In Financial Cryptography,
March 2002.

[17] John R. Douceur. The Sybil attack. In 1st International

Workshop on Peer-to-Peer Systems, March 2002.

[18] Emulab network emulation testbed.
http://emulab.net/.

[19] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and
Jacques Stern. RSA-OAEP is secure under the RSA
assumption. Journal of Cryptology, 17(2):81–104, 03 2004.

[20] Jun Furukawa and Kazue Sako. An efficient scheme for
proving a shuffle. In CRYPTO, August 2001.

[21] David Goldschlag, Michael Reed, and Paul Syverson. Onion
routing for anonymous and private internet connections.
Communications of the ACM, 42(2):39–41, February 1999.

[22] Philippe Golle and Ari Juels. Dining cryptographers
revisited. Eurocrypt, May 2004.

[23] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel.
PeerReview: Practical accountability for distributed systems.
In 21st SOSP, October 2007.

[24] Jan Iwanik, Marek Klonowski, and Miroslaw Kutylowski.
DUO-Onions and Hydra-Onions — failure and adversary
resistant onion protocols. In IFIP CMS, September 2004.

[25] Leslie Lamport. The part-time parliament. TOCS,
16(2):133–169, 1998.

[26] C. Andrew Neff. A verifiable secret shuffle and its
application to e-voting. In 8th CCS, pages 116–125,
November 2001.

[27] G. Perng, M.K. Reiter, and Chenxi Wang. M2: Multicasting
mixes for efficient and anonymous communication. In 26th

ICDCS, pages 59–59, 2006.

[28] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk.
Secure off-the-record messaging. In WPES, November 2005.

[29] Michael K. Reiter and Aviel D. Rubin. Anonymous web
transactions with crowds. Communications of the ACM,
42(2):32–48, 1999.

[30] Ronald Rivest, Adi Shamir, and Yael Tauman. How to leak a
secret. In ASIACRYPT, December 2001.

[31] Andrei Serjantov, Roger Dingledine, and Paul Syverson.
From a trickle to a flood: Active attacks on several mix
types. Information Hiding, pages 36–52, 2003.

[32] Emin Gün Sirer et al. Eluding carnivores: File sharing with
strong anonymity. In 11th SIGOPS European Workshop,
September 2004.

[33] Frank Stajano and Ross Anderson. The cocaine auction
protocol: On the power of anonymous broadcast. In 3rd

Information Hiding Workshop, September 1999.

[34] Edward Stein. Queers anonymous: Lesbians, gay men, free
speech, and cyberspace. Harvard Civil Rights-Civil Liberties

Law Review, 38(1), 2003.

[35] Douglas R. Stinson. Cryptography: Theory and Practice,

Third Edition (Discrete Mathematics and Its Applications).
Chapman & Hall/CRC, November 2005.

[36] Brad Stone and Matt Richtel. The hand that controls the sock
puppet could get slapped. New York Times, July 2007.

[37] Al Teich, Mark S. Frankel, Rob Kling, and Ya-ching Lee.
Anonymous communication policies for the Internet: Results
and recommendations of the AAAS conference. Information

Society, May 1999.

[38] Eugene Vasserman, Rob Jansen, James Tyra, Nicholas
Hopper, and Yongdae Kim. Membership-concealing overlay
networks. In 16th ACM CCS, November 2009.

[39] Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper.
k-anonymous message transmission. In 10th CCS, pages
122–130, New York, NY, USA, 2003. ACM.

[40] Michael Waidner and Birgit Pfitzmann. The dining
cryptographers in the disco: Unconditional sender and
recipient untraceability with computationally secure
serviceability. In Eurocrypt, page 690, April 1989.

[41] Jonathan D. Wallace. Nameless in cyberspace: Anonymity
on the internet, December 1999. Cato Briefing Paper No. 54.

[42] Wikileaks. http://wikileaks.org/.

[43] The constitutional right to anonymity: Free speech,
disclosure and the devil. Yale Law Journal,
70(7):1084–1128, June 1961.

APPENDIX: KEY PAIR VERIFICATION

In the decryption phase of Dissent’s shuffle protocol, honest group
members receive secondary private keys from other, potentially
malicious group members, and must verify both that this private
key wi is valid for the cryptosystem in use, and that it corresponds
to the public key zi distributed during phase 1. Such a check is not a
standard function of public-key cryptosystems, but any public-key
cryptosystem can be augmented to support such a check. The key
point is that disclosure of the private key in phase 5a eliminates all
secrecy requirements associated with that key pair, so the member
who generated a key pair can “prove” the key’s validity simply by
including enough information with the private key for the receiving
member to replay the key generation process exactly.

Given a public-key cryptosystem [19] with a probabilistic key
generation algorithm K(ρ) taking security parameter ρ as input and
producing key pair (x, y) as output, we define a deterministic con-
struction K(ρ, r) of the same algorithm, where r contains the ran-
dom bits supplied to the key generation algorithm. We define the
augmented key pair of the original private/public key pair (x, y) to
be the pair ((x, r), (y, ρ)). Using this augmented algorithm, mem-
bers participating in the shuffle protocol broadcast (y, ρ) during
phase 1, and reveal (x, r) during phase 5a.

An honest member who receives an augmented key pair need not
rely on the correctness of the received private key x and its claimed
correspondence to the public key y. Instead, the receiver runs
the deterministic key generation algorithm to compute (x′, y′) =
K(ρ, r), and verify x = x′ and y = y′. Since ρ has a well-
defined validity range and r is an unstructured bit string for which
any sufficiently long value is by definition valid, a correct key gen-
eration algorithm must produce a working key pair for any valid
input combination. Replay thus enables the receiver to verify that
the purported key pair is a correct output of the key generation al-
gorithm, before using the released private key for decryption.

A faulty member might choose the “random” bits r non-randomly
during initial key generation. A non-random r might compromise
the secrecy of ciphertexts encrypted using the public key gener-
ated from r, but such behavior harms the security only of the faulty
member itself, as if the faulty member incorrectly revealed its pri-
vate key before phase 5a. Independently of how the random input
r was chosen or who knows it, a correct public-key cryptosystem
must encrypt and decrypt reliably using the resulting key pair.

