
SHA-3 proposal BLAKE∗

Jean-Philippe Aumasson† Luca Henzen‡ Willi Meier§ Raphael C.-W. Phan¶

version 1.3, December 16, 2010

∗This document is a revised version of the supporting documentation submitted to NIST on October 31, 2008. As
such, it does not cite all relevant references published from that date. The hash functions specified are the “tweaked”
versions, as submitted for the final of the SHA-3 competition. The original submitted functions were called BLAKE-
28, BLAKE-32,BLAKE-48, and BLAKE-64; the tweaked versions are BLAKE-224, BLAKE-256, BLAKE-384, and
BLAKE-512.

†Nagravision SA, Switzerland, jeanphilippe.aumasson@gmail.com; BLAKE was designed while this author
was with FHNW, Windisch, Switzerland

‡ETHZ, Zürich, Switzerland, henzen@iis.ee.ethz.ch
§FHNW, Windisch, Switzerland, willi.meier@fhnw.ch
¶Loughborough University, UK, r.phan@lboro.ac.uk



Contents

1 Introduction 3
1.1 Design principles . . . . . . . . . 4
1.2 BLAKE in a nutshell . . . . . . . 5
1.3 Expected strength . . . . . . . . 6
1.4 Advantages and limitations . . . 6
1.5 Notations . . . . . . . . . . . . . 7

2 Specification 8
2.1 BLAKE-256 . . . . . . . . . . . . 8

2.1.1 Constants . . . . . . . . . 8
2.1.2 Compression function . . 8
2.1.3 Hashing a message . . . 11

2.2 BLAKE-512 . . . . . . . . . . . . 12
2.2.1 Constants . . . . . . . . . 12
2.2.2 Compression function . . 12
2.2.3 Hashing a message . . . 13

2.3 BLAKE-224 . . . . . . . . . . . . 13
2.4 BLAKE-384 . . . . . . . . . . . . 13
2.5 Alternative descriptions . . . . . 14
2.6 Tunable parameter . . . . . . . . 15

3 Performance 16
3.1 Generalities . . . . . . . . . . . . 16

3.1.1 Complexity . . . . . . . . 16
3.1.2 Memory/speed tradeoffs . 17
3.1.3 Parallelism . . . . . . . . 17

3.2 ASIC and FPGA . . . . . . . . . 17
3.2.1 Architectures . . . . . . . 17
3.2.2 Implementation results . . 18
3.2.3 Evaluation . . . . . . . . . 20

3.3 8-bit microcontroller . . . . . . . 20
3.3.1 The PIC18F2525 . . . . . 20
3.3.2 Memory management . . 21
3.3.3 Speed . . . . . . . . . . . 22

3.4 Large processors . . . . . . . . . 23

4 Using BLAKE 26
4.1 Hashing with a salt . . . . . . . . 26
4.2 HMAC and UMAC . . . . . . . . 27
4.3 PRF ensembles . . . . . . . . . 27
4.4 Randomized hashing . . . . . . . 28

5 Elements of analysis 29
5.1 Permutations . . . . . . . . . . . 29
5.2 Compression function . . . . . . 30

5.2.1 G function . . . . . . . . . 30
5.2.2 Round function . . . . . . 32
5.2.3 Compression function . . 34
5.2.4 Fixed-points . . . . . . . . 37

5.3 Iteration mode (HAIFA) . . . . . . 38
5.4 Pseudorandomness . . . . . . . 39
5.5 Indifferentiability . . . . . . . . . 39
5.6 Generic attacks . . . . . . . . . . 39

5.6.1 Length extension . . . . . 39
5.6.2 Collision multiplication . . 40
5.6.3 Multicollisions . . . . . . . 40
5.6.4 Second preimages . . . . 41
5.6.5 Side channels . . . . . . 42
5.6.6 SAT solvers . . . . . . . . 42
5.6.7 Algebraic attacks . . . . . 42

5.7 Dedicated attacks . . . . . . . . 42
5.7.1 Symmetric differences . . 42
5.7.2 Differential attack . . . . . 43
5.7.3 Slide attack . . . . . . . . 44

6 Acknowledgments 45

Bibliography 46

A Round function example 49

B Source code 51
B.1 VHDL . . . . . . . . . . . . . . . 51
B.2 PIC assembly . . . . . . . . . . . 60
B.3 ANSI C . . . . . . . . . . . . . . 66

C Intermediate values 69
C.1 BLAKE-256 . . . . . . . . . . . . 69
C.2 BLAKE-224 . . . . . . . . . . . . 71
C.3 BLAKE-512 . . . . . . . . . . . . 74
C.4 BLAKE-384 . . . . . . . . . . . . 76

2



1 Introduction

In 1993, NIST published the first Secure Hash Standard SHA-0, which two years later was
superseded by SHA-1 to improve the original design. SHA-1 was still deemed secure by the
end of the millenium, when researchers’ attention turned to block ciphers through the AES
competition. Shortly after an avalanche of results on hash functions culminated with collision
attacks for MD5 and SHA-1. Meanwhile NIST had introduced the SHA-2 family, unbroken until
now. Some years later NIST announced the SHA-3 program, calling for proposals for a hash
function that will augment the SHA-2 standard.

BLAKE is our candidate for SHA-3. We did not reinvent the wheel; BLAKE is built on
previously studied components, chosen for their complementarity. The heritage of BLAKE is
threefold:

• BLAKE’s iteration mode is HAIFA, an improved version of the Merkle-Damgård paradigm
proposed by Biham and Dunkelman. It provides resistance to long-message second
preimage attacks, and explicitly handles hashing with a salt.

• BLAKE’s internal structure is the local wide-pipe, which we already used with the LAKE
hash function. It makes local collisions impossible in the BLAKE hash functions, a result
that doesn’t rely on any intractability assumption.

• BLAKE’s compression algorithm is a modified version of Bernstein’s stream cipher
ChaCha, whose security has been intensively analyzed and performance is excellent,
and which is strongly parallelizable.

The iteration mode HAIFA would significantly benefit to the new hash standard, for it provides
randomized hashing and structural resistance to second-preimage attacks. The LAKE local
wide-pipe structure is a straightforward way to give strong security guarantees against collision
attacks. Finally, the choice of borrowing from the stream cipher ChaCha comes from our expe-
rience in cryptanalysis of Salsa20 and ChaCha [3], when we got convinced of their remarkable
combination of simplicity and security.

Content of this document

The present chapter contains design principles, a short description of BLAKE, and security
claims. Chapter 2 gives a complete specification of the BLAKE hash functions. Chapter 3 re-
ports performance in FPGA, ASIC, 8-bit microcontroller, and 32- and 64-bit processor. Chap-
ter 4 explains how to use BLAKE, detailing construction of HMAC, UMAC, and PRF ensembles.
Chapter 5 gives elements of analysis, including attacks on simplified versions. We conclude
with acknowledgments, references, and appendices containing source code and intermediate
values.

3



1.1 Design principles

The BLAKE hash functions were designed to meet all NIST criteria for SHA-3, including:

• message digests of 224, 256, 384, and 512 bits

• same parameter sizes as SHA-2

• one-pass streaming mode

• maximum message length of at least 264 − 1 bits

In addition, we imposed BLAKE to:

• explicitly handle hashing with a salt

• be parallelizable

• allow performance trade-offs

• be suitable for lightweight environments

We briefly justify these choices: First, a built-in salt simplifies a lot of things; it provides an
interface for an extra input, avoids insecure homemade modes, and encourages the use of
randomized hashing. Parallelism is a big advantage for hardware implementations, which can
also be exploited by certain large microprocessors. In addition, BLAKE allows a trade-off
throughput/area to adapt the implementation to the hardware available.

Oppositely, we excluded the following goals:

• have a reduction to a supposedly hard problem

• have homomorphic or incremental properties

• have a scalable design

• have a specification for variable length hashing

We justify these choices: The relative unsuccess of provably secure hash functions stresses
the limitations of the approach: though of theoretical interest, such designs tend to be ineffi-
cient, and their highly structured constructions expose them to attacks with respect to notions
other than the proved one. The few advantages of homomorphic and incremental hash func-
tions are not worth their cost; more importantly, these properties are undesirable in many
applications. Scalability of the design to various parameter sizes has no real advantage in
practice, and the security of scalable designs is difficult to assess. Finally, we deemed unnec-
essary to complicate the function with variable-length features, for users can just truncate the
hash values for shorter hashes, and there is no demand for hash values of more than 512 bits.

To summarize, we made our candidate as simple as possible, and combined well-known
and trustable building blocks so that BLAKE already looks familiar to cryptanalysts. We avoided
superfluous features, and just provide what users really need or will need in the future (like
hashing with a salt). It was essential for us to build on previous knowledge—be it about security
or implementation—in order to adapt our proposal to the low resources available for analyzing
the SHA-3 candidates.

4



1.2 BLAKE in a nutshell

BLAKE is a family of four hash functions: BLAKE-224, BLAKE-256, BLAKE-384, and BLAKE-
512 (see Table 1.1). As SHA-2, BLAKE has a 32-bit version (BLAKE-256) and a 64-bit one
(BLAKE-512), from which other instances are derived using different initial values, different
padding, and truncated output.

Algorithm Word Message Block Digest Salt

BLAKE-224 32 <264 512 224 128
BLAKE-256 32 <264 512 256 128
BLAKE-384 64 <2128 1024 384 256
BLAKE-512 64 <2128 1024 512 256

Table 1.1: Properties of the BLAKE hash functions (sizes in bits).

The BLAKE hash functions follow the HAIFA iteration mode [10]: the compression function
depends on a salt1 and the number of bits hashed so far (counter), to compress each message
block with a distinct function. The structure of BLAKE’s compression function is inherited from
LAKE [4] (see Fig. 1.1): a large inner state is initialized from the initial value, the salt, and
the counter. Then it is injectively updated by message-dependent rounds, and it is finally
compressed to return the next chain value. This strategy was called local wide-pipe in [4], and
is inspired by the wide-pipe iteration mode [32].

roundsinitialization finalization
chain value

salt counter message saltchain value

next 
chain value

Figure 1.1: The local wide-pipe construction of BLAKE’s compression function.

The inner state of the compression function is represented as a 4×4 matrix of words. A
round of BLAKE-256 is a modified “double-round” of the stream cipher ChaCha: first, all four
columns are updated independently, and thereafter four disjoint diagonals. In the update of
each column or diagonal, two message words are input according to a round-dependent per-
mutation. Each round is parametrized by distinct constants to minimize self-similarity. After the
sequence of rounds, the state is reduced to half its length with feedforward of the initial value
and the salt.

An implementation of BLAKE requires low resources, and is fast in both software and hard-
ware environments. In 180 nm ASIC, BLAKE-256 can be implemented with about 13 500 gates,
and can reach a throughput of more than 4 Gbps; BLAKE-512 can be implemented with about
X Y gates, and can reach a throughput of more than 6 Gbps. On an Intel Core 2 Duo, BLAKE-
256 can hash at about 15 cycles/byte, and BLAKE-512 at about 10 cycles/byte.

1A value that parametrizes the function, and can be either public or secret.

5



1.3 Expected strength

For all BLAKE hash functions, there should be no attack significantly more efficient than stan-
dard bruteforce methods for

• finding collisions, with same or distinct salt

• finding (second) preimages, with arbitrary salt

BLAKE should also be secure for randomized hashing, with respect to the experiment de-
scribed by NIST in [37, 4.A.ii]. It should be impossible to distinguish a BLAKE instance with an
unknown salt (that is, uniformly chosen at random) from a PRF, given blackbox access to the
function; more precisely, it shouldn’t cost significantly less than 2|s| queries to the box, where |s|

is the bit length of the salt. BLAKE should have no property that makes its use significantly less
secure than an ideal function for any concrete application. (These claims concern the proposed
functions with the recommended number of rounds, not reduced or modified versions.)

1.4 Advantages and limitations

We summarize the advantages and limitations of BLAKE:

Advantages

Design

• simplicity of the algorithm

• interface for hashing with a salt

Performance

• fast in both software and hardware

• parallelism and throughput/area trade-off for hardware implementation

• simple speed/confidence trade-off with the tunable number of rounds

Security

• based on an intensively analyzed component (ChaCha)

• resistant to generic second-preimage attacks

• resistant to side-channel attacks

• resistant to length-extension

Limitations

• message length limited to respectively 264 and 2128 for BLAKE-256 and BLAKE-512

• resistance to Joux’s multicollisions similar to that of SHA-2

• fixed-points found in less time than for an ideal function (but not efficiently)

6



1.5 Notations

Hexadecimal numbers are written in typewriter style (for example F0 = 240). A word is either
a 32-bit or a 64-bit string, depending on the context. We use the same conventions of big-
endianness as NIST does in the SHA-2 specification [35, §3]. In particular, we use (unsigned)
big-endian representation for expressing integers, and, e.g. converting data streams into word
arrays. Table 1.2 summarizes the basic operations used.

Symbol Meaning

← variable assignment
+ addition modulo 232 or (modulo 264)
⊕ Boolean exclusive OR (XOR)

≫ k rotation of k bits towards less significant bits
≪ k rotation of k bits towards more significant bits
〈ℓ〉k encoding of the integer ℓ over k bits

Table 1.2: Operations symbols used in this document.

If p is a bit string, we view it as a sequence of words and pi denotes its ith word component;
thus p = p0‖p1‖ . . . For a message m, mi denotes its ith 16-word block, thus mi

j is the jth word
of the ith block of m. Indices start from zero, for example a N-block message m is decomposed
as m = m0m1 . . .mN−1, and the block m0 is composed of words m0

0, m
0
1,m

0
2, . . . ,m

0
15,

The adjective random here means uniformly random with respect to the relevant probability
space. For example a “random salt” of BLAKE-256 is a random variable uniformly distributed
over {0, 1}128, and may also mean “uniformly chosen at random”. The initial value is written IV;
intermediate hash values in the iterated hash are called chain values, and the last one is the
hash value, or just hash.

7



2 Specification

This chapter defines the hash functions BLAKE-256, BLAKE-512, BLAKE-224, and BLAKE-
384.

2.1 BLAKE-256

The hash function BLAKE-256 operates on 32-bit words and returns a 32-byte hash value. This
section defines BLAKE-256, going from its constant parameters to its compression function,
then to its iteration mode.

2.1.1 Constants

BLAKE-256 starts hashing from the same initial value as SHA-256:

IV0 = 6A09E667 IV1 = BB67AE85

IV2 = 3C6EF372 IV3 = A54FF53A

IV4 = 510E527F IV5 = 9B05688C

IV6 = 1F83D9AB IV7 = 5BE0CD19

BLAKE-256 uses 16 constants1

c0 = 243F6A88 c1 = 85A308D3

c2 = 13198A2E c3 = 03707344

c4 = A4093822 c5 = 299F31D0

c6 = 082EFA98 c7 = EC4E6C89

c8 = 452821E6 c9 = 38D01377

c10 = BE5466CF c11 = 34E90C6C

c12 = C0AC29B7 c13 = C97C50DD

c14 = 3F84D5B5 c15 = B5470917

Ten permutations of {0, . . . , 15} are used by all BLAKE functions, defined in Table 2.1.

2.1.2 Compression function

The compression function of BLAKE-256 takes as input four values:

• a chain value h = h0, . . . , h7

• a message block m = m0, . . . ,m15

• a salt s = s0, . . . , s3

1First digits of π.

8



σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Table 2.1: Permutations of {0, . . . , 15} used by the BLAKE functions.

• a counter t = t0, t1

These four inputs represent 30 words in total (i.e., 120 bytes = 960 bits). The output of the
function is a new chain value h ′ = h ′

0, . . . , h
′
7 of eight words (i.e., 32 bytes = 256 bits). We

write the compression of h,m, s, t to h ′ as

h ′ = compress (h,m, s, t)

Initialization

A 16-word state v0, . . . , v15 is initialized such that different inputs produce different initial states.
The state is represented as a 4×4 matrix, and filled as follows:









v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15









←









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









Round function

Once the state v is initialized, the compression function iterates a series of 14 rounds. A round
is a transformation of the state v that computes

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

where, at round r, Gi(a, b, c, d) sets2

a ← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 12

a ← a+ b+ (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) ≫ 8

c ← c+ d

b ← (b⊕ c) ≫ 7

2In the rest of the paper, for statements that don’t depend on the index i we shall omit the subscript and write
simply G.

9



The first four calls G0, . . . ,G3 can be computed in parallel, because each of them updates a
distinct column of the matrix. We call the procedure of computing G0, . . . ,G3 a column step.
Similarly, the last four calls G4, . . . ,G7 update distinct diagonals thus can be parallelized as
well, which we call a diagonal step. At round r > 9, the permutation used is σr mod 10 (for
example, in the last round r = 13 and the permutation σ13 mod 10 = σ3 is used).

Figures 2.1 and 2.2 illustrate Gi, the column step, and the diagonal step. An example of
computation is given in Appendix A.

a

b

c

d

a

b

c

d

mσr(2i)

cσr(2i+1)

mσr(2i+1)

cσr(2i)

>>> 8

>>> 7

>>> 16

>>> 12

Figure 2.1: The Gi function.

G0

G1

G2

G3

v0

v4

v8

v12

v1

v5

v9

v13

v2

v6

v10

v14

v3

v7

v11

v15

G5

G6

G7

G4 v0

v5

v10

v15

v1

v6

v11

v12

v2

v7

v8

v13

v4

v9

v14

v3

Figure 2.2: Column step and diagonal step.

10



Finalization

After the rounds sequence, the new chain value h ′
0, . . . , h

′
7 is extracted from the state v0, . . . , v15

with input of the initial chain value h0, . . . , h7 and the salt s0, . . . , s3:

h ′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h ′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h ′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h ′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h ′
4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h ′
5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h ′
6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h ′
7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

2.1.3 Hashing a message

We now describe the procedure for hashing a message m of bit length ℓ < 264. As it is usual for
iterated hash functions, the message is first padded (BLAKE uses a padding rule very similar
to that of HAIFA), then it is processed block per block by the compression function.

Padding

First the message is extended so that its length is congruent to 447 modulo 512. Length
extension is performed by appending a bit 1 followed by a sufficient number of 0 bits. At least
one bit and at most 512 are appended. Then a bit 1 is added, followed by a 64-bit unsigned
big-endian representation of ℓ. Padding can be represented as

m← m‖1000 . . . 0001〈ℓ〉64

This procedure guarantees that the bit length of the padded message is a multiple of 512.

Iterated hash

To proceed to the iterated hash, the padded message is split into 16-word blocks m0, . . . ,mN−1.
We let ℓi be the number of message bits in m0, . . . ,mi, that is, excluding the bits added by the
padding. For example, if the original (non-padded) message is 600-bit long, then the padded
message has two blocks, and ℓ0 = 512, ℓ1 = 600. A particular case occurs when the last
block contains no original message bit; for example a 1020-bit message leads to a padded
message with three blocks (which contain respectively 512, 508, and 0 message bits), and we
set ℓ0 = 512, ℓ1 = 1020, ℓ2 = 0. The general rule is: if the last block contains no bit from the
original message, then the counter is set to zero; this guarantees that if i 6= j, then ℓi 6= ℓj.

The salt s is chosen by the user, and set to the null value when no salt is required (i.e.,
s0 = s1 = s2 = s3 = 0). The hash of the padded message m is then computed as follows:

h0
← IV

for i = 0, . . . , N− 1

hi+1
← compress (hi,mi, s, ℓi)

return hN

11



The procedure of hashing m with BLAKE-256 is aliased BLAKE-256(m, s) = hN, where m is
the (non-padded) message, and s is the salt. The notation BLAKE-256(m) denotes the hash
of m when no salt is used (i.e., s = 0).

2.2 BLAKE-512

BLAKE-512 operates on 64-bit words and returns a 64-byte hash value. All lengths of variables
are doubled compared to BLAKE-256: chain values are 512-bit, message blocks are 1024-bit,
salt is 256-bit, counter is 128-bit.

2.2.1 Constants

The initial value of BLAKE-512 is the same as for SHA-512:

IV0 = 6A09E667F3BCC908 IV1 = BB67AE8584CAA73B

IV2 = 3C6EF372FE94F82B IV3 = A54FF53A5F1D36F1

IV4 = 510E527FADE682D1 IV5 = 9B05688C2B3E6C1F

IV6 = 1F83D9ABFB41BD6B IV7 = 5BE0CD19137E2179

BLAKE-512 uses the constants3

c0 = 243F6A8885A308D3 c1 = 13198A2E03707344

c2 = A4093822299F31D0 c3 = 082EFA98EC4E6C89

c4 = 452821E638D01377 c5 = BE5466CF34E90C6C

c6 = C0AC29B7C97C50DD c7 = 3F84D5B5B5470917

c8 = 9216D5D98979FB1B c9 = D1310BA698DFB5AC

c10 = 2FFD72DBD01ADFB7 c11 = B8E1AFED6A267E96

c12 = BA7C9045F12C7F99 c13 = 24A19947B3916CF7

c14 = 0801F2E2858EFC16 c15 = 636920D871574E69

Permutations are the same as for BLAKE-256 (see Table 2.1).

2.2.2 Compression function

The compression function of BLAKE-512 is similar to that of BLAKE-256 except that it makes
16 rounds instead of 14, and that Gi(a, b, c, d) computes

a ← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) ≫ 32

c ← c+ d

b ← (b⊕ c) ≫ 25

a ← a+ b+ (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 11

The only differences with BLAKE-256’s Gi are the word length (64 bits instead of 32) and the
rotation distances. At round r > 9, the permutation used is σr mod 10 (for example, in the last
round r = 15 and the permutation σ15 mod 10 = σ5 is used).

3First digits of π.

12



2.2.3 Hashing a message

For BLAKE-512, message padding goes as follows: append a bit 1 and as many 0 bits until
the message bit length is congruent to 895 modulo 1024. Then append a bit 1, and a 128-bit
unsigned big-endian representation of the message bit length:

m← m‖1000 . . . 0001〈ℓ〉128

This procedure guarantees that the length of the padded message is a multiple of 1024.
The algorithm for iterated hash is identical to that of BLAKE-256.

2.3 BLAKE-224

BLAKE-224 is similar to BLAKE-256, except that

• it uses the initial value of SHA-224:

IV0 = C1059ED8 IV1 = 367CD507

IV2 = 3070DD17 IV3 = F70E5939

IV4 = FFC00B31 IV5 = 68581511

IV6 = 64F98FA7 IV7 = BEFA4FA4

• in the padded data, the 1 bit preceding the message length is replaced by a 0 bit:

m← m‖1000 . . . 0000〈ℓ〉64

• the output is truncated to its first 224 bits, that is, the iterated hash returns hN
0 , . . . , h

N
6

instead of hN = hN
0 , . . . , h

N
7

2.4 BLAKE-384

BLAKE-384 is similar to BLAKE-512, except that

• it uses the initial value of SHA-384:

IV0 = CBBB9D5DC1059ED8 IV1 = 629A292A367CD507

IV2 = 9159015A3070DD17 IV3 = 152FECD8F70E5939

IV4 = 67332667FFC00B31 IV5 = 8EB44A8768581511

IV6 = DB0C2E0D64F98FA7 IV7 = 47B5481DBEFA4FA4

• in the padded data, the 1 bit preceding the message length is replaced by a 0 bit:

m← m‖1000 . . . 0000〈ℓ〉128

• the output is truncated to its first 384 bits, that is, the iterated hash returns hN
0 , . . . , h

N
5

instead of hN = hN
0 , . . . , h

N
7

13



2.5 Alternative descriptions

The round function of BLAKE described in §2.1.2 operates first on columns of the matrix state,
second on diagonals (see Fig. 2.2). Another way to view this transformation is

1. make a column-step

2. rotate the ith column up by i positions, for i = 0, . . . , 3

3. make a row-step (see Fig. 2.3), that is,

G4(v0 , v1 , v2 , v3 ) G5(v4 , v5 , v6 , v7 ) G6(v8 , v9 , v10, v11) G7(v12, v13, v14, v15)

A similar description was used for the stream cipher Salsa20 [8].

v0

v4

v8

v12

v1

v5

v9

v13

v2

v6

v10

v14

v3

v7

v11

v15

G4

G6

G5

G7

Figure 2.3: Row step of the alternative description.

Similarly, the transformation could be viewed as follows:

1. make a column-step

2. rotate the ith row by i positions left, for i = 0, . . . , 3

3. make a column-step again

Finally, another equivalent definition of a round is

G0 (v0 , v4 , v8 , v12) G2 (v1 , v5 , v9 , v13) G4 (v2 , v6 , v10, v14) G6 (v3 , v7 , v11, v15)

G8 (v0 , v5 , v10, v15) G10(v1 , v6 , v11, v12) G12(v2 , v7 , v8 , v13) G14(v3 , v4 , v9 , v14)

where Gi(a, b, c, d) is redefined to

a ← a+ b+ (mσr(i) ⊕ cσr(i+1))

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 12

a ← a+ b+ (mσr(i+1) ⊕ cσr(i))

d ← (d⊕ a) ≫ 8

c ← c+ d

b ← (b⊕ c) ≫ 7

This definition may speed up implementations by saving the doublings.

14



2.6 Tunable parameter

In its call for a new hash function [37], NIST encourages the description of a parameter that
allows speed/confidence trade-offs. For BLAKE this parameter is the number of rounds. We
recommend 14 rounds for BLAKE-224 and BLAKE-256, and we recommend 16 rounds for
BLAKE-384 and BLAKE-512. Rationale behind these choices appear in Chapter 5.

15



3 Performance

We implemented BLAKE in several environments (software and hardware). This chapter re-
ports results from our implementations.

IMPORTANT REMARK

Implementations reported in this chapter in §3.2–3.4 refer to the original version of BLAKE
(i.e., the original functions called BLAKE-32, with 10 rounds, and BLAKE-64, with 14 rounds).
The speed results reported thus do not correspond to the latest version of BLAKE. However,
memory, and hardware area values remain valid. For up-to-date benchmarks (as of 2011) we
refer the reader to the SHA-3 Zoo [23], XBX [41], and eBASH [9], respectively for hardware,
low-end software, and high-end software performance.

3.1 Generalities

This section gives general facts about the complexity of BLAKE, independently of any imple-
mentation.

3.1.1 Complexity

Number of operations

A single G makes 6 XOR’s, 6 additions and 4 rotations, so 16 arithmetic operations in total.
Hence a round makes 48 XOR’s, 48 additions and 32 rotations, so 128 operations. BLAKE-
256’s compression function thus counts 672 XOR’s, 672 additions, 448 rotations, plus 4 XOR’s
for the initialization and 24 XOR’s for the finalization, thus a total of 1820 operations. BLAKE-
512’s compression function counts 768 XOR’s, 768 additions, 512 rotations, plus 4 XOR’s and
24 XOR’s, thus a total of 2076 operations. We omit the overhead for initializing the hash struc-
ture, padding the message, etc., whose cost is negligible compared to that of a compression
function.

Memory

BLAKE-256 needs to store in ROM 64 bytes for the constants, and at least 80 bytes to describe
the permutations (144 bytes in total). In RAM, the storage m,h, s, t and v requires 184 bytes.
In practice, however, more space might be required. For example, our implementation on the
PIC18F2525 microcontroller (see §3.3) stores the 8-bit addresses of the permutation elements,
not the 4-bit elements directly, thus using 160 bytes for storing the 80 bytes of information of
the message permutations.

16



3.1.2 Memory/speed tradeoffs

A memory/speed tradeoff for a hash function implementation consists in storing some addi-
tional data in memory in order to reduce the number of computation steps. This is relevant,
for example, for hash functions that use a a large set of constants generated from a smaller
set of constants. BLAKE, however, requires a fixed and small set of constants, which is not
trivially compressible. Therefore, the algorithm of BLAKE admits no memory/speed tradeoff;
the implementations reported in §3.2, 3.3, and 3.4 thus do not consider memory/speed trade-
offs. The tradeoffs made in the hardware implementations (§3.2) are rather space/speed than
memory/speed.

3.1.3 Parallelism

When hashing a message, most of the time spent by the computing unit will be devoted to
computing rounds of the compression function. Each round is composed of eight calls to the
G function: G0,G1, . . . ,G7. Simplifying:

• on a serial machine, the speed of a round is about eight times the speed of a G

• on a parallel machine, G0,G1,G2 and G3 can be computed in four parallel branches, and
then G4,G5,G6 and G7 can be computed in four branches again. The speed of a round
is thus about twice the speed of a G

Since parallelism is generally a trade-off, the gain in speed may increase the consumption of
other resources (area, etc.). An example of trade-off is to split a round into two branches,
resulting in a speed of four times that of a G.

3.2 ASIC and FPGA

We propose four hardware architectures of the BLAKE compression function and report the
performances of the corresponding ASIC and FPGA implementations. Similar architectures
have been considered by Henzen et al. for VLSI implementations of ChaCha, in [26].

More efficient implementations of BLAKE can be found in [27].

3.2.1 Architectures

The HAIFA iteration mode forces a straightforward hardware implementation of the BLAKE
compression function based on a single round unit and a memory to store the internal state
variables v0, v1, . . . , v15. No pipeline circuits have been designed, due to the enormous re-
source requirements of such solutions. Nonetheless, several architectures of the compression
function have been investigated to evaluate the relation between speed and area. Every im-
plemented circuit reports to the basic block diagram of Fig 3.1.

Besides memory, the four main block components of BLAKE are

• the initialization and finalization blocks, which are pure combinational logic; initialization
contains eight 32/64-bit XOR logic gates to compute the initial state v, while finalization
consists of 24 XOR gates to generate the next chain value.

• the round function, which is essentially one or more G functions; G is composed of six
modulo 232/264 adders and six XOR gates. Rotations are implemented as a straight
rerouting of the internal word bits without any additional logic and without affecting the
propagation delay of the circuit.

17



h’

C
on

tr
ol

 u
ni

t

Initialization

Finalization

Memory m

512/1024 bits

1 bit (control)

I/O

v

inEN

outEN

ht s

Round unit

Figure 3.1: Block diagram of the BLAKE compression function. The signals inEn and outEN

define the input and output enables.

• the control unit, which controls the computation of the compression function, aided by IO
enable signals.

Four architectures with different round units have been investigated:

• [8G]-BLAKE: This design corresponds to the isomorphic implementation of the round
function. Eight G function units are instantiated; the first four units work in parallel to
compute the column step, while the last four compute the diagonal step.

• [4G]-BLAKE: The round module consists of four parallel G units, which, at a given cycle,
compute either the column step or the diagonal step.

• [1G]-BLAKE: The iterative decomposition of the compression function leads to the im-
plementation of a single G function. Thus, one G unit processes the full round in eight
cycles.

• [1
2G]-BLAKE: This lightweight implementation consists of a single half G unit. During one

cycle, only a single update of the inputs a, b, c, d is processed (i.e., half a G).

In the last three architectures, additional multiplexers and demultiplexers driven by the control
unit preserve the functionality of the algorithm, selecting the correct v elements inside and
outside the round unit.

3.2.2 Implementation results

Based on functional VHDL coding (see Appendix B.1), the four designs have been synthe-
sized using a 0.18 µm CMOS technology with the aid of the Synopsys Design Compiler Tool.

18



Table 3.1 summarizes the final values of area, frequency, and throughput1. In addition, the
hardware efficiency computes the ratio between speed and area of the circuits. The [8G]
and [4G]-BLAKE architectures maximize the throughput, so they were synthesized with speed
optimization options at the maximal clock frequency. The target applications of [1G] and [1

2G]-
BLAKE are resource-restricted environments, where a compact chip size is the main constraint.
Hence, these designs have been synthesized at low frequencies to achieve minimum-area re-
quirements.

Arch. Function Area Freq. Latency Throughput Efficiency
[kGE] [MHz] [cycles] [Mbps] [Kbps/GE]

[8G]
BLAKE-32 58.30 114 11 5295 90.8
BLAKE-64 132.47 87 15 5910 44.6

[4G]
BLAKE-32 41.31 170 21 4153 100.5
BLAKE-64 82.73 136 29 4810 58.1

[1G]
BLAKE-32 10.54 40 81 253 24.0
BLAKE-64 20.61 20 113 181 8.8

[1
2G]

BLAKE-32 9.89 40 161 127 12.9
BLAKE-64 19.46 20 225 91 4.7

Table 3.1: ASIC synthesis results. One gate equivalent (GE) corresponds to the area of a
two-input drive-one NAND gate of size 9.7 µm2.

Three architectures have been implemented on FPGA silicon devices: the Xilinx Virtex-5,
Virtex-4, and Virtex-II Pro2. We used SynplifyPro and Xilinx ISE for synthesis and place &
route. Table 3.2 reports resulting circuit performances.

For the ASIC and the FPGA implementations, the memory of the internal state consists
of 16 32/64-bit registers, which are updated every round with the output words of the round
unit. No RAM or ROM macro cells are used to store the 16 constants c0, . . . , c15. In the same
way, the ten permutations σ0, . . . , σ9 have been hard-coded in VHDL. In ASIC, this choice has
been motivated by the insufficient memory requirement of these variables. In FPGA, constants
and permutations can be stored in dedicated block RAMs. This solution decreases slightly the
number of slices needed, but does not speed-up the circuits.

A complete implementation of BLAKE (to include memory storing intermediate values,
counter, and circuits to finalize the message, etc.) leads to an increase of about 1.8 kGE
or 197 slices for ASIC and FPGA, respectively.

Minimizing the area

An ASIC architecture even smaller than [1
2G] can be reached, by making a circuit only for a

quarter (rather than a half) of the G function, and serializing the finalization block. Latency
and throughput deteriorate much, but we can reach an area of 8.4 kGE. We omit an extensive
description of this architecture because the area reduction from [1

2G] is not worth its cost, in
general.

1The unit Gbps means Gigabits per second, where a Gigabit is 10003 bits, not 10243. Similar rule applies to
Mbps and Kbps in Tables 3.1 and 3.2.

2Data sheets available at http://www.xilinx.com/support/documentation/

19



XC2VP50 XC4VLX100 XC5VLX110

Function Area Freq. Thr. Area Freq. Thr. Area Freq. Thr.
[slices] [MHz] [Mbps] [slices] [MHz] [Mbps] [slices] [MHz] [Mbps]

[8G]-BLAKE architecture

BLAKE-32 3091 37 1724 3087 48 2235 1694 67 3103
BLAKE-64 11122 17 1177 11483 25 1707 4329 35 2389

[4G]-BLAKE architecture

BLAKE-32 2805 53 1292 2754 70 1705 1217 100 2438
BLAKE-64 6812 31 1104 6054 40 1413 2389 50 1766

[1G]-BLAKE architecture

BLAKE-32 958 59 371 960 68 430 390 91 575
BLAKE-64 1802 36 326 1856 42 381 939 59 533

Table 3.2: FPGA post place & route results [overall effort level: standard]. A single Virtex-5
slice contains twice the number of LUTs and FFs.

3.2.3 Evaluation

The scalable structure of the round function allows the implementation of distinct architectures,
where the trade-off between area and speed differs. Fast circuits are able to achieve through-
put about 6 Gbps in ASIC and 3 Gbps in modern FPGA chips, while lightweight architectures
require less than 10 kGE or 1000 Slices. BLAKE turns out to be an extremely flexible function,
that can be integrated in a wide range of applications, from modern high-speed communication
security protocols to low-area RFID systems.

3.3 8-bit microcontroller

The compression function of BLAKE-32 was implemented in a PIC18F2525 microcontroller.
About 1800 assembly lines were written, using Microchip’s MPLAB Integrated Development
Environment v7.6. This section reports results of this implementation, starting with a presen-
tation of the device used. Sample assembly code computing the round function is given in
Appendix B.2.

3.3.1 The PIC18F2525

The PIC18F2525 is a member of the PIC family of microcontrollers made by Microchip Technol-
ogy. PIC’s are very popular for embedded systems (more than 6 billions sold). The PIC18F2525
works with 8-bit words, but has an instruction width of 16 bits; it makes up to 10 millions of in-
structions per second (MIPS).

Following the Harvard architecture, the PIC18F2525 separates program memory and data
memory:

• program memory is where the program resides, and can store 48 Kb in flash memory
(that is, 24576 instructions)

20



• data memory is reserved to the data used by the program. It can store 3986 bytes in
RAM and 1024 bytes in EEPROM.

Program memory will contain the code of our BLAKE implementation, including the permuta-
tions’ look-up tables, while variables will be stored in the data memory.

Our PIC processor runs at up to 40 MHz, and a single-cycle instruction takes four clock
cycles (10 MIPS). In the following we give cost estimates in terms of instruction cycles, not
clock cycles.

Operating frequency DC – 40 MHz
Program memory (bytes) 49152
Program memory (instructions) 24576
Data memory (bytes) 3968
Data EEPROM (bytes) 1024
Interrupt sources 19
I/O ports Ports A, B, C, (E)
Timers 4
Serial communication MSSP, enhanced USART
Parallel communications no
Instruction set 75 instructions (83 with extended IS)

Table 3.3: Main features of the PIC18F2525

Features of the PIC18F2525 are summarized in Table 3.3. All details can be found on
Wikpedia3 and in Microchip’s datasheet4.

3.3.2 Memory management

Our implementation requires 2470 bytes of program memory (including the look-up tables for
the permutations), out of 48 Kb available. Data memory stores 274 bytes in RAM for the input
variables, constants, and temporary variables, that is:

• message block m (64 bytes)

• chain value h (32 bytes)

• salt s (16 bytes)

• counter t (8 bytes)

• constants c0, . . . , c15 (64 bytes)

• internal state v (64 bytes)

• temporary variables (a, b, c, d) for G (16 bytes)

• other temporary variables (10 bytes)

To summarize, BLAKE-32 uses 5% of the program memory, 7% of the RAM, and no EEPROM.

3http://en.wikipedia.org/wiki/PIC micro
4http://ww1.microchip.com/downloads/en/DeviceDoc/39626b.pdf

21



3.3.3 Speed

BLAKE-32 only uses the three operations XOR, 32-bit integer addition, and 32-bit rotation. In
the PIC18F2525 the basic unit is a byte, not a 32-bit word, hence 32-bit operations have to be
simulated with 8-bit instructions:

• 32-bit XOR is simulated by four independent 8-bit XOR’s

• 32-bit addition is simulated by four 8-bit additions with manual transfer of the carry be-
tween each addition

• 32-bit rotation is simulated using byte swaps and 1-bit rotate instructions

Rotations are the most complicated operations to implement, because a different code has to
be written for each rotation distance; rotation of 8 or 16 positions requires no rotate instruction,
while one is needed for 7-bit rotation, and four for 12-bit rotation. For example, the code for a
8-bit rotation of x=x hi‖x mh‖x ml‖x lo looks like

movFF x hi,tmp

movFF x mh,x hi

movFF x ml,x mh

movFF x lo,x ml

movFF tmp,x lo

while the code for a 7-bit rotation looks like

bcf STATUS, C

btfsc x lo,0

bsf STATUS, C

rrcF x hi

rrcF x mh

rrcF x ml

rrcF x lo

movFF x lo,tmp

movFF x hi,x lo

movFF x mh,x hi

movFF x ml,x mh

movFF tmp,x ml

In terms of cycles, counting all the instructions needed (rotate, move, etc.), we have that

• ≫ 16 needs 6 cycles

• ≫ 12 needs 22 cycles

• ≫ 8 needs 5 cycles

• ≫ 7 needs 12 cycles

22



Below we detail the maximum cost of each line of the Gi function:

(76 cycles) a ← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

(24 cycles) d ← (d⊕ a) ≫ 16

(24 cycles) c ← c+ d

(34 cycles) b ← (b⊕ c) ≫ 12

(67 cycles) a ← a+ b+ (mσr(2i+1) ⊕ cσr(2i))

(22 cycles) d ← (d⊕ a) ≫ 8

(24 cycles) c ← c+ d

(29 cycles) b ← (b⊕ c) ≫ 7

The cycle count is different for (b⊕ c) ≫ 12 and (b⊕ c) ≫ 7 because of the different rotation
distances. The fifth line needs fewer cycles than the first because of the proximity of the indices
(though not of the addresses).

In addition, preparing Gi’s inputs costs 18 cycles, and calling it 4 cycles, thus in total 322
cycles are needed for computing a Gi. Counting the initialization of v (at most 161 cycles)
and the overhead of 8 cycles per round, the compression function needs 26001 cycles (that
is, 406 cycles per byte). With a 32 MHz processor (8 MIPS), it takes about 3.250 ms to hash a
single message block (a single instruction is 125 ns long); with a 40 MHz processor (10 MIPS),
it takes about 2.6 ms.

No precomputation is required to set up the algorithm (BLAKE does not require building
internal tables before hashing a message, neither it requires the initialization of a particular
data structure, for example). On the PIC18F2525, the only setup cost is for preparing the
device, i.e. loading data into the data memory; this cost cannot be expressed (solely) in terms
of clock cycles, because of interrupt routines and waiting time, which depend on the data
source considered.

For sufficiently large messages (say, a few blocks), the cost of preparing the device and
of padding the message is negligible, compared to the cost of computing the compression
functions. In this case, generating one message digest with BLAKE-28 or BLAKE-32 on a
PIC18F2525 requires about 406 cycles per byte.

3.4 Large processors

BLAKE is easily implemented on 32- and 64-bit processors: it works on words of 32 or 64 bits,
and only makes wordwise operations (XOR, rotation, addition) that are implemented in most of
the processors. It is based on ChaCha, one of the fastest stream ciphers. The speed-critical
code portion is short and thus is relatively easy to optimize. Because the core of BLAKE is just
the G function (16 operations), implementations are simple and compact.

As requested by NIST, we wrote a reference implementation and optimized implementa-
tions in ANSI C. Here we report speed benchmarks based on the optimized implementation,
which will be used by NIST for comparing BLAKE with other candidates. On specific proces-
sors, faster implementations can be obtained by programming BLAKE in assembly; one may
directly reuse the assembly programs of ChaCha available5.

We compiled our program with gcc 4.1.0 with options -O3 -fomit-frame-pointer -Wall

-ansi. We report speeds for various lengths of (aligned) messages, and give the median
measurement over a hundred trials. We measured the time of a call to the function Hash

specified in NIST’s API, which includes
5See http://cr.yp.to/chacha.html

23



1. function Init: initialization of the function parameters, copy of the instance’s IV

2. function Update: iterated hash of the message

3. function Final: padding of the message, compression (at most two) of the remaining
data

Table 3.4 reports the number of clock cycles required to generate one message digest with
the full versions of BLAKE-32 and BLAKE-64 and for reduced-round versions, depending on
the message length. BLAKE-224 and BLAKE-384 show performance similar to BLAKE-32 and
BLAKE-64, respectively. The “Core 2 Duo” platform corresponds to the NIST SHA-3 Reference
Platform, except that our computer was running Linux instead of Windows Vista.

For any digest length, a negligible number of cycles is required to setup the algorithm. This
is because no precomputation is necessary, and the only preparation consists in loading data
in memory.

Data length [bytes] 10 100 1000 10000

Celeron M (32-bit mode)

BLAKE-32 (10 rounds) ≈1500 50.1 24.5 22.2
BLAKE-32 (8 rounds) ≈1500 56.5 21.7 18.5
BLAKE-32 (5 rounds) ≈1500 43.2 13.9 12.5

BLAKE-64 (14 rounds) ≈2000 126.4 64.4 58.8
BLAKE-64 (10 rounds) ≈2000 99.7 47.7 43.1
BLAKE-64 (7 rounds) ≈2000 93.5 32.5 30.8

Core 2 Duo (32-bit mode)

BLAKE-32 (10 rounds) ≈2900 51.5 27.4 28.3
BLAKE-32 (8 rounds) ≈2900 45.2 22.6 24.2
BLAKE-32 (5 rounds) ≈2900 35.0 15.9 14.0

BLAKE-64 (14 rounds) ≈4400 94.0 61.3 61.7
BLAKE-64 (10 rounds) ≈4400 74.0 45.4 57.6
BLAKE-64 (7 rounds) ≈4400 58.9 32.5 41.0

Core 2 Duo (64-bit mode)

BLAKE-32 (10 rounds) ≈1600 36.4 18.4 16.7
BLAKE-32 (8 rounds) ≈1600 32.2 15.4 13.8
BLAKE-32 (5 rounds) ≈1600 26.9 10.9 9.6

BLAKE-64 (14 rounds) ≈1900 33.7 13.8 12.3
BLAKE-64 (10 rounds) ≈1900 29.9 11.6 9.3
BLAKE-64 (7 rounds) ≈1900 26.8 8.5 7.2

Table 3.4: Performance of our optimized C implementation of BLAKE (in cycles/byte), on a
900 MHz Intel Celeron M and a 2.4 GHz Intel Core 2 Duo.

In terms of bytes-per-second, the top speed is achieved by BLAKE-64 in 64-bit mode, with
about 317 Mbps. For very small messages (10 bytes) the overhead is due to the compression
of 64 (respectively 128) bytes, and to the cost of initializing and padding the message. The
cost per byte quickly decreases, and stabilizes after 1000-byte messages. Although different

24



processors were used, our estimates can be compared with the fastest C implementation of
SHA-256, by Gladman6: in 64-bit mode on a AMD processor, SHA-256 runs at 20.4 cycles-
per-byte, and SHA-512 at 13.4 cycles-per-byte.

6http://fp.gladman.plus.com/cryptography technology/sha/index.htm

25



4 Using BLAKE

BLAKE is intended to replace SHA-2 with a minimal engineering effort, and to be used wher-
ever SHA-2 is. BLAKE provides the same interface as SHA-2, with the optional input of a
salt. BLAKE is suitable whenever a cryptographic hash function is needed, be it for digital
signatures, MAC’s, commitment, password storage, key derivation, etc.

This chapter explains how the salt input should (not) be used, and construction details
based on BLAKE for HMAC and UMAC, PRF ensembles, and randomized hashing.

4.1 Hashing with a salt

The BLAKE hash functions take as input a message and a salt. The aim of hashing with
distinct salts is to hash with different functions but using the same algorithm. Depending on
the application, the salt can be chosen randomly (thus reusing a same salt twice can occur,
though with small probability), or derived from a counter (nonce).

For applications in which no salt is required, it is set to the null value (s = 0). In this case
the initialization of the state v simplifies to









v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15









←









h0 h1 h2 h3

h4 h5 h6 h7

c0 c1 c2 c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









and the finalization of the compression function becomes

h ′
0 ← h0 ⊕ v0 ⊕ v8

h ′
1 ← h1 ⊕ v1 ⊕ v9

h ′
2 ← h2 ⊕ v2 ⊕ v10

h ′
3 ← h3 ⊕ v3 ⊕ v11

h ′
4 ← h4 ⊕ v4 ⊕ v12

h ′
5 ← h5 ⊕ v5 ⊕ v13

h ′
6 ← h6 ⊕ v6 ⊕ v14

h ′
7 ← h7 ⊕ v7 ⊕ v15

The salt input may contain a nonce or a random seed, for example. A typical application
is for password storage. However, the salt input is not intended to contain the secret key for
a MAC construction. We recommend using HMAC or UMAC for MAC functionality, which are
much more efficient.

26



4.2 HMAC and UMAC

HMAC [5] can be built on BLAKE similarly to SHA-2. The salt input is not required, and should
thus be set to zero (see 4.1). BLAKE has no property that limits its use for HMAC, compared
to SHA-2. For example, HMAC based on BLAKE-256 takes as input a key k and a message
m and computes

HMACk(m) = BLAKE-256
(

k⊕ opad‖BLAKE-256(k⊕ ipad‖m)
)

.

All details on the HMAC construction are given in the NIST standardization report [36] or in the
original publication [5].

UMAC is a MAC construction “faster but more complex” [13] than HMAC: it is based on
the “PRF(hash, nonce)” approach, where the value “hash” is a universal hash of the message
authenticated. UMAC authors propose to instanciate the PRF with HMAC based on SHA-1,
computing HMACk(nonce‖hash).

For combining BLAKE with UMAC, the same approach can be used, namely using HMAC
based on BLAKE. It is however more efficient to use BLAKE’s salt, and thus compute HMAC(hash)
with s = nonce:

HMACk(hash) = BLAKE-256
(

k⊕ opad‖BLAKE-256(k⊕ ipad‖hash, nonce), nonce
)

In the best case, setting s = nonce saves one compression compared to the original construc-
tion, while in the worst case performance is unchanged. UMAC authors suggest a nonce of 64
bits [13], which fits in the salt input of all BLAKE functions. We recommend this construction
for UMAC based on BLAKE.

4.3 PRF ensembles

To construct pseudorandom functions (PRF) ensembles from hash functions, a common prac-
tice is to append or prepend the index data to the message. For example, for an arbitrary
message m one can define the ith function of the ensemble as

BLAKE-256(m‖i) or BLAKE-256(i‖m)

where i is encoded over a fixed number of bits. These techniques pose no problem specific
to BLAKE. The second construction is even more secure than with SHA-2, because it makes
some length-extension attacks impossible (cf. [5, §6] and §5.6.1).

Another technique proposed for constructing PRF ensembles is to modify the IV according
to the index data. That is, the ith function of the ensemble has an IV equal to (some represen-
tation of) i. A concrete construction that exploits this technique is NMAC [5], which computes
a MAC as

NMACk1‖k2(m) = Hk1

(

Hk2(m)
)

where Hk is a hash function with initial value k.
For combining BLAKE with NMAC, we recommend not to set directly IV ← ki, i = 1, 2,

but instead IV ← compress (IV, i, 0, 0), starting from the IV specific to the function used. This
makes the effective IV dependent on the function instance (cf. §2.1 and §2.3).

A last choice for constructing PRF’s based on BLAKE is to use the salt for the index data,
giving ensembles of 2128 and 2256 for BLAKE-256 and BLAKE-512, respectively.

27



4.4 Randomized hashing

Randomized hashing is mainly used for digital signatures (cf. [24, 38]): instead of sending the
signature Sign(H(m)), the signer picks a random r and sends (Sign(Hr(m)), r) to the verifier.
The advantage of randomized hashing is that it relaxes the security requirements of the hash
function [24]. In practice, random data is either appended/prepended to the message or com-
bined with the message; for example the RMX transform [24], given a random r, hashes m to
the value

H
(

r‖(m1 ⊕ r)‖ . . . ‖(mN−1 ⊕ r)
)

.

BLAKE offers a dedicated interface for randomized hashing, not a modification of a non-
randomized mode: the input s, 128 or 256 bits long, should be dedicated for the salt of random-
ized hashing. This avoids the potential computation overhead of other methods, and allows the
use of the function as a blackbox, rather than a special mode of operation of a classical hash
function. BLAKE remains compatible with previous generic constructions, including RMX.

28



5 Elements of analysis

This chapter presents a preliminary analysis of BLAKE, with a focus on BLAKE-256. We study
properties of the function’s components, resistance to generic attacks, and dedicated attack
strategies.

5.1 Permutations

The permutations σ0, . . . , σ9 were chosen to match several security criteria: First we ensure
that a same input difference doesn’t appear twice at the same place (to complicate “correction”
of differences in the state). Second, for a random message all values (mσr(2i) ⊕ cσr(2i+1))

and (mσr(2i+1) ⊕ cσr(2i)) should be distinct with high probability. For chosen messages, this
guarantees that each message word will be XOR’d with different constants, and thus apply
distinct transformations to the state through rounds. It also implies that no pair (mi,mj) is input
twice in the same Gi. Finally, the position of the inputs should be balanced: in a round, a given
message word is input either in a column step or in a diagonal step, and appears either first or
second in the computation of Gi. We ensure that each message word appears as many times
in a column step as in a diagonal step, and as many times first as second within a step. To
summarize:

1. no message word should be input twice at the same point

2. no message word should be XOR’d twice with the same constant

3. each message word should appear exactly 5 times in a column step and 5 times in a
diagonal step

4. each message word should appear exactly 5 times in first position in G and 5 times in
second position

This is equivalent to say that, in the representation of permutations in §2.1.1 (also see Ta-
ble 5.1):

1. for all i = 0, . . . , 15, there should exist no distinct permutations σ, σ ′ such that σ(i) = σ ′(i)

2. no pair (i, j) should appear twice at an offset of the form (2k, 2k+ 1), for all k = 0, . . . , 7

3. for all i = 0, . . . , 15, there should be 5 distinct permutations σ such that σ(i) < 8, and 5
such that σ(i) > 8

4. for all i = 0, . . . , 15, there should be 5 distinct permutations σ such that σ(i) is even, and
5 such that σ(i) is odd

29



Round G0 G1 G2 G3 G4 G5 G6 G7

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Table 5.1: Input of message words.

5.2 Compression function

This section reports a bottom-up analysis of BLAKE’s compression function.

5.2.1 G function

Given (a, b, c, d) and message block(s) mj, j ∈ {0, . . . , 15}; a function Gi computes

a ← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 12

a ← a+ b+ (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) ≫ 8

c ← c+ d

b ← (b⊕ c) ≫ 7

The G function is inspired from the “quarter-round” function of the stream cipher ChaCha,
which transforms (a, b, c, d) as follows:

a ← a+ b

d ← (d⊕ a) ≪ 16

c ← c+ d

b ← (b⊕ c) ≪ 12

a ← a+ b

d ← (d⊕ a) ≪ 8

c ← c+ d

b ← (b⊕ c) ≪ 7

To build BLAKE’s compression function based on this algorithm, we add input of two mes-
sage words and constants, and let the function be otherwise unchanged. We keep the rotation
distances of ChaCha, which provide a good trade-off security/efficiency: 16- and 8-bit rotations

30



preserve byte alignment, so are fast on 8-bit processors (no rotate instruction is needed), while
12- and 7-bit rotations break up the byte structure, and are reasonably fast.

ChaCha’s function is itself an improvement of the “quarter round” of the stream cipher
Salsa20. The idea of a 4×4 state with four parallel mappings for rows and columns goes
back to the cipher Square [18], and was then successfuly used in Rijndael [19], Salsa20 and
ChaCha. Detailed design rationale and preliminary analysis of ChaCha and Salsa20 can be
found in [6,8], and cryptanalysis in [3,17,28,40].

Bijectivity

Given a message m, and a round index r, the inverse function of Gi is defined as follows:

b ← c⊕ (b ≪ 7)

c ← c− d

d ← a⊕ (d ≪ 8)

a ← a− b− (mσr(2i+1) ⊕ cσr(2i))

b ← c⊕ (b ≪ 12)

c ← c− d

d ← a⊕ (d ≪ 16)

a ← a− b− (mσr(2i) ⊕ cσr(2i+1))

Hence for any (a ′, b ′, c ′, d ′), one can efficiently compute the unique (a, b, c, d) such that
Gi(a, b, c, d) = (a ′, b ′, c ′, d ′), given i and m. In other words, Gi is a permutation of {0, 1}128.

Linear approximations

We found several linear approximations of differentials; the notation (∆0, ∆1, ∆2, ∆3) 7→ (∆ ′
0, ∆

′
1, ∆

′
2, ∆

′
3)

means that the two inputs with the leftmost difference lead to outputs with the rightmost dif-
ference, when (mσr(2i+1) ⊕ cσr(2i)) = (mσr(2i) ⊕ cσr(2i+1)) = 0. For random inputs we have for
example

• (80000000, 00000000, 80000000, 80008000) 7→ (80000000, 0, 0, 0) with probability 1

• (00000800, 80000800, 80000000, 80000000) 7→ (0, 0, 80000000, 0), with probability 1/2

• (80000000, 80000000, 80000080, 00800000) 7→ (0, 0, 0, 80000000), with probability 1/2

Many high probability differentials can be identified for G, and one can use standard message
modification techniques (linearization, neutral bits) to identify a subset of inputs for which the
probability is much higher than for the whole domain. Similar linear differentials exist in the
Salsa20 function, and were exploited [3] to attack the compression function Rumba [7], break-
ing 3 rounds out of 20.

Particular properties of G are

1. the only fixed-point in G is the zero input

2. no preservation of differences can be obtained by linearization

The first observation is straightforward when writing the corresponding equations. The second
point means that there exist no pair of inputs whose difference (according to XOR) is preserved
in the corresponding pair of outputs, in the linearized model. This follows from the fact that,
if an input difference gives the same difference in the output, then this difference must be a
fixed-point for G; since the only fixed-point is the null value, there exists no such difference.

31



Diffusion

Diffusion is the ability of the function to quickly spread a small change in the input through
the whole internal state. For example, G inputs message words such that any difference in a
message word affects the four words output. Tables 5.2.1 and 5.3 give the average number of
bits modified by G, given a random one-bit difference in the input, for each input word.

in\out a b c d

a 4.6 11.7 10.0 6.5
b 6.6 14.0 11.5 8.4
c 2.4 6.6 4.8 2.4
d 2.4 8.4 6.7 3.4

Table 5.2: Average number of changes in each output word given a random bit flip in each
input word.

in\out a b c d

a 4.4 9.9 8.2 6.3
b 6.3 12.4 9.8 8.1
c 1.9 3.9 2.9 1.9
d 1.9 4.9 3.9 2.9

Table 5.3: Average number of changes in each output word given a random bit flip in each
input word, in the XOR-linearized model.

5.2.2 Round function

The round function of BLAKE is

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

Bijectivity

Because G is a permutation, a round is a permutation of the inner state v for any fixed message.
In other words, given a message and the value of v after r rounds, one can determine the value
of v at rounds r− 1, r− 2, etc., and thus the initial value of v. Therefore, for a same initial state
a sequence of rounds is a permutation of the message. That is, one cannot find two messages
that produce the same internal state, after any number of rounds.

Diffusion and low-weight differences

After one round, all 16 words are affected by a modification of one bit in the input (be it the
message, the salt, or the chain value). Here we illustrate diffusion through rounds with a
concrete example, for the null message and the null initial state. The matrices displayed below

32



represent the differences in the state after each step of the first two rounds (column step,
diagonal step, column step, diagonal step), for a difference in the least significant bit of v0:

column step









00000037 00000000 00000000 00000000

E06E0216 00000000 00000000 00000000

37010B00 00000000 00000000 00000000

37000700 00000000 00000000 00000000









(weight 34)

diagonal step









0000027F 10039015 5002B070 C418A7D4

66918CC7 1CBEEE25 F1A8535F C111AD29

F8D104F0 6F08C6F9 5F77131E E4291FE7

151703A7 705002B0 F2C22207 7F001702









(weight 219)

column step









944F85FD A044CCB3 9476A6BC 24B6ADAC

A729BBE9 6549BC3D 3A330361 7318B20D

7BF5F768 7831614B CF44C968 53D886E2

5A1642B3 41B00EA0 A7115A95 7AC791D1









(weight 249)

diagonal step









DFC2D878 F9FAAE7A 2D804D9A 3EF58B7F

FC91AF81 D78E2315 55048021 0811CC46

FB98AF71 DC27330E 47A19B59 EDDE442E

F042BB72 1C7A59AB AC2EFFA4 2E76390B









(weight 264)

In comparison, in the linearized model (i.e., where all additions are replaced by XOR’s), we
have:

column step









00000011 00000000 00000000 00000000

20220202 00000000 00000000 00000000

11010100 00000000 00000000 00000000

11000100 00000000 00000000 00000000









(weight 14)

diagonal step









00000101 10001001 10011010 02202000

40040040 22022220 00202202 00222020

01110010 20020222 01111101 00111101

01110001 10100110 22002200 01001101









(weight 65)

column step









54500415 13012131 02002022 20331103

2828A0A8 46222006 04006046 64646022

00045140 30131033 12113132 10010011

00551045 23203003 03121212 01311212









(weight 125)

diagonal step









35040733 67351240 24050637 B1300980

27472654 8AE6CA08 EE4A6286 E08264A8

03531247 1AB89238 54132765 55051040

14360705 73540643 89128902 70030514









(weight 186)

The higher weight in the original model is due to the addition carries induced by the constants
c0, . . . , c15. A technique to avoid carries at the first round and get a low-weight output difference
is to choose a message such that m0 = c0, . . . ,m15 = c15. At the subsequent rounds, however,
nonzero words are introduced because of the different permutations.

Diffusion can be delayed a few steps by combining high-probability and low-weight differen-
tials of G, using initial conditions, neutral bits, etc. For example, applying directly the differential

(80000000, 00000000, 80000000, 80008000) 7→ (80000000, 0, 0, 0)

33



the diffusion is delayed one step, as illustrated below:

column step









80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000









(weight 1)

diagonal step









800003E8 00000000 00000000 00000000

00000000 0B573F03 00000000 00000000

00000000 00000000 AB9F819D 00000000

00000000 00000000 00000000 E8800083









(weight 49)

column step









8007E4A0 2075B261 18E78828 9800099E

5944FE53 F178A22F 86B0A65B 936C73CB

A27F0D24 98D6929A 4088A5FB 2E39EDA3

A08FFF64 2AD374B7 2818E788 1E9883E1









(weight 236)

diagonal step









4B3CBDD2 0290847F B4FF78F9 F1E71BA3

3A023C96 49908E86 F13BC1D7 ADC2020A

9DCA344A 827BF1E5 B20A8825 FE575BE3

FC81FE81 D676FFC9 80740480 52570CB2









(weight 252)

In comparison, for a same input difference in the linearized model we have

column step









80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000









(weight 1)

diagonal step









80000018 00000000 00000000 00000000

00000000 10310101 00000000 00000000

00000000 00000000 18808080 00000000

00000000 00000000 00000000 18800080









(weight 18)

column step









80000690 E1101206 0801B818 B8000803

1D217176 600FC064 60111212 22167121

90B8B886 16E12133 00888138 83389890

90803886 17E01122 180801B8 83B88010









(weight 155)

diagonal step









44E4E456 133468BD DBBDA164 0F649833

4E20F629 563A9099 A62F3969 7773C0BE

FEB6F508 AABDCBF9 3262E291 87A10D6A

3C2B867B B603B05C DA695123 F88E8007









(weight 251)

These examples show that even in the linearized model, after two rounds about half of the
state bits have changed when different initial states are used (similar figures can be given for a
difference in the message). Using clever combinations of low-weight differentials and message
modifications one may attack reduced versions with two or three rounds. However, differences
after more than four steps seem very difficult to control.

5.2.3 Compression function

BLAKE’s compression function is the combination of an initialization, a sequence of rounds,
and a finalization. Contrary to ChaCha, BLAKE breaks self-similarity by using a round-dependent
permutation of the message and the constants. This prevents attacks that exploit the similarity

34



among round functions (cf. slide attacks in §5.7.3). Particular properties of the compression
function are summarized below.

Initialization

At the initialization stage, constants and redundancy of t impose a nonzero initial state (and a
non “all-one” state). The disposition of inputs implies that after the first column step the initial
value h is directly mixed with the salt s and the counter t.

The double input of t0 and t1 in the initial state suggests the notion of valid initial state: we
shall call an initial state v0, . . . , v15 valid if and only there exists t0, t1 such that v12 = t0⊕ c4 and
v13 = t0 ⊕ c5, and v14 = t1 ⊕ c6 and v15 = t1 ⊕ c7. Non-valid states are thus impossible initial
states.

Number of rounds

The original submission document wrote

“The choice of 10 rounds for BLAKE-32 was determined by

1. the cryptanalytic results on Salsa20, ChaCha, and Rumba (one BLAKE-32 round is es-
sentially two ChaCha rounds, so the initial conservative choice of 20 rounds for ChaCha
corresponds to 10 rounds for BLAKE-32): truncated differentials were observed for up
to 4 Salsa20 rounds and 3 ChaCha rounds, and the Rumba compression function has
shortcut attacks for up to 3 rounds; the eSTREAM project chose a version of Salsa20
with 12 rounds in its portfolio, and 12-round ChaCha is arguably as strong as 12-round
Salsa20.

2. our results on early versions of BLAKE, which had similar high-level structure, but a round
function different from the present one: for the worst version, we could find collisions for
up to 5 rounds.

3. our results on the final BLAKE: full diffusion is achieved after two rounds, and the best
differentials found can be used to attack two rounds only.

BLAKE-64 has 14 rounds, i.e., 4 more than BLAKE-32; this is because the larger state re-
quires more rounds for achieving similar security (in comparison, SHA-512 has 1.25 times
more rounds than SHA-256).

We believe that the choice of 10 and 14 rounds provides a high security margin, without
sacrificing performance. The number of rounds may later be adjusted according to the future
results on BLAKE (for example, 8 rounds for BLAKE-32 may be fine if the best attack breaks 4
rounds, while 12 rounds may be chosen if an attack breaks, say, 6 rounds).”

For the final, we chose to “tweak” BLAKE, as allowed by NIST. The tweak consists in a modi-
fied number of rounds: 14 for BLAKE-28 and BLAKE-32, 16 for BLAKE-48 and BLAKE-64. The
new versions are called BLAKE-224, BLAKE-256, BLAKE-384, and BLAKE-512, respectively.

The choice of a more conservative security margin was motivated by the implementation
and cryptanalysis results published as of December 2010. In particular:

• Optimized implementations BLAKE is fast, and often faster than SHA-2. As security has
utmost priority for us, we chose an increased number of rounds so that BLAKE has a very
conservative security margin and yet in such a way that it remains faster than SHA-2 on
a number of platforms.

35



• The number of rounds affects throughput but not the amount of memory of or hardware
gates necessary for an implementation of BLAKE. As the two latter metrics are generally
the limiting factors in embedded systems, more rounds will not affect BLAKE’s good
suitability for those systems). Energy consumption slightly increases, but at most of a
factor 14/10 and 16/14.

• Known cryptanalysis results against reduced versions remain valid, so the understand-
ing of BLAKE’s security continues to benefit from these public scrutiny and third party
analysis.

As of December 2010, the best attack on the (reduced) BLAKE hash functions that we are
aware of is a preimage attack on 2.5 rounds [29] with complexity 2209 for BLAKE-256 and
2481 for BLAKE-512. A high-complexity distinguisher for 7 middle rounds of the compression
function of BLAKE-256 has been reported to us.

Finalization

At the finalization stage, the state is compressed to half its length, in a way similar to that of the
cipher Rabbit [14]. The feedforward of h and s makes each word of the hash value dependent
on two words of the inner state, one word of the initial value, and one word of the salt. The goal
is to make the function non-invertible when the initial value and/or the salt are unknown.

Our approach of “permutation plus feedforward” is similar to that of SHA-2, and can be seen
as a particular case of Davies-Meyer-like constructions: denoting E the blockcipher defined by
the round sequence, BLAKE’s compression function computes

Em‖s(h)⊕ h⊕ (s‖s)

which, for a null salt, gives the Davies-Meyer construction Em(h) ⊕ h. We use XOR’s and not
additions (as in SHA-2), because here additions don’t increase security, and are much more
expensive in circuits and 8-bit processors.

If the salt s was unknown and not fedforward, then one would be able to recover it given a
one-block message, its hash value, and the IV. This would be a critical property. The counter
t is not input in the finalization, because its value is always known and never chosen by the
users.

Local collisions

A local collision happens when, for two distinct messages, the internal states after a same
number of rounds are identical. For BLAKE hash functions, there exists no local collisions for
a same initial state (i.e., same IV, salt, and counter). This result directly follows from the fact
that the round function is a permutation of the message, for fixed initial state v (and so different
inputs lead to different outputs). This property generalizes to any number of rounds. The
requirement of a same initial state does not limit much the result: for most of the applications,
no salt is used, and a collision on the hash function implies a collision on the compression
function with same initial state [10].

Full diffusion

Full diffusion is achieved when each input bit has a chance to affect each output bit. BLAKE-
256 and BLAKE-512 achieve full diffusion after two rounds, given a difference in the IV, m, or
s.

36



5.2.4 Fixed-points

A fixed-point for BLAKE’s compression function is a tuple (m,h, s, t) such that

compress (m,h, s, t) = h

Functions of the form Em(h)⊕ h (like SHA-2) allow the finding of fixed-points for chosen mes-
sages by computing h = E−1(0), which gives Em(h)⊕ h = h.

BLAKE’s structure is a particular case of the Davies-Meyer-like constructions mentioned
in §5.2.3; consider the case when no salt is used (s = 0), without loss of generality; for finding
fixed-points, we have to choose the final v such that

h0 = h0 ⊕ v0 ⊕ v8

h1 = h1 ⊕ v1 ⊕ v9

h2 = h2 ⊕ v2 ⊕ v10

h3 = h3 ⊕ v3 ⊕ v11

h4 = h4 ⊕ v4 ⊕ v12

h5 = h5 ⊕ v5 ⊕ v13

h6 = h6 ⊕ v6 ⊕ v14

h7 = h7 ⊕ v7 ⊕ v15

That is, we need v0 = v8, v1 = v9, . . . , v7 = v15, so there are 2256 possible choices for v. From
this v we compute the round function backward to get the initial state, and we find a fixed-point
when

• the third line of the state is c0, . . . , c3, and

• the fourth line of the state is valid, that is, v12 = v13 ⊕ c4 ⊕ c5 and v14 = v15 ⊕ c6 ⊕ c7

Thus we find a fixed-point with effort 2128 × 264 = 2192, instead of 2256 ideally. This technique
also allows to find several fixed-points for a same message (up to 264 per message) in less
time than expected for an ideal function.

BLAKE’s fixed-point properties do not give a distinguisher between BLAKE and a PRF,
because we use here the internal mechanisms of the compression function, and not blackbox
queries.

Fixed-point collisions

A fixed-point collision for BLAKE is a tuple (m,m ′, h, s, s ′, t, t ′) such that

compress (m,h, s, t) = compress (m ′, h, s ′, t ′) = h,

that is, a pair of fixed-points for the same hash value. This notion was introduced in [2], which
shows that fixed-point collisions can be used to build multicollisions at a reduced cost. For
BLAKE-256, however, a fixed-point collision costs about 2192 × 2128 = 2320 trials, which is too
high to exploit for an attack.

37



5.3 Iteration mode (HAIFA)

HAIFA [10, 22] is a general iteration mode for hash functions, which can be seen as “Merkle-
Damgård with a salt and a counter”. HAIFA offers an interface for input of the salt and the
counter, and provides resistance to several generic attacks (herding, long-message second
preimages, length extension). HAIFA was used for the LAKE hash functions [4], and analyzed
in [1,15].

Below we comment on BLAKE’s use of HAIFA:

• HAIFA has originally a single IV for a family of functions, and computes the effective
IV of a specific instance with k-bit hashes by setting IV ← compress (IV, k, 0, 0). This
allows variable-length hashing, but complicates the function and requires an additional
compression. BLAKE has only two different instances for each function, so we directly
specify their proper IV to simplify the definition. Each instance has a distinct effective IV,
but no extra compression is needed.

• HAIFA defines a padding data that includes the encoding of the hash value length; again,
because we only have two different lengths, one bit suffices to encode the identity of the
instance (i.e., 1 encodes 256, and 0 encodes 224). We preserve the instance-dependent
padding, but reduce the data overhead, and in the best case save one call to the com-
pression function. Padding the binary encoding of the hash bit length wouldn’t increase
security.

On the role of the counter

We will highlight some facts that underlie HAIFA’s resistance to length extension and sec-
ond preimage attacks. Suppose that compress ( · , · , · , t) defines a family of pseudorandom
functions (PRF’s); to make clear the abstraction we’ll write {Ft}t the PRF family, such that
Ft(m,h, s) = h ′, i.e. F is an ideal compression function, and Ft an ideal compression func-
tion with counter set to t. In the process of iteratively hashing a message, all compression
functions Ft are different, because the counter is different at each compression. For example,
when hashing a 1020-bit message with BLAKE-256, we first use F512, then F1020, and finally
F0.

Now observe that the family {Ft} can be split into two disjoint sets (considering BLAKE-256’s
parameters):

1. the intermediate compressions, called to compress message blocks containing no padding
data (only original message bits):

I = {Ft, ∃k ∈ N⋆, t = 512 · k ≤ 264 − 512}

2. the final compressions, called to compress message blocks containing padding data:

F = {F0} ∪ {Ft, ∃k ∈ N⋆, p ∈ {1, . . . , 511}, t = 512 · k+ p < 264}

A function in I is never the last in a chain of iterations. A function in F appears either in last or
penultimate position, and its inputs are restricted to message blocks with consistent padding
(for example F10 in BLAKE-256 needs messages of the form 〈10 bits〉10 . . . 01〈10〉64). Clearly,
|I | = 255 − 1 and |F | = 511 · |I |. Functions in F can be seen as playing a role of output filter, in
the same spirit as the NMAC hash construction [16].

The above structure is behind the original security properties of HAIFA, including its resis-
tance to second-preimage attacks [22].

38



5.4 Pseudorandomness

One expects from a good hash function to “look like a random function”. Notions of indistin-
guishability, unpredictability, indifferentiability [33] and seed-incompressibility [25] define pre-
cise notions related to “randomness” for hash functions, and are used to evaluate generic
constructions or dedicated designs. However they give no clue on how to construct primitives’
algorithms.

Roughly speaking, the algorithm of the compression function should simulate a “compli-
cated function”, with no apparent structure—i.e., it should have no property that a random
function has not. In terms of structure, “complicated” means for example that the algebraic
normal form (ANF) of the function, as a vector of Boolean functions, should contain each pos-
sible monomial with probability 1/2; generalizing, it means that when any part of the input is
random, then the ANF obtained by fixing this input is also (uniform) random. Put differently, the
truth table of the hash function when part of the input is random should “look like” a random
bit string. In terms of input/output, “complicated” means for example that a small difference in
the input doesn’t imply a small difference in the input; more generally, any difference or relation
between two inputs should be statistically independent of any relation of the corresponding
outputs.

Pseudorandomness is particularly critical for stream ciphers, and no distinguishing attack—
or any other non-randomness property—has been identified on Salsa20 or ChaCha. These
ciphers construct a complicated function by making a long chain of simple operations. Non-
randomness was observed for reduced versions with up to three ChaCha rounds (which cor-
respond to one and a half BLAKE round). BLAKE inherits ChaCha’s pseudorandomness,
and in addition avoids the self-similarity of the function by having round-dependent constants.
Although there is no formal reduction of BLAKE’s security to ChaCha’s, we can reasonably
conjecture that BLAKE’s compression function is “complicated enough” with respect to pseu-
dorandomness.

5.5 Indifferentiability

The counter input to each compression function of BLAKE simulates distinct functions for each
message block hashed. In particular, the value of the counter input at the last compression
is never input for an intermediate compression. It follows that the inputs of the BLAKE’s itera-
tion mode are prefix-free, which guarantees [16] that BLAKE is indifferentiable from a random
oracle when its compression function is assumed ideal.

This result guarantees that if “something goes wrong” in BLAKE, then its compression
function should be blamed. In other words, the iterated hash mode induces no loss of security.

5.6 Generic attacks

This section reports on the resistance of BLAKE to the most important generic attacks, that
is, attacks that exploit to broad class of functions: for example a generic attack can exploit the
iteration mode, or weak algebraic properties of the compression function.

5.6.1 Length extension

Length extension is a forgery attack against MAC’s of the form Hk(m) or H(k‖m), i.e. where
the key k is respectively used as the IV or prepended to the message. The attack can be

39



applied when H is an iterated hash with “MD-strengthening” padding: given h = Hk(m) and m,
determine the padding data p, and compute v ′ = Hh(m

′), for an arbitrary m ′. It follows from
the iterated construction that v ′ = Hk(m‖p‖m ′). That is, the adversary forged a MAC of the
message m‖p‖m ′.

The length extension attack doesn’t apply to BLAKE, because of the input of the number
of bits hashed so far to the compression function, which simulates a specific output func-
tion for the last message block (cf. §5.3). For example, let m be a 1020-bit message; after
padding, the message is composed of three blocks m0,m1,m2; the final chain value will be
h3 = compress (h2,m2, s, 0), because counter values are respectively 512, 1020, and 0 (see
§2.1.3). If we extend the message with a block m3, with convenient padding bits, and hash
m0‖m1‖m2‖m3, then the chain value between m2 and m3 will be compress (h2,m2, s, 1024),
and thus be different from compress (h2,m2, s, 0). The knowledge of BLAKE-256(m0‖m1‖m2)

cannot be used to compute the hash of m0‖m1‖m2‖m3.

5.6.2 Collision multiplication

We coin the term “collision multiplication” to define the ability, given a collision (m,m ′), to
derive an arbitrary number of other collisions. For example, Merkle-Damgård hash functions
allow to derive collisions of the form (m‖p‖u,m ′‖p ′‖u), where p and p ′ are the padding data,
and u an arbitrary string; this technique can be seen as a kind of length extension attack. And
for the same reasons that BLAKE resists length extension, it also resists this type of collision
multiplication, when given a collision of minimal size (that is, when the collision only occurs for
the hash value, not for intermediate chain values).

5.6.3 Multicollisions

A multicollision is a set of messages that map to the same hash value. We speak of a k-collision
when k distinct colliding messages are known.

Joux’s technique

The technique proposed by Joux [30] finds a k-collision for Merkle-Damgård hash functions
with n-bit hash values in ⌈log2 k⌉ · 2

n/2 calls to the compression function (see Fig. 5.1). The
colliding messages are long of ⌈log2 k⌉ blocks. This technique applies as well for the BLAKE
hash functions, and to all hash functions based on HAIFA. For example, a 32-collision for
BLAKE-256 can be found within 2133 compressions.

h0

h0

h0

h0 m ′
1

m1

m ′
1

m1

h1

h1

m2

m ′
2

h2

H
H
Hj

H
H

Hj

�
�
�*

�
�

�*
H
H
Hj

�
�
�*

Figure 5.1: Illustration of Joux’s technique for 2-collisions, where compress (h0,m1) =

compress (h0,m
′
1) = h1, etc. This technique can apply to BLAKE.

40



Joux’s attack is clearly not a concrete threat, which is demonstrated ad absurdum: to be
applicable, it requires the knowledge of at least two collisions, but any function (resistant or not
to Joux’s attack) for which collisions can be found is broken anyway. Hence this attack only
damages non-collision-resistant hash functions.

Kelsey/Schneier’s technique

The technique presented by Kelsey and Schneier [31] works only when the compression func-
tion admits easily found fixed-points. An advantage over Joux’s attack is that the cost of finding
a k-collision no longer depends on k. Specifically, for a Merkle-Damgård hash function with
n-bit hash values, it makes 3 · 2n/2 compressions and needs storage for 2n/2 message blocks
(see Fig. 5.2). Colliding messages are long of k blocks. This technique does not apply to
BLAKE, because fixed-points cannot be found efficiently, and the counter t foils fixed-point
repetition.

h0 - h0 . . . h0
- hj - hj . . . . . . hj

- hn

h0 - h0 . . . . . . h0
- hj - hj . . . hj

- hn

Figure 5.2: Schematic view of the Kelsey/Schneier multicollision attack on Merkle-Damgård
functions. This technique does not apply to BLAKE.

Faster multicollisions

When an iterated hash admits fixed-points and the IV is chosen by the attacker, this tech-
nique [2] finds a k-collision in time 2n/2 and negligible memory, with colliding messages of
size ⌈log2 k⌉ (see Fig. 5.3. Like the Kelsey/Schneier technique, it is based on the repetition of
fixed-points, thus does not apply to BLAKE.

h0

h0

h0

h0 m ′
1

m1

m ′
1

m1

h0

h0

m1

m ′
1

h0

H
H
Hj

H
H
Hj

�
�
�*

�
�
�*

H
H
Hj

�
�
�*

Figure 5.3: Illustration of the faster multicollision, for 2-collisions on Merkle-Damgård hash
functions. This technique does not apply to BLAKE.

5.6.4 Second preimages

Dean [21, §5.6.3] and subsequently Kelsey and Schneier [31] showed generic attacks on n-bit
iterated hashes that find second preimages in significantly less than 2n compressions. HAIFA
was proven to be resistant to these attacks [22], assuming a strong compression function; this
result applies to BLAKE, as a HAIFA-based design. Therefore, no attack on n-bit BLAKE can

41



find second-preimages in less than 2n trials, unless exploiting the structure of the compression
function.

5.6.5 Side channels

All operations in the BLAKE functions are independent of the input and can be implemented
to run in constant time on all platforms (and still be fast). The ChaCha core function was
designed to be immune to all kind of side-channel attacks (timing, power analysis, etc.), and
BLAKE inherits this property. Side-channel analysis of the eSTREAM finalists also suggests
that Salsa20 and ChaCha are immune to side-channel attacks [42].

5.6.6 SAT solvers

Attacks using SAT-solvers consist in describing a security problem in terms of a SAT instance,
then solving this instance with an efficient solver. These attacks were used for finding colli-
sions [34] and preimages for (reduced) for MD4 and MD5 [20]. The high complexity of BLAKE
and the absence of SAT-solver-based attacks on ChaCha and Salsa20 argues for the resis-
tance of BLAKE to these methods.

5.6.7 Algebraic attacks

Algebraic attacks consist in reducing a security problem to solving a system of equations,
then solving this system. The approach is similar to that of SAT-solver attacks, and for similar
reasons is unlikely to break BLAKE.

5.7 Dedicated attacks

This section describes several strategies for attacking BLAKE, and justifies their limitations.

5.7.1 Symmetric differences

A sufficient (but not necessary) condition to find a collision on BLAKE is to find two message
blocks for which, given same IV’s and salts, the corresponding internal states v and v ′ after the
sequence of rounds satisfy the relation

vi ⊕ vi+8 = v ′
i ⊕ v ′

i+8, i = 0, . . . , 7.

Put differently, it suffices to find a message difference that leads after the rounds sequence to
a difference of the form









v0 ⊕ v ′
0 v1 ⊕ v ′

1 v2 ⊕ v ′
2 v3 ⊕ v ′

3

v4 ⊕ v ′
4 v5 ⊕ v ′

5 v6 ⊕ v ′
6 v7 ⊕ v ′

7

v8 ⊕ v ′
8 v9 ⊕ v ′

9 v10 ⊕ v ′
10 v11 ⊕ v ′

11

v12 ⊕ v ′
12 v13 ⊕ v ′

13 v14 ⊕ v ′
14 v15 ⊕ v ′

15









=









∆0 ∆1 ∆2 ∆3

∆4 ∆5 ∆6 ∆7

∆0 ∆1 ∆2 ∆3

∆4 ∆5 ∆6 ∆7









.

We say that the state has symmetric differences. This condition is not necessary for collisions,
because there may exist collisions for different salts.

42



Birthday attack

A birthday attack on v can be used to find two messages with symmetric differences, that is,
a collision for the “top” and “bottom” differences. Since for each pair of messages the collision
occurs with probability 2−256, a birthday attack requires about 2128 messages. This approach
is likely to be a bit faster than a direct birthday attack on the hash function, because here one
never computes the finalization of the compression function. The attack may be improved if one
finds message differences that give, for example, v0 ⊕ v ′

0 = v8 ⊕ v ′
8 with probability noticeably

higher than 2−32 (for BLAKE-256). Such correlations between differences are however very
unlikely with the recommended number of rounds.

Backward attack

One can pick two random v and v ′ having symmetric differences, and compute rounds back-
ward for two arbitrary distinct messages. In the end the initial states obtained need

1. to have an IV and salt satisfying hi⊕ si mod 4 = h ′
i ⊕ s ′i mod 4, for i = 0, . . . , 7, which occurs

with probability 2−256

2. to be valid initial states for a counter 0 < t ≤ 512, which occurs with probability 2−128

Using a birthday strategy, running this attack requires about 2256 trials, and finds collisions with
different IV’s and different salts. If we allow different counters of arbitrary values, then the initial
state obtained is valid with probability 2−64, and the attacks runs within 2128 × 264 = 2192 trials,
which is still slower than a direct birthday attack.

5.7.2 Differential attack

BLAKE functions can be attacked if one finds a message difference that gives certain output
difference with significantly higher probability than ideally expected. A typical differential attack
uses high-probability differentials for the sequence of round functions. An argument against the
existence of such differentials is that BLAKE’s round function is essentially ChaCha’s “double-
round”, whose differential behavior has been intensively studied without real success; in [3].

Attacks on ChaCha are based on the existence of truncated differentials after three steps
(that is, one and a half BLAKE round) [3]. These differentials have a 1-bit input difference
and a 1-bit output difference; namely, flipping certain bits gives non-negligible biases in certain
output bits. No truncated differential was found through four steps (two BLAKE rounds). This
suggests that differentials in BLAKE with input difference in the IV or the salt cannot be found
for more than two rounds. An input difference in the message spreads even more, because
the difference affects the state through each round of the function.

Rumba [7] is a compression function based on the stream cipher Salsa20; contrary to
BLAKE, the message is put in the initial state and no data is input during the rounds iteration.
Attacks on Rumba in [3] are based on the identification of a linear approximation through three
steps, and the use of message modification techniques to increase the probability of finding
compliant messages. Rumba is based on Salsa20, not on ChaCha, and thus such differentials
are likely to have much lower probability with ChaCha. With its ten rounds (20 steps), BLAKE
is very unlikely to be attacked with such techniques.

43



5.7.3 Slide attack

Slide attacks were originally proposed to attack block ciphers [11,12], and recently were applied
in some sense to hash functions [39]. Here we show how to apply the idea to attack a modified
variant of BLAKE’s compression function.

Suppose all the permutations σi are equal (to, say, the identity). Then for a message such
that m0 = · · · = m15, the sequence of rounds is a repeated application of the same permutation
on the internal state, because for each Gi, the value (mσr(2i) ⊕ cσr(2i+1)) is now independent of
the round index r. The idea of the attack is to use 256 bits of freedom of the message to have,
after one round, an internal state v ′ such that hi ⊕ si mod 4 = h ′

i ⊕ s ′i mod 4, for h ′ and s ′ derived
from v ′ according to the initialization rule. The state obtained will be valid with probability
2−64. Then, for the same message and the (r − 1)-round function, we get a collision after the
finalization process, with different IV, salt, and counter. Runtime is 264 trials, to find collisions
with two different versions of the compression function. For the full version (with nontrivial
permutations), this attack cannot work for more than two rounds.

44



6 Acknowledgments

We thank Dan Bernstein for allowing us to build on Chacha’s design, and for suggesting the
name change for the final. We thank Florian Mendel and Martin Schläffer for their analysis of
BLAKE’s predecessor LAKE, and Orr Dunkelman for communicating us new results on HAIFA.
We also thank all researchers who analyzed BLAKE and found attacks on reduced versions of
it.

Finally, we thank Peter Steigmeier for initially implementing BLAKE on the 8-bit PIC pro-
cessor, and all those who implemented or benchmarked BLAKE in software and hardware.

Jean-Philippe Aumasson was supported by the Swiss National Science Foundation under
project no. 113329, and thanks his current employer (Nagravision SA) for allowing him the
time to work on BLAKE. Willi Meier is supported by GEBERT RÜF STIFTUNG under project
no. GRS-069/07.

45



Bibliography

[1] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-property-
preserving iterated hashing: ROX. In ASIACRYPT, 2007.

[2] Jean-Philippe Aumasson. Faster multicollisions. In INDOCRYPT 2008, 2008.

[3] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Christian
Rechberger. New features of Latin dances: analysis of Salsa, ChaCha, and Rumba. In
FSE, 2008.

[4] Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan. The hash function family
LAKE. In FSE, 2008.

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In CRYPTO, 1996.

[6] Daniel J. Bernstein. ChaCha, a variant of Salsa20. cr.yp.to/chacha.html.

[7] Daniel J. Bernstein. The Rumba20 compression function. cr.yp.to/rumba20.html.

[8] Daniel J. Bernstein. Salsa20. Technical Report 2005/25, ECRYPT eSTREAM, 2005.
cr.yp.to/snuffle.html.

[9] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of Cryptographic
Systems. bench.cr.yp.to.

[10] Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA. ePrint
report 2007/278, 2007.

[11] Alex Biryukov and David Wagner. Slide attacks. In FSE, 1999.

[12] Alex Biryukov and David Wagner. Advanced slide attacks. In EUROCRYPT, 2000.

[13] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast
and secure message authentication. In CRYPTO, 1999.

[14] Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen, and Ove
Scavenius. Rabbit: A new high-performance stream cipher. In FSE, 2003.

[15] Charles Bouillaguet, Pierre-Alain Fouque, Adi Shamir, and Sébastien Zimmer. Second
preimage attacks on dithered hash functions. ePrint report 2007/395, 2007.

[16] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damgård revisited: How to construct a hash function. In CRYPTO, 2005.

46

cr.yp.to/chacha.html
cr.yp.to/rumba20.html
cr.yp.to/snuffle.html
bench.cr.yp.to


[17] Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. In SASC
2006. ECRYPT, 2006.

[18] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In FSE,
1997.

[19] Joan Daemen and Vincent Rijmen. Rijndael for AES. In AES Candidate Conference,
2000.

[20] Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
attacks on secure hash functions using SATSolvers. In SAT, 2007.

[21] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999.

[22] Orr Dunkelman. Re-visiting HAIFA. Talk at the workshop Hash functions in cryptology:
theory and practice, 2008.

[23] ECRYPT. The SHA-3 Zoo. ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.

[24] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized hash-
ing. In CRYPTO, 2006.

[25] Shai Halevi, Steven Myers, and Charles Rackoff. On seed-incompressible functions. In
TCC, 2008.

[26] Luca Henzen, Flavio Carbognani, Norbert Felber, and Wolfgang Fichtner. VLSI hardware
evaluation of the stream ciphers Salsa20 and ChaCha, and the compression function
Rumba. In IEEE International Conference on Signals, Circuits and Systems (SCS’08),
2008.

[27] Luca Henzen, Pietro Gendotti, Patrice Guillet, Enrico Pargaetzi, Martin Zoller, and
Frank K. Gurkaynak. Developing a hardware evaluation method for SHA-3 candidates.
In CHES, 2010.

[28] Julio Cesar Hernandez-Castro, Juan M. E. Tapiador, and Jean-Jacques Quisquater. On
the Salsa20 hash function. In FSE, 2008.

[29] Li Ji and Xu Liangyu. Attacks on round-reduced BLAKE. ePrint report 2009/238, 2009.

[30] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded construc-
tions. In CRYPTO, 2004.

[31] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much
less than 2n work. In EUROCRYPT, 2005.

[32] Stefan Lucks. A failure-friendly design principle for hash functions. In ASIACRYPT, 2005.

[33] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In TCC, 2004.

[34] Ilya Mironov and Lintao Zhang. Applications of SAT solvers to cryptanalysis of hash func-
tions. In SAT, 2006.

[35] NIST. FIPS 180-2 secure hash standard, 2002.

47

ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo


[36] NIST. FIPS 198 the keyed-hash message authentication code, 2002.

[37] NIST. Announcing request for candidate algorithm nominations for a new cryptographic
hash algorithm (SHA-3) family. Federal Register, 72(112), November 2007.

[38] NIST. SP 800-106, randomized hashing digital signatures, 2007.

[39] Thomas Peyrin. Security analysis of extended sponge functions. Talk at the workshop
Hash functions in cryptology: theory and practice, 2008.

[40] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki Nakashima.
Differential cryptanalysis of Salsa20/8. In SASC 2007. ECRYPT, 2007.

[41] Christian Wenzel-Benner and Jens Gräf. XBX: eXternal Benchmarking eXtension.
xbx.das-labor.org/.

[42] Erik Zenner. Cache timing analysis of HC-256. In SASC 2008 – The State of the Art of
Stream Ciphers. ECRYPT, 2008.

48

xbx.das-labor.org/


A Round function example

We give an example of computation by the BLAKE-256 round function.
At the first round G0(v0 , v4 , v8 , v12) computes

v0 ← v0 + v4 + (m0 ⊕ 85A308D3)

v12 ← (v12 ⊕ v0 ) ≫ 16

v8 ← v8 + v12

v4 ← (v4 ⊕ v8 ) ≫ 12

v0 ← v0 + v4 + (m1 ⊕ 243F6A88)

v12 ← (v12 ⊕ v0 ) ≫ 8

v8 ← v8 + v12

v4 ← (v4 ⊕ v8 ) ≫ 7

where 85A308D3 = cσ0(2×0+1) = c1 and 243F6A88 = cσ0(2×0) = c0.
Then G1(v1 , v5 , v9 , v13) computes

v1 ← v1 + v5 + (m2 ⊕ 03707344)

v13 ← (v13 ⊕ v1 ) ≫ 16

v9 ← v9 + v13

v5 ← (v5 ⊕ v9 ) ≫ 12

v1 ← v1 + v5 + (m3 ⊕ 13198A2E)

v13 ← (v13 ⊕ v1 ) ≫ 8

v9 ← v9 + v13

v5 ← (v5 ⊕ v9 ) ≫ 7

and so on until G7(v3 , v4 , v9 , v14), which computes

v3 ← v3 + v4 + (m14 ⊕ B5470917)

v14 ← (v14 ⊕ v3 ) ≫ 16

v9 ← v9 + v14

v4 ← (v4 ⊕ v9 ) ≫ 12

v3 ← v3 + v4 + (m15 ⊕ 3F84D5B5)

v14 ← (v14 ⊕ v3 ) ≫ 8

v9 ← v9 + v14

v4 ← (v4 ⊕ v9 ) ≫ 7

After G7(v3 , v4 , v9 , v14), the second round starts. Because of the round-dependent permuta-

49



tions, G0(v0 , v4 , v8 , v12) now uses the permutation σ1 instead of σ0, and thus computes

v0 ← v0 + v4 + (m14 ⊕ BE5466CF)

v12 ← (v12 ⊕ v0 ) ≫ 16

v8 ← v8 + v12

v4 ← (v4 ⊕ v8 ) ≫ 12

v0 ← v0 + v4 + (m10 ⊕ 3F84D5B5)

v12 ← (v12 ⊕ v0 ) ≫ 8

v8 ← v8 + v12

v4 ← (v4 ⊕ v8 ) ≫ 7

Above, 14 = σ1(2×0) = σ1(0), 10 = σ1(2×0+1) = σ1(1), BE5466CF = c10, and 3F84D5B5 = c14.
Applying similar rules, column steps and diagonal steps continue until the tenth round, which
uses the permutation σ9.

50



B Source code

B.1 VHDL

We give our VHDL code computing the compression function of BLAKE-256 with the [8G] archi-
tecture. We split the implementation into 7 vhd files: blake256, blake256Pkg, initialization,
roundreg, gcomp, finalization, and controller:

File blake256.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

use work.blake256Pkg.all;

entity blake256 is

port (

CLKxCI : in std logic;

RSTxRBI : in std logic;

MxDI : in std logic vector(WWIDTH*16-1 downto 0);

HxDI : in std logic vector(WWIDTH*8-1 downto 0);

SxDI : in std logic vector(WWIDTH*4-1 downto 0);

TxDI : in std logic vector(WWIDTH*2-1 downto 0);

HxDO : out std logic vector(WWIDTH*8-1 downto 0);

InENxSI : in std logic;

OutENxSO : out std logic

);

end blake256;

architecture hash of blake256 is

component controller

port (

CLKxCI : in std logic;

RSTxRBI : in std logic;

VALIDINxSI : in std logic;

VALIDOUTxSO : out std logic;

ROUNDxSO : out unsigned(3 downto 0)

);

end component;

component initialization

port (

HxDI : in std logic vector(WWIDTH*8-1 downto 0);

SxDI : in std logic vector(WWIDTH*4-1 downto 0);

TxDI : in std logic vector(WWIDTH*2-1 downto 0);

VxDO : out std logic vector(WWIDTH*16-1 downto 0)

);

end component;

component roundreg

51



port (

CLKxCI : in std logic;

RSTxRBI : in std logic;

WEIxSI : in std logic;

ROUNDxSI : in unsigned(3 downto 0);

VxDI : in std logic vector(WWIDTH*16-1 downto 0);

MxDI : in std logic vector(WWIDTH*16-1 downto 0);

VxDO : out std logic vector(WWIDTH*16-1 downto 0)

);

end component;

component finalization

port (

VxDI : in std logic vector(WWIDTH*16-1 downto 0);

HxDI : in std logic vector(WWIDTH*8-1 downto 0);

SxDI : in std logic vector(WWIDTH*4-1 downto 0);

HxDO : out std logic vector(WWIDTH*8-1 downto 0)

);

end component;

signal VxD, VFINALxD : std logic vector(WWIDTH*16-1 downto 0);

signal ROUNDxS : unsigned(3 downto 0);

begin -- hash

-----------------------------------------------------------------------------

-- CONTROLLER

-----------------------------------------------------------------------------

u controller: controller

port map (

CLKxCI => CLKxCI,

RSTxRBI => RSTxRBI,

VALIDINxSI => InENxSI,

VALIDOUTxSO => OutENxSO,

ROUNDxSO => ROUNDxS

);

-----------------------------------------------------------------------------

-- INITIALIZATION

-----------------------------------------------------------------------------

u initialization: initialization

port map (

HxDI => HxDI,

SxDI => SxDI,

TxDI => TxDI,

VxDO => VxD

);

-----------------------------------------------------------------------------

-- ROUND

-----------------------------------------------------------------------------

u roundreg: roundreg

port map (

CLKxCI => CLKxCI,

RSTxRBI => RSTxRBI,

WEIxSI => InENxSI,

ROUNDxSI => ROUNDxS,

VxDI => VxD,

MxDI => MxDI,

VxDO => VFINALxD

);

-----------------------------------------------------------------------------

-- FINALIZATION

52



-----------------------------------------------------------------------------

u finalization: finalization

port map (

VxDI => VFINALxD,

HxDI => HxDI,

SxDI => SxDI,

HxDO => HxDO

);

end hash;

File blake256Pkg.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

package blake256Pkg is

constant WWIDTH : integer := 32; -- WORD WIDTH

constant NROUND : integer := 14; -- ROUND NUMBER

-----------------------------------------------------------------------------

-- c Constants

-----------------------------------------------------------------------------

type c const is array (0 to 15) of std logic vector(31 downto 0);

constant C : c const := ((x"243F6A88"), (x"85A308D3"),

(x"13198A2E"), (x"03707344"),

(x"A4093822"), (x"299F31D0"),

(x"082EFA98"), (x"EC4E6C89"),

(x"452821E6"), (x"38D01377"),

(x"BE5466CF"), (x"34E90C6C"),

(x"C0AC29B7"), (x"C97C50DD"),

(x"3F84D5B5"), (x"B5470917"));

-----------------------------------------------------------------------------

-- o Permutations

-----------------------------------------------------------------------------

type perm is array (0 to 9, 0 to 15) of integer;

constant PMATRIX : perm := ((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),

(14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3),

(11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4),

(7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8),

(9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13),

(2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9),

(12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11),

(13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10),

(6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5),

(10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0),

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),

(14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3),

(11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4),

(7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8));

end blake256Pkg;

File initialization.vhd

library ieee;

use ieee.std logic 1164.all;

53



use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

use work.blake256Pkg.all;

entity initialization is

port (

HxDI : in std logic vector(WWIDTH*8-1 downto 0);

SxDI : in std logic vector(WWIDTH*4-1 downto 0);

TxDI : in std logic vector(WWIDTH*2-1 downto 0);

VxDO : out std logic vector(WWIDTH*16-1 downto 0)

);

end initialization;

architecture hash of initialization is

begin -- hash

VxDO(WWIDTH*16-1 downto WWIDTH*8) <= HxDI;

VxDO(WWIDTH*8-1 downto WWIDTH*7) <= SxDI(WWIDTH*4-1 downto WWIDTH*3) xor C(0);

VxDO(WWIDTH*7-1 downto WWIDTH*6) <= SxDI(WWIDTH*3-1 downto WWIDTH*2) xor C(1);

VxDO(WWIDTH*6-1 downto WWIDTH*5) <= SxDI(WWIDTH*2-1 downto WWIDTH) xor C(2);

VxDO(WWIDTH*5-1 downto WWIDTH*4) <= SxDI(WWIDTH-1 downto 0) xor C(3);

VxDO(WWIDTH*4-1 downto WWIDTH*3) <= TxDI(WWIDTH*2-1 downto WWIDTH) xor C(4);

VxDO(WWIDTH*3-1 downto WWIDTH*2) <= TxDI(WWIDTH*2-1 downto WWIDTH) xor C(5);

VxDO(WWIDTH*2-1 downto WWIDTH) <= TxDI(WWIDTH-1 downto 0) xor C(6);

VxDO(WWIDTH-1 downto 0) <= TxDI(WWIDTH-1 downto 0) xor C(7);

end hash;

File roundreg.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

use work.blake256Pkg.all;

entity roundreg is

port (

CLKxCI : in std logic;

RSTxRBI : in std logic;

WEIxSI : in std logic;

ROUNDxSI : in unsigned(3 downto 0);

VxDI : in std logic vector(WWIDTH*16-1 downto 0);

MxDI : in std logic vector(WWIDTH*16-1 downto 0);

VxDO : out std logic vector(WWIDTH*16-1 downto 0)

);

end roundreg;

architecture hash of roundreg is

component gcomp

port (

AxDI : in std logic vector(WWIDTH-1 downto 0);

BxDI : in std logic vector(WWIDTH-1 downto 0);

CxDI : in std logic vector(WWIDTH-1 downto 0);

DxDI : in std logic vector(WWIDTH-1 downto 0);

MxDI : in std logic vector(WWIDTH*2-1 downto 0);

KxDI : in std logic vector(WWIDTH*2-1 downto 0);

AxDO : out std logic vector(WWIDTH-1 downto 0);

BxDO : out std logic vector(WWIDTH-1 downto 0);

54



CxDO : out std logic vector(WWIDTH-1 downto 0);

DxDO : out std logic vector(WWIDTH-1 downto 0)

);

end component;

type SUBT16 is array (15 downto 0) of std logic vector(WWIDTH-1 downto 0);

signal VxDN, VxDP, MxD : SUBT16;

signal G0MxD, G0KxD, G4MxD, G4KxD : std logic vector(WWIDTH*2-1 downto 0);

signal G1MxD, G1KxD, G5MxD, G5KxD : std logic vector(WWIDTH*2-1 downto 0);

signal G2MxD, G2KxD, G6MxD, G6KxD : std logic vector(WWIDTH*2-1 downto 0);

signal G3MxD, G3KxD, G7MxD, G7KxD : std logic vector(WWIDTH*2-1 downto 0);

signal G0AOxD, G0BOxD, G0COxD, G0DOxD : std logic vector(WWIDTH-1 downto 0);

signal G1AOxD, G1BOxD, G1COxD, G1DOxD : std logic vector(WWIDTH-1 downto 0);

signal G2AOxD, G2BOxD, G2COxD, G2DOxD : std logic vector(WWIDTH-1 downto 0);

signal G3AOxD, G3BOxD, G3COxD, G3DOxD : std logic vector(WWIDTH-1 downto 0);

signal G4AOxD, G4BOxD, G4COxD, G4DOxD : std logic vector(WWIDTH-1 downto 0);

signal G5AOxD, G5BOxD, G5COxD, G5DOxD : std logic vector(WWIDTH-1 downto 0);

signal G6AOxD, G6BOxD, G6COxD, G6DOxD : std logic vector(WWIDTH-1 downto 0);

signal G7AOxD, G7BOxD, G7COxD, G7DOxD : std logic vector(WWIDTH-1 downto 0);

begin -- hash

p unform: for i in 15 downto 0 generate

MxD(15-i) <= MxDI(WWIDTH*(i+1)-1 downto WWIDTH*i);

end generate p unform;

VxDO <= VxDP(0) & VxDP(1) & VxDP(2) & VxDP(3) &

VxDP(4) & VxDP(5) & VxDP(6) & VxDP(7) &

VxDP(8) & VxDP(9) & VxDP(10) & VxDP(11) &

VxDP(12) & VxDP(13) & VxDP(14) & VxDP(15);

-----------------------------------------------------------------------------

-- MEMORY INPUTS

-----------------------------------------------------------------------------

p inmem: process ( G4AOxD, G4BOxD, G4COxD, G4DOxD, G5AOxD, G5BOxD, G5COxD,

G5DOxD, G6AOxD, G6BOxD, G6COxD, G6DOxD, G7AOxD, G7BOxD,

G7COxD, G7DOxD, VxDI, VxDP, WEIxSI)

begin -- process p inmem

VxDN <= VxDP;

if WEIxSI = ’1’ then

for i in 15 downto 0 loop

VxDN(15-i) <= VxDI(WWIDTH*(i+1)-1 downto WWIDTH*i);

end loop;

else

VxDN(0) <= G4AOxD;

VxDN(5) <= G4BOxD;

VxDN(10) <= G4COxD;

VxDN(15) <= G4DOxD;

VxDN(1) <= G5AOxD;

VxDN(6) <= G5BOxD;

VxDN(11) <= G5COxD;

VxDN(12) <= G5DOxD;

VxDN(2) <= G6AOxD;

VxDN(7) <= G6BOxD;

VxDN(8) <= G6COxD;

VxDN(13) <= G6DOxD;

VxDN(3) <= G7AOxD;

55



VxDN(4) <= G7BOxD;

VxDN(9) <= G7COxD;

VxDN(14) <= G7DOxD;

end if;

end process p inmem;

-----------------------------------------------------------------------------

-- G INPUTS

-----------------------------------------------------------------------------

p outmem: process (MxD, ROUNDxSI)

begin -- process p outmem

G0MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 0)) & MxD(PMATRIX(to integer(ROUNDxSI), 1));

G1MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 2)) & MxD(PMATRIX(to integer(ROUNDxSI), 3));

G2MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 4)) & MxD(PMATRIX(to integer(ROUNDxSI), 5));

G3MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 6)) & MxD(PMATRIX(to integer(ROUNDxSI), 7));

G4MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 8)) & MxD(PMATRIX(to integer(ROUNDxSI), 9));

G5MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 10)) & MxD(PMATRIX(to integer(ROUNDxSI), 11));

G6MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 12)) & MxD(PMATRIX(to integer(ROUNDxSI), 13));

G7MxD <= MxD(PMATRIX(to integer(ROUNDxSI), 14)) & MxD(PMATRIX(to integer(ROUNDxSI), 15));

G0KxD <= C(PMATRIX(to integer(ROUNDxSI), 1)) & C(PMATRIX(to integer(ROUNDxSI), 0));

G1KxD <= C(PMATRIX(to integer(ROUNDxSI), 3)) & C(PMATRIX(to integer(ROUNDxSI), 2));

G2KxD <= C(PMATRIX(to integer(ROUNDxSI), 5)) & C(PMATRIX(to integer(ROUNDxSI), 4));

G3KxD <= C(PMATRIX(to integer(ROUNDxSI), 7)) & C(PMATRIX(to integer(ROUNDxSI), 6));

G4KxD <= C(PMATRIX(to integer(ROUNDxSI), 9)) & C(PMATRIX(to integer(ROUNDxSI), 8));

G5KxD <= C(PMATRIX(to integer(ROUNDxSI), 11)) & C(PMATRIX(to integer(ROUNDxSI), 10));

G6KxD <= C(PMATRIX(to integer(ROUNDxSI), 13)) & C(PMATRIX(to integer(ROUNDxSI), 12));

G7KxD <= C(PMATRIX(to integer(ROUNDxSI), 15)) & C(PMATRIX(to integer(ROUNDxSI), 14));

end process p outmem;

-----------------------------------------------------------------------------

-- G BLOCKS

-----------------------------------------------------------------------------

u gcomp0: gcomp

port map (

AxDI => VxDP(0), BxDI => VxDP(4), CxDI => VxDP(8), DxDI => VxDP(12), MxDI => G0MxD,

KxDI => G0KxD, AxDO => G0AOxD, BxDO => G0BOxD, CxDO => G0COxD, DxDO => G0DOxD

);

u gcomp1: gcomp

port map (

AxDI => VxDP(1), BxDI => VxDP(5), CxDI => VxDP(9), DxDI => VxDP(13), MxDI => G1MxD,

KxDI => G1KxD, AxDO => G1AOxD, BxDO => G1BOxD, CxDO => G1COxD, DxDO => G1DOxD

);

u gcomp2: gcomp

port map (

AxDI => VxDP(2), BxDI => VxDP(6), CxDI => VxDP(10), DxDI => VxDP(14), MxDI => G2MxD,

KxDI => G2KxD, AxDO => G2AOxD, BxDO => G2BOxD, CxDO => G2COxD, DxDO => G2DOxD

);

u gcomp3: gcomp

port map (

AxDI => VxDP(3), BxDI => VxDP(7), CxDI => VxDP(11), DxDI => VxDP(15), MxDI => G3MxD,

KxDI => G3KxD, AxDO => G3AOxD, BxDO => G3BOxD, CxDO => G3COxD, DxDO => G3DOxD

);

-----------------------

u gcomp4: gcomp

port map (

AxDI => G0AOxD, BxDI => G1BOxD, CxDI => G2COxD, DxDI => G3DOxD, MxDI => G4MxD,

KxDI => G4KxD, AxDO => G4AOxD, BxDO => G4BOxD, CxDO => G4COxD, DxDO => G4DOxD

56



);

u gcomp5: gcomp

port map (

AxDI => G1AOxD, BxDI => G2BOxD, CxDI => G3COxD, DxDI => G0DOxD, MxDI => G5MxD,

KxDI => G5KxD, AxDO => G5AOxD, BxDO => G5BOxD, CxDO => G5COxD, DxDO => G5DOxD

);

u gcomp6: gcomp

port map (

AxDI => G2AOxD, BxDI => G3BOxD, CxDI => G0COxD, DxDI => G1DOxD, MxDI => G6MxD,

KxDI => G6KxD, AxDO => G6AOxD, BxDO => G6BOxD, CxDO => G6COxD, DxDO => G6DOxD

);

u gcomp7: gcomp

port map (

AxDI => G3AOxD, BxDI => G0BOxD, CxDI => G1COxD, DxDI => G2DOxD, MxDI => G7MxD,

KxDI => G7KxD, AxDO => G7AOxD, BxDO => G7BOxD, CxDO => G7COxD, DxDO => G7DOxD

);

-----------------------------------------------------------------------------

-- v MEMORY

-----------------------------------------------------------------------------

p mem: process (CLKxCI, RSTxRBI)

begin -- process p vmem

if RSTxRBI = ’0’ then -- asynchronous reset (active low)

VxDP <= (others => (others => ’0’));

elsif CLKxCI’event and CLKxCI = ’1’ then -- rising clock edge

VxDP <= VxDN;

end if;

end process p mem;

end hash;

File gcomp.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

use work.blake256Pkg.all;

entity gcomp is

port (

AxDI : in std logic vector(WWIDTH-1 downto 0);

BxDI : in std logic vector(WWIDTH-1 downto 0);

CxDI : in std logic vector(WWIDTH-1 downto 0);

DxDI : in std logic vector(WWIDTH-1 downto 0);

MxDI : in std logic vector(WWIDTH*2-1 downto 0);

KxDI : in std logic vector(WWIDTH*2-1 downto 0);

AxDO : out std logic vector(WWIDTH-1 downto 0);

BxDO : out std logic vector(WWIDTH-1 downto 0);

CxDO : out std logic vector(WWIDTH-1 downto 0);

DxDO : out std logic vector(WWIDTH-1 downto 0)

);

end gcomp;

architecture hash of gcomp is

signal T1, T4, T7, T10 : unsigned(WWIDTH-1 downto 0);

signal T2, T3, T5, T6 : std logic vector(WWIDTH-1 downto 0);

signal T8, T9, T11, T12 : std logic vector(WWIDTH-1 downto 0);

57



signal TK1, TK2 : std logic vector(WWIDTH-1 downto 0);

begin -- hash

TK1 <= MxDI(WWIDTH*2-1 downto WWIDTH) xor KxDI(WWIDTH*2-1 downto WWIDTH);

T1 <= unsigned(AxDI) + unsigned(BxDI) + unsigned(TK1);

T2 <= std logic vector(T1) xor DxDI;

T3 <= T2(15 downto 0) & T2(WWIDTH-1 downto 16);

T4 <= unsigned(CxDI) + unsigned(T3);

T5 <= std logic vector(T4) xor BxDI;

T6 <= T5(11 downto 0) & T5(WWIDTH-1 downto 12);

---------------------------------------------------------------------------

TK2 <= MxDI(WWIDTH-1 downto 0) xor KxDI(WWIDTH-1 downto 0);

T7 <= T1 + unsigned(T6) + unsigned(TK2);

T8 <= std logic vector(T7) xor T3;

T9 <= T8(7 downto 0) & T8(WWIDTH-1 downto 8);

T10 <= T4 + unsigned(T9);

T11 <= std logic vector(T10) xor T6;

T12 <= T11(6 downto 0) & T11(WWIDTH-1 downto 7);

AxDO <= std logic vector(T7);

BxDO <= T12;

CxDO <= std logic vector(T10);

DxDO <= T9;

end hash;

File finalization.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

use work.blake256Pkg.all;

entity finalization is

port (

VxDI : in std logic vector(WWIDTH*16-1 downto 0);

HxDI : in std logic vector(WWIDTH*8-1 downto 0);

SxDI : in std logic vector(WWIDTH*4-1 downto 0);

HxDO : out std logic vector(WWIDTH*8-1 downto 0)

);

end finalization;

architecture hash of finalization is

type SUB4 is array (3 downto 0) of std logic vector(WWIDTH-1 downto 0);

type SUB8 is array (7 downto 0) of std logic vector(WWIDTH-1 downto 0);

type SUB16 is array (15 downto 0) of std logic vector(WWIDTH-1 downto 0);

signal SINxD : SUB4;

signal HINxD, HOUTxD : SUB8;

signal VxD : SUB16;

begin -- hash

p unform4: for i in 0 to 3 generate

SINxD(i) <= SxDI(WWIDTH*(i+1)-1 downto WWIDTH*i);

end generate p unform4;

p unform8: for i in 0 to 7 generate

HINxD(i) <= HxDI(WWIDTH*(i+1)-1 downto WWIDTH*i);

58



HxDO(WWIDTH*(i+1)-1 downto WWIDTH*i) <= HOUTxD(i);

end generate p unform8;

p unform16: for i in 0 to 15 generate

VxD(i) <= VxDI(WWIDTH*(i+1)-1 downto WWIDTH*i);

end generate p unform16;

HOUTxD(0) <= HINxD(0) xor VxD(0) xor VxD(8) xor SINxD(0);

HOUTxD(1) <= HINxD(1) xor VxD(1) xor VxD(9) xor SINxD(1);

HOUTxD(2) <= HINxD(2) xor VxD(2) xor VxD(10) xor SINxD(2);

HOUTxD(3) <= HINxD(3) xor VxD(3) xor VxD(11) xor SINxD(3);

HOUTxD(4) <= HINxD(4) xor VxD(4) xor VxD(12) xor SINxD(0);

HOUTxD(5) <= HINxD(5) xor VxD(5) xor VxD(13) xor SINxD(1);

HOUTxD(6) <= HINxD(6) xor VxD(6) xor VxD(14) xor SINxD(2);

HOUTxD(7) <= HINxD(7) xor VxD(7) xor VxD(15) xor SINxD(3);

end hash;

File controller.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

use work.blake256Pkg.all;

entity controller is

port (

CLKxCI : in std logic;

RSTxRBI : in std logic;

VALIDINxSI : in std logic;

VALIDOUTxSO : out std logic;

ROUNDxSO : out unsigned(3 downto 0)

);

end controller;

architecture hash of controller is

type state is (idle, round, fin);

signal STATExDP, STATExDN : state;

signal ROUNDxDP, ROUNDxDN : unsigned(3 downto 0);

begin -- hash

ROUNDxSO <= ROUNDxDP;

fsm: process (ROUNDxDP, STATExDP, VALIDINxSI)

begin -- process fsm

VALIDOUTxSO <= ’0’;

ROUNDxDN <= (others => ’0’);

case STATExDP is

-------------------------------------------------------------------------

when idle =>

if VALIDINxSI = ’1’ then

STATExDN <= round;

else

STATExDN <= idle;

end if;

-------------------------------------------------------------------------

59



when round =>

if ROUNDxDP < NROUND-1 then

ROUNDxDN <= ROUNDxDP + 1;

STATExDN <= round;

else

STATExDN <= fin;

end if;

-------------------------------------------------------------------------

when fin =>

VALIDOUTxSO <= ’1’;

STATExDN <= idle;

-------------------------------------------------------------------------

when others =>

STATExDN <= idle;

end case;

end process fsm;

process (CLKxCI, RSTxRBI)

begin -- process

if RSTxRBI = ’0’ then -- asynchronous reset (active low)

STATExDP <= idle;

ROUNDxDP <= (others => ’0’);

elsif CLKxCI’event and CLKxCI = ’1’ then -- rising clock edge

STATExDP <= STATExDN;

ROUNDxDP <= ROUNDxDN;

end if;

end process;

end hash;

B.2 PIC assembly

We give the assembly code computing the round function of BLAKE-256.

60



; round function of BLAKE32

; indirect adress register FSR0 used for accessing m

; FSR1 used for accessing c

do Gi

clrf FSR1H ; stays zero al the time

; only lower adress range is used for cts address

movlw h’01’ ; table m starts at equ H’110’

movWF FSR0H ; so using FSR0 we need to set highbyte correct

movFF i,pointer2mc ; use i

bcf STATUS, C ; prepare CARRYbit for *2

rlcF pointer2mc ; 2*i

movF pointer2mc ; load pointer into w

addWF r,w ; ADD r (permutation offset in table)

movWF pointer2mc ; ..save it back, is now r(2i)

movlw high permut table m ; ..and use it here to find adress of current m

movwf TBLPTRH

rlncf pointer2mc, w

movwf TBLPTRL

tblrd* ; table read here into TABLAT

movff TABLAT, FSR0L ; move adress to pointer

movFF INDF0,tmpXOR lo ; access content of m signum r(2i) low byte loaded

movFF PREINC0,tmpXOR ml ; preincrement pointer, access midlowbyte

movFF PREINC0,tmpXOR mh ; preincrement pointer, access midhighbyte

movFF PREINC0,tmpXOR hi ; preincrement pointer, access highbyte

term a1 lowbyte

incF pointer2mc ; pointer now (2i+1)

movF pointer2mc ; load pointer into w

movlw high permut table c ; find c signum r (2i+1)lowbyte adress

movwf TBLPTRH

rlncf pointer2mc, w

movwf TBLPTRL

tblrd* ; table read here into TABLAT

movff TABLAT, FSR1L ; move adress to pointer

movF INDF1 ; content of c signum r(2i+1) now in working reg

xorWF tmpXOR lo,w ; lowest byte [m signum r (2i) XOR c signum r (2i+1)]

addWFC b lo,w ; ADD b with carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR ml ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

addWFC a lo,f ; ADD a, place result in a

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR ml ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

61



term a1 midlowbyte

movF PREINC1 ; content of c signum r (2i+1) midlow byte loaded in w

xorWF tmpXOR ml,w ; midlow byte [m signum r (2i) XOR c signum r (2i+1)]

addWFC b ml,w ; ADD b with carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

addWFC a ml,f ; ADD a, place result in a

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

term a1 midhighbyte

movF PREINC1 ; content of c signum r (2i+1) midhigh byte loaded in w

xorWF tmpXOR mh,w ; midhigh byte [m signum (2i) XOR c signum (2i+1)]

addWFC b mh,w ; ADD b with carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

addWFC a mh,f ; ADD a, place result in a

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

term a1 highbyte

movF PREINC1 ; content of c signum r (2i+1) high byte loaded in w

xorWF tmpXOR hi,w ; highest byte [m signum (2i) XOR c signum (2i+1)]

addWFC b hi,w ; ADD b with carry, but carry disapears in black hole

addWFC a hi,f ; ADD a, place result in a

term d1 ;... next is d = d xor a ≪ 16

call compute dxora

movFF d hi,tmpXOR hi ; rotate 16 is actually only swapping

movFF d ml,d hi

movFF tmpXOR hi,d ml

movFF d mh,tmpXOR mh

movFF d lo,d mh

movFF tmpXOR mh,d lo

term c1

call compute c

62



term b1 ;... next is b = b xor c ≪ 12

call compute bxorc

; now rotate left 12 positions

bcf STATUS, C ; prepare Carry flag with 0

btfsc b ml,7 ; IF bit 7 of ml-byte

bsf STATUS, C ; THEN prepare Carry with 1

rlcF b hi

rlcF b ml

rlcF b hi

rlcF b ml

rlcF b hi

rlcF b ml

rlcF b hi

rlcF b ml

bcf STATUS, C ; prepare Carry flag with 0

btfsc b lo,7 ; IF bit 7 of ml-byte

bsf STATUS, C ; THEN prepare Carry with 1

rlcF b mh

rlcF b lo

rlcF b mh

rlcF b lo

rlcF b mh

rlcF b lo

rlcF b mh

rlcF b lo

term a2

movF pointer2mc ; load pointer into w [now (2i+1)]

movlw high permut table m ; ..and use it here to find adress of current m

movwf TBLPTRH

rlncf pointer2mc, w

movwf TBLPTRL

tblrd* ; table read here into TABLAT

movff TABLAT, FSR0L ; move adress to pointer

movFF INDF0,tmpXOR lo ; access content of m signum r(2i) low byte loaded

movFF PREINC0,tmpXOR ml ; preincrement pointer, access midlowbyte

movFF PREINC0,tmpXOR mh ; preincrement pointer, access midhighbyte

movFF PREINC0,tmpXOR hi ; preincrement pointer, access highbyte

63



term a2 lowbyte

decF pointer2mc ; pointer now (2i)

movF pointer2mc ; load pointer into w

movlw high permut table c ; find c signum r (2i)lowbyte adress

movwf TBLPTRH

rlncf pointer2mc, w

movwf TBLPTRL

tblrd* ; table read here into TABLAT

movff TABLAT, FSR1L ; move adress to pointer, points now to c signum r(2i)

movF INDF1 ; content of c signum r(2i+1) now in working reg

xorWF tmpXOR lo,w ; lowest byte [m signum r (2i+1) XOR c signum r (2i)]

addWFC b lo,w ; ADD b with carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR ml ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

addWFC a lo,f ; ADD a, place result in a

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR ml ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

term a2 midlowbyte

movF PREINC1 ; content of c signum r (2i) midlow byte loaded in w

xorWF tmpXOR ml,w ; midlow byte [m signum r (2i+1) XOR c signum r (2i)]

addWFC b ml,w ; ADD b with carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

addWFC a ml,f ; ADD a, place result in a

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

term a2 midhighbyte

movF PREINC1 ; content of c signum r (2i) midhigh byte loaded in w

xorWF tmpXOR mh,w ; midhigh byte [m signum r (2i+1) XOR c signum r (2i)]

addWFC b mh,w ; ADD b with carry

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

addWFC a mh,f ; ADD a, place result in a

btfsc STATUS, C ; IF carrybit =1 ...

incF tmpXOR hi ; then ... add carry

64



term a2 highbyte

movF PREINC1 ; content of c signum r (2i) high byte loaded in w

xorWF tmpXOR hi,w ; highest byte [m signum r (2i+1) XOR c signum r (2i)]

addWFC b hi,w ; ADD b with carry, but carry disapears in black hole

addWFC a hi,f ; ADD a, place result in a

term d2 ;... next is d = d xor a ≪ 8

call compute dxora

movFF d hi,tmpXOR hi ; rotate 8 is actually swapping

movFF d mh,d hi

movFF d ml,d mh

movFF d lo,d ml

movFF tmpXOR hi,d lo

term c2

call compute c

term b2 ;... next is b = b xor c ≪ 7

call compute bxorc

; now rotate left 7 positions

; which can be seen as rotate right 1 and byte-wapping

bcf STATUS, C ; prepare Carry flag with 0

btfsc b lo,0 ; IF bit 0 of lo-byte

bsf STATUS, C ; THEN prepare Carry with 1

rrcF b hi ; rotate through carry

rrcF b mh

rrcF b ml

rrcF b lo

movFF b lo,tmpXOR lo ; temporarly save low

movFF b hi,b lo ; swap byte high -> low

movFF b mh,b hi ; midhigh to high

movFF b ml,b mh ; midlow to midhigh

movFF tmpXOR lo,b ml ; low to midlow

return

; function d <- d XOR a

compute dxora

movF a lo ; load a

xorWF d lo,f ; d XOR a, result in d

movF a ml

xorWF d ml,f

movF a mh

xorWF d mh,f

movF a hi

xorWF d hi,f

return

65



; function c <- c + d

compute c

movF d lo ; load d

addWFC c lo,f ; ADD c, place result in c

btfsc STATUS, C ; IF carrybit =1 ...

incF d ml ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF d mh ; then ... add carry

btfsc STATUS, C ; IF carrybit =1 ...

incF d hi ; then ... add carry

movF d ml

addWFC c ml,f

btfsc STATUS, C

incF d mh

btfsc STATUS, C

incF d hi

movF d mh

addWFC c mh,f

btfsc STATUS, C

incF d hi

movF d hi

addWFC c hi,f

return

; function b <- b XOR c

compute bxorc

movF c lo ; load c

xorWF b lo,f ; b XOR c, result in b

movF c ml

xorWF b ml,f

movF c mh

xorWF b mh,f

movF c hi

xorWF b hi,f

return

B.3 ANSI C

In the C code provided with the submission, we added a function AddSalt( hashState *

state, const BitSequence * salt), whose arguments are:

• an initialized state (state)

• a salt (salt) of type BitSequence, long of 128 bits for BLAKE-224 and BLAKE-256, and
long of 256 bits for BLAKE-384 or BLAKE-512

The function AddSalt extends the initialization of the hash state by adding a salt as extra
parameter. Calling AddSalt is not compulsory; applications that don’t use a salt should not call
AddSalt. When a salt is required, AddSalt should be called after the call Init, and before any
call to Update.

We give our optimized C code computing the compression function of BLAKE-256.

66



static HashReturn compress32( hashState * state, const BitSequence * datablock ) {

#define ROT32(x,n) (((x)≪(32-n))|( (x)≫(n)))

#define ADD32(x,y) ((u32)((x) + (y)))

#define XOR32(x,y) ((u32)((x) ^ (y)))

#define G32(a,b,c,d,i) do {\
v[a] = XOR32(m[sigma[round][i]], c32[sigma[round][i+1]])+ADD32(v[a],v[b]);\

v[d] = ROT32(XOR32(v[d],v[a]),16);\

v[c] = ADD32(v[c],v[d]);\

v[b] = ROT32(XOR32(v[b],v[c]),12);\

v[a] = XOR32(m[sigma[round][i+1]], c32[sigma[round][i]])+ADD32(v[a],v[b]);\

v[d] = ROT32(XOR32(v[d],v[a]), 8);\

v[c] = ADD32(v[c],v[d]);\

v[b] = ROT32(XOR32(v[b],v[c]), 7);\

} while (0)

u32 v[16];

u32 m[16];

int round;

/* get message */

m[ 0] = U8TO32 BE(datablock + 0);

m[ 1] = U8TO32 BE(datablock + 4);

m[ 2] = U8TO32 BE(datablock + 8);

m[ 3] = U8TO32 BE(datablock +12);

m[ 4] = U8TO32 BE(datablock +16);

m[ 5] = U8TO32 BE(datablock +20);

m[ 6] = U8TO32 BE(datablock +24);

m[ 7] = U8TO32 BE(datablock +28);

m[ 8] = U8TO32 BE(datablock +32);

m[ 9] = U8TO32 BE(datablock +36);

m[10] = U8TO32 BE(datablock +40);

m[11] = U8TO32 BE(datablock +44);

m[12] = U8TO32 BE(datablock +48);

m[13] = U8TO32 BE(datablock +52);

m[14] = U8TO32 BE(datablock +56);

m[15] = U8TO32 BE(datablock +60);

/* initialization */

v[ 0] = state->h32[0];

v[ 1] = state->h32[1];

v[ 2] = state->h32[2];

v[ 3] = state->h32[3];

v[ 4] = state->h32[4];

v[ 5] = state->h32[5];

v[ 6] = state->h32[6];

v[ 7] = state->h32[7];

v[ 8] = state->salt32[0];

v[ 8] =̂ 0x243F6A88;

v[ 9] = state->salt32[1];

v[ 9] =̂ 0x85A308D3;

v[10] = state->salt32[2];

v[10] =̂ 0x13198A2E;

v[11] = state->salt32[3];

v[11] =̂ 0x03707344;

v[12] = 0xA4093822;

v[13] = 0x299F31D0;

v[14] = 0x082EFA98;

v[15] = 0xEC4E6C89;

if (state->nullt == 0) {
v[12] =̂ state->t32[0];

v[13] =̂ state->t32[0];

67



v[14] =̂ state->t32[1];

v[15] =̂ state->t32[1];

}

for(round=0; round<14; ++round) {

G32( 0, 4, 8,12, 0);

G32( 1, 5, 9,13, 2);

G32( 2, 6,10,14, 4);

G32( 3, 7,11,15, 6);

G32( 3, 4, 9,14,14);

G32( 2, 7, 8,13,12);

G32( 0, 5,10,15, 8);

G32( 1, 6,11,12,10);

}

state->h32[0] =̂ v[ 0];

state->h32[1] =̂ v[ 1];

state->h32[2] =̂ v[ 2];

state->h32[3] =̂ v[ 3];

state->h32[4] =̂ v[ 4];

state->h32[5] =̂ v[ 5];

state->h32[6] =̂ v[ 6];

state->h32[7] =̂ v[ 7];

state->h32[0] =̂ v[ 8];

state->h32[1] =̂ v[ 9];

state->h32[2] =̂ v[10];

state->h32[3] =̂ v[11];

state->h32[4] =̂ v[12];

state->h32[5] =̂ v[13];

state->h32[6] =̂ v[14];

state->h32[7] =̂ v[15];

state->h32[0] =̂ state->salt32[0];

state->h32[1] =̂ state->salt32[1];

state->h32[2] =̂ state->salt32[2];

state->h32[3] =̂ state->salt32[3];

state->h32[4] =̂ state->salt32[0];

state->h32[5] =̂ state->salt32[1];

state->h32[6] =̂ state->salt32[2];

state->h32[7] =̂ state->salt32[3];

return SUCCESS;

}

68



C Intermediate values

As required by NIST, we provide intermediate values for hashing a one-block and a two-block
message, for each of the required message sizes. For the one-block case, we hash the 8-
bit message 00000000. For the two-block case we hash the 576-bit message 000...000 with
BLAKE-256 and BLAKE-224, and we hash the 1152-bit message 000...000 with BLAKE-512
and BLAKE-384. Values are given left to right, top to bottom. For example

00800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000008

represents
m0 m1 m2 m3 m4 m5 m6 m7

m8 m9 m10 m11 m12 m13 m14 m15

C.1 BLAKE-256

One-block message

IV:
6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19

Message block after padding:

00800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000008

Salt and counter

00000000 00000000 00000000 00000000 00000008 00000000

Initial state of v:

6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19

243F6A88 85A308D3 13198A2E 03707344 A409382A 299F31D8 082EFA98 EC4E6C89

State v after 1 round:

E78B8DFE 150054E7 CABC8992 D15E8984 0669DF2A 084E66E3 A516C4B3 339DED5B

26051FB7 09D18B27 3A2E8FA8 488C6059 13E513E6 B37ED53E 16CAC7B9 75AF6DF6

State v after 2 rounds:

9DE875FD 8286272E ADD20174 F1B0F1B7 37A1A6D3 CF90583A B67E00D2 943A1F4F

E5294126 43BD06BF B81ECBA2 6AF5CEAF 4FEB3A1F 0D6CA73C 5EE50B3E DC88DF91

State v after 5 rounds:

5AF61049 FD4A2ADC 5C1DBBD8 5BA19232 9A685791 2B3DD795 A84DF8D6 A1D50A83

E3C8D94A 86CCC20A B4000CA4 596AC140 9D159377 A6374FFA F00C4787 767CE962

State v after 10 rounds:

BC04B9A6 C340C7AC 4AA36DAA FDB53079 0D85D1BE 14500FCD E8A133E1 788F54AE

07EEC484 0505399D 837CCC3F 19AD3EE7 9D3FA079 FA1C772A F0DFD074 5C25729F

69



State v after 14 rounds:

7A07E519 4C7E2BAC 28ACF9EC A5ADB385 F201E161 06B69682 B290A439 232A0956

1CE6D791 BACE48A4 761DD447 D40FF618 D7A1D95F 0F298AD4 8E03E31D 69D958C8

Hash value output:

0CE8D4EF 4DD7CD8D 62DFDED9 D4EDB0A7 74AE6A41 929A74DA 23109E8F 11139C87

Two-block message

IV:
6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19

First compression Message block after padding:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Salt and counter

00000000 00000000 00000000 00000000 00000200 00000000

Initial state of v:

6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19

243F6A88 85A308D3 13198A2E 03707344 A4093A22 299F33D0 082EFA98 EC4E6C89

State v after 1 round:

CC8704B8 14AF5E97 448BD7A4 7D5ED80F 88D88192 8DF5C28F B11E631F 0AC6CEAB

01A455BA 43BAAEC3 C07C7DEC 4C912C63 6F8CDFEC 87FD02E0 D969B7B1 B74125B6

State v after 2 rounds:

D7ED8FC3 CC0A55F2 24014945 38A9D033 8DA19E93 9B91D76A 18E0448C C10A0DF6

FB350B3C D894B64E F1B35175 D0DFF837 54E0DF8F B3131C53 64BCB7A4 819FDFEA

State v after 5 rounds:

6BB8EAA1 FB2D35B9 F1C87115 8CCED083 C3CCF47F EC295B60 18CF9A21 DC2AC833

1F87FBA1 759AE5F0 EE2F791D 11410F9F 46C442D0 EC5BE440 DC9ED226 97E6E8BC

State v after 10 rounds:

58B76F7A 24300259 EA5BAEE6 7ABECB5C BEAA0C3C 38251BB6 F0D337AF FF985D99

527E3C0C 4EBFC5FA BF73D485 8B538346 03C56421 D1B9147E 63662E6C 70E9E8B2

State v after 14 rounds:

730FC16C 4EC65CF3 8CBF360F D0D11F4F 8E062A2D 07E1DC39 B87B1478 D1E60507

ACB995F2 E16E3E15 088D91E1 BC2AF23B B8D7BE9C B50D24FE 72662A9D 70AF0E4D

Intermediate hash value

B5BFB2F9 14CFCC63 B85C549C C9B4184E 67DFC6CE 29E9904B D59EE74E FAA9C653

70



Second compression Message block after padding:

00000000 00000000 80000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000240

Salt and counter

00000000 00000000 00000000 00000000 00000240 00000000

Initial state of v:

B5BFB2F9 14CFCC63 B85C549C C9B4184E 67DFC6CE 29E9904B D59EE74E FAA9C653

243F6A88 85A308D3 13198A2E 03707344 A4093A62 299F3390 082EFA98 EC4E6C89

State v after 1 round:

CDB79DEF 93A4ECB5 7565BDDF 6A981300 DDC59D39 1C31C834 2733AC31 DF5F9C73

B0F52F8A 6EE197F0 B9C02368 BE5FD351 F28C1CA7 7C045278 350C6A3F 831429FB

State v after 2 rounds:

A860DA64 9F0316A8 D4EA6EF7 306B3189 E8FF54B6 C44EF07F 47AA4DC5 B1861FE9

654BF44C 63CA0C35 499E7310 38B9FA52 161D18F7 E8F59C12 2A8F9427 9A77E537

State v after 5 rounds:

1FD187B1 5CC01F1F 498FD157 56161CC5 D27C3FE9 A6B47936 D34BAA06 DC1B2684

4F4A4639 06FDD62E 3B9EB4BB 0F749E2C 257B233B F3BF6D70 88155286 574A5FC8

State v after 10 rounds:

082D579C D41F4DF3 973DB87A 653D77E5 1FA637C8 F4BDAA22 5DBC0EAC D3E836A8

1E7CF1E0 5F1C9C3B 13CD8444 79C5ABFB 4802A70C 82A926E5 4A781534 6B4BD102

State v after 14 rounds:

4DA680DC 9B42342C B18EDAA2 65461D92 33289EF3 88C7594D EDA0117E 3A412197

2C0088F6 A2DDB7F8 DD9FC832 EE375CE3 B1B3A271 B2732537 DA252F9B 1C2ACA85

Hash value output:

D419BAD3 2D504FB7 D44D460C 42C5593F E544FA4C 135DEC31 E21BD9AB DCC22D41

C.2 BLAKE-224

One-block message

IV:
C1059ED8 367CD507 3070DD17 F70E5939 FFC00B31 68581511 64F98FA7 BEFA4FA4

Message block after padding:

00800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

Salt and counter

00000000 00000000 00000000 00000000 00000008 00000000

Initial state of v:

C1059ED8 367CD507 3070DD17 F70E5939 FFC00B31 68581511 64F98FA7 BEFA4FA4

243F6A88 85A308D3 13198A2E 03707344 A409382A 299F31D8 082EFA98 EC4E6C89

71



State v after 1 round:

04027914 24CFDD6B 7D33F394 12CBCC67 2DE38C62 6664F3D3 1D8D68FC D6CD0B0B

481423A7 2F45B4F9 21C35492 50FB35FE 1255AE24 DFF2A626 9240D453 E8530B9D

State v after 2 rounds:

9FB36742 31BC5AC2 064D4095 4A2260B2 C12165D2 00D0EE58 AD1D8245 4F7B0F17

36EF0086 38DFA9E5 A67CC4B5 20963EEB F2821838 D01907D2 7D15E12D 9B9EF864

State v after 5 rounds:

AAB629F7 16DE3E4A 5E78A622 257EBE3C 8669EA65 99D687FD A632EA5E 511B1C46

93068AB9 67EA727C 5EC4C9A9 7212CD6A 7F90526F 6E8952F4 70E30791 16C1EBD8

State v after 10 rounds:

C9E1652F BA9E5BDE 660E702E 67FC6579 BE6B4C7F F5F0749A 1DFE158F 3B49131F

62A1B43D E2D6F00A 67AAA716 E006A66D 95556F38 8145A426 1EC4DE7E FC75FF74

State v after 14 rounds:

CE6B0120 7F7831C3 6C4AD4F1 145018AF E6FC08D7 3796581B 04D73114 ACCE45BE

4A6A54FB 5DFFCE8B 2653278F 8D163884 E703278E A1FF6179 C5093076 D4125387

Hash value output:

4504CB03 14FB2A4F 7A692E69 6E487912 FE3F2468 FE312C73 A5278EC5

Two-block message

IV:
C1059ED8 367CD507 3070DD17 F70E5939 FFC00B31 68581511 64F98FA7 BEFA4FA4

First compression Message block after padding:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Salt and counter

00000000 00000000 00000000 00000000 00000200 00000000

Initial state of v:

C1059ED8 367CD507 3070DD17 F70E5939 FFC00B31 68581511 64F98FA7 BEFA4FA4

243F6A88 85A308D3 13198A2E 03707344 A4093A22 299F33D0 082EFA98 EC4E6C89

State v after 1 round:

E5B52991 1FBB7ECB F7350E64 0C8D11C6 148B1E94 7C688FED C8FEEE1B 4046AC6E

8BC4F63C C1C7FE8C 1FA6AE53 EE4DC034 87863887 2D70805B 4FA9A232 D9860F12

State v after 2 rounds:

2F3A90E3 EBBBC331 5737A2D1 6480F282 DB471183 43014ABD 88924F03 5160CB72

6E8F7EEB 115D1FD6 43387C5F FFB59797 F8663D1A D5FA0EC9 0C0ED9E5 8579D4A6

State v after 5 rounds:

F729608D 8119B461 E62F4D54 7889D045 838FBD7D 1A1E5618 8728C02B E973E337

06F32665 23B502C7 FEDC26FC CEFD14A6 DAD6B58F 4DCA0D19 31D904CB 3C7E2160

72



State v after 10 rounds:

D3465C90 9AF58DB6 77044D06 8782E7B8 F5C3F50A 78A3A751 D7923EF6 647B8D32

7B80826F 21577A7A CE253568 1B6A082B D5E512E2 E213D8E0 F39651A7 F9FDAE6E

State v after 14 rounds:

8CEF86C7 A53FE03F C1CF9E13 92912AB7 E666B2CE 50E0C7B4 DFCD83E6 99AAAAB2

5A8C1DB8 C5DF5DA5 5252A472 02964CE7 64F7CC82 6737018C DB48674D B0D3F7D2

Intermediate hash value

176605A7 569C689D A3EDE776 67093F69 7D51757D 5F8FD329 607C6B0C 978312C4

Second compression Message block after padding:

00000000 00000000 80000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000240

Salt and counter

00000000 00000000 00000000 00000000 00000240 00000000

Initial state of v:

176605A7 569C689D A3EDE776 67093F69 7D51757D 5F8FD329 607C6B0C 978312C4

243F6A88 85A308D3 13198A2E 03707344 A4093A62 299F3390 082EFA98 EC4E6C89

State v after 1 round:

78B24F69 DD359E3B 7C75E05E 779A4316 3D2BFBEE EA479686 DE701096 E01398E5

8907B84D 855FB196 D682ED6C 5487D95E CAEE46BB 33A39BBD 9C28F332 5FF502F1

State v after 2 rounds:

BC5A4C4C AD7D995A 00BBA35D 0BEA4495 D6C0F1CF 891ECA54 8EB95E77 D1614112

73E586AB 40CAEBC9 19C689DD 624BC7B7 7729314C 0FC7B802 E269ED89 B4C40DD1

State v after 5 rounds:

9664B1E6 C7329A7A 37DB4880 779D1981 B05ECAFD 49F78A02 16983441 80C80AB1

601C3551 0DB868EC 7AD02138 691FC82E 118C8093 BE617947 42DDDA59 8862B2F2

State v after 10 rounds:

AD49264A F50B2055 29C2EC7B F8398ABB FB6BBA47 C9FC2626 1CD31E08 E3E75A78

144A402C ECDA2A07 1CCAEED0 B73AC43B 2BB70FBB 71A9E691 4F9C2E99 8B78FC0E

State v after 14 rounds:

A1E9FEE4 99180B3C 8F8629E3 C825F8DE 48E8AF2E 712C0633 87373EEA 4E0CE59F

4325FB9E D33C2442 3868BC3A D4708103 BD34589B EE0AC28B DBB008E2 FAE58BB1

Hash value output:

F5AA00DD 1CB847E3 140372AF 7B5C46B4 888D82C8 C0A91791 3CFB5D04

73



C.3 BLAKE-512

One-block message

Message block after padding:

0080000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000001 0000000000000000 0000000000000008

IV:
6A09E667F3BCC908 BB67AE8584CAA73B 3C6EF372FE94F82B A54FF53A5F1D36F1

510E527FADE682D1 9B05688C2B3E6C1F 1F83D9ABFB41BD6B 5BE0CD19137E2179

Salt and counter

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000008 0000000000000000

Initial state of v:

6A09E667F3BCC908 BB67AE8584CAA73B 3C6EF372FE94F82B A54FF53A5F1D36F1

510E527FADE682D1 9B05688C2B3E6C1F 1F83D9ABFB41BD6B 5BE0CD19137E2179

243F6A8885A308D3 13198A2E03707344 A4093822299F31D0 082EFA98EC4E6C89

452821E638D0137F BE5466CF34E90C64 C0AC29B7C97C50DD 3F84D5B5B5470917

State v after 1 round:

98957863D61905B3 2064357139454E43 391FB64BD757FB63 A77C0E00BBE362B5

86D4B6C41F60C7E1 823F30053BEB147C 68E6FC038D3B0B70 D93165F3477733DF

DED9D48A51DDE68F 3B73BB8B500C22B1 03F92332A668036B E2F0B698EA636BB9

A40103908A3FD2AE 016613AD1A47C604 BFBC229C63E28B76 02A5DDF1AFF95A3A

State v after 2 rounds:

84DAC4B310F8B76B 01CE15A3AA8D8B2E F12C708C9D10A8B0 778C288779642198

13D4F878F30C3F5E 5B049744B1932015 0FCFC0DEE2C0F4A0 80B67926A85E5AD8

8D0E3FB6C987BE2B A1E68630BE9171C7 06D755881837E80F B8729CFE5D112FA0

9226C2A7D8AD1F76 8265C86D8C126BC1 C0BFC6FEE0CFF19B E48FA8828EEC436A

State v after 5 rounds:

EFD689A66BDC0A95 2253DDE0CB058FFC 886B8A405AE244FA CA317DFE42522691

FB5123461DF359E7 17EFB7C5FD09F586 8E07FE0BD4918C29 E3AE0ACDF25D6303

6D4719E51F4A0833 27218B65BD7D4BC0 9227B3EA1497AD64 72B2C922552B72F9

855C5D1C44DD57A4 FC1340AE55773E39 03B57F827BE2F1CD B43F42F4AA368791

State v after 14 rounds:

1C803AADBC03622B 055EB72E5A0615B3 4624E5B1391E8A33 7B2A7AA93E27710A

F7EA864E4D591DF7 34E2FF788DBD71A7 01D13A3673488668 390D346D5CB82ECF

00D6AC4E1B3D8DE0 58CD6E304B8AD357 33E864217D9C1147 C9C686A43790D49F

8C76318C3B9E3C07 20952009E26AE7A1 E63865AEC6B7E10C 2FAFFDCB74ADE2DE

State v after 16 rounds:

A4C49432D99D5E8D E90F2891ABD6B4A6 49C0415E4A303C04 0411BECCA4309EA7

D84C660093C4CABD 1DA7328A685C8535 AF04DB28C411CFE1 148FACBCAF9CD9FE

595B67D2DCF8E77F E805A26C2B41F54C 8F13BB9AAE41CD1D A413194AD2FEB3B2

76D336C6C8BC63D1 3E99BB3B08FEEF23 AED8A237B480F33C 7B6AEA4550AB4634

Hash value output:

97961587F6D970FA BA6D2478045DE6D1 FABD09B61AE50932 054D52BC29D31BE4

FF9102B9F69E2BBD B83BE13D4B9C0609 1E5FA0B48BD081B6 34058BE0EC49BEB3

74



Two-block message

IV:
6A09E667F3BCC908 BB67AE8584CAA73B 3C6EF372FE94F82B A54FF53A5F1D36F1

510E527FADE682D1 9B05688C2B3E6C1F 1F83D9ABFB41BD6B 5BE0CD19137E2179

First compression Message block after padding:

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

Salt and counter

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000400 0000000000000000

Initial state of v:

6A09E667F3BCC908 BB67AE8584CAA73B 3C6EF372FE94F82B A54FF53A5F1D36F1

510E527FADE682D1 9B05688C2B3E6C1F 1F83D9ABFB41BD6B 5BE0CD19137E2179

243F6A8885A308D3 13198A2E03707344 A4093822299F31D0 082EFA98EC4E6C89

452821E638D01777 BE5466CF34E9086C C0AC29B7C97C50DD 3F84D5B5B5470917

State v after 1 round:

1BE45837F23BAEE5 2111F54A79AD333D F51F6F4BDBDACC64 BFD3AF47522BA647

3CBD1A03BABEE0B1 4C1679E18847BED0 65375DDA217AF370 FC804555EA9C61C0

13DCA8E50FCBEEA2 A028A1030A7F2907 A8486683A019458C 6F50BBC1BAAD52D1

26FF0C474E8A8E46 3661DBA5D8ADCE89 FB6E1530F3FA0CD2 29F3D982476D1C5B

State v after 2 rounds:

078A7F4AB38B51A3 3CC938D334F088AE C9688433013EB5F4 963A2028D731F262

A2E4F2F9127A623E 7DF540DFFEC115F7 539403CCFF3E7EDA 4039A268638B91E7

6DE0D9BF908EF408 D9747550EADAF1B2 5CBEB17148553D5C CC40FD3E15DD6C42

528F6D54B521156E CE320314E7255341 C374721DDC0FEEB2 F64047D64AED39A9

State v after 5 rounds:

7CE663EFB2F3997D CA831A13AE1ADEA2 1B489B08D9C77613 8449E1F48BF74A4A

D7F36F5DAD19B6F0 1B79A03B9DADCC93 0C5A6120750E5B4A 4D74C0055FEA4D29

91ECB03DDFB95F46 D12929425D257265 4436F30BA8FDA059 8F5EA5D22A3CFC07

1591886653094950 A98739E101B44D3A 78556C535F2905F2 E5BC8EDDAC0176DF

State v after 14 rounds:

BAE5B20438EBD1AE FB9EB556D67BE6CD 1DD32AA12CB2C411 42374BFECE90FA65

807E55B199234ECC 7FC73B526FADC9D8 760B6B884BA1B098 B77D0E14CCB094DD

FB079B4D09CDA172 EE56FD3B622F28AC A4C9C6924B60C4B9 244E57A15B596644

7C86CAACE54A8E3E 71782EF1771E5ABA 5FCE8F0139CBA368 D3F1A57A2BD841F4

State v after 16 rounds:

8ACE4588105EF7E8 1CC36907319943BE 40E0AC4199C96848 D758207628A2FCB1

0DA86B4B6F335C80 40CDA4C168A9570B 1A58BBB86DFE6BAF C95C785976A6B38F

9C9DC23D05EE6893 933B75529E2BE1FE 11B14581561A7CCC 288DF0A868B9453D

E96AB70C1614870C 6437BA76484C940F 835FC973C1218EC7 63A773992264BD92

Intermediate hash value:

7C5A61D2E60C5673 349FB2D02B78057B 6D3F1AB23147ECAF 5A9A25E41F068F7D

B5CC8E38D4C1595D BFFF763B0BDBAF1B 8684AB60579E5803 F11BC6D947BC2F64

75



Second compression Message block after padding:
0000000000000000 0000000000000000 8000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000001 0000000000000000 0000000000000480

Salt and counter
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000480 0000000000000000

Initial state of v:
7C5A61D2E60C5673 349FB2D02B78057B 6D3F1AB23147ECAF 5A9A25E41F068F7D

B5CC8E38D4C1595D BFFF763B0BDBAF1B 8684AB60579E5803 F11BC6D947BC2F64

243F6A8885A308D3 13198A2E03707344 A4093822299F31D0 082EFA98EC4E6C89

452821E638D017F7 BE5466CF34E908EC C0AC29B7C97C50DD 3F84D5B5B5470917

State v after 1 round:
7DC6E2217B190BD3 2D69C6D6AEDA0572 C445CFA1EE378343 8761913893DAC34F

D7AB98024A5DE598 DD3C50178BA6CFE0 26AC7F783C286112 AF357137BF5B27FA

537A754E12075D1E 08AE7D22952E350F 892B8373958F8500 EDC023EF5FC2B9C3

3CEE042F8E124FA5 EBCCEA756D5DDBDC 44EEF37D26631B07 CBB87F4CC2DD2D13

State v after 2 rounds:
CC056856C518D859 7344ABCD0D8A6950 CA67E04FB09D817B 1D8C4E9DAAEA72D1

E6B340711ECA08BF 73C3FF68CF47F1F1 D2207FE16ABA76E7 FA938A0BC99E8B07

1D18CC99351E737E 8FE782CA928829FF 02BB3600E4FDF376 B8C00D91EA6C13EA

3F91B8F1E4A84E64 CC0F5B8510B363B5 44B84D4F9533710E 65E10F27E5E5BFFA

State v after 5 rounds:
93C53A007170B925 1A2FDD068C9D5F6E 00AC49AE15AB9892 037C2596C191739D

4AB00AC40C224583 335D1755FE36617F C5563C085F95A304 5186037E4BC146B7

413BDF4A9610B8AE 8B00F63774A69126 423466AF367F81AE B07234DA1883CD37

83DC32EC57DC0C0B E51C59511CFFA5E1 38B2F87608EC0ED5 B77E9446582F3042

State v after 14 rounds:
23897E7C9EAB8A3F 34125E009632AB3B 07FFB519E17E078D 7F488875753A238E

91E58ECF92563D9F C246847E756F98B3 2DD4F6BF4750BB17 07CE0E79086F7852

79103890FB73058D 53AAC95C31B3B84E 64EE88C4FB103B29 C68ED0A58B94204F

CA2842EA101CF14B 251E178D430A7E37 C3E3C40FE82F826B F90D61B845D1C180

State v after 16 rounds:
C2961E406275C096 1B37A68DBEE2ABD6 4F8F5B9710A90B23 315BDA6D8A014764

0837CD44DD4E7025 F773FBC58D201D97 E2AE133356ABB427 6D44168B6B9D94B9

8FFB68448C905990 A2630AED65596132 E3E0F3F02115D479 7793504008324236

AE8FFBDF8235500C AF7A62874C4ADDAE AA34DCCE6F3441B1 159DC3567175E603

Hash value output:
313717D608E9CF75 8DCB1EB0F0C3CF9F C150B2D500FB33F5 1C52AFC99D358A2F

1374B8A38BBA7974 E7F6EF79CAB16F22 CE1E649D6E01AD95 89C213045D545DDE

C.4 BLAKE-384

One-block message

Message block after padding:
0080000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000008

76



IV:
CBBB9D5DC1059ED8 629A292A367CD507 9159015A3070DD17 152FECD8F70E5939

67332667FFC00B31 8EB44A8768581511 DB0C2E0D64F98FA7 47B5481DBEFA4FA4

Salt and counter

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000008 0000000000000000

Initial state of v:

CBBB9D5DC1059ED8 629A292A367CD507 9159015A3070DD17 152FECD8F70E5939

67332667FFC00B31 8EB44A8768581511 DB0C2E0D64F98FA7 47B5481DBEFA4FA4

243F6A8885A308D3 13198A2E03707344 A4093822299F31D0 082EFA98EC4E6C89

452821E638D0137F BE5466CF34E90C64 C0AC29B7C97C50DD 3F84D5B5B5470917

State v after 1 round:

5B063A05F1A479BB 82CA717B7A4F6F94 4F58DFBDAB593FFB F826C578573BEC7E

C0836949C0FA750A 99FD9AA2E726BF09 32F52E2CBFC45A64 80686C4AE126CDA9

5EB10A738BF891EE 3DF23E84618C549F F2C230E414F34299 9191632BEE7EE45E

C83CF461EDC79B6D 8FF3FB919A781656 9BE2FD02DFE1B98A 5B64934E1FE8370D

State v after 2 rounds:

5B2B57C1586FEEA6 7413D0FE48C32BE2 535CA6F699C38D80 BBEE0C0CBD530269

9E3CD39F1C1868DA A4D8C74D2A7AA0F5 7524F4211494EF12 A94A548795A319EC

B9F9689AFC6AEDA6 EBC0E49C45A1E9AA 260D24A2D818CB43 BA3914617A2D98EC

F7BA66DC1AEB284C 9C362FBCE59789D9 74B3B2650C513D2C D53EB118A489C053

State v after 5 rounds:

4292009F26C4CAA5 17DF7CF80E7A6542 24CA7FE6607B8393 C91DDCA2AFECD146

7ECAF3B6BC20CFD7 00D47510478C61B9 F1A2F95870EAF7B0 52AD845DA7D26918

A0E941F5B18548FA BFCB96FC91F31717 4B9F4584075D75C4 BF9C0EE7E53657FF

CB09E853BA91C13D FD46E7FE45AA85E3 CE6E1C891FFAAEF9 2C9E50427598264A

State v after 14 rounds:

1DD69F386C168B30 EB4B1AD311C7C265 42044AA20151C2A0 1BD8CBE637DFB25D

94ABF0918D4B9749 6A59118B73AB159B 56EE21C11395B066 00BB340A4C94C03B

2EC5D56650765851 B84BF78188E22A8D 5149DF33128FAAC1 8E52CD242ADB8EA8

88EA30691A1873AA DABF685D0556D4AF 51168CA096930C62 E42652FFB6D559CF

State v after 16 rounds:

36512BF3E39351F8 9477606C71836A24 0EFCB83C910DEED8 23CC167714D245A0

71D6F1D7F5ADA777 19B7C2F855B20B15 14CEB36724144E05 D8AE8C3EBBA6CF13

EDC2A9C9C3A3262A 1E05CB635DCAEA33 38BC8F1C767F147E 01D7C4B422FE1DC5

3FDCC9354FD88B6B 84A44AF8A049C603 85CF0F5D20038E18 2FB4FD1F72850C85

Hash value output:

10281F67E135E90A E8E882251A355510 A719367AD70227B1 37343E1BC122015C

29391E8545B5272D 13A7C2879DA3D807

Two-block message

IV:
CBBB9D5DC1059ED8 629A292A367CD507 9159015A3070DD17 152FECD8F70E5939

67332667FFC00B31 8EB44A8768581511 DB0C2E0D64F98FA7 47B5481DBEFA4FA4

77



First compression Message block after padding:

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

Salt and counter

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000400 0000000000000000

Initial state of v:

CBBB9D5DC1059ED8 629A292A367CD507 9159015A3070DD17 152FECD8F70E5939

67332667FFC00B31 8EB44A8768581511 DB0C2E0D64F98FA7 47B5481DBEFA4FA4

243F6A8885A308D3 13198A2E03707344 A4093822299F31D0 082EFA98EC4E6C89

452821E638D01777 BE5466CF34E9086C C0AC29B7C97C50DD 3F84D5B5B5470917

State v after 1 round:

3BBF567D6D8E7C9A 826AB1796F4B2F2A D3589AB1A73A76FB 7FFB66FFAAA078B4

1F7BFE2284B78162 E1F997F6B243CD2A 70B6BA23B832F52D B5418F66EC6D2031

ADA82F0DD0769947 C23086272083F261 F6A871C70393F9FA 8D515B125606EADA

C802F0CF294F6269 C6F36399DF7E1E35 8F20EDDF0BA7D74A DE4472F1D1506E6F

State v after 2 rounds:

EA85A242A7F6CFCE 89A54C23487CA8BF 5C8893D38EF63BF3 46B087AA28D56BE5

5D085C4433F1929C 8134381EEE29381F 36505EC762DAB50C D71519E8814D4E39

F4A2235795910F0F 58AD370D224CB9B0 47D1E79A61966B91 0563F8E3BA681DBD

48D6E244313C9D0C D079DE27CBA8F3C8 DD134C5A6384EFAC 7E27A4AC04CF472D

State v after 5 rounds:

802C1F2E2198AE80 EE5B58BB836A1D70 8157B2DA7FB7781D 9295E0C42DC728FC

D88DF0E4BFC0ADAB 7871BB15B4555CAB F89864B706E11F5F F01F54F3CB2B4E5F

014C1C71F0918E4D EA826F742DAA21D0 33C03F7DFB0166DC 11442F58CFC88765

0D2FB5DCD1ADE0AE 7C972BBFEF957FB5 7D874F206DD2E3FB 8CFE8958C6233803

State v after 14 rounds:

48D2ABEEC2D71CC5 453ACF7BB753BBF1 8AD951B5121E15F2 6D70D249D39A715A

AF9FDE1EE3CAD40D C661F45A89950ADC 843A9EE5D8169BD5 C74BC1121B511E1A

12D0217D0E74E5B1 CC7BD5E254C52B17 8636BF1D9B6E636B E5FDF466195146E0

16DAC45878471174 CDAE5B050C98E92A 121004668DBAB665 AEF35F816CEA29F2

State v after 16 rounds:

3712B6E9CB7B63F2 37AF7025586B6460 257ED91309EB62A0 C8E2F10F4C47949F

2A4A05037B5CDDFA B5E117FF1E5A553E E1695E955CC18FE4 3100B996720399C7

B547462AECF8B55E DB5BD016009287B3 A1E6CDA8E4D58AAB F25A251EC5A5DA6E

CC6204CFC9023E98 9939A01E93E2EBDC 6D666072608B942F 5D6505E5B9649428

Intermediate hash value:

49EE6D9EE6864874 8E6E89196E8536D4 15C115E1DD4E351C 2F9738C97EEC17C8

811B27AB4D9EE853 A26CFD66E5E0ABF3 570310EA58B3946C 2BD0F46E759D424B

Second compression Message block after padding:

0000000000000000 0000000000000000 8000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000480

78



Salt and counter

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000480 0000000000000000

Initial state of v:

49EE6D9EE6864874 8E6E89196E8536D4 15C115E1DD4E351C 2F9738C97EEC17C8

811B27AB4D9EE853 A26CFD66E5E0ABF3 570310EA58B3946C 2BD0F46E759D424B

243F6A8885A308D3 13198A2E03707344 A4093822299F31D0 082EFA98EC4E6C89

452821E638D017F7 BE5466CF34E908EC C0AC29B7C97C50DD 3F84D5B5B5470917

State v after 1 round:

006BE95A66625251 79F3D0100619FE3F C0AC9991BBCFB7CD 8B84444C9AD96764

4F171AD0F3A3DEA9 B1C7F7E6C97AFFF5 2E13AB4E1EBABB9F 49EB4A1D9E1F91F6

517D276924FEFC3B CA0EE442F7580C9B 621CD230958BFF1B 964C1F3A7F395AC4

86A45A4C3D9A424C 0B2D58EC8066608C 491952B97A0292CD 0FD9F18EB607B1F2

State v after 2 rounds:

9BBA5065D0DDF6BD 18E52994739A91E0 72CD02F348C9BA19 A258F47A2F3E0A96

374E2DDCC60DF1EF 0C442933AC2EB70E C4AEFCDCABAECFB0 44965DA93D4CC1A6

F2EDE0AC437259F6 560175CB6A65F093 9755239E63B2D96A 51691777590CB37A

0D44F5E2447E7879 535F8292919E08E6 E47B361174C3D2F3 692FC37673F90E04

State v after 5 rounds:

9775064D5300CB4D C8DC04C98F8EEB4F F262D279CEE88953 1D6822F8DE090DDD

A86EB858C7914981 4257B029F13117A2 80BB47E2DC61FBDD 89F13F71786CDEC3

0CCFACD927C99DA8 22E7BEE29F3FD1D5 AE62DC2965F57EE4 703573F8124518A0

683890980C63D04B F95D5141B985AEDD 45A265F29715CFC7 FD9664F57FAD2407

State v after 14 rounds:

4542B3975A2C224D 9046DE63F984B8E6 75CD7A39321AEDE6 56C1820DB8185B88

C63697063579DDFC 7C24C051F35BBBC4 DA28EF56D97B2AE0 99BBF8B121EC6AD4

FE1E0776A0DF6BB7 726DE26C49F7939A 4C13939D3CA296D7 EB2D11499200EF0B

6A7C50324336DE37 8B06973E8E5A5560 90097FD9BC7C9E8C F9F031F90127D78F

State v after 16 rounds:

A075E77B2D789059 694A9DFCECC350DA BDDD2A4EDB40816A 2350B07555E4584B

317F8A79881AA9A8 E56EB3614A02D706 358C9DBB7621380E 66A32913135D8ED9

E203CF38896BBEE0 4C533F44179417E1 56313DBEF76725A1 6A7DFC286CCD8266

D91CA6FF6FE28549 63A0A229F2EB6BB9 48DF2388CCDE1001 FB66BFB8E1939963

Hash value output:

0B9845DD429566CD AB772BA195D271EF FE2D0211F16991D7 66BA749447C5CDE5

69780B2DAA66C4B2 24A2EC2E5D09174C

79


	Introduction
	Design principles
	BLAKE in a nutshell
	Expected strength
	Advantages and limitations
	Notations

	Specification
	BLAKE-256
	Constants
	Compression function
	Hashing a message

	BLAKE-512
	Constants
	Compression function
	Hashing a message

	BLAKE-224
	BLAKE-384
	Alternative descriptions
	Tunable parameter

	Performance
	Generalities
	Complexity
	Memory/speed tradeoffs
	Parallelism

	ASIC and FPGA
	Architectures
	Implementation results
	Evaluation

	8-bit microcontroller
	The PIC18F2525
	Memory management
	Speed

	Large processors

	Using BLAKE
	Hashing with a salt
	HMAC and UMAC
	PRF ensembles
	Randomized hashing

	Elements of analysis
	Permutations
	Compression function
	G function
	Round function
	Compression function
	Fixed-points

	Iteration mode (HAIFA)
	Pseudorandomness
	Indifferentiability
	Generic attacks
	Length extension
	Collision multiplication
	Multicollisions
	Second preimages
	Side channels
	SAT solvers
	Algebraic attacks

	Dedicated attacks
	Symmetric differences
	Differential attack
	Slide attack


	Acknowledgments
	Bibliography
	Round function example
	Source code
	VHDL
	PIC assembly
	ANSI C

	Intermediate values
	BLAKE-256
	BLAKE-224
	BLAKE-512
	BLAKE-384


