
The Pynchon Gate

A Secure Method of Pseudonymous Mail Retrieval

Len Sassaman
Katholieke Universiteit Leuven
lsassama@esat.kuleuven.be

Bram Cohen
BitTorrent

bram@bitconjurer.org

Nick Mathewson
The Free Haven Project

nickm@freehaven.net

ABSTRACT
We describe the Pynchon Gate, a practical pseudonymous
message retrieval system. Our design uses a simple distributed-
trust private information retrieval protocol to prevent ad-
versaries from linking recipients to their pseudonyms, even
when some of the infrastructure has been compromised. This
approach resists global traffic analysis significantly better
than existing deployed pseudonymous email solutions, at the
cost of additional bandwidth. We examine security concerns
raised by our model, and propose solutions.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server

General Terms
Design, Security

Keywords
anonymity, mix networks, private information retrieval

1. INTRODUCTION
Pseudonymous messaging services allow users to send mes-

sages that originate at a pseudonymous address (or “nym”)
unlinked to the user, and to receive messages sent to that
address, without allowing an attacker to deduce which users
are associated with which pseudonyms. These systems can
be used for parties to communicate without revealing their
identities, or can be used as a building-block for other sys-
tems that need a bi-directional anonymous communication
channel, such as Free Haven [27]. But, as we will argue be-
low, most existing deployed solutions are either vulnerable
to traffic analysis or require unacceptably large amounts of
bandwidth and storage as the number of users and volume
of traffic increase.

We propose the Pynchon Gate, a design that uses private
information retrieval (PIR) [13] primitives to build a secure,
fault-tolerant pseudonymous mail retrieval system.

In our system, pseudonymous users (or “nym holders”)
use an existing anonymous email network (such as Mixmas-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’05, November 7, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-228-3/05/0011 ...$5.00.

ter [48] or Mixminion [22]) to send authenticated requests to
a nym server, which delivers outgoing messages to the email
network and handles administrative commands. The nym
server also receives incoming messages and passes them to a
collator component, which encrypts the messages and peri-
odically packages them into regular batches. These batches
are then replicated at a number of distributor servers, which
use a private information retrieval protocol to allow nym
owners to receive mail while maintaining unlinkability be-
tween a message and its recipient.

1.0.1 Goals.
First, our design must be secure: we want the Pynchon

Gate to resist active and passive attacks at least as well as
the state of the art for forward message anonymity. Thus, we
should try to protect users’ identities from a global eaves-
dropper for as long as possible; to hinder active attackers
who can delay, delete, or introduce traffic; and to resist an
attacker who has compromised some (but not all) of the
servers on the network.

In order to provide security, however, we must ensure that
the system is deployable and usable: since anonymity and
pseudonymity systems hide users among each other, fewer
users means less protection [1]. Thus, we should handle node
failure without loss of mail; we must not require more band-
width than volunteer servers can provide or users are willing
to use; and we should not require a complicated interface.

1.0.2 In this paper.
We begin in Section 2 with a discussion of related work,

and an overview of known attacks against existing pseudo-
nymity systems. (To motivate our work, Subsection 4.2
presents new analysis on the effectiveness of passive traf-
fic analysis against current reply-block based nym servers.)
Section 3 presents the Pynchon Gate in more detail, describ-
ing its organization, design rationales, and network formats.
We describe our simple PIR protocol in subsection 3.4.1. In
Section 4 we analyze security, and in Section 5 we discuss
optimizations and compare our performance to that of other
pseudonymous message systems. We close with an evalua-
tion of our design in Section 6.

2. BACKGROUND
Here we present a brief outline of existing pseudonymity

solutions and discuss their limitations and attacks against
them.

2.1 Related Work
First, we discuss existing designs for pseudonymous mes-

sage delivery. Many assume the existence of a “forward”
anonymous channel that a sender can use to send a mes-
sage to a known recipient while preventing the recipient,
the infrastructure, and any attackers from knowing who is
communicating with whom. Currently deployed designs are
based on Chaum’s mix [12] architecture, and include the
Mixmaster [48] and Mixminion [22] anonymous remailer net-
works. It is trivial to use these systems to send pseudony-
mous messages: the sender can make an anonymous message
pseudonymous by signing it with a public key associated
with her pseudonym. Thus, these designs focus on how to
receive messages sent to a pseudonymous address.

Other descriptions of the use of PIR in preserving recipi-
ent anonymity have been independently proposed but not
deployed. Earlier work by Jim McCoy describes a simi-
lar architecture to the Pynchon Gate, but does not use an
information-theoretic primitive for preserving privacy [46].
Independent work by Cooper and Birman [15] describes a
PIR-based message service for mobile computing systems,
and Berthold, et al. have presented work [6] which shows
that simple optimizations to the PIR protocol are possible.

2.1.1 Reply blocks and return addresses.
In 1981, Chaum [12] described a method of using return

addresses in mix-nets: recipients encode a reply path, and
allow senders to affix messages to the encoded path. As the
message moves through the network, the path is decoded
and the message encoded at each hop, until an encoded mes-
sage reaches its eventual recipient. This system relies upon
all selected component nodes of the chosen path remaining
operational in order for mail to be delivered, which can make
the system too unreliable for practical use if significant time
elapses between path generation and message origination.1

In addition to reliability issues, some implementations of
these “reply blocks” suffer from a pseudonym management
perspective. Cypherpunk nym servers based on the first gen-
eration implementation of Chaum’s mix-nets (Type I remail-
ers [29]), such as alpha.c2.net [3] and nym.alias.net [45],
implement a central reply-block repository that allowed the
pseudonym holders to receive messages delivered to a email
address. Unfortunately, Type I remailers allow multiple uses
of their reply blocks, which are vulnerable to replay and
flooding attacks as discussed in [16, 44]. Type II (Mixmas-
ter) and Type III (Mixminion [22]) systems do not permit
multiple-use reply blocks, and prevent replay attacks [17].

2.1.2 Single-use reply blocks.
While the Type II system does not support anonymous

reply blocks, the Type III (Mixminion) system introduces
single-use reply blocks (SURBs) [39] to avoid replay attacks.
The Type III protocol requires the recipient to create a large
number of reply blocks for senders to use. In practice, this
is likely to be automated by a nym server [40] that stores a
number of SURBs and uses them to deliver pseudonymous
mail to to the recipient—one such design is Underhill [42].
Type III also has the property that the forward and reply

1Forward-only messages through a mix-net, however, are
sufficiently reliable. The client software can evaluate net-
work health information [50] before sending a message, and
thus can construct robust remailer chains based on the cur-
rent health of the remailer network.

messages share the same anonymity set, and recent work
has been done by Danezis and Laurie on attack-resistant
anonymous packet formats suitable for reply messages [23].
However, since reply blocks are still used, reliability issues
remain: if any given node in the pre-selected SURB’s path
is defunct during the interval in which the mail is to be
delivered, the mail is lost. Reply block systems are also
susceptible to intersection attacks [8]: a global observer can
collect data on who is sending and receiving mail, and given
enough time and data, can reliably determine who is talking
to whom [19].

2.1.3 Network-level client anonymity.
The ZKS Freedom Network [9] provided anonymous ac-

cess to a POP3 server [47], enabling its users to maintain
pseudonyms using standard email protocols. Freedom was
discontinued due to high operating expenses, especially in
bandwidth. Other network-level anonymity systems, such as
Pipenet [18], Onion Routing [33], the Java Anon Proxy [7],
or Tor [28], could be used in much the same fashion; un-
fortunately, they face the same barriers to widespread de-
ployment [32]. Attempts to address the practical barriers to
deployment of low-latency anonymity systems have resulted
in designs which are at greater risk to traffic analysis meth-
ods such as end-to-end timing attacks [21, 20, 49, 25] It is
possible that such a low-latency system may be developed
which is both secure against end-to-end analysis and cost-
effective to operate, but no such system has yet been proven
feasible.

2.1.4 Network-level server anonymity.
The second generation implementation of Onion Routing,

Tor [28], implements rendezvous points [31] that allow users
to offer location-hidden services. A user wishing to anony-
mously receive messages can use this to receive mail at a
hidden location: messages are delivered to the server over
the Onion Routing network, and successful delivery does not
require the sender to know the IP address of the destination
server.

Rendezvous points offer an alternative method of lever-
aging network-level anonymity systems for anonymous mail
receipt; however, they do not address the previously men-
tioned concerns with these anonymity systems.

2.1.5 Re-encryption mixes.
Re-encryption mixes [35] aim to improve the reliability

of anonymous message systems. Recent work has shown
that re-encryption mixes can be used to facilitate anony-
mous message replies [34]. While reusable anonymous re-
turn channels in re-encryption mixes do improve on the
robustness of simple reply blocks in a Chaumian mix-net,
reliability problems are still possible. Re-encryption mixes
require that the security vs. reliability tradeoffs be made
by the sender at the time that the message is sent. A more
desirable property would be to allow the recipient to make
security determinations at the time the message is retrieved.

2.1.6 Broadcast messages and dead-drops.
Chaum discusses a traffic-analysis prevention method in

which all reply mail in the anonymous mail system is sent
to all possible recipients. A less invasive optimization has al-
ready been implemented in the form of Usenet mail drops [10]:
an anonymous remailer can deliver mail to a newsgroup,

rather than to an email recipient. Such mail can be en-
crypted to a recipient’s private key, and left for her to collect
from the newsgroup. If recipients use the same newsgroup
and behave identically (for instance, by downloading the en-
tire set of newsgroup messages daily), the possible statistical
attacks on direct mail delivery of reply messages to individ-
ual email addresses are avoided. This solution also removes
the necessity for reply-blocks, as the drop location can be
established upon out-of-band.

Of course, this “send everything everywhere” approach
suffers massive scalability problems. As the number of users
in the system increases, each user’s bandwidth requirements
become prohibitive. Users are thus encouraged to “cheat”
and only download sections of the newsgroup that they are
sure contain their messages, or not download on days that
they do not expect messages. This allows an attacker to
gather information about messages in which an individual
has interest, and provides a way to attack the security of
the system [2].

3. THE PYNCHON GATE DESIGN
We present a design framework for the Pynchon Gate. A

detailed implementation specification can be found in [41].

3.1 Overview and Rationale
The Pynchon Gate is a group of servers that provide

anonymous message retrieval capabilities (see Figure 1). A
nym server receives messages for different pseudonym ac-
counts via email.2 Once every “cycle” (e.g., 24 hours),
the nym server passes these messages to a collator, which
batches them into an indexed “bucket pool,” and and passes
these pools to each independently operated distributor node
in the network. Each pseudonym holder then makes a se-
ries of requests to k chosen distributor nodes, enabling her
to receive her messages without the individual distributors
determining the pseudonym being requested. The protocol
used is resistant to collusion: even if the adversary controls
(k− 1) of the chosen distributors, the adversary cannot link
the user to her pseudonyms.

This distributed-trust PIR-based message retrieval system
lets us keep the reliability, and security of the “send every-
thing everywhere” method, while bringing the system into
the realm of feasibility for users with limited resources.

We discuss the components of the Pynchon Gate archi-
tecture below.

3.2 The Nym Server
The public-facing side of the Pynchon Gate consists of

a nym server that sends and receives pseudonymous email.
The nym server itself provides no sender anonymity; rather,
it relies on existing mix networks [22, 48]. The nym server is
visible to external email correspondents, and receives mes-
sages for the nym owners at their specified email addresses.

Nym servers manage email accounts for pseudonyms. For
each pseudonym, the nym server stores a long-term public
key used by the nym holder to encrypt and authenticate

2The servers could also receive messages through any suit-
able medium for message transfer, such as “instant message”
systems [24]. We require a forward anonymity protocol to
allow the nym holder to communicate with the nym server,
so at a minimum the nym server must be able to receive
email in addition to any optional support for other proto-
cols.

Encrypted emails

Sender Sender Sender

Mix net
Nym server

email to nym
email to nym

Collator

Distributor Distributor Distributor

Anonymous email to nym

...

...
Bucket pools (via BitTorrent)

Recipient

PIR operations

Anonymous
control messages,
outgoing email

Figure 1: The Pynchon Gate Architecture

outgoing email and administrative messages. Similarly, nym
server stores a short-term shared secret for each account,
used to encrypt messages to the nym holder. This secret
can be reset by the nym holder after account creation.

The shared secret is updated every cycle, such that, if
S[i] is the shared secret in a given cycle i, then S[i + 1] =
H(S[i]|"NEXT CYCLE"), where H(·) is a cryptographic hash
and | denotes concatenation. From each S[i], the nymserver
derives a set of sub-secrets for individual messages received
that cycle. The j’th sub-secret on day i is Subkey(j +
1, i) = H(Subkey(j, i)|"NEXT SECRET"), with Subkey(0, i) =
H(S[i]|"NEXT SECRET").

Once it no longer needs a shared secret or a given subkey,
the nym server drops it immediately, to limit the impact
of key compromise (at the server or client) and improve for-
ward security. We use a separate chain of keys for each cycle
so that it is easier for a user to resynchronize after missing
a few cycles.

These subkeys are used to encrypt and identify the mes-
sages received on day i. When the j’th message for the
nym is received, the nym server compresses it, encrypts it
with the symmetric key H(Subkey(j, i)|"KEY"), and prefixes
it with the opaque identifier H(Subkey(j, i)|"ID"). By de-
riving the message keys and identifiers in this way, we al-
low users to store keys and identifiers for pending messages
without risking exposure of messages encrypted in the same
cycle.

Finally, the nymserver also generates an different inde-
pendent identifier for each user every cycle: UserID[i] =
H(S[i]|"USER ID").

3.3 The Collator
At the end of each cycle, the nym server passes messages

to the collator, which typically resides on the same physi-
cal server. The collator organizes all previously unretrieved
messages into a three-level structure, consisting of a meta-
index, a set of fixed-size index buckets, and a set of fixed-size
message buckets.

Each user’s messages are stored in a different set of mes-
sage buckets, ordered by UserID. The index buckets contain,
for each UserID (in order), the first message bucket contain-
ing that user’s messages, and a digest of that bucket. Fi-
nally, the meta-index lists, for each index bucket, the first
and last UserID in that bucket, and a digest of that bucket
(see Figure 2). The index buckets and the message buck-
ets together comprise the cycle’s “bucket pool.” To ensure

Meta-index

Index block

First UserID,
Hash

Message
block

Index block

First UserID,
Hash

...

...

UserID,
Hash

...

Message
block

Message
block

Message
block

...

Hash Hash Hash Hash

...

Figure 2: The meta-index and bucket pool

integrity, each bucket contains a hash of the next.
The metaindex is signed with the collator’s private key,

along with the index of the cycle to which it applies.
To prevent an attacker from flooding a nym and observing

which user receives a large volume of traffic, each nym has a
maximum number of message buckets that may be filled in
a given cycle. If there are more pending messages than will
fit in the nym’s buckets, the collator defers some for a later
cycle.3 Because the encrypted messages are prefixed with
H(Subkey(j, i)|"ID"), the user can tell which key to use for
messages that are delivered out of order.

3.4 Distributors and clients
Once the collator is done, it relays the signed meta-index,

and the entire bucket pool, to a set of independently op-
erated distributor nodes. (This data should be transmitted
using a bandwidth-sparing protocol such as BitTorrent [14],
so that the collator does not need to send the entire pool to
each distributor.)

At this point, clients can download their messages for the
cycle. First, a given client downloads the meta-index from a
randomly chosen distributor, and verifies its signature. The
client then computes its UserID for the day, and uses the
meta-index to tell which index bucket will contain an entry
for that UserID.

The client then uses the PIR protocol described below to
retrieve the correct index bucket, checks that the bucket’s
digest is as expected, and uses the index bucket to learn
which message buckets will contain the client’s messages.
The client downloads these buckets with PIR, and checks
their digests. If the client has received fewer buckets this
cycle than her maximum, she performs extra PIR operations
up to that maximum, to prevent an observer from learning
how many messages she has received.

Depending on the length of the cycle, clients may not
be able to download messages every cycle. Therefore, dis-
tributors must retain meta-indexes and bucket pools for a
reasonable window of time, to be sure that all clients have
time to download their messages.

The message integrity and tagging attack protection mech-

3As an extension to save bandwidth and prevent denial of
service attacks, the nym server can build a special “sum-
mary message” containing the headers of pending emails,
and their opaque identifiers, and include this message in
the user’s message bucket. The user can then send a signed
control message to the nym server requesting that unwanted
emails be deleted and desired ones given priority.

anism described in Section 4.1.5 also ensures that malicious
distributors will be discovered if they attempt to execute
denial of service attacks by dropping or garbling messages.

Since it is not necessary for every distributor to be oper-
ational or honest at the given point that a client wishes to
retrieve mail, the system handles distributor node failure in
a graceful manner.

3.4.1 The PIR Protocol
This simple PIR protocol allows a client to retrieve a

bucket from k chosen distributors, so that an attacker cannot
tell which bucket the client is retrieving without compromis-
ing or controlling all k of the servers.

The protocol runs as follows: after choosing distributors,
the client establishes an encrypted connection to each (e.g.,
using TLS [26]). These connections must be unidirectionally
authenticated to prevent man-in-the-middle attacks, and
can be made sequentially or in parallel.

The client sends a different “random-looking” bit vector
vsb to each distributor s, for each bucket b to be retrieved.
Each bit vector has a length equal to the number of buckets
in the pool. Each distributor s then computes R(vsb) as the
XOR of all buckets whose positions is set to 1 in vsb. The
resulting value is then returned to the client.

Thus, in order to retrieve the b’th bucket, the client need
only to choose the values of vsb so that their exclusive OR is
0 at every position except b. (For security, k−1 of the vectors
should be generated randomly.) When the client receives the
corresponding R(vsb) values, she can XOR them to compute
the bucket’s contents.

As an optimization, a client may send k−1 of the distrib-
utors a key for a stream cipher instead of a bit vector. The
distributors can use the stream in place of the vector [4, 6];
only one still needs to receive a full vector.

4. ATTACKS AGAINST PSEUDONYMITY
SYSTEMS

We present the common types of attacks against pseudo-
nymity systems, and present novel analysis of the effective-
ness of one kind of traffic analysis against the most popular
currently deployed design. We also highlight security con-
cerns specific to the Pynchon Gate design.

4.1 Attack categories
Most known attacks on pseudonymity systems fall into

one of the following categories.

4.1.1 Legal and hacking attacks.
Attackers may attempt to coerce the operators of pseudo-

nymity systems through lawsuits or other means [45, 53, 37,
36, 30], or may attempt to surreptitiously obtain informa-
tion about nym holders.

We limit these effects of these attacks by greedily encrypt-
ing incoming messages and deleting encryption keys. All
sensitive data is deleted as the bucket pool is generated, en-
suring that the collator has as little information useful to an
attacker as possible.

Without dynamic key rotation it would be trivial for an
attacker to archive all data sent to distributors, and then
at some later time obtain the nym’s collator address and
key from the nym server though an active attack on those
components. The attacker could then read all messages that

nym has ever received. In the interest of retaining little in-
formation for an attacker, implementations should discard
old secrets as soon as they are no longer needed. Thus, at
the start of each cycle i, a nymserver should derive S[i + 1],
UserID[i], and Subkey(0, i), and immediately discard S[i].
After using each Subkey(j, i), the nymserver should calcu-
late Subkey(j + 1, i) and discard Subkey(j, i). After each
cycle, the nymserver should discard the last Subkey(j, i),
and UserID[i].

4.1.2 Mix attacks.
Since we rely on mix networks, we must be concerned with

attacks against them. Furthermore, reply-block-based nym
server systems require additional security properties that
normal mix-net systems may not have [23].

The Pynchon Gate uses mix-nets for forward message de-
livery only. Attacks that do not work against a mix-net in
normal forward-delivery mode will not impact the Pynchon
Gate.

4.1.3 Man-in-the-middle attacks.
An attacker able to pose as a user’s chosen distributors

could trivially see all k PIR requests. We use TLS authen-
tication to prevent this attack.

4.1.4 Replay attacks.
An attacker capable of monitoring the communications

network may attempt to obtain information about nym hold-
ers by comparing network and user behavior when a given
message or packet is transmitted multiple times.

The Pynchon Gate uses TLS when communicating be-
tween components and the client, so that data is encrypted
with a short-lived session key. The topology of the Pynchon
Gate infrastructure further eliminates areas of potential re-
play attack risk.

4.1.5 Tagging and known-cleartext attacks.
An attacker may alter a message, or observe the cleartext

of a message, so that he may be able to later link an input
message with a given output retrieved by the nym holder.

The Pynchon Gate’s message and link encryption prevents
an attacker from observing the cleartext of a message. Tag-
ging attacks are ineffective, as TLS protects data integrity
on the wire. The metaindex provides the client with the
hash of the index bucket. Each message bucket provides the
hash of the next message bucket, and with this information,
the client can verify the integrity of information downloaded
from distributors and respond to garbled data without leak-
ing information about which bucket it was requesting.4

4.1.6 “Who am I?” attack.
An attacker may send messages intended for nym Alice to

nym Bob instead, so that if “Alice” responds, the attacker
will know they are the same nym holder [20].

This attack relies primarily upon the ability to link one
nym, Alice1, with another nym, Alice2, by sending a mes-
sage encrypted to Alice1’s to Alice2’s address. The Pynchon
Gate avoids this, though a similar social engineering attack

4If a client does notice a corrupt bucket, it should not re-
attempt the PIR operation until it has received all buckets,
to avoid leaking which bucket it was reading through the
timing of its response.

may be performed if the nym holder is using a separate mes-
sage encryption protocol such as PGP [11]. More research
needs to be done to improve the area of privacy-preserving
human-computer interaction [51, 54].

4.1.7 Usage pattern and intersection attacks.
An attacker may analyze network usage and anonymity

set members over time to sub-divide anonymity sets such
that a given user is identified. In addition to passive obser-
vation of the network, there are a number of active attacks.
For example, an attacker could flood a nym to observe a
corresponding increase in traffic by the recipient.

Users of the Pynchon Gate select distributors from which
to receive data at random, each time the nym holder re-
trieves her messages. Unlike systems where the pseudonym
infrastructure initiates the delivery of messages, the Pyn-
chon Gate Client initiates the retrieval of messages, and thus
message retrieval cannot be correlated to a given nym by a
malicious sender.

Message buckets are of a fixed size, to protect against ac-
tive flooding attacks [52] as well as simple usage pattern
analysis. If the volume of messages is too great to fit in a
users’ buckets, delivery continues by trickling the pending
messages to the distributors over the next several tree dis-
tributions. To prevent denial of service attacks, users can
selectively retrieve or delete excess messages.5

Since the time between sending a message and receiving
a reply may leak information about the nym holder, traf-
fic from the client to the distributors is regulated by the
client, which queries the distributors only at given intervals.
To thwart active attacks against the distributor targeting
a specific client, clients should choose these intervals ran-
domly.

4.2 Statistical disclosure against reply-block-
based nym servers

Nym servers based on reply blocks (discussed in Section
2.1 above) are currently the most popular option for re-
ceiving messages pseudonymously. Nevertheless, they are
especially vulnerable to end-to-end traffic analysis.

Suppose an adversary is eavesdropping on the nym server,
and on all recipients. The attacker wants to know which user
(call her Alice) is associated with a given pseudonym (say,
nym33). The adversary can mount an intersection attack,
by noticing that Alice receives more messages, on average,
after the nym server has received a message for nym33 than
when it has not.6 Over time, the adversary will notice that
this correlation holds for Alice but not for other users, and
deduce that Alice is likely associated with nym33.

Recent work [19, 43] has studied an implementation of
these intersection attacks called statistical disclosure, where
an attacker compares network behavior when Alice has sent
to network when she is absent in order to link an anonymous
sender Alice to her regular recipients Bob1...BobN . Against

5If a client will be retrieving large amounts of data on a
regular basis, this method will not work. Instead, the client
should at account creation time request a sufficient number
of buckets to receive all data destined to it. Pending data
queued on the collator should be expired after a reasonable
amount of time.
6This task is especially easy if the adversary can distinguish
reply messages from non-reply messages, as is possible with
Type I remailers.

pseudonymous recipients, however, these attacks are far eas-
ier: in the anonymity case, many senders may send to any
given recipient Bobi, but with pseudonymous delivery, only
one user sends or receives messages for a given pseudonym.

To examine this effect, we ran a version of the attack simu-
lations described in [43], assuming a single target pseudonym
and N non-target pseudonyms providing cover. In order to
make the attack as difficult as possible (and thus establish
an upper bound on security), we assume that users behave
identically: they receive messages with equal probability ac-
cording to independent geometric distributions in each unit
of time (receiving no messages with probability 1 − PM);
they use identical reply blocks with path length ` through
mixes in a steady state that delay each message each round
with probability PD.

We ran the simulated attack with different values for PM ,
PD, and `, against a nym server with N = 216 active pseudo-
nymous users. (This is probably an overestimate of the num-
ber of users on typical nymserver today [45].) We performed
100 trials for each set of parameters. In the worst case (for
the nym holder), when PM = 0.5, ` = 1, PD = 0.1, the lack
of mix-net delay variance allowed the simulated attacker to
guess the user’s identity correctly after the user received an
average of only 37 messages. In the best simulated case
(PM = 0.5, PD = 0.9, ` = 4), the user received an average
of only 1775 messages before the attacker guessed correctly.
For an active user, this is well within a month’s expected
traffic.

Although there are ways to use dummy traffic to resist
statistical disclosure attacks, these are difficult to implement
perfectly in practice (due to outages) and even slight imper-
fections render users vulnerable to attack [43].

4.3 Other security concerns
The information used for authentication of the system

components (such as the certificates and the hash tree root
and metaindex) must be published widely to prevent either
the collator or any of the distributors from attacking clients
by tricking them into thinking that the hash root of the tree
is something other than what all of the other clients know
it to be. Distributors should do basic sanity checks, such
as verifying tree integrity. The distributors should also send
audit messages of their own to verify that the messages cor-
rectly appear in the system. Finally, clients should make
sure that each of the distributors they use agree about the
value of the hash root.

5. SYSTEM PERFORMANCE, SCALABIL-
ITY AND OPTIMIZATIONS

In this protocol, the size of requests is linearly propor-
tional to the total number of messages and the size of re-
sponses is the bucket size. If one or the other of these values
is large enough to cause scaling problems, then the collator
can trade off bucket size for bit field size by doubling the
bucket size, which halves the bit field size. With this ap-
proach, if the number of buckets becomes very large, then
the message size rises proportionately to the square root of
the number of buckets. This scales well, although it may ne-
cessitate multiple collators if the number of buckets gets ex-
tremely large. (Note that while different collators may share
the same distribution nodes for architecture or resource rea-
sons, their anonymity sets would remain separate.)

The PIR algorithm in this paper does not have optimal
asymptotic performance, especially in bandwidth. We present
it nonetheless because it is easy to explain, implement, and
analyze, and offers sufficient scalability to be useful. A rea-
sonable engineering plan is to implement the algorithm that
we describe, then once the implementation reaches a level of
scaling high enough to warrant the much greater difficulty
of a more sophisticated algorithm, implement a follow-on
protocol that uses fewer resources. This delay is prudent,
since private information retrieval primitives are an area of
active research with ongoing improvements [5], so waiting to
implement a more sophisticated algorithm will likely result
in greater resource savings once the implementation occurs.7

Another potential bottleneck lies in the fact that distrib-
utors have to perform a linear scan of the entire bucket pool
in order to fulfill a request. However, they can use a single
linear pass to compute the results of many requests in paral-
lel. Thus, a distributor can fulfill a large number of requests
at once, though the latency to answer those requests is lim-
ited by the total size of the bucket pool, and the throughput
to the distributor’s hard drive (unless the bucket pool fits in
RAM). Also, by performing continuous linear scans of the
entire database, the distributor can begin computing the re-
sult of a request at any point during the scan, finishing when
the next scan returns to that same point. Thus, the latency
is exactly the time of one full scan.

Latency in the PIR protocol can be reduced by allowing
the client to retrieve all its buckets at once with a single
execution of the PIR protocol on a column vector of all
its messages. This approach makes the whole database be
the same size for each publication period (given the same
user set) which could waste bandwidth and storage space,
though unused sections could be optimized out, at the cost
of requiring some compression to distribute everything to
the distributors efficiently. Other similar tradeoffs between
latency, bandwidth, storage, and computation also exist.

5.1 Comparing the Pynchon Gate to other sys-
tems

We have evaluated the resource requirements of various
pseudonymity systems described in Section 2.1, and com-
pare their respective performance in Figure 3. Bandwidth
requirements for the independent components of the pseudo-
nym system are averages per cycle. We use the term “infras-
tructure” to denote mix nodes in the Type I (Cypherpunk)
and Type III (Underhill [42]) nym server systems, NNTP
servers [38] for the Usenet news drop, and distributors in
the Pynchon Gate. N is the total number of users in the
system. Voli is the volume of messages received by user i
on a given day. CVoli is this volume after compression. S
is the number of nodes in the infrastructure.

Cypherpunk nym system parameters are denoted as r for
reply block size, and ` for the number of mixes in the reply
block.

Underhill uses a payload P of size 28 KB, a reply block r
of size 2 KB, and a packet size M of 32 KB. For Underhill,
W is the maximum interval at which users must replenish
reply blocks. Similarly, W is the window of time (in days) in
which users must retrieve their mail in the Pynchon Gate.

7Modifications to the protocol which break compatibility
with existing clients should be made cautiously, however, to
avoid unnecessary fragmentation of the existing anonymity
set.

System Nymserver bandwidth Infrastructure bandwidth User bandwidth Nymserver storage

Type I nymservers
P

Voli + CV oli CVoli
2`

P
CVoli
S

rN

Type III nymserver a P
Voli + (M + r)

P ‰
CVoli

P

ı
2L(M+r)

S

P ‰
CVoli

P

ı
(P + r)

‰
CVoli

P

ı
rW

P ‰
CVoli

P

ı
(best case)

Usenet drop n/a W
S

P
CVoli

h
N
S

+ 1
i P

CVoli
P

CVoli n/a

The Pynchon Gate
P

Voli + Pool 1
S

ˆP
ClientBi + Pool

˜
2MEI + ClientPIRVolb WPool

a
Underhill can be used in a full padding mode. In this case, the performance evaluation is the same, except that CV oli is calculated as the maximum compressed

volume a user can receive, rather than the average.
b
ClientPIRVol is the amount of data sent and received during PIR, or Bucketsi

»
(K − 1)SS + (m+I)

8 + B

–

Figure 3: Performance comparison for several pseudonymity designs.

The Pynchon Gate allocates buckets of size B. The num-

ber of message buckets needed (m) is calculated as
P l

CV oli
B

m
and the number of index buckets needed (I) is calculated asl

N·IE
B−IE

m
, where IE is the index entry size. ME is the sys-

tem’s metaindex. The PIR stream seed size is SS, and K
is the number of distributors chosen from which to retrieve
data.

If we assume one cycle per day with 10,000 users per colla-
tor who receive 100,000 KB of data each cycle, each collator
will transfer 2 GB per day. This allows a bucket size of
10 KB, with distributor query sizes of 12.5 KB, thus allow-
ing reasonable bandwidth requirements for both users and
system operators.

6. CONCLUSIONS
We have presented a system for anonymous message re-

trieval that provides stronger anonymity assurance and more
robustness than other theorized or deployed high-latency
pseudonymous message retrieval systems. Our system re-
sists traffic analysis better than current deployed systems,
and offers convenient scalability options.

We have proposed a client protocol that does not rely
upon an obtrusive user interface. Much work remains in
the field of effective user interface design for privacy and
anonymity systems, particularly when the privacy compo-
nent is viewed by the user as optional.

7. ACKNOWLEDGMENTS
Len Sassaman’s work was supported in part by the EU

within the PRIME Project under contract IST-2002-507591.
We thank Russell O’Connor for review of several candi-

date PIR systems; Adam Back for optimizations on the mes-
sage request protocol; Lucky Green for valuable comments;
Ben Laurie for review of an early sketch of the PIR Protocol;
Sonia Araña, Nikita Borisov, Roger Dingledine, Peter Pal-
frader, and Adam Shostack for proofreading and comments
on the paper. We also thank the anonymous reviewers for
their helpful suggestions. Finally, thanks to the many mem-
bers of the Cypherpunks mailing list who have contributed
to the field of anonymity research, in particular Jim McCoy,
who has done substantial work in designs for pseudonymous
message retrieval.

8. REFERENCES
[1] Alessandro Acquisti, Roger Dingledine, and Paul

Syverson. On the economics of anonymity. In
Rebecca N. Wright, editor, Financial Cryptography.
Springer-Verlag, LNCS 2742, 2003.

[2] Anonymous. alt.anonymous.messages considered
harmful. Mailing list post, November 1995.
http://cypherpunks.venona.com/date/1995/11/

msg00089.html.

[3] Andre Bacard. FAQ for the ALPHA.C2.ORG
Remailer. Usenet post, October 1995.
http://groups.google.com/groups?selm=4q4tsr%

248ui%40crl14.crl.com&output=gplain.

[4] Adam Back. Personal communication, April 2003.

[5] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and

Jean-François Raymond. Breaking the O(n1/(2k−1))
Barrier for Information-Theoretic Private Information
Retrieval. In Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science (FOCS), 2002.

[6] Oliver Berthold, Sebastian Clauß, Stefan Köpsell, and
Andreas Pfitzmann. Efficiency improvements of the
private message service. In Ira S. Moskowitz, editor,
Proceedings of Information Hiding Workshop (IH
2001), pages 112–125. Springer-Verlag, LNCS 2137,
April 2001.

[7] Oliver Berthold, Hannes Federrath, and Stefan
Köpsell. Web MIXes: A system for anonymous and
unobservable Internet access. In H. Federrath, editor,
Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 115–129.
Springer-Verlag, LNCS 2009, July 2000.

[8] Oliver Berthold, Andreas Pfitzmann, and Ronny
Standtke. The disadvantages of free MIX routes and
how to overcome them. In H. Federrath, editor,
Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 30–45.
Springer-Verlag, LNCS 2009, July 2000.

[9] Philippe Boucher, Adam Shostack, and Ian Goldberg.
Freedom systems 2.0 architecture. White paper, Zero
Knowledge Systems, Inc., December 2000.

[10] Rick Busdiecker. Message pool:
alt.anonymous.messages. Mailing list post, August
1994. http://cypherpunks.venona.com/date/1994/
08/msg00185.html.

[11] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
OpenPGP Message Format. Request for Comments:
2440, November 1998.

[12] David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 4(2), February 1981.

[13] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In IEEE
Symposium on Foundations of Computer Science,

pages 41–50, 1995.

[14] Bram Cohen. Incentives Build Robustness in
BitTorrent. In Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, USA, May 2003.
http://www.sims.berkeley.edu/research/

conferences/p2pecon/papers/s4-cohen.pdf.

[15] David A. Cooper and Kenneth P. Birman. Preserving
privacy in a network of mobile computers. In
Proceedings of the 1995 IEEE Symposium on Security
and Privacy, May 1995.

[16] Lance Cottrell. Mixmaster and remailer attacks.
http://www.obscura.com/∼loki/remailer/

remailer-essay.html.

[17] Lance Cottrell. Re: Strengthening remailer protocols.
Mailing list post, September 1996.
http://cypherpunks.venona.com/date/1996/09/

msg00730.html.

[18] Wei Dai. Pipenet 1.1. Usenet post, August 1996.
http://www.eskimo.com/∼weidai/pipenet.txt.

[19] George Danezis. Statistical disclosure attacks: Traffic
confirmation in open environments. In Gritzalis,
Vimercati, Samarati, and Katsikas, editors,
Proceedings of Security and Privacy in the Age of
Uncertainty, (SEC2003), pages 421–426, Athens, May
2003. IFIP TC11, Kluwer.

[20] George Danezis. Better Anonymous Communications.
PhD thesis, University of Cambridge, 2004.

[21] George Danezis. The traffic analysis of
continuous-time mixes. In Proceedings of Privacy
Enhancing Technologies workshop (PET 2004), LNCS,
May 2004.

[22] George Danezis, Roger Dingledine, and Nick
Mathewson. Mixminion: Design of a Type III
Anonymous Remailer Protocol. In Proceedings of the
2003 IEEE Symposium on Security and Privacy, May
2003.

[23] George Danezis and Ben Laurie. Minx: A simple and
efficient anonymous packet format. In Proceedings of
the Workshop on Privacy in the Electronic Society
(WPES 2004), Washington, DC, USA, October 2004.

[24] M. Day, S. Aggarwal, G. Mohr, and J. Vincent.
Instant Messaging / Presence Protocol Requirements.
Request for Comments: 2779, February 2000.

[25] Claudia Dı́az, Len Sassaman, and Evelyne Dewitte.
Comparison between two practical mix designs. In
Proceedings of 9th European Symposium on Research
in Computer Security (ESORICS), LNCS, France,
September 2004.

[26] T. Dierks and C. Allen. The TLS Protocol. Request
for Comments: 2246, January 1999.

[27] Roger Dingledine, Michael J. Freedman, and David
Molnar. The Free Haven Project: Distributed
anonymous storage service. In H. Federrath, editor,
Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in
Anonymity and Unobservability. Springer-Verlag,
LNCS 2009, July 2000.

[28] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion router. In
Proceedings of the 13th USENIX Security Symposium,
August 2004.

[29] Hal Finney. New remailer... Mailing list post, October
1992. http://cypherpunks.venona.com/date/1992/
10/msg00082.html.

[30] Independent Centre for Privacy Protection. AN.ON
still guarantees anonymity.
http://www.datenschutzzentrum.de/material/

themen/presse/anonip e.htm, 2003.

[31] Ian Goldberg. A Pseudonymous Communications
Infrastructure for the Internet. PhD thesis, UC
Berkeley, December 2000.

[32] Ian Goldberg. Privacy-enhancing technologies for the
Internet, II: Five years later. In Roger Dingledine and
Paul Syverson, editors, Proceedings of Privacy
Enhancing Technologies workshop (PET 2002).
Springer-Verlag, LNCS 2482, April 2002.

[33] David M. Goldschlag, Michael G. Reed, and Paul F.
Syverson. Hiding routing information. In Information
Hiding, pages 137–150, 1996.

[34] Philippe Golle and Markus Jakobsson. Reusable
anonymous return channels. In Proceedings of the
Workshop on Privacy in the Electronic Society
(WPES 2003), Washington, DC, USA, October 2003.

[35] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul
Syverson. Universal re-encryption for mixnets. In
Proceedings of the 2004 RSA Conference,
Cryptographer’s track, San Francisco, CA, USA,
February 2004.

[36] Thomas C. Greene. Net anonymity service
back-doored. The Register, 2003.
http://www.theregister.co.uk/2003/08/21/

net anonymity service backdoored/.

[37] Johan Helsingius. press release announcing closure of
anon.penet.fi.
http://www.penet.fi/press-english.html.

[38] M. Horton and R. Adams. Standard for Interchange of
USENET Messages. Request for Comments: 1036,
December 1987.

[39] Mike Ingle. Interoperability, one-use remailer tickets.
Mailing list post, December 1994.
http://cypherpunks.venona.com/date/1994/12/

msg00245.html.

[40] Andrew Loewenstern. Re: Strengthening remailer
protocols. Mailing list post, September 1996.
http://cypherpunks.venona.com/date/1996/09/

msg00898.html.

[41] Nick Mathewson. Pynchon Gate Protocol draft
specification, September 2004.
http://www.abditum.com/pynchon/.

[42] Nick Mathewson. Underhill: A proposed type 3
nymserver protocol specification, August 2004.
http://www.mixminion.net/nym-spec.txt.

[43] Nick Mathewson and Roger Dingledine. Practical
traffic analysis: Extending and resisting statistical
disclosure. In Proceedings of Privacy Enhancing
Technologies workshop (PET 2004), LNCS, May 2004.

[44] Tim May. Re: Strengthening remailer protocols.
Mailing list post, September 1996.
http://cypherpunks.venona.com/date/1996/09/

msg00167.html.

[45] David Mazières and M. Frans Kaashoek. The Design,
Implementation and Operation of an Email

Pseudonym Server. In Proceedings of the 5th ACM
Conference on Computer and Communications
Security (CCS’98). ACM Press, November 1998.

[46] Jim McCoy. Anonymous mailbox servers.
Presentation, HIP’97, August 1997.

[47] Roger McFarlane, Adam Back, Graydon Hoare, Serge
Chevarie-Pelletier, Bill Heelan, Christian Paquin, and
Deniz Sarikaya. Freedom 2.0 mail system. White
paper, Zero Knowledge Systems, Inc., December 2000.

[48] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len
Sassaman. Mixmaster Protocol — Version 2, July
2003. http://www.abditum.com/mixmaster-spec.txt.

[49] Steven J. Murdoch and George Danezis. Low-cost
traffic analysis of Tor. In Proceedings of the 2005
IEEE Symposium on Security and Privacy. IEEE CS,
May 2005.

[50] Peter Palfrader. Echolot: a pinger for anonymous
remailers. http://www.palfrader.org/echolot/.

[51] Len Sassaman. The promise of privacy. Invited talk,
LISA XVI, November 2002.

[52] Andrei Serjantov, Roger Dingledine, and Paul
Syverson. From a trickle to a flood: Active attacks on
several mix types. In Fabien Petitcolas, editor,
Proceedings of Information Hiding Workshop (IH
2002). Springer-Verlag, LNCS 2578, October 2002.

[53] Robyn Wagner. Don’t Shoot the Messenger: Limiting
the Liability of Anonymous Remailer Operators. New
Mexico Law Review, 32(Winter):99–142, 2002.

[54] Alma Whitten and J. D. Tygar. Why Johnny can’t
encrypt: A usability evaluation of PGP 5.0. In 8th
USENIX Security Symposium, 1999.

