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Research into protocols for anonymous communication in networks has yielded many designs and a wide

range of functionality and performance options. Of these, only a few have been successful in practice.

The experience in fielded systems emphasizes the following criteria for designing anonymous-communication

protocols: communication functionality, anonymity, latency, and message complexity. Therefore, in this

thesis we explore understanding and improving the performance of anonymous-communication protocols

according to these criteria. To provide high confidence in our analysis against a malicious adversary, we

formally model such protocols and rigorously analyze them according to precise definitions.

The first subject of our analysis is the onion-routing protocol. Onion routing is a successful protocol

for anonymous communication in widespread public use. However, its anonymity has not received much

rigorous analysis. Therefore, in the first half of the thesis, we model the protocol and its environment, and

we analyze the resulting anonymity properties.

Our results show that onion routing provides unsatisfactory anonymity against a realistic adversary that

controls some fraction of the network. In particular, the protocol faces an upper limit on anonymity that

depends only on the size of the adversary. Therefore, in the last half of the thesis, we consider two ways to

get past this limit: trust information and a new protocol design.

We first suppose that users have external trust information about the network that helps them avoid parts

that are controlled by the adversary. Then we consider using this information to improve the anonymity

provided by onion routing. Under a model of trust, we come up with practical and provable improvements.

Next we consider a new protocol that avoids a major weakness in onion routing: timing attacks. The

protocol uses explicit timing and redundancy as its key techniques, and we prove that it can provide ar-

bitrarily high anonymity. Finally, this protocol requires adding delays to smooth out variable latency in

the underlying network. We estimate the magnitudes of these delays by performing measurements on a

live anonymity network. Our results suggest that the added delays likely result in a small constant-factor

increase over onion routing.
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Chapter 1

Introduction

Every method for human communication seems to be accompanied by a way to use it to communicate

anonymously. Callers can block their phone numbers from being sent to the recipients, or they can use

public telephones to hide their identity even from the telephone company. Anonymous letters are easily sent

by omitting or falsifying the return address. Anonymous messages can even be sent in person using disguises

or third parties.

The Internet is no exception. Indeed, the Internet by nature shields users behind their computers and

allows them to communicate regardless of location, only helping users to communicate without revealing an

identity. And users take advantage of this. People use the Internet to create alternate identities in online

communities. They use the Internet to anonymously publish complaints about their governments and their

jobs. Cybercriminals anonymously deface websites and exchange copyrighted media.

But the Internet is not as anonymous as it might appear. Every message sent directly from a computer

is tagged with an address that allows the recipient to send a response. This address, perhaps combined

with some information from the service provider, can be used to identify the source. Communication that

happens over higher-level protocols, such as email, typically contains information that allows a message to

be tracked back to the sender.

This opens up a basic question in computer networking: how can we provide anonymous communication

over the network? Research into this question has identified a wide range of solutions. One one end of the

range, there is the simple solution of redirecting messages through a proxy. This provides only very weak

anonymity in that it requires users to trust the proxy and assumes that communication over the network
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generally cannot be observed. It has the advantage of being simple and efficient. At the other end of the

range is the “dining cryptographers” protocol [13]. This protocol provides perfect anonymity to senders

and recipients. However, it requires every pair of users to communicate, which results in a total of Ω(n2)

messages, where n is the number of users. This overhead is very high when used on a large network such as

the Internet.

There have been several deployments of anonymity systems for general use that provide information

about how well these solutions work in practice [36]. Single-hop anonymizing proxies provide real-time

relaying of general Internet traffic. Lists of free single-hop anonymizing proxies are easily available online,

and there are several companies that provide that service for a fee. A more sophisticated class of system uses

chains of relays to provide better anonymity, while still maintaining latencies that are low enough to support

many types of Internet protocols [9, 5, 23]. These systems provide also real-time anonymous communication

of Internet traffic, although with some performance loss. A third class of system is anonymous remailers

[61, 56]. Anonymous remailers allow users to send email anonymously. They can achieve high guarantees of

anonymity but require higher delays that make them unsuitable for other applications.

A lesson from these systems is that efficiency matters [22]. The popularity of these systems decreases

as their resource requirements increase. Single-hop proxies require the network to send one extra message

and add the time it takes to route traffic through the proxy to the latency. Their use is widespread and are

the underlying technology for the few businesses that are successful in providing this service (for example,

The Anonymizer [2]). Relay chains add messages and latency that is proportional to the length of the chain.

These resource requirements were, for example, a main factor in the failure of the for-profit model of the

Freedom Network [9]. As mentioned, anonymous remailers add significant delay, and this has limited their

popularity.

Efficiency is generally gained at the expense of anonymity. For example, when there aren’t too many

extra messages nor much added latency, the users and destinations that are active at the same time are likely

to be communicating with one another. Therefore, if the adversary can observe communication activity, he

can use it to infer who is talking to whom. As another example, the adversary can slow down processing

in parts of the network by overloading them with messages, and then he can observe how that affects the

timing of messages in the protocol. In efficient protocols, users don’t interact with every other agent, and

so this may affect some users but not others, which can allow the adversary to figure out more about the

execution of the protocol.
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As is evident in these examples, a common weakness in efficient protocols is that the timing of messages

(as opposed to, say, their number or content) can reveal private information about communication. This

complicates the analysis of these protocols, as it tends to fall outside the models considered in more well-

studied cryptographic protocols such as those for encrypted or authenticated communication. Due in part

to this, the anonymity these protocols provide is often not well-understood.

In this thesis we analyze these timing issues, among others, as we evaluate the performance of efficient

protocols. We first consider the anonymity provided by onion routing [40], which is a very popular protocol

that uses chains of relays to provide anonymous communication. Our results show that, due primarily to

the ability of the adversary to correlate timing patterns in traffic coming in from users with such patterns

going out to destinations, the anonymity provided by onion routing has a worst case that is significantly

worse than less rigorous analysis has suggested (for example, [80]). Even in the best case, there is a hard

upper limit, depending on the size of the adversary, to how much anonymity is provided.

Therefore, we consider designing protocols with better anonymity that maintain good efficiency. Specif-

ically, we would like to maintain performance competitive with onion routing, because it has demonstrated

that its performance is acceptable in practice. First, we consider modifying onion routing to use outside trust

information about which agents are likely to be adversarial. If an agent has a good idea about which routers

are trustworthy, he can prefer those routers when forwarding his traffic through the network. We formalize

a notion of trust and consider how use it to optimally choose those routers. Second, we consider ways to

avoid entirely the timing attacks of the adversary. Such attacks rely on timing patterns in the protocol traffic

created either by the users or the adversary. We enable the users to avoid creating such patterns, and give

a protocol that prevents the adversary from creating them.

Our design and analysis is done rigorously within precise mathematical models. Analysis of anonymous-

communication protocols, especially efficient protocols that are designed to be useful in practice, is often

done informally. Such analyses can leave important parts of the network environment, such as the user

behavior or adversary capabilities, somewhat ambiguous. We provide precise modeling of all aspects of the

protocols we consider, and evaluate their performance according to clear definitions of our criteria. The basic

model and definitions are given in Chapter 2; extensions are given in Chapters 6, 7, and 8.
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1.1 Analyzing Onion routing

We start by modeling and analyzing onion routing, which uses chains of relays and layered encryption to

anonymously deliver messages. Onion routing is widely used, and there are several similar protocols in

use as well. Despite this, recent research demonstrates how much we have to learn about its properties

[55, 10, 64, 8, 57, 43, 28]. The anonymity of the protocol is affected by the timing properties of the network,

including timing delays on communication links, congestion at routers, and inaccuracies in local clocks. It

also depends on user behavior, such as how users choose destinations and the pattern of their traffic. The

nature of the adversary is a factor as well. He may control small parts of the network, may be able to make

observations at many points in the network, or may be able to move around the network during the operation

of the protocol. We construct a model of the protocol that makes some concrete choices on these questions,

which we justify, when possible, by experience in practice. Then we obtain results about the properties of

onion routing in this model, in particular about the anonymity it provides.

In onion routing, agents are divided into users, routers, and destinations. Users use the protocol to

open connections for two-way communication with destinations. For a given connection, the user selects a

sequence of routers, known as a circuit, that will be used to forward the user’s traffic. The user establishes

a circuit by first directly opening a circuit with the first router, and then iteratively extending the circuit

by sending message over the existing circuit. Messages are encrypted with the key of each router in the

circuit in the reverse order that the routers appear. For a message that is being sent from the user to the

destination, after the message arrives at the ith router on a circuit, the router decrypts the message and

sends the result to the (i+1)st router. For a message that is being sent from the destination to the user, after

the message arrives at the ith router, the router encrypts the message and sends the result to the (i− 1)st

router. When the user is done with the circuit, he sends a command to the first router to destroy it, which

gets relayed down the circuit. This scheme keeps a router from learning the identities of the agents in the

circuit except for the one before and the one after. Or, at least, the message contents alone do not provide

this information, as we have already mentioned several attacks that can allow the adversary to learn more.

This protocol is a practical scheme that provides some anonymity with reasonable performance. It adds

latency and extra messages proportionally to the length of the path, which we can hold constant even as

the network grows. It provides two-way, connection-based communication and does not require that the

destination participate in the anonymity-network protocol. These features make it useful for anonymizing

much of the communication that takes place over the Internet today, such as web browsing, chatting, and
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remote login.

The basic ideas behind onion routing can be found in many fielded systems [9, 5, 23], although the term

“onion routing” is often reserved exclusively for the original protocol and its direct successors [40, 79, 23]. It

has achieved considerable popularity as the Tor network [23, 83]. Tor develops and distributes open-source

client and server software for users and routers, respectively. The routers are run by volunteers. As of May

2009, there were over 1500 active routers in the network [85]. The usage level of the network is hard to

measure exactly, because, to protect user privacy, Tor routers collect very little network data. It is estimated

by Mittal and Borisov [60] and by Goldberg [38] that the network has hundreds of thousands of users and

carries terabytes of traffic per day, and these estimates are substantiated by the data published by McCoy

et al.[57].1.

We formalize onion routing, using I/O automata, in Chapter 4. Then, in Chapter 5, we characterize the

anonymity of the resulting system in a possibilistic sense, that is, we determine when it is possible, as far as

the adversary can tell, that a user didn’t perform a given action. Our results show that the adversary can

only determine the identity of the agents on a circuit that he controls or is adjacent to. This implies that

anonymity depends on the set of users for which the adversary controls the first router on the path and the

set for which the adversary controls the last router, because controlling these positions are the only ways

that the adversary can determine the user and destination of a circuit, respectively.

This is a weak notion of anonymity, in that, in a more realistic model in which the system operates

probabilistically, certain outcomes may be more likely than others. Therefore, in Chapter 6, we add a

probability distribution to executions in our model and analyze the relationship anonymity (that is, how

well the adversary can tell that a user and destination are talking) in a probabilistic sense. Specifically, the

metric that we use is the expected probability that the adversary assigns to the actual destination of a given

user, and the lower this value is the more anonymous a user and destination are. The relationship anonymity

of a given user u and destination d depends on the behavior of other users; if the other users are more likely

to choose different destinations than u, for example, then their actions are less likely to be confused with

the actions of u.

In fact, we show that there are two possible worst cases: all users except u always select the destination
1They observed 7571 unique users in one day at an entry node. As of May 2009, constituted approximately 20% of routers

[85]. Every user chooses entry nodes randomly from a set of default size 3[84]. Therefore we can estimate the total number
of unique users for the day as 7571 ∗ 250/3 ≈ 630917. Also, they forwarded 709GB of traffic over four days, and report
that the reported bandwidth of their server was in the top 5%. If the rest of the top 5% allowed exit traffic, that yields
709 ∗ 5/4 = 886.25GB/day
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u is least likely to select (other than d), and all users except u always select d. Then we show that the

worst cases are significantly worse, in that the adversary must control many fewer routers in the worst case

to maintain the same anonymity as in a “typical“ case. When there are many users and destinations, the

anonymity achieved in a typical case (previously proposed by Shmatikov and Wang [76]) against an adversary

that controls a fraction b of the routers is only achieved in the worst case when the adversary controls the

smaller fraction b2. We also show a lower bound on our metric that is constant in the number of agents, given

that the relative size b of the adversary is constant. This result is consistent with the less formal analysis of

Syverson et al. [80].

1.2 Improved Efficient Protocols

The limit on relationship anonymity in onion routing is not very satisfactory. Against an adversary controlling

a fraction b of the routers, there is a non-negligible probability b2 of having no anonymity, and this does not

change with the size of the network nor are we able to trade some performance for anonymity. To understand

what this barrier means in practice, consider Tor. Under the current size and usage of the Tor network, with

only thirty routers we expect the adversary to compromise over three users per day and for a given user to

be compromised at least once a month2. Even worse, these rates of compromise can be obtained with only

two routers if the adversary can run the two highest-bandwidth routers3. Thus, the system provides almost

no anonymity against a wide variety of realistic opponents, such as governments, ISPs, and criminals willing

to purchase the use of botnets.

However, onion routing does provide desirable communication functionality with good efficiency, and this

has contributed to its popularity over more secure protocols. Therefore, in Chapters 7 and 8 we consider

new protocols to provide better anonymity while maintaining the desirable properties of onion routing.

In Chapter 7, we consider the case that users have some outside knowledge about which routers in

the network are less likely to try to compromise anonymity. There are several possible sources of such trust

knowledge, such as personal relationships with the operators of certain routers, knowledge about the security
2Assume the Tor network consists of 1500 routers [85]. An adversary that runs 30 routers has over a 50% chance of

compromising 1 in 1750 circuits (the persistent connections through the network that users set up to route traffic). McCoy
et al. [57] observed 7571 unique clients while running a router for one day. At this usage rate, our adversary, with 30 routers,
would expect to compromise over 3 users per day. Also, currently in Tor users choose new circuits every 10 minutes. Therefore,
any given user has a 50% chance of being compromised at least once in about 2 weeks of continuous use.

3As observed by Bauer et al. [4], Tor weights router selection by bandwidth to provide good performance. Thus an adversary
need only control 2% of the bandwidth to achieve these success rates. McCoy et al. observed in [57] that the top 2% of routers
transported about 50% of the traffic. In such a situation, supplying 2% of the bandwidth in Tor can be achieved by supplying
just the two routers with the highest bandwidth.
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of different platforms, and information about surveillance programs by governments. We formalize a notion

of trust, and then analyze how users can improve the anonymity of onion routing by taking into account

how trusted each router is when selecting circuits. Our results include a general path-selection algorithms,

analysis of a natural approximation algorithm, and optimal strategies in the special case that all the routers

are either “trusted” or “untrusted.”

Using trust knowledge can help users avoid adversarial routers, but the extent to which it helps is limited

by the amount of trust users have in the routers. In Chapter 8, we describe a protocol that provides good

anonymity even without trust assumptions. The anonymity our protocol provides increases without bound

as the number of users increases, and it has efficiency that is comparable to that of onion routing. The

protocol deals with the fundamental problem in onion routing - the adversary can use timing to determine

which routers are part of the same circuit. To prevent the adversary from manipulating the timing of the

protocol, we include explicit timing commands with the messages and use redundancy to help prevent the

adversary from blocking messages. Redundancy opens up more opportunities for the adversary to observe the

communication, though, and balancing these two threats is the key contribution of our design. The explicit

timing requires adding some delays that depend on the network, and so we also perform a measurement

study of the timing properties of the Tor network to evaluate what kind of performance the system might

achieve in practice. The results suggest that, for the majority of messages in the system, latency would be

multiplied by at most a factor of two or three.
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Chapter 2

Models and Definitions

2.1 Introduction

The first step towards rigorously analyzing and designing anonymity protocols is to build an appropriate

model of the environment in which they will operate. Our environment consists of the network, users, and the

adversary. We make our modeling decisions in order to best capture the relevant features of the environment

as they have been revealed in the research and practice of low-latency anonymous communication. The

second step is to choose the criteria with which to evaluate the protocols and make precise definitions of

them. The criteria that we will consider are functionality, anonymity, latency, and message complexity.

2.2 Models

We give a basic model here that will serve as a basis for all of the protocols we describe and analyze. Features

will be added to this model in later chapters as we seek better understanding of and designs for anonymous

communication.

2.2.1 Input/Output Automata

We express our model and protocols using input/output automata [53]. Several different formalisms have

been used to formalize anonymous-communication protocols, including an ACP-style process algebra [55],

the universally composable framework [10], and a run-and-systems logical semantics [41]. The main obstacle
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to useful anonymous communication is preventing traffic analysis, that is, hiding traffic patterns of traffic

from the adversary. I/O automata allow us to focus on this problem rather than the cryptographic aspects

of the protocols. Also, I/O automata are quite general and allow us to model asynchronous computation

and communication.

2.2.2 Executions

We use standard notions of execution and fairness. An execution is a possible run of the network given its

initial state. Fairness for us means that any message an automaton wants to send will eventually be sent

and every sent message is eventually received.

We introduce the notion of a cryptographic execution. This is an execution in which no agent sends a

control message encrypted with active keys it doesn’t possess before it receives that message. We restrict

our attention to such executions, and must require our encryption operation to prevent an attacker from

outputting a control message, with more than negligible probability, when it is encrypted with keys he

doesn’t possess. This is reasonable because we can easily create a ciphertext space that is much larger than

a limited control message space P . Note that this precludes the use of public-key encryption to encrypt the

packets because such messages can easily be constructed with the public keys of the routers.

Definition 1. An execution is a sequence of states of an I/O automaton alternating with actions of the

automaton. It begins with an initial state, and two consecutive states are related by the automaton transition

function and the action between them. Every action must be enabled, meaning that the acting automaton

must be in a state in which the action is possible at the point the action occurs.

Because there are no internal actions in the automata, all actions are message sends or message receives.

Frequently, we will treat an execution as a sequence of actions, because the states are implicit from these

and the initial states.

Definition 2. A finite execution is fair if there are no actions enabled in the final state. Call an infinite

execution fair if every output action that is enabled in infinitely many states occurs infinitely often.

Definition 3. An execution is cryptographic if an agent sends a message containing {p}k1,...,ki
only when

it possesses all keys k1, . . . , ki, or when for the largest j such that the agent does not possess kj, 1 ≤ j ≤ i,

the agent has already received a message containing {p}k1,...,kj .
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2.2.3 Network

We model onion routing as a fully-connected asynchronous network of I/O automata. The network is

composed of FIFO channels. There is a set of users U , a set of routers R, and a set of destinations D. Let

n = |U | be the number of users and m be the number of routers. Let N = U ∪R∪D. The term agent refers

to any element of N .

The network delivers messages in the message space M. M must satisfy the following properties:

1. It contains the integers, that is, Z ⊆M.

2. Message tuples are valid messages, that is, Mk = M, k ∈ N.

Our network model provides asynchronous communication between every pair of agents. Asynchrony

is an important feature, because synchronizing the actions of different users can be used to make them

indistinguishable to an adversary and is a key technique used by anonymous-communication protocols [24].

The network model does not include, for now, any more explicit notion of time than the ordering on actions.

2.2.4 Users

We model user behavior very simply. At the start of the protocol each user wants to send a message to one

destination and to receive one message back.

User behavior is an important feature of our model because it has a big effect on anonymity. When there

are very few users that communicate, for example, good anonymity is simply not achievable. As another

example, if each user only communicates with a single unique destination, and the adversary knows this,

then the user cannot communicate anonymously unless the adversary can’t tell if the user is communicating

at all.

Our model of user behavior is an intentionally simple example of bidirectional communication. We will

show that many of the common anonymous-communication protocols do not have satisfactory performance

even for such basic user behavior. We will then focus on protocols with better performance, which will then

allow us to consider the effect of more complicated, and more realistic, users.

There are many features of user behavior that are not addressed by our basic model. Users may choose

destinations in a predictable way. They may contact multiple destinations simultaneously. Users and des-

tinations may participate in bidirectional streams of messages rather than single message/response pairs.

Instead of communicating just once, users may participate in many communication sessions over time.

10



These ways in which plausible user behavior differs from our model may be significant in an anonymous-

communication protocol. An adversary might be able to learn a user’s frequent communication partners if

he chooses them somewhat predictably over time. Moving to stream communication may open up additional

opportunities for an adversary to determine the destination. The simple user behavior model already leads to

interesting problems in evaluating and designing anonymous-communication protocols. Also, we do examine

more complicated user behavior in Chapters 6 and 8. These show that our simple model is robust in some

ways.

2.2.5 Adversary

The adversary in our system is a set of users and routers A ⊆ U ∪ R. The adversary is active in the sense

that the automata running on members of A are completely arbitrary. We call an agent a compromised if

a ∈ A. We assume that the adversary knows the number of users, routers, and destinations.

Note that we do not allow the adversary to compromise any of the destinations. It does seem possible in

several situations this could be the case - for example, communication with a known hostile destination or a

destination that is under surveillance. However, the case that this doesn’t happen generally captures protocol

performance and protocol design challenges, and therefore that is the case we focus on. Because our design

criteria will require that all protocols use just one router to communicate with the destination, the case that

this router is compromised presents the same situation as the case that the destination itself is compromised.

Therefore many of our analyses extend naturally to the case that the adversary can compromise destinations.

We choose to make the adversary local, in that he controls a subset of the network. In particular, this

limits him to only a partial observation of network activity. This contrasts with a global adversary, popular

in analyzing mix networks, that can observe the entire network. That adversary is too strong for a large

network such as the Internet. This is a very helpful restriction for designing effective protocols; we can

confuse a local adversary just by making sure that some network events occur outside of his view. A global

adversary precludes this, and seems to require protocols that have high resource requirements.

We also make the adversary active in the network. This is opposed to a passive adversary, that is,

an adversary that obeys the protocol and just makes inferences from his observations, which is considered

often in the literature. A passive adversary is interesting for several reasons: it is a trivial behavior for the

adversary to implement, it is hard to detect and protect against because it is behaving the same as a normal

user, and there are mechanisms (for example, zero-knowledge proofs) that help enforce correct adversary

11



behavior. However, an active adversary is much more realistic, and ideally a protocol should work against

such an adversary.

Because we are trying to keep some knowledge hidden from the adversary, it is important to specify the

knowledge that the adversary starts with. Our basic knowledge assumption is that the adversary knows the

number of users, routers, and destinations that exist in the network. This is already probably too strong,

in that it gives the adversary more information than he likely has. However, in the protocols we consider,

the adversary can make good statistical guesses about the number of users, routers, and, in some cases,

destinations, just by observing the operation of the protocol at the router he controls.

2.2.6 Weaknesses

Our model is necessarily simple, and it omits many features of actual networks that are relevant to anonymous

communication. We mention a few.

First, the network does not include any notion of time. We consider this somewhat in Chapter 8, but

many aspects remain absent. In particular, we do not consider congestion in the network, in which the time

to process a message at a routers depends on the number of messages the have received. In real networks,

congestion can be used to incapacitate parts of the network or create patterns of artificial that can reveal the

patterns of communication [63]. Also, there may be different delays between different hosts in the network,

and this can reveal information about where messages are likely to have originated [43].

Also, we have just one round of communication involving ane message and a response. Multiple con-

nections over time give the adversary an opportunity to learn from what he sees and adapt. The adversary

might, for example, seek to compromise machines that are of interest after observing some messages being

sent [80]. Also, when not all users participate in the same number of connections at a given time, the adver-

sary may be able to perform an intersection attack [48, 18], that is, to observe which users and destinations

are simultaneously active and infer the common destinations of the users. Multiple messages allow the ad-

versary to perform destination fingerprinting, that is, to infer the destination given the volume and timing

of return messages [42]. This is particularly an issue when there is a small set of popular destinations, such

as on the Web.
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2.3 Criteria

The criteria that we will use to evaluate anonymous-communication protocols are functionality, anonymity,

latency, and message complexity. The popularity of onion routing can be attributed in part to the fact that

it has reasonable performance according to all of these criteria, while the many competing protocols usually

perform badly in at least one. Note, however, that good performance on each of these may not be sufficient

for a useful protocol in many of the situations in which anonymous communication might be applied. For

example, one might want the user to be unobservable, that is, that the adversary is unable to determinine

whether or not the user is communicating with anyone at all. More weakly, one might want the protocol to

be hard to distinguish from other popular protocols on the same network. However, it does seem that for

many of the Internet applications that onion routing is used to anonymize - for example, Web browsing, file

sharing, chat, and email - any protocol that succeeds against these four criteria is likely to be useful.

2.3.1 Functionality

The communication functionality that we want our protocol to provide is to, first, deliver a message from a

user to a given destination and, second, to deliver a possible response message from the destination to the

user. Formally, the protocol must implement the operation AnonymousMessage(d,m). It takes as inputs a

destination d ∈ D and a message m ∈ M, and it returns a number n ∈ N that identifies that use of the

operation. After a user u calls AnonymousMessage, some router r ∈ R in the network must eventually deliver

the message [g(n),m] to d, where g(n) : N → N is an injective map. Then, if at some point d sends the

message [g(n),m′] to r, m′ ∈ M, the network must eventually deliver the message [n,m′] to u. Note that

the protocol is only required to implement these actions when all the agents correctly execute it.

Our functionality requirement is deliberately simple to avoid complicating the analysis of protocols accord-

ing to all of our criteria. Also, it allows us to directly compare the protocols for anonymous communication

in the literature, which generally implement this basic operation.

We require that only one router communicate with the destination for a given communication from the

user. This requirement is motivated by the observation in practice that it is difficult to get hosts to support

a special protocol for anonymous communication. Therefore, the destination communicates using standard

point-to-point protocols with one router that acts as an anonymous proxy for the user. Removing this

requirement would make it easier to design effective protocols, but it is a real-world constraint that we feel

is important to adopt.
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2.3.2 Anonymity

There are multiple types of anonymity involved in anonymous communication and several plausible ways

of measuring each one. Indeed, there is a growing body of research solely concerned with identifying and

comparing various notions of anonymity. Our approach is to pick an important type of anonymity and study

how to implement it very well under our chosen criteria, evaluating anonymity with some reasonable metric.

We are mostly not concerned with examining diferent types of anonymity and determining the best metrics.

Therefore we emphasize one type of anonymity evaluated according to one metric. We will focus primarily

on relationship anonymity, that is, on how well the adversary can determine the communication partners of

a user. To measure this, we primarily use the probability that the adversary assigns to the user’s destination

after observing the protocol, under probabilistic extensions our model.

Types

In general, any action that a user can perform can be performed anonymously. This means that if the

adversary can tell that a certain action was performed, then he cannot tell which user was the actor. We

will also consider the user anonymous, in the case that adversary cannot tell whether or not the action was

performed.

There are several types of anonymity associated with network communication that may be of interest:

• Sender anonymity : A message has sender anonymity if the adversary cannot tell which user sent that

message.

• Receiver anonymity : A message has receiver anonymity if the adversary cannot tell which destination

a specific message is sent to.

• Relationship anonymity : A user and destination have relationship anonymity if the adversary cannot

tell which destination a user communicates with.

In general, there is a weak logical relationship between these three notions - if user u and destination d have

relationship anonymity, then, for every message m sent by u, m has sender anonymity or receiver anonymity.

Otherwise, for some message the adversary would be able to determine that it was sent by u to d. If u and

d do not have relationship anonymity, we cannot say anything about the anonymity of their messages. It

is possible, for example, that every message has both sender and receiver anonymity, and yet the adversary

can still determine that u sent at least one of them to d.
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We focus on relationship anonymity because it has been the primary goal of fielded anonymous commu-

nication systems. Also, providing receiver anonymity is made fundamentally difficult by our functionality

requirement that one final router send a user’s message to its destination. This final router may be compro-

mised and will observe the message and its recipient. Conversely, providing sender anonymity seems very

close to providing relationship anonymity, because in our model every user communicates with exactly one

destination. Therefore for u to have relationship anonymity, we only need there to be one message with

sender anonymity for which u is among the possible senders and that is to a destination other than d.

Metrics

There are several reasonable metrics with which to measure anonymity. Unlike the primitives in cryptog-

raphy, which have similar information-hiding goals to anonymous communication and are in several cases

closely related [45], the proper definitions for anonymity have not been settled. This seems to be because

the kinds of very strong guarantees that cryptographic constructions can satisfy have not been achieved

by useful constructions for anonymous communication. The way to measure the anonymity that existing

constructions do achieve is then less clear.

In an anonymous-communication protocol, the adversary makes a series of observations of the network.

There is a set of possible executions, including the execution that actually occurred, that are consistent with

his observations. Metrics that are functions on this set are possibilistic in that they only consider which

situations are possible. For a given agent and action, they include

• Boolean: whether it is possible that the agent didn’t perform the action

• Anonymity set : the number of actors that may have performed the action

Possibilistic anonymity is a very weak notion of anonymity, as the adversary may have some external

information that allows him to conclude that certain executions are very unlikely. To model this uncertainty,

we can add a probability measure to executions. Then the adversary can infer a conditional probability

distribution on executions given his adversary. Metrics that take into account the probability measure are

probabilistic. For a given agent and action, the probabilistic metrics that have been proposed include

• Agent probability : the conditional probability that the adversary assigns to the event that the correct

agent performed the action

• Entropy : the entropy of the conditional distribution over agents
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• Min-entropy : the min-entropy of the conditional distribution over agents

• Variation distance: the variation distance between a prior distribution over agents for a given action

and a posterior distribution (that is, the conditional distribution)

Probabilistic metrics take into account both the randomness that is a part of many anonymous-communication

protocols and predictable behavior of users that is reasonably modeled as probabilistic. From the metrics

that have been proposed, we select agent probability for most of the thesis. It emphasizes how well a protocol

hides specific actions by a specific user, and it is relatively easy to work with mathematically.

We use different definitions of anonymity for the different models and protocols that we consider. There-

fore will defer for now giving precise definitions of anonymity.

2.3.3 Latency

The latency of a protocol measures how long it takes for a message to be received by its intended recipient

after it is sent. Because our basic model lacks an explicit notion of time, we give here a definition of latency

based on the longest sequence of messages that must be sent and received after a message is sent until the

destination finally receives it.

For a given execution, the actions form a partial order in which, for actions a1 and a2, a1 ≺ a2 if a1

and a2 are actions of the same agent’s automaton and a1 was performed by that automaton before a2. We

define the latency of an anonymous message in a given protocol execution to be the length of the longest

chain in the partial order from the action in which a user sends the anonymous message (that is, calls

AnonymousMessage) to the action in which the message is sent. If no such chain exists, we define the latency

to be infinity. Then we can define the general latency of a protocol.

Definition 4. Let E be the set of fair, cryptographic executions when all agents run the given protocol. The

latency of a protocol is the minimum over all executions α ∈ E of the protocol of the latency of α.

We take the smallest latency over all executions because it capture the latency inherent in the protocol.

If we were to take the largest possible latency, executions that include long sequences of messages unrelated

to delivering the anonymous message could yield unrealistically large values.

Our definition of latency assumes that all agents faithfully run the protocol. Our model of the adversary

allows him to run abitrary programs, however. This is an important issue, because a protocol in which

the adversary can easily delay or deny the delivery of messages is not very usable. If we assume that the
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adversary’s goal is to deanonymize communication, however, assuming that he employs strategies that are

most disruptive to message delivery may overstate the problem. Therefore we separately consider latency

under adversarial misbehavior.

Definition 5. Let EA be the set of fair, cryptographic executions when the honest agents run the given

protocol and the adversary runs A. The latency against A is the minimum over all executions α ∈ EA of the

latency of α. The adversarial latency is the maximum over all adversaries A of the latency against A.

It is true that delaying message delivery may help the adversary deanonymize users. If users repeatedly

attempt to send an anonymous message until it is successfully delivered, the adversary can try to prevent

delivery until the user is successfully deanonymized. This issue has been explored by Borisov et al. [8]. We

do not consider anonymity under this kind of user behavior.

2.3.4 Message Complexity

In general, we care about the total communication requirements of a protocol. Important metrics include

the number of messages, message sizes, and the message contention [53]. These metrics can be considered

for the system overall or for individual agents. We want our protocols to have reasonable communication

requirements for each agent, and so we are interested in the per-agent metrics. Moreover, for the protocols

we consider, message size and contention are not a problem in theory or practice. Therefore we will only

consider the number of messages sent by the agents in the protocol.

Definition 6. Let E be the set of fair, cryptographic executions of a protocol when all agents run the

protocol. Let m(α) be the number of messages sent in execution α. Let a(α) be the number of calls to

AnonymousMessage. The message complexity of the protocol is the minimum over all α ∈ E of m(α)/a(α).

Similar to defining latency, we choose the minimum over executions because we want the message com-

plexity to represent the fundamental resource requirements of the protocol.

As before, we cannot assume that the adversary faithfully runs the protocol, and we want to consider by

how much his malicious behavior can increase the message complexity of the protocol. Because the adversary

can send an arbitrary number of messages, we normalize by the number of messages that he send.

Definition 7. Let EA be the set of fair, cryptographic executions when the honest agents run the given

protocol and the adversary runs A. Let m(α) be the number of messages sent in execution α, let mA(α) be
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the number of messages sent by the adversary A, and let a(α) be the number of calls to AnonymousMessage.

The message complexity against A is the minimum over all executions α ∈ EA of m(α)/(mA(α)a(α)). The

adversarial message complexity is the maximum over all adversaries A of the message complexity against A.
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Chapter 3

Related Work

Our contributions to anonymous-communication protocols take place in a large body of related work. Indeed,

in addition to the most direct connections to other work on anonymous communication, the whole area has

much in common with a variety of other areas in security in privacy, such as anonymous data storage

[21, 14, 86], anonymous data publishing [26], private information retrieval [35], secure multiparty function

evaluation [89, 39], and cryptography in general [45]. We survey here the work that most directly addresses

either the questions in anonymous communication that we consider or the concepts and techniques we use

to come up with solutions.

3.1 Anonymous Communication Protocols

A large number of protocols for anonymous communication have been designed. They vary along several

dimensions, including the communication functionality they provide, such as one-way message delivery or

two-way delivery/response; the network model they require, such as a synchronous or asynchronous network,

and a wired or wireless network; the adversary model they are designed against, such as a passive or active

adversary, and local or global adversary; the latency they add; and their message complexity. These systems

are described under varying models and assumptions. We have one specific set of models, definitions, and

criteria that we are interested in, which is given in Chapter 2. Therefore, we describe and evaluate many of

the existing protocols under these choices. This shows how, in the situations we consider important, they

compare to one another, and highlights the contributions of our analysis of onion routing and of our new
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protocol designs. Good surveys of existing protocols for anonymous communication are available [47, 16, 27],

and thus our descriptions will be brief.

In the following, let b = |A ∩ R|/|R| be the fraction of routers that the adversary controls. Let d = |D|

be the number of destinations.

3.1.1 Single-hop Proxy

Users simply randomly choose a router to forward their message.

Anonymity:

 1 with probability b

0 with probability 1− b

Latency: 2

Adversarial Latency:

 ∞ with probability b

2 with probability 1− b

Message complexity: 2

Adversarial message complexity: 2

3.1.2 Mix Networks

In a mix network, users choose a common sequence of mixes (that is, a cascade of routers), and, in reverse

order of the sequence, encrypt the message with the identity of the next mix [12]. A reply block is contained

with the encrypted identity of the user. When a router receives a message it decrypts the message and

forwards the result to the next router in the chain. There are many improvements and variations on this

idea (for example, [49, 17, 69, 25, 73]). We just consider the basic scheme here, which exhibits the problem,

common in mix networks, that the mixes can selectively forward messages. Let l be the length of the cascade.

Anonymity: If the adversary controls the first and last routers, he can just forward a message from one

user and observe its final destination. Therefore the anonymity is

 0 with probability b2

1 with probability 1− b2

Latency: l
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Adversarial Latency: The adversary can drop messages on any path in which he appears. Therefore the

adversarial latency is  l + 1 with probability (1− b)l

∞ with probability 1− (1− b)l

Message complexity: l + 1

Adversarial message complexity: l + 1

3.1.3 Crowds

In Crowds [68], users randomly forward messages among themselves. When they join, users send a request

to create a persistent path to a random user. That user extends the path with probability p, and otherwise

the paths ends. Messages are sent along the path between the first user and a destination he specifies.

Anonymity is provided because the adversary cannot determine when the user he received the message from

was the source.

Anonymity: All members on a path can see the destination, and so the only relevant event is whether or

not the adversary observes the user. Therefore the anonymity is

 1− ((1− b)− 1/n)p with probability b

(1− b)p/n with probability 1− b

Latency:

1 + i with probability pi−1(1− p), i ≥ 1

1/(1− p) in expectation

Adversarial Latency: The adversary can drop messages on any path in which he appears. Therefore the

adversarial latency is

1 + i with probability pi−1(1− p)(1− b)i, i ≥ 1

∞ with probability b/(1− (1− b)p)

Message complexity: The number of messages sent per anonymous message is the same as the latency,
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because every message corresponds to a hop on the path. Therefore the message complexity is

1 + i with probability pi−1(1− p), i ≥ 1

1/(1− p) in expectation

Adversarial message complexity: The best that the adversary can do is not to extend further any paths

that he is asked to be a part of, because the complexity measure charges the adversary for every

such message that he sends. Thus the adversarial message complexity is only smaller than message

complexity.

3.1.4 Dining Cryptographers networks

In Dining Cryptographers networks [13], every pair of users shares a private key. In the ith round, a user

that doesn’t want to send a bit sends the XOR of the ith bit of all of his keys, and a user that does want to

send a bit sends the inversion of that XOR. Repeating this protocols allows users to send full messages. To

avoid collisions, we assume that time is divided into blocks. The first block is a reservation block of size kn2,

where n is the number of users. Each bit potentially reserves a time slot for sending. Users randomly choose

a bit to flip to reserve a slot, and there are no collisions in the block with probability at least 1−e−(1−1/n)/2k.

The reservation block is followed by send blocks. We can save time by scheduling the user that flipped the i

reserved bit in the ith slot, rather than just scheduling the ith bit in the ith block. Send blocks are followod

by an equal number of response blocks, where the ith response block is intended for the sender of the ith

send block. Then a new reservation block follows the last response block. We can modify the scheme to

allow the point-to-point communication required by our scheme by requiring users to designate the endpoint

and destination of a message in a header before the message. We assume that users encrypt the message

and destination with the public key of the endpoint. This protocol implements our required functionality

assuming that every destination send its response before their reponse round starts.

Anonymity: 1/n (perfect)

Latency: Users have to wait for their time slot to send. If r users reserved slots, the latency is r/2 + 1 in

expectation.

Adversarial latency: The adversary can easily jam the service by constantly sending. Therefore the

adversarial latency is ∞.
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Message complexity: The reservation block requires all n users to send kn2 bits to n− 1 other users, for

a total of kn3(n − 1) bits. Users send n(n − 1) messages total in each of n send blocks, for a total of

n2(n− 1) messages. Therefore the message complexity is (kn3(n− 1) + n2(n− 1))/n = O(n3).

Adversarial message complexity: The adversary must reserve a bit to cause O(n2) extra messages to

be sent. Therefore the adversarial message complexity is the same as the message complexity: O(n3).

3.1.5 Onion Routing

Onion routing is very similar to protocols using mixes. The key difference for our analysis is that users choose

their routes independently of each other. Each user constructs a persistent routes, or circuit, of length l by

recursively constructing a circuit of length l− 1 and sending a message down it to extend the route by one.

Messages down the circuit from the user are encrypted by the user once for each router on the circuit in

reverse order. A router on the circuit takes an incoming message, decrypts it, and forwards the result to the

last router. Messages up the circuit, going in the direction of the destination towards the user, follow the

reverse process and are decrypted as they are passed from router to router. The message to the destination

includes the identity of the destination.

Anonymity: We analyze the anonymity of onion routing in Chapters 5 and 6. The results are that for

reasonable user behavior and adversary sizes, the worst case expected anonymity is about b+(1−b)pu
d +

O(
√

log n/n). More “typical” parameter values yield expected anonymity of b2 + (1− b2)pu
d +O(1/n).

Latency: l

Adversarial latency The adversary can block messages on circuits of which it is a part. Therefore the

adversarial latency is  l with probability (1− b)l

∞ with probability 1− (1− b)l

Message complexity: The number of messages during the circuit-building process is
∑l

i=1 2i = l(l + 1),

and sending a message adds an additional 2l+1 messages. Therefore the message complexity is O(l2).

Adversarial message complexity: Assuming there is no limit to the length of circuits, the adversary can

build arbitrarily long circuits and thereby generate a total amount of traffic that is an arbitrarily high

multiple of the amount of his own traffic. Therefore the adversarial message complexity is ∞.
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3.2 Analysis of Anonymous Communication Protocols

Numerous papers have informally discussed the security of the design of onion routing and related systems, as

well as theoretical and experimentally demonstrated attacks. There have also been numerous formalizations

of anonymous communication. However, formal analyses have primarily been of systems other than onion

routing, for example, Dining Cryptographers networks and Crowds.

There has been work formalizing systems similar to onion routing but without persistent circuits. Ca-

menisch and Lysyanskaya [10] prove that the cryptography their protocol uses doesn’t leak any information

to nodes in the path other than the previous and next nodes, but leave open what anonymity it provides.

This question is answered in part by Mauw et al. [55], who formalize a similar connectionless protocol in an

ACP-style process algebra and, under a possibilistic definition of anonymity, show that it provides sender

and receiver anonymity against a global passive adversary. Cryptography is dealt with using high level as-

sumptions, similar to our work. Their model and analysis has much in common with ours, but it does differ

in several important ways. First, the protocol they investigate is connectionless: each data “onion” stores

the identities of the routers it will pass through. This is significantly different from onion routing, which is

circuit-based. Second, the analysis is done with respect to a passive adversary, which exhibits only a subset

of the behavior of an active adversary. Third, in their model agents choose destinations asynchronously

and the adversary must take into account every onion he has seen when trying to break anonymity. In our

model all agents choose a single destination, which gives the adversary more power. In some ways, our work

extends theirs, and several of the differences noted here appear in [55] as suggestions for further research.

Ours is not the first formalization of anonymous communication. Earlier formalizations used CSP [71],

graph theory and possible worlds [44], and epistemic logic [82, 41]. These earlier works focused primarily

on formalizing the high-level concept of anonymity in communication. For this reason, they applied their

formalisms to toy examples or systems that are of limited practical application and can only provide very

strong forms of anonymity, for example, dining-cryptographers networks. Also, with the exception of [41],

they have at most a limited ability to represent probability and probabilistic reasoning. Our goal in Chapter 4

is on the formalization of a widely deployed and used, practical, low-latency system.

Halpern and O’Neill [41] give a general formulation of anonymity in systems that applies to our model.

They describe a “runs-and-systems” framework that provides semantics for logical statements about systems.

They then give several logical definitions for varieties of anonymity. It is straightforward to apply this

framework to the network model and protocol that we give in [31]. Our possibilistic definitions of sender
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anonymity, receiver anonymity, and relationship anonymity then correspond to the notion of “minimal

anonymity” as defined in their paper. The other notions of anonymity they give are generally too strong

and are not achieved in our model of onion routing.

Other works have presented probabilistic analysis of anonymous communication [68, 74, 88, 15, 18, 54,

49] and even of onion routing [80]. The work of Shmatikov and Wang [76], in particularl, is similar to

ours. It calculates relationship anonymity in mix networks and incorporates user distributions for selecting

destinations. However, with the exception of [74], these have not been formal analyses. Also, whether for

high-latency systems such as mix networks, or low-latency systems, such as Crowds and onion routing, many

of the attacks in these papers rely on observing user behavior over time, what is known as an intersection

attack. Several of these papers set out frameworks for making that more precise. In particular, [15], [18],

and [54] constitute a progression towards quantifying how long it takes (in practice) to reveal traffic patterns

in realistic settings.

Our model does not consider observing user behavior over time. Our probabilistic model effectively

assumes that the intersection attack is done. The adversary already has a correct distribution of a user’s

communication partners. We are investigating the anonymity of a communication in which a user commu-

nicates with one of those partners in the distribution. This follows the anonymity analyses performed in

much of the literature [49, 55, 68, 80], which focus on finding the source and destination of an individual

communication. Our analysis differs in that we take into account the probabilistic nature of the users’

behavior.

3.3 Improved Anonymous-Communication Protocols

In Chapters 7 and 8, we present two new protocols for anonymous communication. Our goal in each case is

to improve anonymity while maintaining efficiency in latency and message complexity.

3.3.1 Trust

Chapter 7 explores improving onion routing when users have outside knowledge of which routers to trust.

Trust has many meanings and applications in computer security [29, 78, 7, 1, 11, 75, 70, 19]. Much of the

literature is concerned in one way or another with propagation or transfer of trust from where it is to where it

needs to be. Our concern is not with the transfer of trust information but with what it means in the context
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of onion routing and how to make use of it. We consider how trust associated with network nodes or links

might be used to protect (or reveal) information that would undermine the anonymity of communicants.

3.3.2 Preventing Timing Attacks

Timing attacks are a major challenge in low-latency anonymous communication [50]. They have been

observed in some of the earliest low-latency systems [3], including initial versions of onion routing [40].

These attacks are also closely related to traffic analysis in mix networks [67].

In a passive timing attack, the adversary observes timing patterns in a network flow, and then correlates

them with patterns in other traffic that it observes. If the adversary is able to observe both the user and the

destination, he can thereby link the two. The ability of the adversary to perform this correlation has been

experimentally demonstrated several times [91, 50, 66, 64, 4].

A solution to passive timing attacks is to get rid of identifying patterns in the traffic by padding and

delaying it. The drawbacks to such an approach are added latency and bandwidth overhead. Our protocol

relies on the existence of some acceptable and effective padding scheme. Constant-rate padding, in which

traffic is sent at a constant rate by filling in the gaps with dummy packets, is probably the most obvious

such scheme. It has appeared multiple times in the literature [80, 33, 50]. Levine et al. [50] propose a

“defensive dropping” mechanism which adds dummy packets at the start of the circuit and drops them at

various routers before the end. This reduces the correlation between any patterns in the incoming streams

and patterns in the outgoing streams. Shmatikov and Wang [77] propose a variable-rate padding scheme.

In their scheme, packets from the user are forwarded with little delay, and dummy packets are added by

the intermediate routers according to a probability distribution on the packet inter-arrival times. Wang et

al. [87] describe a link-padding scheme for low-latency systems, but their system is designed for a situation

in which the adversary is not active and the destination participates in the protocol. This situation does not

reflect the kind of Internet communications that have proven useful and that we target.

All of these schemes are vulnerable to an adversary that actively delays packets from the user. Yu et

al. [90] show that this can be done in a way that makes it difficult for the user or the system to detect that the

attack is occurring. According to the results of Shmatikov and Wang, their variable-rate scheme of inserting

padding packets throughout the network provides the most protection against such an attack. However, in

the scenario we are designing for, the final destination does not participate in the protocol. Therefore there

must be one last router in the system that provides the point of contact to the destination. This final router
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can identify the dummy packets, and therefore can observe timing patterns that the adversary created earlier

in the stream.

Simply delaying packets that pass directly through adversarial routers isn’t the only active timing attack

that has been demonstrated. Murdoch and Danezis [63] show that in onion routing the adversary can actively

add delay patterns to the data by sending bursts of traffic through a router. This can be used to determine

the routers on a given circuit. A queuing scheme has been suggested by McLachlan and Hopper [58] to

mitigate this problem. Fu et al. [32] describe how the presence of a flow on a router can also be determined

by ping times to the router, and suggests the simple countermeasure of treating ping packets equally. We do

not address such congestion attacks in this thesis, and it is outside of our model. Borisov et al. [8] look at

the case that the adversary doesn’t just delay, but drops packets in a denial-of-service (DoS) attack aimed at

forcing users to move to circuits that the adversary can deanonymize. This is an easy behavior to observe,

although proving the culprit may be difficult, and the authors suggest that reputation mechanisms can be

used to limit such attacks. Such an attack was also discussed by Dingledine et al. [24]. Mittal and Borisov

[60] examine the use of active attacks to subvert the host lookup mechanism in the Salsa and AP3 peer-

to-peer protocols. This isn’t a timing attack, but they uncover a tradeoff offered by the protocol between

preventing active and passive attacks in the lookup that is very similar to the tradeoff we examine in our

use of redundancy.

Hopper et al. [43] explore several attacks based on the network latency between hosts. In particular,

they show the latencies from multiple hosts to a user can be very identifying. The user in our protocol

communicates with several routers as a first hop, and in light of this attack we took care not to allow the

adversary to infer these latencies.

One key feature of our protocol is the use of a layered mesh to provide redundancy. The use of redundancy

for several purposes has been also explored in previous protocols. Syverson [81] suggests using router “twins,”

pairs of routers that share the same key, to provide a backup in case a router fails. Two redundancy schemes

to manage failures, K-Onion and Hydra-Onion, are proposed by Iwanik et al. [46]. In the K-Onion scheme,

onions are encoded in a way that provides more than one option for the next hop to route around host

failures. In the Hydra-Onion scheme, onions get forwarded to two routers at every hop instead of one. The

purpose of this scheme is to prevent an active attack in which the adversary kills messages from a known

user and observes which destination stops receiving traffic. Redundancy to support failure is not our goal,

and such schemes are in some ways complementary to our own. However, the redundancy in our protocol
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does protect against honest node failures as well as malicious ones. Our analysis, however, only considers

malicious node failures. The aim of the Hydra-Onion scheme is similar to ours, although they only analyze

the ability of the adversary to kill a connection. Morever, the scheme is designed for an adversary that

controls links, and not one that controls routers.

Another critical feature of our protocol is the use of explicit timing to coordinate the users and routers.

This is similar to the timing instructions of Stop-and-Go mixes [49]. Such mixes are given a time window

within which the packets must arrive, and they delay forwarding by an exponentially-distributed amount

of time. Although the techniques are similar, this scheme is designed for mix networks and not stream

communication, and this scheme does give the adversary some slack time within which a timing signature

could possibly be placed. Moreover, the lack of any redundancy means that any slowdowns within the

network, even of benign origin, can quite easily kill a connection. The protocol is also susceptible to DoS

attacks.

The timing approach we take is also similar to the use of synchronicity in mix networks by Dingledine

et al. [24]. They describe synchronous batching on free routes and show that it typically provides better

anonymity than cascades. Our scheme can be viewed as low-latency synchronous batching. In their case the

synchronicity is provided by long delays in the mix network, while in our case synchronicity is provided by

the padding schemes. They are able to disregard active attacks in which messages are dropped or delayed,

because each mix is able to wait for enough time that any missing packets must be maliciously withheld. They

rely on reputation systems [25] to eventually find and punish such action. With low-latency communication,

on the other hand, we cannot assume that such delays will not happen. Moreover, our solution does not rely

on the use of an external reputation mechanism. This is an advantage, because reputation mechanisms in

general only detect large-scale misbehavior and must tolerate smaller-scale targeting of users.
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Chapter 4

Formalizing Onion Routing

4.1 Introduction

Low latency and other performance characteristics of onion routing can be demonstrated experimentally;

anonymity-preserving properties cannot. Also, even with careful design, vulnerabilities can persist. The

initial authentication protocol for Tor, for example had a cryptographic-assumption flaw that left it open

to man-in-the-middle attacks. The revised authentication protocol was then proven to be free of such

flaws [37]. As anonymous-communication networks are increasingly relied upon for sensitive personal and

business transactions, it is increasingly important to assure their users that anonymity will be preserved.

Long-established components of such assurance in system security include a formal model, proving security

guarantees in that model, and arguing that the model captures essential features of the deployed system.

An onion-routing network consists of a set of onion routers and clients. To send data, a client chooses

a sequence of routers, called a circuit, and constructs the circuit using the routers’ public keys. During

construction, a shared symmetric key is agreed upon with each router. Before sending data, these keys are

used to encrypt each packet once for each router in the circuit and in the reverse of the order that the routers

appear in the circuit. Each router uses its shared key to decrypt the data as it is sent down the circuit so it

is fully decrypted at the end. Data flowing up to the client has a layer of encryption added by each onion

router, all of which are removed by the client. The layered encryption helps hide the data contents and

destination from all but the last router and the source from all but the first router. The multiple encryptions

and decryptions also make it harder for an observer to follow the path the data takes through the network.
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In this chapter we formalize this protocol in order to rigorously analyze the anonymity it provides.

4.2 Automata

We give the automata descriptions for the users and routers that are based on the Tor protocol [23]. We have

simplified the protocol in several ways. In particular we do not perform key exchange, do not use a stream

cipher, have each user construct exactly one circuit to one destination, do not include circuit teardowns,

eliminate the final unencrypted message forward, and omit stream management and congestion control.

Section 5.3.7 discusses the effects of changing some of these features of our protocol.

We use circuit identifiers to simplify the definitions and proofs of anonymity in our protocol. Circuit

identifiers mimic the effects of a timing attack in onion routing. They have the added advantages of making

it clear when this power is used. Theorem 5 shows that they are easily simulated by an adversary, and

therefore they do not affect the anonymity of the protocol.

We assume that each router-and-user pair shares a set of secret keys; however, the router does not know

which of its keys belong to which user. This separates, for now, key distribution from the rest of the protocol.

We assume that all keys in the system are distinct. Let K be the keyspace. The triple (u, r, i) will refer to

the ith key shared by user u and router r.

Let P be the set of control messages that are used in the protocol, and P̄ be the extension of P by

encryption with up to l keys. We assume that P̄ ⊆ M. The control messages will be tagged with a link

identifier and circuit identifier when sent, so let the protocol message space be M = N×N× P̄ . We denote

the encryption of p ∈ P using key k with {p}k, and the decryption with {p}−k. For brevity, the multiply

encrypted message {{p}k1}k2 will be denoted {p}k1,k2 . Brackets will be used to indicate the list structure of

a message (i.e. [p1, p2, . . .]).

During the protocol each user u iteratively constructs a circuit to his destination. u begins by sending

the message {CREATE}k1 to the first router, r1, on his circuit. The message is encrypted with a key, k1,

shared between u and r1. r1 identifies k1 by repeatedly trying to decrypt the message with each one of its

keys until the result is a valid control message. It responds with the message CREATED. (Note that this

is different from the implemented Tor protocol, in which the CREATE message would be encrypted with

the public key for r1 rather than one of the shared keys it holds.) Given a partially-constructed circuit, u

adds another router, ri, to the end by sending the message {[EXTEND, ri, {CREATE}ki ]}ki−1,...,k1 down
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the circuit. As the message gets forwarded down the circuit, each router decrypts it. ri−1 performs the

CREATE steps described above, and then returns the message {EXTENDED}ki−1 . Each router encrypts

this message as it is sent back up the circuit.

Link identifiers are used by adjacent routers on a circuit to differentiate messages on different circuits.

They are unique to the adjacent pair. Circuit identifiers are also included with each message and identify

the circuit it is traveling on. They are unique among all circuits.

The user automaton’s state consists of the sequence of routers in its circuit, the destination, a number

that identifies its circuit, and a number that indicates the state of its circuit. The user automaton runs two

threads, one to extend a circuit that is called upon receipt of a message and the other to start circuit creation

that is called at the beginning of execution. We express these in pseudocode rather than I/O automata, but

note that the state changes in a particular branch occur simultaneously in the automaton. k(u, c, b) refers

to the key used by user u with router cb in the bth position in circuit c. The automaton for user u appears

in Automaton 1.

The router automaton’s state is a set of keys and a table, T , with a row for each position the router

holds in a circuit. Each row stores the previous and next hops in the circuit, identifying numbers for the

incoming and outgoing links, and the associated key. There is only one thread and it is called upon receipt

of a message. In the automaton for router r, we denote the smallest positive integer that is not being used

on a link from r to q or from q to r as minid(T, q). The automaton for router r appears in Automaton 2.
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Automaton 1 User u
1: c ∈ {(r1, . . . , rl) ∈ Rl|∀iri 6= ri+1}; init: arbitrary . User’s circuit
2: d ∈ D; init: arbitrary . User’s destination
3: i ∈ N; init: random . Circuit identifier
4: b ∈ N; init: 0 . Next hop to build
5: procedure Start
6: send(c1, [i, 0, {CREATE}k(u,c,1)])
7: b = 1
8: end procedure
9: procedure Message(msg,j) . msg ∈M received from j ∈ N

10: if j = c1 then
11: if b = 1 then
12: if msg = [i, 0,CREATED] then
13: b+ +
14: send(c1, [i, 0, {[EXTEND, cb, {CREATE}k(u,c,b)]}k(u,c,b−1),...,k(u,c,1)])
15: end if
16: else if b < l then
17: if msg = [i, 0, {EXTENDED}k(u,c,b−1),...,k(u,c,1)] then
18: b+ +
19: send(c1, [i, 0, {[EXTEND, cb, {CREATE}k(u,c,b)]}k(u,c,b−1),...,k(u,c,1)])
20: end if
21: else if b = l then
22: if msg = [i, 0, {EXTENDED}k(u,c,b−1),...,k(u,c,1)] then
23: b+ +
24: send(c1, [i, 0, {[DEST, d,HELLO]}k(u,c,b−1),...,k(u,c,1)])
25: end if
26: end if
27: end if
28: end procedure
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Automaton 2 Router r
1: keys ⊆ K, where |keys| ≥ |U | · d l

2e; init: arbitrary . Private keys
2: T ⊂ N × N×N × Z× keys; init: ∅ . Routing table
3: procedure Message([i, n, p], q) . [i, n, p] ∈M received from q ∈ N
4: if [q, n, ∅,−1, k] ∈ T then . In link created, out link absent
5: if ∃s∈R−r,b∈P p = {[EXTEND, s, b]}k then
6: send(s, [minid(T, s), b])
7: T = T − [q, n, ∅,−1, k] + [q, n, s,−minid(T, s), k]
8: else if ∃d∈Dp = {[DEST, d, b]}k then
9: send(d, [minid(T, d), b])

10: T = T − [q, n, ∅,−1, k] + [q, n, d,minid(t, d), k]
11: end if
12: else if [s,m, q,−n, k] ∈ T then . In link created, out link initiated
13: if p = CREATED then
14: T = T − [s,m, q,−n, k] + [s,m, q, n, k]
15: send(s, [i,m, {EXTENDED}k])
16: end if
17: else if ∃m>0[q, n, s,m, k] ∈ T then . In and out links created
18: send(s, [i,m, {p}−k]) . Forward message down the circuit
19: else if [s,m, q, n, k] ∈ T ) then . In and out links created
20: send(s, [i,m, {p}k]) . Forward message up the circuit
21: else
22: if ∃k∈keysp = {CREATE}k then . New link
23: T = T + [q, n, ∅,−1, k]
24: send(q, [i, n,CREATED])
25: end if
26: end if
27: end procedure
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Chapter 5

Possibilistic Anonymity in Onion

Routing

5.1 Introduction

We give precise definitions of anonymity of onion routing as formalized in Chapter 4. Using these, we provide

necessary and sufficient conditions for anonymity to be provided to a user in our model. It should be noted

that we do not analyze the validity of the cryptography used in the protocol and instead base our proofs on

some reasonable assumptions about the cryptosystem.

We only consider possibilistic anonymity here. An action by user u is considered to be anonymous when

there exists some system in which u doesn’t perform the action, and that system has an execution that is

consistent with what the adversary sees. The actions for which we consider providing anonymity are sending

messages, receiving messages, and communicating with a specific destination. More refined definitions of

anonymity, [72, 20], incorporate probability. We apply such a definition to our system in Chapter 6, by

defining a probability measure over executions or initial states.

The main result we show is that the adversary can determine a router in a given user’s circuit if and only if

it controls an adjacent router, with some other minor conditions. In particular, the adversary can determine

which user owns a circuit only when the adversary controls the first hop. The set of users which have an

uncompromised first hop form a sender “anonymity set,” among which the adversary cannot distinguish.

Similarly, the adversary can determine the last router of a circuit only when it controls the last router or
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the penultimate router. Such circuits provide receiver anonymity. Also, a user and his destination have

relationship anonymity when he has receiver anonymity or his sender anonymity set includes another sender

with a destination that is different or unknown to the adversary.

The first-hop/last-hop attack is well-known [80], but we state it in full detail and show that, in a reasonable

formal model, it is the only attack that an adversary can mount. Also, our results persist with or without

some of the nontrivial design choices, such as multiple encryption and stream ciphers. This doesn’t imply

that these features are unnecessary – they may make attacks more difficult in practice and meet other goals

such as data integrity, but it does illuminate their effect on the security of the protocol.

5.2 Anonymity Analysis

Definition 8. A protocol configuration C : U → {(r1, . . . , rl) ∈ Rl ×D × N+|∀iri 6= ri+1} maps each user

to the circuit, destination, and circuit identifier in his automaton state.

For the remainder of this chapter, we will refer to a protocol configuration simply as a configuration.

The actions that we want to be performed anonymously are closely related to the circuits that the users

try to construct during an execution and their destinations. Therefore, in order to prove that certain actions

are performed anonymously in the network, we show that the adversary can never determine this circuit and

destination information. This is a possibilistic notion of of anonymity. We do this by identifying classes of

adversary-indistinguishable configurations.

Because i ∈ N only sees those messages sent to and from i, an execution of a configuration C may

appear the same to i as a similar execution of another configuration D that only differs from C in the circuit

positions and destinations that are not adjacent to i and in circuit identifiers that i never sees. To be assured

that i will never notice a difference, we would like this to be true for all possible executions of C. These are

the fair cryptographic executions of C, and likewise the executions of D should be fair and cryptographic.

We will say that these configurations are indistinguishable if, for any fair cryptographic execution of C, there

exists a fair cryptographic execution of D that appears identical to i, i.e. in which i sends and receives what

appear to be the same messages in the same order.

Agent i’s power to distinguish among executions is weakened by encryption in two ways. First, we allow

a permutation on keys to be applied to the keys of encrypted or decrypted messages in an execution. This

permutation can map a key from any router other than i to any other key of any other router other than i,
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because i can only tell that it doesn’t hold these keys. It can map any key of i to any other key of i, because

i doesn’t know for which users and circuit positions its keys will be used. Second, i cannot distinguish

among messages encrypted with a key he does not possess, so we allow a permutation to be applied to

control messages that are encrypted with a key that is not shared with i. This second requirement must be

justified by the computational intractability of distinguishing between encrypted messages with more than

a negligible probability in our cryptosystem.

Definition 9. Let DA be a relation over configurations indicating which configurations are indistinguishable

to A ⊆ N . For configurations C and C ′, C ∼DA
C ′ if for every fair cryptographic execution α of C, there

exists some action sequence β such that the following conditions hold with C ′ as the initial state:

1. Every action of β is enabled, except possibly actions done by members of A.

2. β is fair for all agents, except possibly those in A.

3. β is cryptographic for all agents.

4. Let Ξ be the subset of permutations on the active keyspace U×R×d l
2e such that each element restricted

to keys involving a ∈ A is a permutation on those keys. We apply ξ ∈ Ξ to the encryption of a message

sequence by changing every list component {p}(u,r,i) in the sequence to {p}ξ(u,r,i).

Let Π be the subset of permutations on P̄ such that, for all π ∈ Π,

(a) π is a permutation on the set {{p}k1,...,ki
}p∈P

(b) π({p}k1,...,ki,ka
) = π({p}k1,...,ki

) when ka is shared by the adversary

We apply π ∈ Π to a message sequence by changing every message {p}k1,...,ki
in the message sequence

to π({p}k1,...,ki).

Then there must exist ξ ∈ Ξ and π ∈ Π such that applying ξ and π to the subsequence of α corresponding

to actions of A yields the subsequence of β corresponding to actions of A.

If C ∼DA
C ′, we say that C is indistinguishable from C ′ to A. It is clear that an indistinguishability

relation is reflexive and transitive.

5.2.1 Anonymity

The sender in this model corresponds to the user of a circuit, the receiver to the destination of the circuit,

and the messages we wish to communicate anonymously are just the circuit control messages. The circuit
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identifiers allow the adversary to link together all the messages initiated by a user and attribute them to a

single source. (Recall that in our model, users open a single circuit to a unique destination at one time.)

Therefore sender anonymity is provided to u if the adversary can’t determine which circuit identifier u is

using. Similarly, receiver anonymity is provided to d for messages from u if the adversary can’t determine

the destination of the circuit with u’s identifier. Also, relationship anonymity is provided to u and d if the

adversary can’t determine u’s destination.

Definition 10. User u has sender anonymity in configuration C with respect to adversary A if there exists

some indistinguishable configuration C ′ in which u uses a different circuit identifier.

Definition 11. Destination d has receiver anonymity on user u’s circuit, in configuration C, and with

respect to adversary A, if there exists some indistinguishable configuration C ′ in which a user with u’s

circuit identifier, if one exists, has a destination other than d.

Definition 12. User u and destination d have relationship anonymity in configuration C if there is some

indistinguishable configuration C ′ in which the destination of u is not d.

5.3 Indistinguishable Configurations

Now we will show that sometimes the adversary cannot determine the circuit, destination, or circuit identifier.

More specifically, an adversary can only determine which user, router, or destination occupies a given position

in a circuit when the adversary controls it or a router adjacent to it on that circuit. Also, when the adversary

controls no part of a circuit it cannot determine its identifier.

In order to do this, we must show that, given a pair of configurations (C,C ′) that are indistinguishable

by these criteria, for every execution of C there exists an execution of C ′ that appears identical to the

adversary. To do this we will start with a fair cryptographic execution of C, describe how to transform it,

and prove that this transformed sequence forms a fair, cryptographic, and indistinguishable execution of C ′.

We will also show that a pair of configurations that are distinguishable by the described criteria allow no

such transformation.

5.3.1 Message Sequences

To start, we observe that, in spite of the arbitrary actions of the adversary, the actions of the uncompromised

users and routers are very structured. The protocol followed by the user and router automata defines a simple
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sequence of message sends and receives for every circuit. A user or router will only send messages from the

part of such a sequence consisting of its actions.

The user automaton gives this subsequence for users. It consists of messages between the user and the

first router on its circuit, and is parameterized by the user u, the circuit c, the destination d, and the circuit

identifier. We will refer to this sequence as σU (u, c, d, j). Because the user automaton ignores the circuit

identifier on received messages, we use an asterisk to indicate that any value is valid. Let σU (u, c, d, j) be:

Step From To Message

1 u c1 [j, 0, {CREATE}k(u,c,1)]

2 c1 u [∗, 0,CREATED]

3 u c1 [j, 0, {[EXTEND, c2, {CREATE}k(u,c,2)]}k(u,c,1)]

4 c1 u [∗, 0, {EXTENDED}k(u,c,1)]

1 + 2i u c1 [j, 0, {[EXTEND, ci+1, {CREATE}k(u,c,i+1)]}k(u,c,i),...,k(u,c,1)]

2 + 2i c1 u [∗, 0, {EXTENDED}k(u,c,i),...,k(u,c,1)]

2 ≤ i < l

1+2l u c1 [j, 0, {[DEST, d,HELLO]}k(u,c,l),...,k(u,c,1)]

Lemma 1. For user u to be enabled to send a message in an action sequence under configuration C, the

the following conditions must be satisfied:

1. The send appears in σU (u,C(u)).

2. The prefix of σU (u,C(u)) ending before the send has appeared in the sequence.

3. This prefix is the longest such prefix to appear.

Proof. Every message sent by Automaton 1 appears in σU (u,C(u)). This proves that (1) is satisfied.

We show inductively that (2) is satisfied. Assume that (1)-(3) hold for the sends that appear in step

1 + 2(i− 1), 0 < i ≤ l. Given some message that u is enabled to send, by (1) it appears in some step 1 + 2i

in σU (u,C(u)). Examining where this message is sent in Automaton 1, we observe that step 2i must have

occurred. Also, we observe that the automaton state variable b must equal i. For b to be set to i, the message

in step 1 + 2(i − 1) must have been sent, because b is only incremented after that event. By our inductive

assumption, when that send occurred, steps 1 to 2(i− 1) had occurred. Putting these together, we get the

prefix in σU (u,C(u)) before step 1 + 2i, showing (2). The inductive base case is trivially true, because the

prefix of step 1 is empty.

38



Now, to show (3), we just observe that once step 1 + 2i occurs, b is incremented. Because b is never

decremented, the condition guarding the send message of step 1 + 2i is never again satisfied.

Similarly, the router automaton defines the action sequence that a router performs during the creation

of a circuit. A different sequence exists for every router r, user u, circuit position 1 ≤ i ≤ l, circuit c,

destination d, and link identifiers m,n, p ∈ N. We will denote a particular sequence σR(r, c, d, u, i,m, n).

Frequently we will drop parameters that we don’t care about, for example, referring to σR(r, c, d, u, i) when

the specific link identifiers don’t matter, and may abuse this notation by treating it as one sequence rather

than a family of sequences. We use k(u, c, i) as before.

If i < l, the sequence σR(r, c, d, u, i,m, n) is:

Step From To Message

1 ci−1 r [j1, n, {CREATE}k(u,c,i)]

2 r ci−1 [j1, n,CREATED]

3 ci−1 r [j2, n, {[EXTEND, ci+1, s]}k(u,c,i)]

4 r ci+1 [j2,m, s]

5 ci+1 r [j3,CREATED]

6 r ci−1 [j3, {EXTENDED}k(u,c,i)]
If i = l, the sequence σR(r, c, d, u, i,m, n) is:

Step From To Message

1 ci−1 r [j1, n, {CREATE}k(u,c,i)]

2 r ci−1 [j1, n,CREATED]

3 ci−1 r [j2, n, {[DEST, d, s]}k(u,c,l)]

4 r ci+1 [j2,m, s]
Using the σR sequences, we can characterize which messages a router can send at any point in an action

sequence. Let α be a finite execution, and τi be the length i prefix of some sequence σ ∈ σR(r). We say that

τi has occurred in α when τi is the longest prefix of σ that appears as a subsequence of α, and, at the point

at which step 1 (4) occurs in α, n (m) must be the smallest number not yet in r’s table as an entry to or

from ci−1 (ci+1), the agent that sent (received) the message in step 1 (4).

Lemma 2. For r to be enabled to send a message µ at the end of α, one of three cases must apply for some

σ ∈ σR(r):

1. The message is part of the circuit-building protocol. Sending µ is the (2i)th step in σ, 1 ≤ i ≤ 3. Then
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τ2i−1 must occur in α and τ2i must occur in the execution created when µ is appended to α.

2. The message is a forward down the circuit. µ = [m, p]. r is to be sending µ to ci+1. σ has occurred in

α. The link identifiers to ci−1 and ci+1 are n and m, respectively. α contains the action of the message

[n, p] being sent to r from ci−1 after σ occurs. Also, the number of such receives from ci−1 is greater

than the number of sends of µ to ci+1 that happen after σ occurs.

3. The message is a forward up the circuit. µ = [n, p]. r is to be sending µ to ci−1. σ has occurred in α.

The link identifiers to ci−1 and ci+1 are n and m, respectively. α contains the action of the message

[m, p] being sent to r from ci+1 after σ occurs. Also, the number of such receives from ci+1 is greater

than the number of sends of µ to ci−1 that happen after σ occurs.

Proof. Suppose r is enabled to send µ at the end of α. This must occur as one of the send operations in

Automaton 2, which occur in steps 9, 15, 18, 20, and 24.

If the send is enabled in line 6,9, 15, or 24, then it appears as Step 4, 4, 6, or 2, respectively, of a σR(r)

sequence. Then the message is part of a circuit-building protocol, and the case (1) will apply. For each step

2i in σR(r), 1 ≤ i ≤ 3, the argument is the same. The condition guarding the send in Automaton 2 includes

the receipt of the message in step 2i − 1 of σR(r). It also requires the table to have an entry that is only

made when the message in step 2i− 2 is sent. Thus τ2i−1 must be a prefix in α for r to be enabled to send

µ. Moreover, once µ is sent, the table row is changed, preventing µ from being sent again. Therefore τ2i−1

is the longest prefix of τi. Lines 6 and 22 of Automaton 2 ensure that the minimum-identifier condition

was satisfied when 4 and 1 of σR(r) were executed, respectively. Therefore τ2i−1 occurred in α. Sending

µ executes the next step of σR(r). It respects the minimal-identifier condition as part of the automaton

specification, and because τ2i becomes the new longest prefix, τ2i occurs.

If the send is enabled in line 18 Automaton 2, it is a forward down the circuit, and case (2) will apply.

Take m, n, p, ci−1, and ci+1 in the statement of the case to be n, m, p, r, and s in Automaton 2, respectively.

In order for the send to be enabled in line 18 of Automaton 2, there must exist the entry in the table T that

is inserted, in line 10 or line 14, when the message in step 4 or step 6 of σR(r) is sent, respectively. Thus, by

case (1), which we have already shown, a σR sequence must have occurred in α. The MESSAGE procedure

gets called once for every time a message [n, p] is sent to r from ci−1, and therefore line 18 must have been

executed fewer times than the number of receives from ci−1 of µ after σ occurs.

The case for a send enabled by line 20 of Automaton 2 is a forward up the circuit, and case (3) applies.
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The argument is exactly the same as for case (2), with ci−1 and ci+1 switched.

We can use these lemmas to partition the actions performed by an agent in an execution of configuration

C. We will use these partitions to construct executions of indistinguishable configurations and prove that

they satisfy the requirements of Definition 9.

For a user u we create two partitions. The first is formed by the maximal prefix of σU (u,C(u)) such

that each receive in the partition causes the b variable of u’s state to be incremented. The condition on

the receives is required for a unique maximal prefix to deal with the case that an adversary sends sequence

responses multiple times. The second partition is formed from all of u’s other actions. By Lemma 1 this

is composed of receiving unnecessary messages due to adversarial actions, and we will call this the “junk”

partition.

For a router r, we create a partition for each entry in its routing table at any point in the execution and

an extra junk partition. For a given routing table entry we create a partition out of the maximum-length

subsequence of some σR(r) sequence, say, σ, such that each receive modifies the same entry in the routing

table. We also include every send and receive of a forward performed using that entry. This partition is said

to be associated with σ. Every other action done by the router is put in a junk partition, and, by Lemma

2, this partition is composed only of receives.

5.3.2 Indistinguishable Users

Now we prove that an active adversary cannot determine which user creates a given circuit unless the

first router on that circuit is controlled by the adversary or the owners of all the other circuits have been

determined. That is, an adversary cannot distinguish between a configuration C and the configuration C ′

that is identical to C except for two circuits with uncompromised first routers that are switched between

their owners. In order to do so, we must show that, for any fair, cryptographic execution of C, there exists

some action sequence of C ′ satisfying the indistinguishability requirements of Definition 9. To do so, we

simply swap between the switched users the messages that pass between them and the first routers on their

circuits and switch the encryption keys of these messages.

Theorem 1. Let u, v be two distinct users such that neither they nor the first routers in their circuits are

compromised (that is, are in A). Let C ′ be identical to C except the circuits of users u and v are switched.

C is indistinguishable from C ′ to A.
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Proof. Let α be a fair, cryptographic execution of C. To create a possible execution of C ′, first construct

α′ by replacing any message sent or received between u (v) and C1(u) (C1(v)) in α with a message sent or

received between v (u) and C1(u) (C1(v)). Then let ξ be the permutation that sends u to v and v to u and

other users to themselves. Create β by applying ξ to the encryption keys of α′.

1. Every action by an agent in N \ A in β is enabled. All receives are enabled in β, because sends and

corresponding receives are modified together.

For any user w /∈ {u, v}, all messages in σU (w,C(w)) go to or from w, so none are added or removed

from α in α′. Also none of the messages in this sequence would be modified by ξ because they are

encrypted with a key of w, and ξ doesn’t convert messages in α′ to be messages of σU (w,C(w)).

Therefore if a message is enabled to be sent from w in β it was enabled in α.

For user u, when u sends a message to C1(v) in β, it corresponds to v sending a message to C1(v) in α.

v is enabled to do so in α so at that point it has sent and received exactly those messages of σU (v, C(v))

necessary to enable that send. In β we have changed those messages to be messages between u and

C1(v) while modifying the encryption keys, so the necessary σU (u,C ′(u)) messages have appeared to

enable the send. No additional messages in σU (u,C ′(u)) could have appeared in β, because u and v

do not communicate on link identifier 0 in α. Therefore u is enabled to send the message. A similar

argument works for v.

For a router r /∈ A∪{C1(u), C1(v)}, the only change in messages to or from r between α and β is from

the permutation ξ applied to the encryption keys of the messages. Applying ξ preserves the occurrence

of some prefix of σR(r, C ′(w), w) at any point in the execution, for any w /∈ {u, v}. For w = u, applying

ξ turns the occurrence of some σR(r, C(u), u) into an occurrence of σR(r, C ′(u), v), and vice versa for

w = v. It also preserves the appearance of messages to forward and the actual forwarding. Thus any

action performed by r in β is enabled because it corresponds to a similar enabled action in α.

Now consider a message µ sent from C1(u) in β.

It may be that µ is part of a σR(C1(u), C(w), w) sequence for some w /∈ {u, v} in α. Then µ is enabled

in β since none of the messages in σR(C1(u), C(w), w) come from u or v and none involve u or v in the

encryption keys, so all exist in β that did in α and no additional ones do. It could also be that, in α,

µ is a forward in some circuit not belonging to u or v. Then µ is still enabled in β for a similar reason,

recognizing that although it might involve the encryption keys of u or v, the content of messages is
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ignored in forwards.

Another case is that, in α, µ is part of some σR(C1(u), C(u), u, i). Then in β, µ is part of

σR(C1(u), C ′(v), v, i). This is because every message from u to C1(u) is changed to a message from v to

C1(u) and every encryption key involving u changes to one involving v. It can be seen by inspecting the

messages in a σR sequence that consistently replacing the user in the encryption keys in a σR sequence

and (when i = 1) the previous hop from u to v, as is done to create β, transforms a σR(C1(u), C(u), u, i)

sequence into a σR(C1(u), C ′(v), v, i) sequence. No additional messages can enter into this sequence in

β because they must be encrypted with a key of v, and any such message will have appeared with a

key of u in α and will have filled the same spot in the σR(C1(u), C(u), u, i) sequence there. Thus µ is

enabled in β. Also, for similar reasons, if µ is a forward in u’s circuit in α, then it is a forward for v’s

circuit in β.

The final case is when, in α, µ is in a σR(C1(u), C(v), v) sequence or is a forward on v’s circuit.

Since v does not communicate directly with C1(u) as a user in α, it must be that C1(u) is some

intermediate router. Then the only changes to the σR(C1(u), C(v), v) messages in α are the encryption

keys, which are applied consistently to all the sequence messages and are not interfered with by messages

in α already using the target keys since they are also modified. Therefore if µ corresponds to a

σR(C1(u), C(v), v) send in α, it is a σR(C1(u), C ′(u), u) message enabled in β. Also, for similar reasons,

if µ was a foward in v’s circuit in α, it is an enabled forward on u’s circuit in β.

The analogous argument works for C1(v).

2. β is fair for agents in N \A.

For any user w /∈ {u, v}, every σU (w,C ′(w)) message received in β in its non-junk partition is the

same message in α. Therefore every send w is enabled to perform in β it is enabled to perform in α.

Because α is fair for w so is β.

Now consider u. The transformation properly changes the messages from C1(v) to v in σU (v, C(v)) to

messages sent to u that are in the same position in the σU (u,C ′(u)) sequence. No extra messages can

appear since they must be encrypted using u’s keys, and then they would have been encoded with v’s

keys in α and been part of the σU (v, C(v)) sequence there. Therefore every send that u is enabled to

perform in β, v is enabled to perform in α. Since α is fair for v, then β is fair for u. The analogous

argument works for v.
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For router r /∈ A ∪ {C1(u), C1(v)} to be enabled to perform a send in β but not α, there must be

a message in some sequence σR(r, C ′(w), w, i) that r receives in β but doesn’t in the corresponding

sequence in α. This cannot be for any w /∈ {u, v}, because the messages in this σR are not modified,

except possibly the content of forwards which doesn’t affect their validity. All messages in β that are

to r and are in some σR(r, C ′(u), u) are also are sent to r in α and are part of some σR(r, C ′(v), v).

Therefore if such a message enables r to send something in β there exists a similar message enabling

r to send something in α. Also forwards along u’s circuit in β exist as forwards along v’s circuit in α.

The analogous argument works for messages of some sequence σR(r, C ′, v).

For C1(u) to be enabled to perform a send in β but not α, there must be a message in some sequence

σR(C1(u), C ′(w), w) or forward that C1(u) receives in β but doesn’t in α. There can not be such a

message in the σR(C1(u), C ′(w), w) sequence for any w /∈ {u, v}, because the messages in this sequence

are not modified in the transformation and no new messages encrypted with w’s key are created.

Also the sender and recipient of forwards from w aren’t modified, and the content of forwards which

doesn’t affect their validity. Now suppose w = v. For any message that appears at the end of some

σR(C1(u), C ′(v), v, i) in β that C1(u) doesn’t respond to there must not be an analogous message in

σR(C1(u), C(u), u, i) in α or C1(u) would be enabled at that point as well. But this message must

be encrypted with v’s keys and would be modified by the ξ permutation and thus play the same role

for C1(u) in α. Again, the content of forwards doesn’t matter and any forward on v’s circuit in β

corresponds to a forward on u’s circuit in α. The analogous argument works for the case w = u.

Therefore every send enabled for C1(u) in β is enabled in α, and β is fair for C1(u). The analogous

argument works for C1(v).

3. β is cryptographic.

We’ve already shown that uncompromised routers and users perform enabled actions in β. Since the

automatons only allow sending messages encrypted with keys the agent doesn’t possess after receiving

them, the actions of these agents do not prevent β from being cryptographic. For a compromised user

or router, let’s say that a control message encrypted with a foreign key is sent before being received at

least once. If the encryption key doesn’t involve u or v, then the same message gets sent in α before

being received, contradicting the fact that α is cryptographic. If the key does involve u, then in α it

involves v, in which case if the message is received in α beforehand, it must have received it in β since

the key permutation takes v to u. Likewise for messages encrypted with one of v’s keys. The fact that
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α is cryptographic then implies that β is cryptographic.

4. We can find a ξ ∈ Ξ and π ∈ Π that turn α into a sequence that agrees with β in all the adversary

actions.

ξ is simply the user permutation used to create β, transposing users u and v, and π is the identity on

all messages. Applying these to α yields a sequence that agrees with β everywhere except for messages

between u (v) and C1(u) (C1(v)), which we assumed are not adversarial.

5.3.3 Indistinguishable Routers and Destinations

Now we prove that an adversary cannot determine an uncompromised router or destination on a given circuit

unless it controls the previous or next router on that circuit. The proof is similar to that of Theorem 1,

although it is complicated by the fact that the identities of routers in a circuit are included in multiple ways in

the circuit creation protocol. Given an execution of C, we identify those messages that are part of the circuit

creation sequence of the modified circuit and then change them to change the router or destination. Then

we show that, in the sense of Definition 9, from the adversary’s perspective this sequence is indistinguishable

from the original and could be an execution of C ′.

Theorem 2. Say there is some user u /∈ A such that u’s circuit in C contains three consecutive routers,

ri−1, ri, ri+1 /∈ A. Let C ′ be equal to C, except ri is replaced with r′i in u’s circuit, where r′i /∈ A∪{ri−1, ri+1}.

C ′ is indistinguishable from C to A. The same holds for uncompromised routers (ri, ri+1) if they begin

u’s circuit and are replaced with (r′i, ri+1), uncompromised routers (ri−1, ri), if they end u’s circuit and are

replaced with (ri−1, r
′
i), or uncompromised router and destination (ri−1, ri) if they are replaced with (ri−1, r

′
i).

Proof. Let α be some fair cryptographic execution of C, and let h(C(u), i) denote the number of occur-

rences of the ith router in the circuit C(u) among the first i routers. We modify α in steps to create an

indistinguishable sequence β:

1. If ri is a router, replace all message components of the form

[EXTEND, ri, {CREATE}(u,ri,h(C(u),i))] with [EXTEND, r′i, {CREATE}(u,r′i,h(C′(u),i))]. If ri is a des-

tination, replace all message components of the form [DEST, ri, b] with [DEST, r′i, b].
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2. Consider the partition of router ri−1’s actions that are associated with a

σR(ri−1, C(u), u, i − 1) sequence. Replace all messages in this partition that are to and from ri with

the same messages to and from r′i. Modify the link identifiers on these messages so that they are the

smallest identifiers in use between ri−1 and r′i at that point in α. Increase link identifiers that are in

use between ri−1 and r′i to make room for these new connections and decrease link identifiers that are

in use between ri−1 and ri to fill in the holes created by the removed connections. Perform similar

modifications for routers ri and ri+1.

3. Replace all encryption keys of the form (u, ri, h(C(u), i)) with (u, r′i, h(C
′(u), i)). Increment as neces-

sary the third component of the encryption keys used between u and r′i to take into account that r′i

appears once more in C ′(u) than it does in C(u). Also decrement as necessary the third component of

the keys used between u and ri to take into account that ri appears once less in C ′(u) than it does in

C(u).

Now we show that the action sequence thus created, β, is a fair cryptographic execution of C ′:

1. Every action by an agent in N \A in β is enabled.

It is easy to see that all receives are enabled in β since sends and corresponding receives are modified

together.

Our strategy to show that all sends in β are enabled will be to consider the separate non-junk partitions

of α after the transformation. First we will show that no sends from uncompromised agents appear

in β outside of these transformed partitions. Then we show that any given non-junk partition of α is

transformed into a subsequence that is “locally” enabled under C ′. A user (router) action sequence

is locally enabled if each send satisfies the conditions of Lemma 1 (2) applied just to that sequence.

Then we show that it is “globally” enabled in the sense that the sends in the transformed user (router)

partition continue to satisfy Lemma 1 (2) when considered over the entire sequence β.

It is easier to proceed this way since going from a locally to globally-enabled sequence just requires

that certain actions don’t exist in the larger sequence. For users, none of the sends in the transformed

non-junk partition can appear again in the larger sequence between being enabled and being sent in the

partition. This must also be true for transformed router partitions, and additionally the link identifiers

used must be unique and minimal at the point of link creation. Via Lemmas 1 and 2 a locally-enabled

action sequence satisfying these global conditions contains only enabled sends in β.
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The fact that there are no sends from uncompromised agents in β outside of the transformed non-junk

α partitions helps us prove that actions are globally enabled. By inspecting the three changes made

to α, it is clear that no actions are added or deleted from α, and that sends (receives) in α are sends

(receives) in β. Since every send in α from an agent a ∈ N \A is part of one of its non-junk partitions,

every send by an uncompromised agent in β is part of one of the transformed partitions.

We can use this to show that a given sequence is globally enabled. If the sequence is a locally-enabled

transformed user partition, it is automatically globally enabled because there are no sends outside

the partition to interfere with it. Similarly, for locally-enabled transformed router partitions, we

automatically satisfy the send non-inteference property in β as long as we satisfy the second requirement

on the link identifiers.

This second requirement for routers is slightly simpler to achieve by noting that all CREATE messages

in β were transformed from CREATE messages in α. Therefore we only need to show that the link

IDs used in β are unique and minimal among the link creations in α after transformation.

For user v 6= u the non-junk partition has not been modified, and therefore, by Lemma 1, every send

is locally enabled in β. Therefore every action by v is enabled.

Now consider the user u’s non-junk partition in α. We’ve modified steps 2i− 1,2i,2i+ 1, and 2i+ 2 as

necessary to change the σU (u,C(u)) prefix to a σU (u,C ′(u)) prefix. All these are enabled by Lemma

1, and so this is locally enabled. No sends appear outside of this transformed partition in β. Thus the

partition is globally enabled.

Now consider a router r /∈ {ri−1, ri, r
′
i, ri+1} and a partition of r in α. The partition consists of a prefix

of a σR(r, C(w)) sequence, for some user w, and possibly some forwards. The only changes made to the

partition are key relabelings and some modification of the messages of forwards. The relabeling turns

the σR(r, C(w)) prefix into some σR(r, C ′(w)) prefix of the same length, and so sends in this sequence

are locally enabled. Forwards are enabled regardless of content, and so they are also locally enabled.

No link identifiers of r have changed, and so they are still unique and minimal. Therefore the whole

partition is globally enabled.

Now consider ri−1. Take some non-junk partition of α that does not contain a sequence in which

ri−1 is the (i − 1)th circuit router of u, that is, that does contain a σR(ri−1, C(w), w, j) sequence,

w 6= u or j 6= i − 1. For the same reasons as the preceding case, it is transformed into a sequence
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associated with a σR(ri−1, C
′(w), w) sequence. Thus it is locally enabled. The partition that is a prefix

of σR(ri−1, C(u), u, i − 1) can be seen by inspection to be modified to be a locally-enabled sequence

associated with σR(ri−1, C
′(u), u, i − 1). The link identifiers used in every transformed partition of

ri−1 are unique and minimal in β because the original partitions had unique and minimal IDs in α,

we haven’t changed the IDs or neighbors of any partitions not connecting with r′i or ri, and we have

changed the ID in partitions connecting with r′i or ri to make IDs unique and minimal after changing a

partition to connect with r′i instead of ri. Thus the whole sequence is globally enabled. The analogous

arguments work for ri+1, ri and r′i.

2. β is fair for agents in N \A.

To show this we will again consider the transformed partitions of α. We have shown that they form

enabled sequences, and now need to show that no messages from the transformed junk partition belong

in these sequences. For users, this means that the next step in a transformed σU partition isn’t received.

For routers, it means that the next step in a transformed σR partition isn’t received, no new forwards

on a created circuit are received, and that no new valid CREATE messages are received.

Consider a user w 6= u. Every receive action by w in β is from a receive action by w in α. The messages

received by w are never modified to use one of w’s keys, so a message encrypted with w’s keys in β

uses the same keys in α. Also the content of an encrypted message is never changed to be a message

that appears in σU (w,C ′(w)). Therefore any receive that is a step of σU (w,C ′(w)) in β is the same

step in σU (w,C(w)) in α. Therefore β is fair for w.

Now consider user u. As shown, the transformed non-junk partition in α is a locally-enabled sequence

in β. For u to have an unperformed enabled action in β, the next message in the σU (u,C ′(u)) sequence

must come from the junk sequence and be unanswered. σU (u,C(u)) and σU (u,C ′(u)) differ in steps

(2 + 2j), i ≤ j ≤ l. These only differ in the encryption keys, and these have been renumbered in such

a way that the (2 + 2j)th step in σU (u,C ′(u)) appears if and only if the (2 + 2j)th step appears in

σU (u,C(u)). Thus an enabling receive in β implies that such a receive exists in α. Therefore β is fair

for u.

Now consider a router r /∈ {ri−1, ri, r
′
i, ri+1}. For a given transformed partition, no new messages of the

associated σR(r) sequence can appear in β. This is because σR(r) messages are all encrypted for r and

we have created no such messages, nor have we modified such messages so as to create a new message
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in the σR(r) sequence. For forwards, first we recognize that the transformation maintains source and

link ID consistency for r in the sense that if we were to group r’s receives in α by their source and

link ID the transformed groups would be the same as the same groups created in β. Therefore for an

incoming message to be transformed into a forward on a created circuit, it must previously be sent with

the link identifiers of the incoming link, but since content in forwards doesn’t matter, this would be a

forward in α as well. Finally there are no valid CREATE messages received in β that aren’t received

in α. No new messages are sent to r, no messages are transformed into a CREATE, no keys have been

modified to belong to r, and r’s link IDs have been consistently changed. Therefore β is fair for r.

Now consider ri−1. For a transformed partition of ri−1, suppose that some receive extends the associ-

ated σR(ri−1) or acts as a forward on the created circuit. This receive must be from the junk partition

of ri−1 since we have shown its that non-junk partitions form enabled sequences. This message can’t

be from a router not in {ri, r′i} because all such messages existed in α with the same link ID, source,

and destination, and the content is either the same or is a forward, which would still be a forward in

α. It can’t come from ri. This router is uncompromised and therefore properly uses link identifiers.

If the message were part of the associated σR(ri−1) sequence in β, it would exist in α with the ID in

use by ri−1 and ri in the sequence in α and with the same content, so this can’t be the case. If the

message were a forward, again it would exist in α with the link ID in use between ri−1 and ri in the

partition, and would therefore be a forward in α as well. Similar arguments work for messages from

r′i. Finally, no new partitions can be created, because CREATE messages to ri−1 on unique link IDs

in β are the same in α. Therefore β is fair for ri−1. The analogous arguments work for ri+1.

Now consider ri. Because only link identifiers to ri−1 and ri+1 have been changed, and those routers are

uncompromised, all messages in β to ri from a given router and with a given link ID are transformed

from all messages in α from the same router and of a given (possibly different) link ID. Suppose a

message receive in β enables a send in the associated σR(ri) that is not enabled in the related sequence

in α, or acts as a new forward. It must have been sent in α on the link ID in α of that partition.

Because messages aren’t redirected to ri and senders aren’t changed, it must have been sent in α by the

same sender. Because content doesn’t change in the σR(ri) messages and doesn’t matter in forwards

this message would perform the same function in α, contradicting the fairness of α. No new partitions

can be created because new CREATE messages aren’t made by the transformation, senders are the

same, and link identifiers are renumbered in such a way that distinct link IDs from a router in α are

49



distinct in β. Therefore β is fair for ri.

A similar argument works for r′i over its partitions in α, but we do reassign a partition of ri to r′i,

which we must also consider. Notice that the messages redirected to r′i exist on unique link IDs in β

with ri−1 and ri+1 in β. Therefore these cannot enable actions on the other transformed partitions,

and vice versa. Also no junk messages of r′i can enable actions in this transformed partition because

the connecting routers, ri−1 and ri+1, are uncompromised and will have sent these messages on a link

ID that is different from the ID of the transformed new partition in β. Finally, we show that the

only valid CREATE messages received by r′i in β are those in transformed partitions of α. Every

CREATE in β is a CREATE in α. Every valid CREATE to r′i in α becomes a valid CREATE in β

because it is part of a transformed partition and we have shown that these become enabled sequences.

The only messages redirected to r′i belong to ri’s reassigned partition, which forms a fair sequence in

α and maintains this after transformation. The final possibility for a new CREATE is a CREATE

message from r′i’s junk partition that was sent to r′i in α but was encrypted with a key of ri, which

then gets changed in the transformation. The only such message is {CREATE}(u,ri,h(C(u),i)). Only

ri−1 could send this message in α because α is cryptographic, and u only produces such a message

encrypted with the key of r′i−1. It would only send this message if it were to receive the message

{EXTEND, r′i, {CREATE}(u,ri,h(C(u),i))}(u,ri−1,h(C(u),i−1)), which u never sends in α. Again by the

cryptographic property of α ri−1 never sends this CREATE to r′i in α. Thus no valid CREATE

messages are received by r′i in β that are not transformed from partitions in α, and we have shown

that these transformed partitions are fair. Therefore β is fair for r′i.

3. β is cryptographic.

For uncompromised routers, the fact that all sends are enabled in β guarantees cryptographic sends, be-

cause the protocol ensures this property. Compromised routers send and receive all the same messages,

but to which the transformation function has been applied. Therefore because α is cryptographic, β

is.

4. We can find key and message permutations that turn β into a sequence that agrees with α in all

adversary actions.

No messages are redirected towards or away from a ∈ A when constructing β. We apply the message

permutation to β of transposing
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{[EXTEND, r′i, {CREATE}(u,r′i,h(C′(u),i))]}k1,...,kj and

{[EXTEND, ri, {CREATE}(u,ri,h(C(u),i))]}k1,...,kj
, 1 ≤ j ≤ l, where kj isn’t shared by the adversary.

(If we replaced a destination we instead transpose {[DEST, r′i, b]}k1...,kj
and {[DEST, ri, b]}k1...,kj

.)

We also apply the key permutation that sends (u, r′i, h(C
′(u), i)) to (u, ri, h(C(u), i)) and undoes the

renumbering of the r′i and ri keys. Then the subsequence of actions by a in β is identical to the

subsequence in α.

5.3.4 Indistinguishable Identifiers

Theorem 3. Say there is some uncompromised user u such that all routers and the destination in C(u) are

uncompromised. Then let C ′ be a configuration that is identical to C, except that u uses a different circuit

identifier. C ′ is indistinguishable from C to A.

Proof. Let α be a fair, cryptographic execution of C. To create β, simply change every occurrence of u’s

circuit identifier in C (Cl+2(u)) to its identifier in C ′. β is enabled, fair, and cryptographic for C ′ because no

message containing Cl+2(u) gets sent to the adversary in α and the protocol itself ignores circuit identifiers

except to forward them on. It appears the same to A for the same reason.

5.3.5 Indistinguishable Configurations

Let D′
A be the transitive closure of pairs that are indistinguishable by Theorems 1, 2, and 3. Theorems 1,

2, and 3 will allow us to characterize exactly which configurations are indistinguishable.

Lemma 3. D′
A is an equivalence relation on indistinguishable configurations.

Proof. If C1 ∼DA
C2, for some configurations C1 and C2, then, for every execution α of configuration C1,

there exists an indistinguishable execution β of C2. Then if C2 ∼DA
C3, for some configuration C3, there

must exist an execution γ of C3 that is indistinguishable from β. α and γ are then indistinguishable, and thus

indistinguishability of configurations is transitive. Therefore taking a transitive closure of indistinguishable

pairs, as we do to create D′
A, preserves the indistinguishability of all pairs.

Theorems 1, 2, and 3 are all symmetric, in that if, for configurations C1 and C2, C1 ∼ C2 by one

of the theorems, then C2 ∼ C1 by the same theorem. Therefore D′
A is symmetric. D′

A is transitive by
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construction. D′
A is reflexive because a configuration is trivially indistinguishable from itself. Therefore D′

A

is an equivalence relation.

We introduce some notation to conveniently refer to the configurations related by D′
A.

Definition 13. For configurations C and D, we say that C ≈DA
D if C and D are related by a chain of

configurations that are indistinguishable by Theorems 1, 2, and 3.

We can easily tell which configurations are in the same equivalence class using the following function.

It reduces a circuit to an identifier, the compromised positions, and the positions adjacent to compromised

positions.

Definition 14. Let ρ : U ×N l ×D × N+ × P(N) → N× P(N × N+) be:

ρ(u, c, d, j, A) =

 (j, {(r, i) ∈ N × N+|ci = r ∧ (ci−1 ∈ A ∨ ci ∈ A ∨ ci+1 ∈ A)}) if ci ∈ A for some i

(0, ∅) otherwise

In the preceding let c0 refer to u and cl+1 refer to d.

We overload this notation and use ρ(C) to refer to the multiset formed from the circuits of configuration

C adjoined with their user and reduced by ρ. That is, ρ(C) = {ρ(u,C(u), A)|u ∈ U}. The following lemma

shows that ρ captures the indistinguishable features of a configuration according to Theorems 1, 2, and 3.

Lemma 4. Let C and D be configurations. C ≈DA
D if and only if ρ(C) = ρ(D).

Proof. First we show that if ρ(C) = ρ(D), then C ≈DA
D. Because ρ(C) = ρ(D), there is a permutation

π of the users such that ρ(C(u)) = ρ(D(π(u))). Let C ′ be the configuration such that, for every user u, we

replace the routers in C(u) that are not compromised or adjacent to compromised routers by the routers in

the same circuit position in D(π(u)), and such that we do the same for an uncompromised destination. C ′

is indistinguishable from C by Theorem 2. Let C ′′ be the configurations that results when we permute the

users of C ′ by π. π must act as the identity on all routers that are compromised or have compromised first

routers, because otherwise (u, 0) would exist in ρ(C(u)) and would not exist in ρ(D(π(u))), contradicting their

equality. Therefore, C ′′ is indistinguishable from C ′ by Theorem 1. Finally, let C ′′′ be the result of changing,

for all users such that ρ(u) = (0, ∅), the circuit identifiers C ′′l+2(u) to Dl+2(u). C ′′′ is indistinguishable from

C ′′ by Theorem 3, because ρ(C(u)) = (0, ∅) implies that u and Ci(u) are uncompromised, 1 ≤ i ≤ l.
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For all users u, if C ′′′i (u), C ′′′i−1(u), and C ′′′i+1(u) are uncompromised, 1 ≤ i ≤ l + 1, then

C ′′′i (u) = C ′i(π
−1(u)) (5.1)

= Di(π(π−1(u))) by construction. (5.2)

If C ′′′i (u), C ′′′i−1(u), or C ′′′i+1(u) is compromised, 1 ≤ i ≤ l + 1, then

C ′′′i (u) = C ′i(π
−1(u)) (5.3)

= Ci(π−1(u)) (5.4)

= Di(π(π−1(u))) because ρ(C(u)) = ρ(D(π(u))). (5.5)

If C ′′′(u) = (0, ∅), then the circuit identifier C ′′′l+2(u) = Dl+2(u) by construction. If C ′′′(u) 6= (0, ∅), then

C ′′′l+2(u) = Dl+2(u), because

ρ(C ′′′(u)) = ρ(C(π−1(u))) (5.6)

= ρ(D(π(π−1(u)))), (5.7)

and the circuit identifier is included in ρ(c) when c contains compromised agents. Therefore C ′′′ = D, and

thus C ≈DA
D.

Now we show that if C ≈Da
D, then ρ(C) = ρ(D). Because C ≈DA

D, there must be a chain of

indistuinguishable configurations relating C toD such that each adjacent pair in the chain is indistinguishable

by Theorems 1, 2, and 3. For any pair of configurations C1 and C2 that are indistinguishable by one of these

theorems, ρ(C1) = ρ(C2):

1. If C1 and C2 are related by Theorem 1, a pair of uncompromised users with uncompromised first

routers is swapped. ρ is invariant under this operation.

2. If C1 and C2 are related by Theorem 2, then a router or destination ri such that ri, ri−1, and ri+1 are

uncompromised is replaced by r′i. ρ is invariant under this operation.

3. If C1 and C2 are related by Theorem 3, the circuit identifier of an uncompromised circuit is modified.

ρ is invariant under this operation.

Therefore ρ(C) = ρ(D).
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Now we show that the equivalence relation is in fact the entire indistinguishability relation and that

Theorems 1, 2, and 3 characterize which configurations are indistinguishable. The reason for this is that an

adversary can easily determine which entries in the compromised routers belong to the same circuits and

what positions they hold in those circuits. The adversary links together entries in its routers by using the

circuit identifiers that are uniquely associated with each circuit. And because circuits have a fixed length

compromised routers can determine their position in the circuit by counting the number of messages received

after the circuit entry is made.

Theorem 4. Configurations C and D are indistinguishable only if C ≈DA
D.

Proof. Suppose that C and D are not in the same equivalence class. Let the adversary run the automata

prescribed by the protocol on the agents it controls. Let α be a fair, cryptographic execution of C and β be

a fair, cryptographic execution of D.

Partition the adversary actions of α into subsequences that share the same circuit identifier. There is at

most one such partition for each circuit. Circuit positions that are created in the same partition belong to the

same circuit. In each partition the adversary can determine the absolute location of a circuit position filled

by a given compromised agent a by counting the total number of messages it sees after the initial CREATE.

A can also determine the agents that precede and succeed a on the circuit and the circuit identifier itself.

Therefore A can determine the reduced circuit structure ρ(C) from α.

The adversary can use β in the same way to determine ρ(D). By Lemma 4, ρ(C) 6= ρ(D), and so A can

always distinguish between C and D.

5.3.6 Anonymity

The configurations that provide sender anonymity, receiver anonymity, and relationship anonymity follow

easily from Theorems 1, 2, 3, and 4.

Corollary 1. User u has sender anonymity in configuration C with respect to adversary A if and only if at

least one of the following cases is true:

1. u and C1(u) are uncompromised, and there exists another user v 6= u such that v and C1(v) are

uncompromised.

2. u and Ci(u) are uncompromised, for all i.
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Proof. Suppose u has sender anonymity in configuration C. Then there must be an indistinguishable config-

uration D in which u uses a different circuit identifier. By Theorem 4, C ≈DA
D, and therefore, by definition,

there must be a chain of configurations from C to D such that consecutive pairs are indistinguishable by

Theorems 1, 2, and 3. At some point in this chain, the circuit identifier of u must change. If, at this point,

the consecutive configurations are indistinguishable by Theorem 1, u must swap circuits with some v, and

the conditions for this are exactly those of (1). It is not possible for the consecutive configurations at this

point to be indistinguishable by Theorem 2, because it cannot affect the circuit identifier of u. If, at this

point, the configurations are indistinguishable by Theorem 3, the conditions of (2) must hold.

Conversely, if (1) holds we can apply Theorem 1 to C to yield an indistinguishable configuration in which

u has a different circuit identifier. If (2) holds we can apply Theorem 3 to C to change the circuit identifier

of u entirely.

Corollary 2. Destination d has receiver anonymity on u’s circuit, in configuration C, and with respect to

adversary A if and only if at least one of the following cases is true:

1. u and Cl(u) are uncompromised, and there exists more than one destination.

2. u and Ci(u) are uncompromised, for all i.

Proof. We use the assumption that all destinations are uncompromised. Suppose d has receiver anonymity in

configuration C. Then there must be an indistinguishable configuration D in which d is not the destination

on a circuit with the circuit identifier of u in C. By Theorem 4, C ≈DA
D, and therefore, by definition,

there must be a chain of configurations from C to D such that consecutive pairs are indistinguishable by

Theorems 1, 2, and 3. At some point in this chain, d must no longer be the destination on a circuit with the

circuit identifier of u in C. Theorem 1 only affects users, and thus cannot apply at this point. If Theorem 2

applies, the conditions of (1) must be satisfied. If Theorem 3 applies, the conditions of (2) must be satisfied.

Conversely, if (1) holds we can apply Theorem 2 to C to yield an indistinguishable configuration in which

d is not the destination of a circuit with the circuit identifier of u in C. If (2) holds, we can apply Theorem 3

to C to change the circuit identifier of u entirely.

Corollary 3. User u and destination d have relationship anonymity in configuration C with respect to

adversary A if and only if at least one of the following cases apply:

1. u and Cl(u) are uncompromised, and there exists more than one destination.
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2. u and C1(u) are uncompromised. There exists another user v 6= u such that v and C1(v) are un-

compromised. Cl+1(v) 6= d, or Cl(v) is uncompromised and there exists more than one destination.

Proof. Suppose u and d have relationship anonymity in configuration C. By Theorem 4, C ≈DA
D. There-

fore, by definition, there must be a chain of configurations C = C0, C1, . . . , Cm = D such that each consec-

utive pair, (Ci, Ci+1), is indistinguishable by Theorems 1, 2, and 3. At some point i in the chain, d must

cease to be the destination of u. Suppose that, at this point, the configurations are indistinguishable by

Theorem 1. Then u and Ci
1(u) are uncompromised, and, for some v 6= u, v and Ci

1(u) are uncompromised.

Also, the destination of v is not d. Then either Cl+1(v) 6= d, or v and d have relationship anonymity in

C. We inductively assume (performing induction on the length of the chain) that Corollary 3 holds. Then

if (1) holds for v, (2) is satisfied for u. If (2) holds for v, then, for some w, v and w can be swapped to

give v relationship anonymity. w can therefore play the role of v in the conditions for (2). In the base case,

swapping u and v happens at i = 0, and it must be the case that Cl+1(v) = d, satisfying (1).

Conversely, if (1) holds, we can apply Theorem 2 to replace d with another destination, yielding an

indistinguishable configuration in which the destination of u is not d. Now suppose (2) holds. If Cl+1(v) 6= d,

then we can apply Theorem 1 to swap u and v in C, yielding an indistinguishable configuration in which

the destination of u is not d. Otherwise, we can swap u and v by Theorem 1, and then we are able to apply

Theorem 2 to replace d as the destination of u.

5.3.7 Model Changes

We chose the described protocol to balance two goals. The first was to accurately model the Tor protocol

. The second was to make it simple enough to be analyzed, and also so that the main ideas of the analysis

weren’t unnecessarily complicated. Our results are robust to changes of the protocol, however. We can

make the protocol simpler by removing circuit identifiers and multiple encryption without weakening the

indistinguishability results. In the other direction, we can make it more complicated with a stream cipher

and multiple circuits per user without weakening the distinguishability results.

Circuit identifiers can be simulated by an adversary performing a timing attack, and therefore are just

a convenience that helps us reason about the anonymity of the protocol. Consider modifying the protocol

so that the messages sent by users do not include circuit identifiers. That is, remove the leading number

from all messages received or sent in Automaton 1. Call this protocol “identifier-free onion routing.” The
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following theorem shows that an adversary can simulate the use of circuit identifiers.

Theorem 5. There exists an adversary that can calculate, for an execution of identifier-free onion routing,

a sequence of messages he could have received had the users used circuit identifiers.

Proof. The adversary must be able to link together the different parts of the circuit-building process that

he can observe to add circuit identifiers consistently to the messages he receives. To do so, the adversary

gives a unique number ni to each router ai that he controls, where ni > 2l and |ni − nj | > 2l for all i, j.

Then, he runs the protocol normally, except that, after sending a CREATED message from his router ai,

he sends ni dummy messages up the same link. These messages get forwarded up the circuit. Then, if the

adversary observes between ni and 2l + ni messages coming up a circuit at some other compromised router

aj , he knows that ai and aj are on the same circuit.

Then the adversary can pick any set of n numbers as circuit identifiers, assign those to circuits, and for

each circuit add its identifier to the beginning of those messages that are sent on that circuit.

Theorem 5 shows that circuit identifiers do not affect anonymity, because sender anonymity, receiver

anonymity, and relationship anonymity are invariant under the actual numbers used as identifiers. The

protocol automata only test identifiers for equality, and therefore permuting circuit identifiers doesn’t affect

which executions are indistinguishable. Thus if the adversary can determine a set of circuit identifiers which

could have been used in the protocol, the sender, receiver, and relationship anonymity is the same as if those

identifiers or any permutation of them had been used.

Note that we could destroy the ability for the adversary to send dummy messages along a circuit by

including message authentication codes. This is a standard addition to onion routing. However, by including

some notion of time, the adversary simply delay messages, release them at specific times, and observe where

messages are later observed. The protocol we give in Chapter 8 is designed to deal with this problem, and

it does so using some non-cryptographic ideas.

Multiple encryption does not appear to be necessary for the distinguishability theorems, and therefore

the anonymity results. Consider a single-encryption protocol in which the user only encrypts each message

with the key of the last router added to the circuit. Messages aren’t encrypted or decrypted as they pass up

and down a circuit. The adversary still is not able to determine parts of a circuit that aren’t adjacent to a

compromised agent. The proof of this under multiple encryption did not use the changing representation of

messages going along a circuit, and only relied on the last key of the multiple encryption to hide the content
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of messages. Single encryption does allow the adversary to easily link entries in his routers by sending

messages along the circuit. This power is already available in our model from circuit identifiers, though.

Stream ciphers are used in the Tor protocol and prevent signaling along a circuit using dummy messages.

Sending such messages will throw off the counter by some routers on the circuit and the circuit will stop

working. We can model a stream cipher by expressing the encryption of the ith message p with key k as

{p}(k,i), and allowing a different permutation to be applied for every pair (k, i). This can only increase

the size of the configuration indistinguishability relation. However, the proof for the distinguishability of

configurations only relies on the ability of the adversary to decrypt using his keys, count messages, and

recognize the circuit identifier. Therefore it should still hold when the model uses a stream cipher. Also,

with a stream cipher the circuit identifier is still not necessary for our results. The adversary can again

use the process described above to link entries in compromised routers, since although it involves sending

dummy messages, they are sent after the circuit creation is finished and therefore do not interfere with it.

Allowing users to create multiple circuits doesn’t weaken the adversary’s power to link together its circuit

positions and determine their position, but the number of configurations that are consistent with this view

does in some cases increase. Let users create an arbitrary number of circuits, where a different key is used

between a user and router for every position-and-circuit pair. Then the protocol executes as if each circuit is

created by a different user. Therefore the adversary should be able to determine the reduced circuit structure

ρ(C) of a configuration C. Moreover, the adversary should not be able to determine any additional router

information, which does not depend on the identity of the user. However, the function mapping circuits to

users is no longer a permutation, and therefore there should only be more possibilities for the user of a given

circuit. This would only improve anonymity.
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Chapter 6

Probabilistic Anonymity in Onion

Routing

6.1 Introduction

In Chapters 4 and 5, we present a formal I/O-automata model of onion routing and proved anonymity

guarantees. In this chapter, we construct an abstraction of that model and treat the network simply as a

black box to which users connect and through which they communicate with destinations. The abstraction

captures the relevant properties of a protocol execution that the adversary can infer from his observations

- namely, the observed users, the observed destinations, and the possible connections between the two. We

give a map between the models and show that they posses the same anonymity properties. In this way, we

show that one can abstract away from much of the design specific to onion routing so that our results may

apply both to onion routing and to other low-latency anonymous-communication designs. The executions

described in Chapter 2 disappear from the analysis done herein.

Our previous analysis in the I/O-automata model was possibilistic, a notion of anonymity that is simply

not sensitive enough. It makes no distinction between communication that is equally likely to be from any

one of a hundred senders and communication that came from one sender with probability .99 and from each

of the other 99 senders with probability .000101. An adversary in the real world is likely to have information

about which scenarios are more realistic than others. In particular, users’ communication patterns are not

totally random. When the adversary can determine with high probability, for example, the sender of a
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message, that sender is not anonymous in a meaningful way.

Using this intuition, we add a probability distribution to the I/O-automata model of onion routing given

in Chapter 4. For any set of actual circuit sources and destinations, there is a larger set that is consistent

with the observations made by an adversary. The adversary can then infer conditional probabilities on this

larger set using the distribution. This gives the adversary probabilistic information about the facts we want

the network to hide, such as the initiator of a communication.

The probability distribution that we use models heterogeneous user behavior. In our onion-routing

protocol, each user chooses a circuit to a destination. We make this choice probabilistic and have each user

choose a destination according to some probability distribution, allowing this distribution to be different for

different users. We assume that the users choose their circuits by selecting the routers on it independently

and at random.

After observing the protocol, the adversary can in principle infer some distribution on circuit source and

destination. He may not actually know the underlying probability distribution, however. In particular, it

doesn’t seem likely that the adversary would know how every user selects destinations. In our analysis, we

take a worst-case view and assume that the adversary knows the distribution exactly.

This assumption may not be too pessimistic, because over time the adversary might learn a good approx-

imation of user behavior via the long-term intersection attack [18]. In an intersection attack, one watches

repeated communication events for patterns of senders and receivers over time. Unless all senders are on and

sending all the time (in a way not selectively blockable by an adversary) and/or all receivers receiving all the

time, if different senders have different receiving partners, there will be patterns that arise and eventually

differentiate the communication partners. It has long been recognized that no system design is secure against

a longterm intersection attack.

If the adversary does know the distribution over destinations for every user, it may seem as though

anonymity has been essentially lost anyway. However, even when the adversary knows how a user generally

behaves, the anonymity network may make it hard for him to determine who is responsible for any specific

action, and the anonymity of a specific action is what we are interested in.

We analyze relationship anonymity in our probabilistic onion-routing model. Our definition of relationship

anonymity in Chapter 5 simply requires that, as far as the adversary can tell, there is more than one

possibility for a given user’s destination. The probability distribution on executions we add in this chapter

yields a conditional distribution on these possible destinations. Therefore we can use a quantitative metric
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for anonymity, as discussed in Chapter 2. We will use the probability assigned to the correct destination

as our metric. In part, this is because it is the simplest metric. Also, any statements about entropy

and maximum probability metrics only make loose guarantees about the probability assigned to the actual

subject, a quantity that clearly seems important to the individual users.

We look at the value of this anonymity metric for a choice of destination by a user. Fixing a destination

by just one user, say u, does not determine what the adversary sees, however. The adversary’s observations

are also affected by the destinations chosen by the other users and the circuits chosen by everybody. Because

those variables are chosen probabilistically under the distribution we added, the anonymity metric will have

its own distribution. Several statistics about this distribution might be interesting; in this chapter, we look

at its expectation.

The distribution of the anonymity metric for a given user and destination depends on the other users’

destination distributions. If their distributions are very different, the adversary may have an easy time

separating out the actions of the user. If they are similar, the user may more effectively hide in the crowd.

We begin by providing a kind of worst-case guarantee to a user with a given destination distribution by

finding the maximum expectation over the possible destination distributions of the other users. Our results

show that the worst case is when every other user either always visits the destinations the user is otherwise

least likely to visit or always visits his actual destination. Which one is worse depends on how likely he

was to visit his destination in the first place. If he is unlikely to visit it, it is worse when everybody else

always visits his otherwise least-likely destination, because the adversary can generally infer that he is not

responsible for communication to that destination. When he is likely to visit it, the adversary considers him

likely to be the culprit whenever the destination is observed, and so observing that destination often causes

the adversary to suspect the truth. We give an approximation to the user’s anonymity in these worst cases

for large user populations that shows that on average it decreases by about the fraction of the network the

adversary controls.

We then consider anonymity in a more typical set of user distributions. In the model suggested by

Shmatikov and Wang [76], each user selects a destination from a common Zipfian distribution. Because the

users are identical, every user hides well among the others. As the user population grows, the anonymity

loss in this case tends to the square of the fraction of the network that is compromised.

We expect this to have potential practical applications. For example, designs for shared security-alert

repositories to facilitate both forensic analysis for improved security design and quicker responses to widescale
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attacks have been proposed [52]. A participant in a shared security-alert repository might expect to be known

to communicate with it on a regular basis. Assuming reports of intrusions, etc., are adequately sanitized,

the concern of the participant should be to hide when it is that updates from that participant arrive at the

repository, that is, which updates are likely to be from that participant as opposed to others.

6.2 Technical Preliminaries

6.2.1 Model

We describe our analysis of onion routing in terms of a black-box model of anonymous communication. We

are using a black-box model for two reasons: First, it abstracts away the nonessential details, and second, its

generality immediately suggests ways to perform similar analyses of other anonymity networks. It models

a round of anonymous communication as a set of inputs owned by users and a set of outputs owned by

destinations. The adversary observes the source of some of the inputs and the destination of some of the

outputs. This captures the basic capabilities of an adversary in an onion-routing network that controls some

of the routers. In this situation, the adversary can determine the source of messages when he controls the

first router on the source’s circuit and the destination of messages when he controls the last router. In order

for the adversary always to be able to recognize when it controls the onion router adjacent to the circuit

source, we assume that the initiating client is not located at an onion-routing network node. This is the

case for the vast majority of circuits in Tor and in all significant deployments of onion routing and similar

systems to date. The black box system can also model a mix network under attack by a global, passive

adversary. Such a model was used by Kesdogan et al. [48] in their analysis of an intersection attack.

We add two assumptions to specialize this model to onion routing. First, we assume that every user owns

exactly one input and is responsible for exactly one output in a round. Certainly users can communicate

with multiple destinations simultaneously in actual onion-routing systems. However, it seems likely that in

practice most users have at most some small constant number of active connections at any time, and the

smaller this constant is the fewer possibilities there are that are consistent with the adversary’s observations.

Therefore, this assumption is a conservative one that gives the adversary as much power to break anonymity

as the limited number of user circuits can provide. Second, we assume the adversary can link together an

input and output from the same user when he observes them both. This is another conservative assumption

that is motivated by the ability of an active adversary to use the timing and volume of messages on a circuit
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to recognize that the observations he makes at different locations on the circuit are part of the same circuit.

These timing and volume patterns can be created by the user or they can be artifically created by the

adversary. An example of the latter strategy is described in the proof of Theorem 5, and the purpose is

indeed to allow the adversary to link together different parts of the same circuit.

Let U be the set of users with |U | = n. Let ∆ be the set of destinations. A round of communication is

defined by the black-box configuration that includes the destinations chosen by the users and the observations

made by the adversary.

Definition 15. A black-box configuration C in a black-box system consists of:

1. CD : U → ∆, which indicates the selection of a destination by each user.

2. CI : U → {0, 1}, which indicates the set of users whose inputs are observed.

3. CO : U → {0, 1}, which indicates the set of users whose outputs are observed.

For the remainder of the chapter, the term configuration will refer to a black-box configuration. A user’s

input, output, and destination will be called its circuit.

We include the probabilistic behavior of users by adding a probability distribution over configurations.

Let each user u select a destination d from a distribution pu over ∆, where we denote the probability that

u chooses d as pu
d . Every input and output is independently observed with probability b. This reflects the

probability that the first or last router of a user’s circuit is compromised when the user selects the circuit’s

routers independently and at random, and the adversary controls a fraction b of the routers. The probability

of a configuration C is the joint probability of its events:

Pr[C] =
∏
u∈U

(
pu

CD(u)

)(
bCI(u)(1− b)1−CI(u)

)(
bCO(u)(1− b)1−CO(u)

)
. (6.1)

For any configuration, there is a larger set of configurations that are consistent with the inputs and

outputs that the adversary sees. We will call two configurations indistinguishable if the sets of inputs,

outputs, and links between them that the adversary observes are the same.

Definition 16. Configurations C and C are indistinguishable if there exists a permutation π : U → U such

that for all u ∈ U :

1. CI(u) = 1 ∧ CO(u) = 1 ⇒ CI(u) = 1 ∧ CO(u) = 1 ∧ CD(u) = CD(u)
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2. CI(u) = 1 ∧ CO(u) = 0 ⇒ CI(u) = 1 ∧ CO(u) = 0

3. CI(u) = 0 ∧ CO(u) = 1 ⇒ CI(π(u)) = 0 ∧ CO(π(u)) = 1 ∧ CD(u) = CD(π(u))

4. CI(u) = 0 ∧ CO(u) = 0 ⇒ CI(π(u)) = 0 ∧ CO(π(u)) = 0

Thus, two configurations are indistinguishable if they have the same pattern of observed inputs, outputs,

and destinations, while allowing the identities of users with unobserved inputs to be permuted. The indis-

tinguishability relation is an equivalence relation, and, in particular, is symmetric, because, if C and C are

indistinguishable under π, then C and C are indistinguishable under π−1. Therefore we use the notation

C ≈ C to indicate that configurations C and C are indistinguishable.

6.2.2 Relationship Anonymity

We analyze the relationship anonymity of users and destinations in our model. As described in Chapter 2,

relationship anonymity refers to the adversary’s ability to determine if a user and destination communicate

with each other.

A user has relationship anonymity in a possibilistic sense if there is an indistinguishable configuration

in which the user does not communicate with his destination. For example, under this definition a user

with observed output but unobserved input sends that output anonymously if there exists another user with

unobserved input and a different destination.

The probability distribution we have added to configurations allows us to use a probabilistic notion of

anonymity and incorporate the degree of certainty that the adversary has about communication between

users and destinations. After making observations in the actual configuration, the adversary can infer a

conditional probability distribution on configurations. We measure the relationship anonymity of user u and

destination d by the posterior probability that u chooses d as his destination. The lower this is, the more

anonymous we consider their relationship.

The relationship anonymity of u and d varies with the destination choices of the other users and the

observations of the adversary. If, for example, u’s output is observed, and the inputs of all other users

are observed, then the adversary assigns u’s destination a probability of 1. Because we want to examine

the relationship anonymity of u conditioned only on his destination, we end up with a distribution on the

anonymity metric. We look at the expectation of this distribution.

This expectation depends on the destination distributions of all of the users. If the other users behave
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similarly to u, for example, it might be hard to determine which observed destination belongs to u, while if

they rarely choose the same destinations as u, it might be easy to figure out u’s destination. We consider

how this expectation varies with the other users’ destination distributions. In particular, we examine the

maximum expectation for a given user u over the pv, v 6= u, as this provides a lower bound to the user on

his anonymity. We continue by examining the expectation in a more likely situation.

6.2.3 Model Equivalence

What makes the black-box model abstraction useful is that relationship anonymity is preserved under a

natural map from the protocol configurations of Definition 8 to black-box configurations. Let Cp be the set

of protocol configurations and Cb be the set of black-box configurations. Let φ : Cp → Cb be the function

such that φ(Cp) = (Cb
D, C

b
I , C

b
O), where for all u ∈ U

Cb
D(u) = Cp

l+1(u)

Cb
I (u) =

 1 if u ∈ A ∨ Cp
1 (u) ∈ A

0 otherwise

Cb
O(u) =

 1 if Cp
l (u) ∈ A

0 otherwise

The black-box model essentially discards all information in a protocol configuration except the user

destinations, whether or not the adversary observes a user, and whether or not the adversary observes

a destination. By Corollary 3, these properties of a configuration determine relationship anonymity of the

configuration. Indeed, user u has possibilistic relationship anonymity in protocol configuration Cp
1 if and only

if u has possibilistic relationship anonymity in black-box configuration φ(Cp
1 ). In fact, with an appropriate

probability distribution over executions of the protocol configurations, φ preserves probabilistic anonymity.

Let Cp(α) be the configuration of execution α. Extend the notion of indistinguishability to executions

such that, for executions α and β, α ≈DA
β if α and β satisfy the four conditions of Definition 9. Let X be

a random execution, and Y be a random black-box configuration.

Theorem 6. There exists a distribution µ on fair cryptographic executions such that, for any fair crypto-
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graphic execution α and black-box configuration Cb,

Prµ[φ(Cp(X)) = Cb|X ≈DA
α] = Pr[Y = Cb|Y ≈ φ(Cp(α))]. (6.2)

Proof. We describe the distribution on fair cryptographic executions µ via distributions conditional on

protocol configurations. Let C be a protocol configuration. At the end of a finite cryptographic execution

α of C there is a finite set E of enabled actions. Let the probability under µ that an enabled action is the

next action in all fair cryptographic executions that contain α as a prefix be 1/|E|. That is, at any point in

a fair cryptographic execution, every enabled action is equally likely under µ. To make µ a full distribution

on configurations, we let each user u choose routers uniformly at random and a destination according to the

distributions pu.

We first observe that a bijection exists between the fair cryptographic executions of two indistinguishable

protocol configurations, and that bijection is between indistinguishable executions. Let C and D be protocol

configurations, C ∼DA
D. The proofs of Theorems 1, 2, and 3 transform executions from one configuration

into the other in a way that is invertible and pairs indistinguishable executions. By the Bernstein-Schroeder

theorem, then, there exists a bijection between the fair cryptographic executions of C and D the continues to

pair indistinguishable executions. Now let C and D be any pair of indistinguishable protocol configurations,

that is, C ≈DA
D. By Theorem 4, they are related by a chain of executions C = C0 ∼DA

C1 ∼DA
. . . ∼DA

Ck = D. Then there must also be a bijection between the executions of C and the executions of D, and it

pairs indistinguishable executions. Call this bijection ψCD

ψ preserves the conditional distribution on executions between indistinguishable protocol configurations.

Let C and D be protocol configurations such that C ≈DA
D. Given a finite execution α of C, let Eα be the

set of fair cryptographic executions of C with α as a prefix, and let ψCD(Eα) be their image under ψCD. If

C and D are related by Theorem 1, then the number of enabled actions at any point in α is the same as

the set at the same point in ψCD(α) (by Theorem 1 they are identical after swapping two users). If C and

D are related by Theorem 2, the number of enabled actions at every point in α are the same for all users

and the same for all routers except the pair ri and r′i given in the statement of Theorem 2. For that pair,

the actions related to the circuit that is different between C and D are enabled in ψ(α) for r′i instead of ri.

This maintains the same number of enabled actions at every point in α and ψ(α). If C and D are related by

Theorem 3, then every agent has the same number of enabled actions at every point in α and ψ(α). If C and
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D are indistinguishable by a chain of configurations related by Theorems 1, 2, and 3, then we have shown

that this chain preserves the number of enabled actions at every step in the chain and therefore between α

and ψ(α). Because the probability of α is defined by the number of enabled actions at every step, then, for

random executions X of C and Y of D, Pr[X ∈ Eα|C] = Pr[Y ∈ ψCD(Eα)|D].

Let Z be a random protocol configuration. Now we can say that, given an execution α of C, Pr[Z =

z|X ≈DA
α] = Pr[Z = z|Z ≈DA

C]. Thus executions have disappeared from the picture, and we just need

to relate the probability of protocol configurations that map to a black-box configuration under φ to the

distribution on black-box configurations already defined.

Let C be an equivalence class of protocol configurations under ≈DA
. Given, C1, C2 ∈ C, let bi = |{C ∈ C :

φ(C) = φ(Ci)}|, i ∈ {1, 2}. We show that the number of indistinguishable protocol configurations that map

to each black-box configuration is the same, that is, that b1 = b2. Because C1 ≈DA
C2, ρ(C1) = ρ(C2), where

ρ, as given in Definition 14, is the function that reduces circuits to the components adjacent to the adversary.

Add to each reduced circuit in ρ(Ci) the user and destination of the full circuit in Ci, i ∈ {1, 2}, and call this

ρ′i. There potentially exist protocol configurations consistent with ρ′1 and ρ′2 that map to different black-box

configurations; in particular, it may be that φ(C1) 6= φ(C2). However, further assignments of routers and

circuit identifiers to ρ′i do not change the black-box functions CD, CI , and CO, and therefore ρ(C ′) = ρ(Ci)

for all C ′ consistent with ρ′i. The number of such assignments only depends on the open circuit positions

and not on the identities of the users and destinations. Thus the number of ways to make these assignments

is the same for both ρ′1 and ρ′2. Moreover, any C ′ ∈ C that is not consistent with ρ′1 or ρ′2 does not map

to φ(C1) or φ(C2) because C ′ must assign some user to a different destination. The number of possible

assignments consistent with ρ′i is bi, and so b1 = b2.

The probability of a protocol configuration C is (1/m)ln
∏

u∈U p
u
Cl+1

. Therefore, because the number

of protocol configurations that map to a black-box configuration Cb under φ is the same for all Cb in the

same indistinguishable equivalence class, the conditional probability of Cb depends only on the assignment

of users to destinations. More specifically, for an execution α of C, X a random execution, and a black-box

configuration Cb ≈ φ(C),

Prµ[φ(Cp(X)) = Cb|X ≈DA
α] =

∏
u∈U

pu
Cb

D(u) (6.3)

= Pr[Y = Cb|Y ≈ φ(Cp(α))]. (6.4)
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Equation 6.4 follows from Equation 6.1, and it gives us the theorem.

6.3 Expected Anonymity

Let the set C of all configurations be the sample space andX be a random configuration. X is then distributed

according to Equation 6.1. Let Y be the posterior probability of the event that u chooses d as a destination,

that is, Y (C) = Pr[XD(u) = d|X ≈ C]. Y is our metric for the relationship anonymity of u and d.

6.3.1 Calculation and Bounds

Let N∆ represent the set of multisets over ∆. Let ρ(∆0) be the number of permutations of ∆0 ∈ N∆ that

only permute elements of the same type:

ρ(∆0) =
∏
δ∈∆

|{δ ∈ ∆0}|!.

Let Π(A,B) be the set of all injective maps A→ B. The following theorem gives an exact expression for

the conditional expectation of Y in terms of the underlying parameters U , ∆, p, and b:

Theorem 7.

E[Y |XD(u) = d] = b(1− b)pu
d + b2

+
∑

S⊆U :u∈S

∑
∆0∈N∆:|∆0|≤S b

n−|S|+|∆0|(1− b)2|S|−|∆
0| ∑

T⊆S−u:|T |=|∆0|−1

∑
π∈Π(T+u,∆0):π(u)=d p

u
d

∏
v∈T p

v
π(v)

+
∑

T⊆S−u:|T |=|∆0|
∑

π∈Π(T,∆0) p
u
d

∏
v∈T p

v
π(v)


2

[ρ(∆0)]−1(pu
d)−1

(∑
T⊆S:|T |=|∆0|

∑
π∈Π(T,∆0)

∏
v∈T p

v
π(v)

)−1

(6.5)

Proof. At a high level, the conditional expectation of Y can be expressed as

E[Y |XD(u) = d] =
∑
C∈C

Pr[X = C|XD(u) = d]Y (C)

We calculate Y for a configuration C by finding the relative weight of indistinguishable configurations

in which u selects d. The adversary observes some subset of the circuits. If we match the users to circuits

in some way that sends users with observed inputs to their own circuits, the result is an indistinguishable
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configuration. Similarly, we can match circuits to destinations in any way that sends circuits on which the

output has been observed to their actual destinations in C.

The value of Y (C) is especially simple if u’s input has been observed. If the output has not also been

observed, then Y (C) = pu
d . If the output has also been observed, then Y (C) = 1.

For the case in which u’s input has not been observed, we have to take into account the destinations of

and observations on the other users. Let S ⊆ U be the set of users s such that CI(s) = 0. Note that u ∈ S.

Let ∆0 be the multiset of the destinations of circuits in C on which the input has not been observed, but

the output has.

Let f0(S,∆0) be the probability that in a random configuration the set of unobserved inputs is S and

the set of observed destinations with no corresponding observed input is ∆0:

f0(S,∆0) = bn−|S|+|∆
0|(1− b)2|S|−|∆

0|[ρ(∆0)]−1
∑

T⊆S:|T |=|∆0|

∑
π∈Π(T,∆0)

∏
v∈T

pv
π(v).

Let f1(S,∆0) be the probability that in a random configuration the set of unobserved inputs is S, the

set of observed destinations with no corresponding observed input is ∆0, the output of u is observed, and

the destination of u is d:

f1(S,∆0) = bn−|S|+|∆
0|(1− b)2|S|−|∆

0|[ρ(∆0)]−1pu
d

∑
T⊆S−u:|T |=|∆0|−1

∑
π∈Π(T+u,∆0):π(u)=d

∏
v∈T

pv
π(v).

Let f2(S,∆0) be the probability that in a random configuration the set of unobserved inputs is S, the

set of observed destinations with no corresponding observed input is ∆0, the output of u is unobserved, and

the destination of u is d:

f2(S,∆0) = bn−|S|+|∆
0|(1− b)2|S|−|∆

0|[ρ(∆0)]−1pu
d

∑
T⊆S−u:|T |=|∆0|

∑
π∈Π(T,∆0)

∏
v∈T

pv
π(v).

Now we can express the posterior probability Y (C) as

Y (C) =
f1(S,∆0) + f2(S,∆0)

f0(S,∆0)
. (6.6)

The expectation of Y is a sum of the above posterior probabilities weighted by their probability. The

probability that the input of u has been observed but the output hasn’t is b(1 − b). The probability that
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both the input and output of u have been observed is b2. These cases are represented by the first two terms

in Equation 6.5.

When the input of u has not been observed, we have an expression of the posterior in terms of sets S and

∆0. The numerator (f1 + f2) of Equation 6.6 itself sums the weight of every configuration that is consistent

with S, ∆0, and the fact that the destination of u is d. However, we must divide by pu
d , because we condition

on the event {XD(u) = d}.

These observations give us the final summation in Equation 6.5.

The expression for the conditional expectation of Y in Equation 6.5 is not easy to interpret. It would

be nice if we could find a simple approximation. The probabilistic analysis in [80] proposes just such a

simplification by reducing it to only two cases: i) the adversary observes the user’s input and output and

therefore identifies his destination and ii) the adversary doesn’t observe these and cannot improve his a

priori knowledge. The corresponding simplified expression for the expection is

E[Y |XD(u) = d] ≈ b2 + (1− b2)pu
d . (6.7)

This is a reasonable approximation if the final summation in Equation 6.5 is about (1−b)pu
d . This summation

counts the case in which u’s input is not observed, and to achieve a good approximation the adversary must

experience no significant advantage or disadvantage from comparing the users with unobserved inputs (S)

with the discovered destinations (∆0).

The quantity (1 − b)pu
d does provide a lower bound on the final summation. It may seem obvious

that considering the destinations in ∆0 can only improve the accuracy of adversary’s prior guess about u’s

destination. However, in some situations the posterior probability for the correct destination may actually be

smaller than the prior probability. This may happen, for example, when some user v, v 6= u, communicates

with a destination e, e 6= d, and only u is a priori likely to communicate with e. If the adversary observes

the communication to e, it may infer that it is likely that u was responsible and therefore didn’t choose d.

It is true, however, that in expectation this probability can only increase. Therefore Equation 6.7 provides

a lower bound on the expected anonymity.

The proof of this fact relies on the following lemma. Let E be an event in some finite sample space Ω.

Let A1, . . . ,An be a set of disjoint events such that E ⊆
⋃

iAi, and let Aj =
⋃j

i=1Ai. Let Ei = E ∩ Ai.

Finally, let Z(ω) =
∑

i 1Ei
Pr[Ei]/Pr[Ai] (where 1Ei

is the characteristic function for Ei). Z(ω) is thus the

70



conditional probability Pr[E|Ai], where ω ∈ Ei.

Lemma 5. Pr[E|An] ≤ E[Z|E ]

Proof.

Pr[E|An] = Pr[E]
Pr[An]

=

„P
i

P r[Ei]
√

P r[Ai]√
P r[Ai]

«2

Pr[An]Pr[E] by a simple rewriting

≤

 rP
i

(P r[Ei])
2

P r[Ai]

√P
i Pr[Ai]

!2

Pr[An]Pr[E] by the Cauchy-Schwartz inequality

=
∑

i
(Pr[Ei])

2

Pr[Ai]Pr[E]

= E[Z|E ]

Theorem 8. E[Y |XD(u) = d] ≥ b2 + (1− b2)pu
d

Proof. As described in the proof of Theorem 7

E[Y |XD(u) = d] = b2 + b(1− b)pu
d + (1− b)E[Y |XD(u) = d ∧XI(u) = 0]

To apply Lemma 5, take the set of configurations C to be the sample space Ω. Take {XD(u) = d} to be

the event E . Take the indistinguishability equivalence relation to be the sets Ai. Finally, take Y to be Z.

Then the lemma shows that E[Y |XD(u) = d ∧XI(u) = 0] ≥ pu
d .

To examine the accuracy of our approximation, we look at how large the final summation in Equation

6.5 can get as the users’ destination distributions vary. Because this is the only term that varies with the

other user distributions, this will also provide a worst-case guarantee on expected anonymity. Our results

will show that the worst case can occur when the users other than u act as differently from u as possible by

always visiting the destination u is otherwise least likely to visit. Less obviously, we show that the maximum

can also occur when the users other than u always visit d. This happens because it makes the adversary

observe destination d often, causing him to suspect that u chose d. Our results also show that the worst-case

expectation is about b+ (1− b)pu
d , which is significantly worse than the simple approximation above.

As the first step in finding the maximum of Equation 6.5 over (pv)v 6=u, we observe that it is obtained

when every user v 6= u chooses only one destination dv, that is, pv
dv

= 1 for some dv ∈ ∆.
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Lemma 6. A maximum of E[Y |XD(u) = d] over (pv)v 6=u must occur when, for all v 6= u, there exists some

dv ∈ ∆ such that pv
dv

= 1.

Proof. Take some user v 6= u and two destinations e, f ∈ ∆. Assign arbitrary probabilities in pv to all

destinations except for f , and let ζ = 1 −
∑

δ 6=e,f p
v
δ . Then pv

f = ζ − pv
e . Consider E[Y |XD(u) = d] as a

function of pv
e . The terms ti of E[Y |XD(u) = d] that correspond to any fixed S and ∆0 are of the following

general form, where αi, βi, γi, δi, εi, ηi ≥ 0:

ti =
(αip

v
e + βi(ζ − pv

e) + γi)2

δipv
e + εi(ζ − pv

e) + ηi
.

This is a convex function of pv
e :

t
′′

i =
2(γi(δi − εi) + βi(δiζ + ηi)− αi(εiζ + ηi))2

(εi(ζ − pv
e) + δipv

e + ηi)3
≥ 0

The leading two terms of E[Y |XD(u) = d] are constant in pv, and the sum of convex functions is a convex

function, and so E[Y |XD(u) = d] is convex in pv
e . Therefore, a maximum of E[Y |XD(u) = d] must occur

when pv
e ∈ {0, 1}.

The following lemma shows that we can further restrict ourselves to distribution vectors in which, for

every user except u, the user either always chooses d or always chooses the destination that u is otherwise

least likely to visit.

Lemma 7. Order the destinations d = d1, . . . , d|∆| such that pu
di
≥ pu

di+1
for i > 1. Then a maximum of

E[Y |XD(u) = d] must occur when, for all users v, either pv
d1

= 1 or pv
d|∆|

= 1.

Proof. Assume, following Lemma 6, that (pv)v 6=u is an extreme point of the set of possible distribution

vectors.

Equation 6.5 groups configurations first by the set S with unobserved inputs and second by the observed

destinations ∆0. Instead, group configurations first by S and second by the set T ⊆ S with observed outputs.

Because every user except u chooses a destination deterministically, Y only depends on the sets S and T .

Therefore we can use the notation Y (S, T ) without ambiguity.

E[Y |XD(u) = d] = b(1− b)pu
d + b2+∑

S:u∈S

∑
T :T⊆S b

n−|S|+|T |(1− b)2|S|−|T |Y (S, T )
(6.8)
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Select two destinations di, dj , 1 < i < j. We break up the sum in Equation 6.8 and show that, for every

piece, the sum can only be increased by changing (pv)v so that any user that always chooses di always

chooses dj instead.

Fix S ⊆ U, u ∈ S. Let Si, Sj ⊆ S be such that ps
di

= 1 if and only if s ∈ Si, and ps
dj

= 1 if and only if

s ∈ Sj . Fix T ′ ⊆ S\Si\Sj and some l ≥ |T ′|. Let sdk
be the number of users in S−u that always visit dk and

tdk
be the number of users in T ′ − u that always visit dk. Let f(S, T ′) be the sum of terms in Equation 6.8

that are indexed by S and some T such that |T | = l and T ⊇ T ′. Let m = l − |T ′|.

f(S, T ′) = bn−|S|+l(1− b)2|S|−l
m∑

k=0

(
sdi

k

)(
sdj

m− k

) ∏
e∈∆\{d,di,dj}

(
se

te

)

pu
d

((
sd

td − 1

)(
sdi

k

)(
sdj

m− k

)
+
(
sd

td

)(
sdi

k

)(
sdj

m− k

))
 ∏

e∈∆\{di,dj}
(
se

te

)( sdi
k−1

)( sdj

m−k

)
pu

di
+
∏

e∈∆\{di,dj}
(
se

te

)(sdi
k

)( sdj

m−k−1

)
pu

dj

+
∑

f∈∆\{di,dj}
∏

e∈∆\{f,di,dj}
(
se

te

)(
sf

tf−1

)(sdi
k

)( sdj

m−k

)
pu

f +
∏

e∈∆\{di,dj}
(
se

te

)(sdi
k

)( sdj

m−k

)

−1

= bn−|S|+l(1− b)2|S|−l
∏

e∈∆\{di,dj}

(
se

te

)
pu

d

(
td

sd + 1− td
+ 1
)

m∑
k=0

(
sdi

k

)(
sdj

m− k

)
(sdi

+ 1− k)(sdj
+ 1−m+ k) pu

di
k(sdj

+ 1−m+ k) + pu
dj

(m− k)(sdi
+ 1− k)

+(sdi
+ 1− k)(sdj

+ 1−m+ k)
(∑

f∈∆\{di,dj} p
u
f

tf

sf +1−tf
+ 1
)


= α

m∑
k=0

(
sdi

k

)(
sdj

m− k

)
(sdi

+ 1− k)(sdj
+ 1−m+ k) pu

di
(sdi

+ 1)(sdj
+ 1−m+ k) + pu

dj
(sdj

+ 1)(sdi
+ 1− k)

+(sdi
+ 1− k)(sdj

+ 1−m+ k)β


α, β ≥ 0

This can be viewed as the weighted convolution of binomial coefficients. Unfortunately, there is no

obvious way to simplify the expression any further to find the maximum as we trade off sdi and sdj . There is

a closed-form sum if the coefficient of the binomial product is a fixed-degree polynomial, however. Looking

73



at the coefficient, we can see that it is concave.

ck =
(sdi

+1−k)(sdj
+1−m+k)

pu
di

(sdi
+1)(sdj

+1−m+k)+pu
dj

(sdj
+1)(sdi

+1−k)+(sdi
+1−k)(sdj

+1−m+k)β

d2ck

dk2 = −

0BBB@ 2((sdi + 1)(sdj + 1)(2 + sdi + sdj −m)2pu
di
pu

dj
+

b((sdi
+ 1)(sdj

+ 1 + k −m)3pu
di

+ (sdj
+ 1)(sdi

+ 1− k)3pu
dj

))

1CCCA
((sdj

+1+k−m)(b(sdi
+1−k)+pu

di
(sdi

+1))+(sdj
+1)(sdi

+1−k)pu
dj

)3 ≤ 0

We can use this fact to bound the sum above by replacing ck with a line tangent at some point k0. Call

this approximation f̃ . Holding sdi
+ sdj

constant, this approximation is in fact equal at sdi
= 0 because the

sum has only one term. Then if sdi
= 0 still maximizes the sum, the theorem is proved.

f(S, T ′) ≤
m∑

k=0

(
sdi

k

)(
sdj

m− k

)
(c′k0

(k − k0) + ck0)

=
(
sdi

+ sdj

m

)(
ck0 + c′k0

m · sdi

sdi + sdj

− c′k0
k0

)
= f̃(S, T ′)

The linear approximation will be done around the point k0 = m · sdi/(sdi + sdj ). This results in a simple

form for the resulting approximation, and also the mass of the product of binomial coefficients concentrates

around this point. Set ν = sdi
+ sdj

to examine the tradeoff between sdi
and sdj

.

f̃(S, T ′) =
(
ν

m

)
(cm·sdi

ν

)

=
(
ν

m

)
((ν − sdi

)(ν −m) + ν)((sdi
+ 1)ν −m · sdi

)
pu

di
ν(sdi

+ 1)((ν − sdi
)(ν −m) + ν)+

pu
dj
ν(ν − sdi

+ 1)(ν + sdi
(ν −m))+

β((sdi + 1)ν −m · sdi)((ν − sdi)(ν −m) + ν)



Direct calculation can easily show that d2f̃
d(sdi

)2 ≥ 0. Then it is straightforward to show that f(sdi
= 0) ≥

f(sdj
= 0).
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Therefore, in looking for a maximum we can assume that every user except u either always visits d or

always visits d|∆|. We can use the same idea with d and d|∆| as was used with di and dj and consider

E[Y |XD(u) = d] as we trade off the number of users visiting them. Doing this shows that a maximum is

obtained either when all users but u always visit d or when they always visit d|∆|. This is the worst-case

expected anonymity.

Theorem 9. A maximum of E[Y |XD(u) = d] occurs when either pv
d = 1 for all v 6= u or when pv

d|∆|
= 1

for all v 6= u.

Proof. Assume, following Lemma 7, that (pv)v 6=u is such that pv
d = 1 or pv

d|∆|
= 1 for all v 6= u.

The expected posterior probability can be given in the following variation on Equation 6.8:

E[Y |XD(u) = d] =b(1− b)pu
d + b2 +

∑
S:u∈S

|S|∑
t=0

bn−|S|+t(1− b)2|S|−tY (S, t)

Here Y (S, t) is the expectation of Y conditional on the event that S is the set of users with unobserved

inputs and t is the size of the subset of S with observed outputs.

Take some arbitrary S containing u. Let s = |S|, and let d = |{s ∈ S − u : ps
d = 1}|. Y (S, t) can be

expressed as follows, where k represents the number of observed outputs of users in S with destination d:

Y (S, t) =
t∑

k=0

(
d+ 1
k

)(
s− d− 1
t− k

)[
pu

d

(
d

k−1

)(
s−d−1

t−k

)
+ pu

d

(
d
k

)(
s−d−1

t−k

)
pu

d

(
d

k−1

)(
s−d−1

t−k

)
+ pu

d|∆|

(
d
k

)(
s−d−1
t−k−1

)
+
(

d
k

)(
s−d−1

t−k

)]

=
t∑

k=0

(
d+ 1
k

)(
s− d− 1
t− k

)


pu
d(d+ 1)(s− d− t+ k)

pu
d(d+ 1)(s− d− t+ k) + pu

d|∆|
(d+ 1− k)(s− d)

+(1− pu
d − pu

d|∆|
)(d+ 1− k)(s− d− t+ k)


Because Y (S, t) only depends on s,d, and t, we overload the notation and let Y (s, t, d) = Y (S, t). The makes

the dependence on d explicit. We will show that Y (s, t, d) achieves a maximum over d at either d = 0 or

d = s− 1, and that the maximizing value of d doesn’t depend on s or t. These facts imply the theorem.

As in Theorem 7, we can view the expression for Y (s, t, d) as the weighted convolution of binomial

coefficients:

Y (s, t, d) =
t∑

k=0

(
d+ 1
k

)(
s− d− 1
t− k

)
a(d, k) (6.9)
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To make the analysis of this sum more tractable, we will approximate a(d, k) with a function ã(d, k)

that is linear in k. In the following analysis, we are only concerned with values k such that the binomial

coefficients
(
d+1

k

)
and

(
s−d−1

t−k

)
are nonzero, that is, that satisfy max(0, t− s+ d+ 1) ≤ k ≤ min(d+ 1, t).

Observe that ∂2a
∂k2 6= 0. This is clear from a direct calculation of the second derivative. Therefore it

is of constant sign. We will use this fact and linearly approximate a with both a tangent line and a line

through the endpoints. One of the two approximations will overestimate a(d, k) for all k in range for a fixed

d. Therefore one of the lines will overestimate Y (s, t, d) at that value d.

The first approximation overestimates a when it is concave. Let k0 = t(d+ 1)/s. Also let a′ refer to ∂a
∂k .

The linear approximation ã is the tangent at k0:

ã(d, k) = (k − k0)a′(d, k0) + a(d, k0)

Then there is a closed-form for the sum using this approximation:

Ỹ (s, t, d) =
t∑

k=0

(
d+ 1
k

)(
s− d− 1
t− k

)
ã(d, k)

=
(
s

t

)
a(d, k0)

A calculation of ∂Ỹ
∂d shows that it is nonnegative. Therefore a maximum of Ỹ is found at d = n− 1.

The second approximation overestimates a when it is convex. The endpoints of the range of k are

k0 = max(0, t − s + d + 1) and k1 = min(d + 1, t). Let ã be the line going through the function at these

points:

ã(d, k) =
(a(d, k1)− a(d, k0))(k − k0)

k1 − k0
+ a(d, k0)

Substituting ã for a in the expression for Y (s, t, d) we get:

Ỹ (s, t, d) =
(
s

t

)
a(d, k0) +

(
s− 1
t− 1

)
(d+ 1)(a(d, k1)− a(d, k0))

k1 − k0

There are four possible cases for the values of k1 and k0.

1. t ≤ s− d− 1 ∧ t ≤ d+ 1

In this case k0 = 0, k1 = t, and d ∈ [t−1, s−1−t]. Then it can be shown that Ỹ (s, t, t−1) ≥ Ỹ (s, t, d).

Therefore the maximum of Ỹ is obtained at d = t− 1.
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2. t ≤ s− d− 1 ∧ t ≥ d+ 1

In this case k0 = 0, k1 = d+ 1, and d ∈ [0,min(s− t− 1, t− 1)]. It can be easily shown that ∂Ỹ
∂d ≤ 0.

Therefore the maximum of Ỹ is obtained at d = 0.

3. t ≥ s− d− 1 ∧ t ≤ d+ 1

In this case k0 = t − s + d + 1, k1 = t, and d ∈ [max(s − t − 1, t − 1), s − 1]. It can be shown that

if ∂2Ỹ
∂d2 ≤ 0 then ∂Ỹ

∂d ≥ 0. Therefore the maximum of Ỹ is obtained at d = max(s − t − 1, t − 1) or

d = s− 1.

4. t ≥ s− d− 1 ∧ t ≥ d+ 1

In this case, k0 = t− s+ d+ 1, k1 = d+ 1, and d ∈ [s− t− 1, t− 1]. It is easily shown that ∂2Ỹ
∂d2 ≥ 0.

Therefore the maximum of Ỹ is obtained at d = s− t− 1 or d = t− 1.

Thus we have the following set of points as candidate maxima: {0, s− t− 1, t− 1, s− 1}.

When t ≤ s−t, the intervals of d with the same endpoints are [0, t−1], [t−1, s−1−t], and [s−1−t, s−1].

We just showed that the maximum in these intervals is at 0, t−1, and s−1−t or s−1, respectively. Therefore

Ỹ (s, t, 0) ≥ Ỹ (s, t, t − 1) ≥ Ỹ (s, t, s − 1 − t), and so the maximum over the whole interval is at d = 0 or

d = s− 1.

When t ≥ s − t, the intervals of d with the same endpoints are [0, s − 1 − t], [s − 1 − t, t − 1], and

[t− 1, s− 1]. We showed above that the maximum in these intervals is 0, s− 1− t or t− 1, and t− 1 or s− 1,

respectively. Therefore Ỹ (s, t, 0) ≥ Ỹ (s, t, s−1− t), and so the maximum over the whole interval is at one of

{0, t− 1, s− 1}. Examination of the expressions for Ỹ at these values shows that if Ỹ (s, t, 0) ≤ Ỹ (s, t, t− 1),

then Ỹ (s, t, t− 1) ≤ Ỹ (s, t, s− 1). Therefore the maximum is always found at d = 0 or d = s− 1.

The sum in Equation 6.9 for Y (s, t, d) has only one term at d = 0 and d = s − 1, and therefore

Ỹ (s, t, d) = Y (s, t, d) at these points. Ỹ is an overestimate of Y , and thus Y (s, t, d) is also a maximum at

d = 0 or d = s− 1.

6.3.2 Asymptotic Anonymity

The exact value of the maximum of E[Y |XD(u) = d] is not simple to express, but we can give a straight-

forward approximation for large user populations n. We focus on large n, because anonymity networks, and

onion routing in particular, are understood to have the best chance at providing anonymity when they have

many users. Furthermore, Tor is currently used by an estimated 200,000 people.
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Theorem 10. When pv
d|∆|

= 1, for all v 6= u,

E[Y |XD(u) = d] = b+ b(1− b)pu
d + (1− b)2pu

d

(
1− b

1− (1− pu
d|∆|

)b
+O

(√
log n
n

))
. (6.10)

Proof. Let f(n) represent the conditional expectation of the posterior probability in the case that u’s input

and output are not observed. Observe that in the case that u’s output is observed Y = 1, because u is the

only user that visits d. Thus E[Y |XD(u) = d] = b+ b(1− b)pu
d + (1− b)2f(n).

When u’s input and output are unobserved, the value of Y depends on the number of other users with

unobserved inputs, s, and the number of those s users with observed outputs, t. We can then express f as:

f(n) = E[Y |XD(u) = d ∧XI(u) = 0 ∧XO(u) = 0]

=
n−1∑
s=0

(1− b)sbn−1−s

(
n− 1
s

) s∑
t=0

bt(1− b)s−t

(
s

t

)
pu

d

(
s
t

)
pu

d|∆|

(
s

t−1

)
+
(
s
t

)
=

n−1∑
s=0

(1− b)sbn−1−s

(
n− 1
s

) s∑
t=0

bt(1− b)s−t

(
s

t

)
pu

d(s− t+ 1)
pu

d|∆|
t+ s− t+ 1

Consider the inside sum. It is equal to the expected value of g0(s, T ) = pu
d (s−T+1)

pu
d|∆|

T+s−T+1 , where T ∼

Bin(s, b). As s gets large, Chernoff bounds on the tails show that they contribute little to the expectation.

Let ε0(s) be the terms of the sum for which t is more than
√
s log s from its expectation, µ0 = bs:

ε0(s) =
∑

t:|t−µ0|>
√

s log s

bt(1− b)s−t

(
s

t

)
g0(s, t)

≤
∑

t:|t−µ0|>
√

s log s

bt(1− b)s−t

(
s

t

)
because g0 ≤ 1

≤ 2e−c0 log s/b for any c0 < 1/2 and large s

by Chernoff’s inequality

= s−c1 for some c1 > 1/2

Now we look at how much the values of g0 inside the tail differ from the value of g0 at its expectation.

Let ε1(s, t) = g0(s, t)− g0(s, µ0) be this difference. It can be shown through direct calculation that ∂ε1
∂t ≤ 0
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and ∂2ε1
∂t2 ≤ 0. Therefore, for values of t that are within

√
s log s of µ0,

|ε1(s, t)| ≤
∣∣∣ε1 (s, µ0 +

√
s log s

)∣∣∣
=

pu
dp

u
d|∆|

(1 + 1/s)(
1−

(
1− pu

d|∆|

)
b+ 1/s

)(√
s

log s

(
1−

(
1− pu

d|∆|

)
b
)
− (1− p) + (s log s)−1/2

)
= O

(√
log s
s

)

Looking now at the outside sum we have

f(n) =
n−1∑
s=0

(1− b)sbn−1−s

(
n− 1
s

) pu
d(s(1− b) + 1)

s
(
1−

(
1− pu

d|∆|

)
b
)

+ 1
+O(s−c1) +O

(√
log s
s

) .
This is the expectation of a function of a binomially distributed random variable with mean µ1 =

(1− b)(n− 1). Let ε2(n) be the parts of this sum that are greater than k(n− 1) from µ1, k < min(b, 1− b):

ε2(n) ≤
∑

s:|s−µ1|>k(n−1)

(1− b)sbn−1−s

(
n− 1
s

)
because inner sum is at most 1

≤ 2e−c2k2(n−1)/(1−b) for some c2 > 0 by Chernoff’s inequality

= O(e−c3n) c3 = c2k
2/(1− b)

Let g1 be the non-vanishing inner term of f(n):

g1(s) =
pu

d(s(1− b) + 1)

s
(
1−

(
1− pu

d|∆|

)
b
)

+ 1
.

As s grows it approaches a limit of

g∗1 =
pu

d(1− b)

1−
(
1− pu

d|∆|

)
b
.

Let ε3(s) = g1(s)− g∗1 be the difference from this limit. Direct calculation shows that dε3
ds ≤ 0 and d2ε3

ds2 ≥ 0.
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Therefore, for values of s within k(n− 1) of µ1,

|ε3(s)| ≤ ε3(µ1 − k(n− 1))

= bpu
dp

u
d|∆|

/
[(

1−
(
1− pu

d|∆|

)
b
)(

(n− 1)(1− b− k)
(
1−

(
1− pu

d|∆|

)
b
)

+ 1
)]

= O(1/n)

Now we can show the desired asymptotic expression for the entire sum:

f(n) = O(e−c3n) +
µ1+k(n−1)∑

s=µ1−k(n−1)

(1− b)sbn−1−s

(
n− 1
s

)[
g∗1 + ε3(s) +O(s−c1) +O

(√
log s
s

)]

= g∗1 +O(e−c3n) +O(1/n) +O(n−c1) +O

(√
log n
n

)

=
pu

d(1− b)

1−
(
1− pu

d|∆|

)
b

+O

(√
log n
n

)

Theorem 11. When pv
d = 1, for all v 6= u,

E[Y |XD(u) = d] = b2 + b(1− b)pu
d + (1− b)

pu
d

1− (1− pu
d)b

+O

(√
log n
n

)
. (6.11)

Proof. The proof of this theorem is similar to that of Theorem 10.

Let f(n) represent the conditional expectation of the posterior probability in the case that u’s input is

not observed. Thus E[Y |XD(u) = d] = b2 + b(1− b)pu
d + (1− b)f(n).

We can express f as

f(n) = E[Y |XD(u) = d ∧XI(u) = 0]

=
n−1∑
s=0

(1− b)sbn−1−s

(
n− 1
s

) s+1∑
t=0

bt(1− b)s+1−t

(
s+ 1
t

)
pu

d

(
s
t

)
+ pu

d

(
s

t−1

)(
s
t

)
+ pu

d

(
s

t−1

)
=

n−1∑
s=0

(1− b)sbn−1−s

(
n− 1
s

) s+1∑
t=0

bt(1− b)s+1−t

(
s+ 1
t

)
pu

d(s+ 1)
s− (1− pu

d)t+ 1
.

As s gets large, Chernoff bounds on the tails of the inner sum show that they contribute little to the

expectation. Let g0(s, t) = pu
d (s+1)

s−(1−pu
d )t+1 . Let ε0(s) be the terms of the inner sum for which t is more than
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√
s log s from µ0 = b(s+ 1):

ε0(s) =
∑

t:|t−µ0|>
√

(s+1) log(s+1)

bt(1− b)s+1−t

(
s+ 1
t

)
g0(s, t)

≤
∑

t:|t−µ0|>
√

(s+1) log(s+1)

bt(1− b)s+1−t

(
s+ 1
t

)
because g0 ≤ 1

≤ 2e−c0 log(s+1)/b for any c0 < 1/2 and large enough s

by Chernoff’s inequality

= (s+ 1)−c1 c1 > 1/2

Let ε1(s, t) = g0(s, t)− g0(s, µ0). It can be shown through direct calculation that ∂ε1
∂t ≥ 0 and ∂2ε1

∂t2 ≥ 0.

Therefore, for values of t that are within
√
s log s of µ0,

|ε1(s, t)| ≤ ε1

(
s, µ0 +

√
(s+ 1) log(s+ 1)

)
=

pu
d(1− pu

d)

(1− (1− pu
d)b)

(√
s+1

log(s+1) (1− (1− pu
d)b)− (1− p)

)
= O

(√
log s
s

)

Looking now at the outside sum we have

f(n) =
n−1∑
s=0

(1− b)sbn−1−s

(
n− 1
s

)[
pu

d

1− (1− pu
d)b

+O(s−c1) +O

(√
log s
s

)]
.

Let ε2(n) be the parts of this sum that are greater than k(n− 1) from µ1 = (n− 1)(1− b), k < min(b, 1− b):

ε2(n) ≤
∑

s:|s−µ1|>k(n−1)

(1− b)sbn−1−s

(
n− 1
s

)
because inner sum is at most 1

≤ 2e−c2k2(n−1)/(1−b) for some c2 > 0 by Chernoff’s inequality

= O(e−c3n) c3 = c2k
2/(1− b)
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Now we can show the desired asymptotic expression for the entire sum:

f(n) = O(e−c3n) +
(1−b+k)(n−1)∑

s=(1−b−k)(n−1)

(1− b)sbn−1−s

(
n− 1
s

)[
pu

d

1− (1− pu
d)b

+O(s−c1) +O

(√
log s
s

)]

=
pu

d

1− (1− pu
d)b

+O(e−c3n) +O(n−c1) +O

(√
log n
n

)

=
pu

d

1− (1− pu
d)b

+O

(√
log n
n

)

To determine which distribution is the worst case for large n, simply examine the difference between

the limits of the expressions in Theorems 10 and 11. It is clear from this that the worst-case distribution is

pv
d = 1,∀v 6= u, only when pu

d|∆|
≥ (1−b)(1−pu

d )2

pu
d (1+b)−b . This happens when pu

d ≥ 1/2 and pu
d|∆|

is near 1−pu
d . For pu

d|∆|

small, which we would expect as it must be less than 1/|∆|, the worst-case distribution is pv
d|∆|

= 1,∀v 6= u.

In this case the expected assigned probability is about b+ (1− b)pu
d . This can be viewed as decreasing the

“innocence” of u from 1− pu
d to (1− b)(1− pu

d). It is also equal to the lower bound on anonymity in onion

routing when the adversary controls a fraction
√
b of the network.

6.4 Typical Distributions

It is unlikely that users of onion routing will ever find themselves in the worst-case situation. The necessary

distributions just do not resemble what we expect user behavior to be like in any realistic use of onion routing.

Our worst-case analysis may therefore be overly pessimistic. To get some insight into the anonymity that a

typical user of onion routing can expect, we consider a more realistic set of users’ destination distributions

in which each user selects a destination from a common Zipfian distribution. This model of user behavior is

used by Shmatikov and Wang [76] to analyze relationship anonymity in mix networks and is motivated by

observations that the popularity of sites on the web follows a Zipfian distribution. Our results show that a

user’s expected assigned probability is close to b2 + (1− b2)pu
d for large populations, which is the best that

can be expected when there is a b2 probability of total compromise.

Let each user select his destination from a common Zipfian distribution p: pdi
= 1/(µis), where s > 0
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and µ =
∑|∆|

i=1 1/is. It turns out that the exact form of the distribution doesn’t matter as much as the fact

that it is common among users.

Theorem 12. When pv = pw, for all v, w ∈ U ,

E[Y |XD(u) = d] = b2 + (1− b2)pu
d +O(1/n)

Proof. Let p be the common destination distribution. The expected assigned probability can be expressed

as

E[Y |XD(u) = d] = b2 + b(1− b)pu
d + (1− b)

n∑
s=1

bn−s(1− b)s−1

(
n− 1
s− 1

)
s∑

t=0

(1− b)s−tbt

(s− 1
t− 1

) ∑
∆∈Dt:∆1=d

t∏
i=2

p∆i
ψ(s,∆) +

(
s− 1
t

) ∑
∆∈Dt

t∏
i=1

p∆i
ψ(s,∆)

 .

Here, s represents the size of the set of users with unobserved inputs, t represents the size of the subset

of those s users that also have observed outputs, ∆ represents the t observed destinations, and ψ(s,∆) is

the posterior probability.

Let ∆d = |{i : ∆i = d}|. Let xn denote the falling power x(x−1) . . . (x−n+1). The posterior probability

ψ can be expressed simply as

ψ(s,∆) =
∆d(s− 1)t−1 + pd(s− 1)t

st

= (∆d + pd(s− t))/s

The sum
∑

∆∈Dt:∆1=d

∏t
i=2 p∆i

ψ(s,∆) calculates the expectation for ψ conditioned on s, t, and the

destination of u being observed. The expression for ψ shows that this depends linearly on the expected value

of ∆d. This expectation is simply 1 + pd(t− 1), because one destination in this case is always d, and each of

the other t− 1 is d with probability pd. The sum
∑

∆∈Dt

∏t
i=1 p∆iψ(s,∆) similarly depends linearly on the

expectation of ∆d, which in this case is pdt.
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With this observation, it is a straightforward calculation to show that the inner sum over t is simply:

b
pd(s− 1) + 1

s
+ (1− b)pd

We insert this into the larger sum and simplify:

E[Y |XD(u) = d] = b2 + b(1− b)pu
d + (1− b)

n∑
s=1

bn−s(1− b)s−1

(
n− 1
s− 1

)[
b
pd(s− 1) + 1

s
+ (1− b)pd

]
= b2 + b(1− b)pu

d + (1− b)
[
b

(
pd +

(1− pd)(1− (1− b)n+1)
b(n+ 1)

)
+ (1− b)pd

]
= b2 + (1− b2)pu

d +O(1/n)
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Chapter 7

Improving Onion Routing Through

Trust

7.1 Introduction

When designing or analyzing anonymous communication networks, researchers generally assume that all

nodes routing traffic are equally trusted. But this typically is incorrect. There is much information avail-

able to those selecting routes that can affect trust: information about who runs some components of the

infrastructure, what computing platforms are used, how long and how reliably some components have been

running, etc. And if anonymous-communication protocols were to begin taking trust into account, then even

more extensive and diverse sources of trust information might be available.

We consider using trust information to improve the relationship anonymity of onion routing by choosing

circuits that are less likely to contain adversarial routers. We first set out a simple model that should facilitate

reasoning about using trust in routing. We define trust simply to be the probability that an attempt by the

adversary to control a node fails. This captures both the uncertainty in the adversary’s ability to subvert

a given router and the uncertainty in a user’s knowledge about a giver router. Fully-trusted nodes, such as

those run by the user, can be modeled as having a trust value of one, and untrusted nodes, such as those

run by the adversary, can be modeled as having a trust value of zero.

The adversary cannot be expected to attempt to compromise every router on a large network such as the

Internet. Therefore we consider an adversary with a bound on the number of routers he can attack. Also,
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the adversary can be expected to know or learn something about how users choose routes, and therefore

the adversary is given this information before deciding which routers to attempt to compromise. This sets

up a game between the user and adversary, in which the user chooses a distribution over circuits and the

adversary decides which routers to attack to minimize the user’s anonymity.

The problem we then focus on is to maximize over distributions on circuits the minimum anonymity

over the possible routers the adversary can attack. The analyses in Chapters 5 and 6 show that the first

and last routers of the users’ circuits determine the users’ anonymity, and therefore we can focus just on

how they are chosen. We look at the problem of minimizing the chance that the adversary controls the

first and last routers. This is primarily done for mathematical convenience, as opposed to optimizing the

more complicated probabilistic metric studied in Chapter 6. However, while this approach does not always

optimize anonymity, we can show that for the case in which users choose destinations identically, examined

in Section 6.4, it obtains anonymity that is within a small additive error of optimal.

The essential problem for the user is to balance between choosing routers that are hard for the adversary

to compromise and choosing from a large number of routers to prevent the adversary from being able to

focus his attacks. We first analyze the general case of this problem, in which there is an arbitrary number of

trust levels. We observe that a straightforward algorithm to calculate an optimal distribution runs in time

exponential in the size of the adversary. We consider a natural simplification of looking at distributions on

individual nodes rather than pairs of nodes and considering the product distribution as an approximation of

the joint distribution on pairs. We find two optimal distributions over single nodes, but we then show that

optimal distributions on pairs are arbitrarily better than products of those optimal distributions on single

nodes.

In practice, it is unlikely that one can realistically assign many different levels of trust, and so we next

consider restricting to the case where there are only two trust levels for nodes in the network. We describe

three distributions and prove that in every case one of them must be optimal. Lastly, we discuss determining

in practice when one of the three distributions is optimal based on the values of the system variables: trust

values, size of the trusted and untrusted sets, and the size of the adversary.

In addition to the difficulty of accurately assigning trust levels, we acknowledge several other weaknesses

in our modeling and analysis of trust. Our model does not explicitly consider users with different trust levels.

We expect that in practice users have different opinions about which routers are trustworthy, and even who

the adversary is. Our model can be applied by each user individually, but the recommendations for router
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selection are then likely to be different, and this opens the opportunity for the adversary to infer the source

of a circuit by its routers. Also, the trust information reflected in circuit selection may itself be sensitive.

For example, users may wish to run a set of honest nodes secretly so that they aren’t noticed and attacked

by the adversary. We do not consider to what extent the adversary can learn this information.

Despite these weaknesses, we intend that our results have some useful application in the practice of

anonymous communication. Indeed, the success of onion routing in practice is a motivation for studying

it and trying to improve it. Therefore, it is useful to consider how our modeling and analysis translates

to Tor [83], the widely-deployed and used public onion-routing network. Because Tor nodes are run by

volunteers, it is easy for the adversary to simply set up routers and try to get them selected as the first and

last positions on users’ circuits. When successful, such an attack completely deanonymizes a user. In our

model, these routers would be assigned a trust level of zero, and our objective function is exactly to avoid

choosing such routers as the first and last routers on a circuit. Thus our recommendations for using trust

may seem to translate well into avoiding a very plausible attack on a deployed system.

The Tor system also gives us a suggestion for a potential improvement to our recommendations for using

trust to improve anonymity. One way that Tor reduces the threat of linking destinations to sources is by

the use of entry guard nodes, a small number of routers that a single client uses persistently to connect to

the Tor network. The selection of the set of guard nodes happens infrequentely, and circuits are built by

selecting the first router on a circuit randomly from the set of entry guards. If a client has chosen guard

nodes that are not compromised, it can never be linked to its destination by a pair of compromised first/last

routers. Our analysis throughout the thesis is just with respect to one round of communication, while guard

nodes are an attempt to deal with the problem of making connections over time. As part of a larger effort

to understand and deal with the problems that arise with connections over time, it seems like the selection

of entry guards could benefit from using trust.

7.2 Trust model

A user wants to use a network of onion routers for anonymous communication. He trusts some onion routers

more than others in the sense that he trusts that they are less likely to attempt to compromise his anonymity.

How should he take this trust into account when he selects his paths?
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7.2.1 The model

To make this question concrete, we need to make the notions of trust, anonymity, and an adversary precise.

We use the network and user models described in Chapter 2 and the onion-routing protocol described in

Chapter 4.

We modify the adversary that is trying to compromise the user’s anonymity. The adversary selects k

routers in R that he will attempt to compromise and use for deanonymization. If a router is not selected, it

cannot be used by the adversary in an attack.

When an onion router i is selected, the adversary fails to compromise it with probability ti. This

represents the user’s trust in the router. It will be convenient to define ci = 1− ti, the probability that the

adversary does successfully compromise router i when he attempts to do so.

A user selects a path for a circuit from some probability distribution. If the adversary has selected and

successfully compromised the first and last nodes on the chosen path, he can correlate timing patterns between

the two, and the user has no anonymity. We seek to improve anonymity by minimizing the probability of this

event. To calculate this probability, we need only look at the user’s distribution over entry-and-exit-node

pairs.

We would like to find the probability distribution over pairs of routers that minimizes the maximum

chance that the adversary can obtain of selecting both members of the pair and successfully compromising

them. More precisely, we want to find p ∈ ∆n(n−1)/2, that is, a probability distribution p over pairs in R,

that minimizes

c(p) = max
K⊆R:|K|=k

∑
{r,s}∈(K

2 )
p(r, s)crcs.

For a set S and j ≤ |S|, we use
(
S
j

)
to represent the collection of all subsets of S of size j. Also, for

convenience, we write p({r, s}) as p(r, s).

This problem complements our results in Chapter 6. There, we analyze anonymity under uniformly-

random path selection. Here, we consider improving anonymity by optimizing our path-selection distribution.

7.2.2 The adversary

The adversary’s size represents a limit of his resources. While caution might suggest designing against an

adversary that can compromise the entire network as a worst case, the optimal strategy in this case would be

to select the two most-trusted routers. This strategy fails our intuition for good strategies because a realistic
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adversary does have limited resources, but in such a strategy is not hindered much by this as he can focus

all his efforts on the trusted routers. Also, especially for large diverse networks, it is typically unrealistic to

assume that the adversary has the capacity to attack the entire network. System and protocol designs have

been shown to provide a guarantee against various types of failure or compromise as long as no more than

some fixed threshold of nodes is compromised at any time, for example, Byzantine fault-tolerance.

The particular partial-network adversary from which our work derives is the roving adversary of Ostrovsky

and Yung [65]. They introduced and were motivated by the concept of proactive security, in which an

adversary could compromise arbitrary optimal sets of nodes given his current information. The roving

adversary can potentially compromise every node in the network, but it can compromise no more than a

fixed maximum number of nodes at any one time. Proactive security is concerned with properties that

are resilient to such attacks. This can be useful for secret sharing and other distributed applications. The

adversary model was applied to onion routing by Syverson et al. [80].

We alter the basic roving adversary model in two ways. First, to incorporate trust we add the idea

that an adversary does not always succeed when attempting to compromise a node. Second, the adversary

selects only one set to attack—there is only one move by the adversary. It may be useful to bring multiple

rounds back in for future work. Though it is unlikely that the adversary could target the first and routers

of an individual circuit (given the short duration of typical onion-routing circuits), roving could allow the

adversary to learn various communication and trust properties of the network and its users.

The adversary is assumed to have prior knowledge of the distribution that is used to pick a route, and

he uses this knowledge to pick the set of nodes that he will attempt to compromise. It is realistic in many

settings to assume the adversary has such knowledge. For example, the probability distributions may be

set in some software or common system parameters given to a wide group in which there is at least one

compromised member. The adversary may also be able to infer trust information from outside knowledge

about the user.

7.2.3 Trust

Trust is captured in our model with the probability ti that the adversary’s attempt to compromise a node

fails. This notion accommodates several different means by which users in the real world might trust an

onion router.

The probability might represent the user’s estimate of how likely it is that the operator of a given node
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is trying to provide, rather than break, anonymity. It might represent the user’s faith in the security of a

given node against outside attack.

To arrive at such conclusions, the users must rely on some outside knowledge. This might include knowl-

edge of the organizations or individuals who run nodes, both knowledge of their technical competence and

the likelihood of themselves harboring ill intent. It might also include knowledge of computing platforms on

which a network node is running, geopolitical information about the node, knowledge about the hosting facil-

ity where a node might be housed or the service provider(s) for its access to the underlying communications

network, etc.

Admittedly, it may not be the case that one can realistically assign specific probabilities to each node

in the network separately. It is for this reason that we consider in sections 7.5 and 7.6 restriction to just

two trust levels. Even if one cannot be certain of the probability of compromise to assign at one level or

another, one may be in a position to know the divergence of those levels. This is particularly the case if

one is considering nodes run by, for example, security or law-enforcement agencies of friendly governments

or their contractors vs. the rest of the nodes on the network. Alternatively, one can imagine sets of nodes

run by reputable human rights groups, NGOs, or human rights agencies of friendly governments.

Unlike many other areas, network performance or reliability reputation are not good bases for trust for

anonymous communication. That is because an adversary that is focused on learning as much as possible

about communication patterns has incentive to run the highest performing, most reliable nodes in the

network. Thus, many of the usual metrics do not apply.

7.2.4 Anonymity

We use trust information to improve anonymity by minimizing the probability that the adversary controls

the first and last routers in a user’s circuit. If the adversary controls these routers, then he knows the

destination of the user with certainty. Therefore it makes sense to make this as unlikely as possible.

Ideally, however, we would use trust information to directly maximize the metric for relationship anonymity

used in Chapter 6. And using this metric may indeed lead to a different optimal algorithm for selecting cir-

cuits. For example, suppose that every user except u always visits a destination that u never visits. In this

case, u should just minimize the chance that the adversary controls his last router, because if the adversary

observes the destination of u, then he knows that u must be the source, and if he does not observe u’s

destination, then he cannot improve his prior knowledge. Minimizing the chance that the adversary con-
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trols just the last router is in general incompatible with minimizing the chance that the adversary controls

the first and last routers. For instance, suppose that the routers only have two trust levels, t1 ≥ t2, with

U = {r ∈ R : tr = t1} and V = {r ∈ R : tr = t2}. In Section 7.5, we show that, in this case, for large enough

|V | the optimal strategy to avoid choosing compromised first and last routers is to choose them either both

from U or both from V but never one from U and one from V . With large enough |V | this strategy makes

any given v ∈ V arbitrarily more likely to be chosen as the last router than any u ∈ U . However, if we apply

Theorem 14 to this case, then we can see that for large enough n the unique optimum to avoid choosing a

compromised last router is to choose u ∈ U with probability proportional to 1/c1 and v ∈ V with probability

proportional to 1/c2. This is therefore incompatible with the optimal distribution to avoid compromised

pairs.

However, our intuition to minimize the chance of choosing compromised first and last routers may be

justified in more likely scenarios of user behavior. In Section 6.4, we analyzed the case in which all users

share a common destination distribution and discovered that the expected anonymity is dominated by the

probability that the first and last routers are compromised. In fact, this observation still holds in our new

model with trust. Let the common probability of choosing destination d be pd. Suppose the adversary

attemptes to compromise some subset of routers K. Let users choose pairs of routers to be their first and

last routers according to some distribution p. Let the following be the probabilities of the possible outcomes

of choosing a circuit:

p11 : probability that the first and last routers are compromised

p01 : probability that the first router is uncompromised and the last router is compromised

p10 : probability that the first first router is compromised and the last router is uncompromised

p00 : probability that the first and last routers are uncompromised.

The following theorem generalizes Theorem 12.

Theorem 13. E[Y |XD(u) = d] = p11 + pd(1− p11) + (1−pd)(p01)(1−(p11+p10)
n)

(p01+p00)n
.

Proof. The proof is similar to the proof of Theorem 12. We can express the expected assigned probability
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as

E[Y |XD(u) = d] = p11 + p10p
u
d +

n∑
s=1

(
n− 1
s− 1

)
(p11 + p10)n−s·

s∑
t=0

(p01)t(p00)s−t

(s− 1
t− 1

) ∑
∆∈Dt:∆1=d

t∏
i=2

p∆i
ψ(s,∆) +

(
s− 1
t

) ∑
∆∈Dt

t∏
i=1

p∆i
ψ(s,∆)

 ,

where, again, s represents the size of the set of users with unobserved inputs, t represents the size of the

subset of those s users that also have observed outputs, ∆ represents the t observed destinations, and ψ(s,∆)

is the posterior probability that the destination of u is d.

As before,

ψ(s,∆) = (∆d + pd(s− t))/s. (7.1)

Also as before, the two sums over ∆ ∈ Dt are expectations of ψ conditioned on s and t, which we can

calculate using Equation 7.1 and the fact that all users choose d with probability pd:

∑
∆∈Dt:∆1=d

t∏
i=2

p∆iψ(s,∆) = (1 + pd(s− 1))/s (7.2)

and ∑
∆∈Dt

t∏
i=1

p∆i
ψ(s,∆) = pd (7.3)

With this observation, we can apply the binomial theorem to show that the inner sum over t is

(p01 + p00)s−1 [(1− pd)(p01)/s+ (pd)(p01 + p00)] .
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We insert this into the larger sum and simplify:

E[Y |XD(u) = d] =
p11 + p10p

u
d +

n∑
s=1

(
n− 1
s− 1

)
·

(p11 + p10)n−s(p01 + p00)s−1 [(1− pd)(p01)/s+ (pd)(p01 + p00)]

(7.4)

=
p11 + p10p

u
d + (1− pd)(p01)

(p11 + p10 + p01 + p00)n − (p11 + p10)n

(p01 + p00)n
+

(pd)(p01 + p00)(p11 + p10 + p01 + p00)n−1

(7.5)

= p11 + pd(1− p11) + (1− pd)(p01)
1− (p11 + p10)n

(p01 + p00)n
. (7.6)

Equation 7.5 follows by the binomial theorem. Equation 7.6 is obtained by observing that

p11 + p10 + p01 + p00 = 1.

Given some distribution over pairs of routers, we can view the adversary as choosing K to maximize

E[Y |XD(u) = d]. Theorem 13 shows that, when users use a common destination distribution, the resulting

anonymity is close to the approximation that only considers whether or not the first and last routers are

compromised: ∣∣∣∣ max
K⊆R:|K|=k

E[Y |XD(u) = d]− max
K⊆R:|K|=k

p11 + pd(1− p11)
∣∣∣∣ ≤ 1/n.

Therefore we can approximately minimize the maximum of E[Y |XD(u) = d] by minimizing the maximum of

p11 + pd(1− p11), and this yields an additive error of at most 1/n. The probability p11 is greater than zero,

and therefore the distribution that achieves the minimax of p11 achieves the minimax of p11 + pd(1 − p11).

Finding the minimax of p11 is exactly the objective function we set out in our formulation of the trust

problem.

The model does not include some other methods the adversary can use, for example congestion attacks [63,

28], denial-of-service attacks [8], latency [43], or destination fingerprinting [42, 51]. The attacks on which

we focus are conceptually much simpler than these others, but more importantly, as noted in Section 7.1,

none of these other attacks succeeds with as much certainty using as few resources as does this one. Note

that such entry-exit correlation attacks could also be done by the links from source to the entry onion

router on the entry side and links from the exit onion router to the destination on the exit side (or by the

destination itself). For example, an autonomous system or internet exchange on these links could participate

in a correlation attack [30, 64]. We focus, however, on just the attack as it can be performed by network
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nodes. Besides simplifying analysis, the ease with which nodes can be added to the network makes this a

reasonable restriction.

Using this model, the user’s selection of the pair constituting the first and last onion routers on his

path is the only relevant factor in his anonymity. The user may make this selection using any probability

distribution p over pairs of routers.

7.2.5 Objective function

We set as our objective function to find the distribution on pairs of routers that minimizes the probability

of circuit compromise over all possible sets that the adversary could choose:

min
p∈∆n(n−1)/2

max
K⊆R:|K|=k

∑
{r,s}∈(K

2 )
p(r, s)crcs.

This provides a worst-case guarantee, and if the user has a distribution with a low worst-case value, he is

guaranteed anonymity with high probability regardless of the adversary’s actions. As a worst-case criterion,

however, it may direct the user to protect against adversarial actions that are unlikely. Indeed, while the

adversary’s goal is to find the subset K ⊆ R that maximizes his chance of compromise, it is easy to see that

this problem in general is equivalent to the NP-hard problem CLIQUE. Therefore the adversary may fail in

many cases to actually select the worst-case set.

7.3 Strategies for the general case

Given arbitrary trust values t1, . . . , tn, we would like to find a polynomial-time algorithm that takes as input

the trust values and outputs an optimal or near-optimal distribution p∗.

7.3.1 Exact algorithm

There is a straightforward formulation of this problem as a linear program. Let the set of variables be pij ,

i, j ∈ R. The following constraints ensure that p is a probability distribution:

∑
{r,s}∈(R

2) prs = 1

0 ≤ prs ≤ 1 for all {r, s} ∈
(
R

2

)
.
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We want to find the distribution that satisfies the minimax criterion

min
p

max
K∈(R

k)

∑
{r,s}∈(K

2 )
crcsp(r, s).

For any fixed K, the sum

c(p,K) =
∑

{r,s}∈(K
2 )
p(r, s)crcs

is linear in p. Therefore the minimax criterion minimizes the maximum of linear functions. We can thus

transform it into a simple minimization problem by adding a slack variable t and some linear constraints.

We force t to be greater than the maximum of our linear functions:

t− c(p,K) ≥ 0 for all K ∈
(
R

k

)

Then the objective function is simply min t. Unfortunately, this linear program is of exponential size(
O(nk)

)
because of the constraints for each subset.

7.3.2 Choosing a simple distribution

A straightforward simplification is to consider restricting the output to be a distribution in which the first

and last routers are chosen independently and identically at random and then minimizing the probability

that they are individually compromised.

Let pR be a distribution on R. We consider the distribution p∗R that minimizes the probability that an

adversary chooses and successfully compromises a single router:

c(pR) = max
K∈(R

k)

∑
r∈K

pR(r)cr

p∗R = argmin
pR

c(pR)

The following theorem states that it is always optimal either to put all the probability on the most trusted

router or to set the probabilities such that the values cipR(ri) are equal for all ri ∈ R.
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Theorem 14. Let cµ = minj cj. Let p1
R put all the probability on the most trusted router:

p1
R(r) =

 1 if r = rµ

0 otherwise

Let p2
R set probability inversely proportional to ci:

p2
R(ri) = α/ci

where α = (
∑

i 1/ci)
−1.

Then

c(p∗R) =

 c(p1
R) if cµ ≤ kα

c(p2
R) otherwise

Proof. Suppose pR is an optimal distribution. Sort the routers so that c1pR(r1) ≥ c2pR(r2) ≥ . . . ≥

cnpR(rn). The set K that maximizes
∑

r∈K crpR(r) is then {r1, r2, . . . , rk}, and the value of pR is c(pR) =∑k
i=1 cipR(ri).

Let l be the largest index such that clpR(rl) = ckpR(rk).

If l < n, we could decrease cipR(ri), k ≤ i ≤ l by moving εck/ci probability from ri to rl+1. This

decreases ciri by ckε and increases cl+1pR(rl+1) by εcl+1ck/ci. For small enough ε we maintain that if

i < j then cipR(ri) ≥ cjpR(rj), and therefore we reduce the value c(pR). Therefore pR cannot be optimal,

contradicting our assumption.

Thus it must be that l = n. Let m be the smallest index such that cmpR(rm) = ckpR(rk). Assume that

pR is an optimal distribution that has the smallest m possible.

If m = 1, we are in the case that cipR(ri) = cjpR(rj) for 1 ≤ i, j ≤ n. This is the distribution p2
R.

Suppose m > 1. If pR(rm) = 0, then c(pR) =
∑m−1

i=1 cipR(ri). Let cµ = mini ci. Because all of the

probability is contained in a set that the adversary can completely select, we do not increase c(pR) by
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moving all the probability to rµ:

c(pR) =
m−1∑
i=1

cipR(ri)

≥
m−1∑
i=1

cµpR(ri)

= cµ.

cµ is equal to c(p1
R).

Now consider the case that pR(rm) > 0. Recall that cipR(ri) = cjpR(rj) for all pairs ri,rj , in the set

S = {ri,m ≤ i ≤ n}. Consider moving probability between rm−1 and S in a way that maintains the equality

of cipR(ri) for ri ∈ S. This can be achieved by setting the probability of rm−1 to

p′R(rm−1, t) = pR(rm−1) + t

and the probability of ri ∈ S to

p′R(ri, t) = pR(ri)−
t

ci(
∑

rj∈S 1/cj)
.

For small enough values of t, this preserves the property that if i > j then cip′R(ri, t) ≤ cjp
′
R(rj , t). Therefore

c(p′R) =
∑k

i=1 cip
′
R(ri, t). The fact that p′R is linear in t makes c(p′R) also linear in t for small enough values

of t.

If Dtc(p′R)|t=0 ≥ 0, then for t < 0 large enough c(p′R) doesn’t increase. This corresponds to mov-

ing probability from rm−1 to S, and the smallest t that maintains the ordering by cip
′
R(ri) results in

cm−1p
′
R(rm−1) = cmp

′
R(rm). This contradicts the assumption about the minimality of the index m.

If Dtc(p′R)|t=0 ≤ 0, then for t > 0 small enough c(p′R) doesn’t increase. This corresponds to moving

probability from S to rm−1. In fact, no positive value of t increases c(p′R). This is because setting t > 0

decreases the probability of all ri, i > k, and only increases the probability of rm−1,m ≤ k, and thus

preserves the fact that c(p′R) =
∑k

i=1 cip
′
R(ri, t). Therefore we can increase t until cip′R(ri) = 0 for all ri ∈ S.

This puts us in the case where p′R(rm) = 0, which we have already shown implies that c(p′R) ≥ c(p1
R).

Thus we have shown that either p1
R or p2

R is an optimal distribution. c(p1
R) = c1 and c(p2

R) = kα.

Therefore, if c1 ≤ kα, c(p∗R) = c(p1
R), and otherwise c(p∗R) = c(p2

R).
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We might hope that the product distributions p1
R× p1

R and p2
R× p2

R over R×R are good approximations

to an optimal distribution p∗. However, this is not the case, and we can find inputs such that c(pi
R)/c(p∗),

i ∈ {1, 2}, is arbitrarily high. In fact, we can show this for slightly improved distributions p1 and p2 over(
R
2

)
.

Notice that pi
R × pi

R, i ∈ {1, 2}, puts positive probability on the user choosing the same router twice.

The problem as formulated in Section 7.2 allows distributions only over distinct pairs of routers (that is,

elements of
(
R
2

)
). This doesn’t affect the optimum, however. There is always an optimal distribution that

puts zero probability on (r, r) ∈ R×R. Let p be a distribution on R×R. Then let

p′(r, s) =

 0 if r = s

p(r, s) + q(r, s) otherwise

where, for all r ∈ R,
∑

s 6=r q(r, s) = p(r, r) and, for all r, s ∈ R, q(r, s) ≥ 0.

Lemma 8. c(p′) ≤ c(p)

Proof.

c(p) = maxK⊆R:|K|=k

∑
r∈K

p(r, r)cr +
∑

r,s∈K:r 6=s

p(r, s)crcs

= maxK⊆R:|K|=k

∑
r∈K

∑
s6=r

q(r, s)cr +
∑

r,s∈K:r 6=s

p(r, s)crcs

≤ maxK⊆R:|K|=k

∑
r∈K

∑
s6=r

q(r, s)crcs +
∑

r,s∈K:r 6=s

p(r, s)crcs

= maxK⊆R:|K|=k

∑
r,s∈K:r 6=s

(p(r, s) + q(r, s))crcs

= c(p′)

Now assume that c1 ≤ c2 ≤ . . . ≤ cn and consider two distributions over
(
R
2

)
:

p1(r, s) =

 1 if r = c1 ∧ s = c2

0 otherwise
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and

p2(r, s) =
α

crcs

where α =
(∑

{r,s}∈(R
2) 1/(crcs)

)−1

. By Lemma 8 c(p1) ≤ c(p1
R) and c(p2) ≤ c(p2

R).

Now let In = (c1, . . . , cn, k) be a problem instance that, as n grows, satisfies

1. c1 = O(1/n).

2. c2 > c for some constant c ∈ (0, 1).

3. k = o(n)

4. k = ω(1)

For large enough n, In has an optimal value that is arbitrarily smaller than the values achieved by p1

and p2. Let c(In, p) be the value of In under distribution p.

Theorem 15.

c(In, p
1)/c(In, p

∗) = Ω
(n
k

)
(7.7)

c(In, p
2)/c(In, p

∗) = Ω(k) (7.8)

Proof. The following distribution achieves the ratios in Eqs. 7.7 and 7.8. Let

p3(r, s) =


α

crcs
if r = r1

0 otherwise

where α =
(∑

i>1 1/(c1ci)
)−1. This distribution puts weight on all distinct pairs that include r1. It represents

a middle approach between putting all the probability on the lightest pair, as p1 does, and spreading the

probability over all pairs, as p2 does. The optimal distribution for each In only has higher ratios with p1

and p2 than p3 does.

The ratio between p1 and p3 is

c(In, p
1)

c(In, p3)
=

c1c2
(k − 1)/ (

∑n
i=2 1/(c1ci))

≥ (1 + c2(n− 2)/cn)/(k − 1)

= Ω
(n
k

)
.
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The ratio between p2 and p3 is

c(In, p
2)

c(In, p3)
=

(
k
2

) (∑
i 6=j 1/(cicj)

)−1

(k − 1)/ (
∑n

i=2 1/(c1ci))
(7.9)

=
k

2

(
1 + c1

∑
2≤i<j≤n 1/(cicj)∑n

i=2 1/ci

)−1

(7.10)

≥ k

2

(
1 +

c1
2

(
n∑

i=2

1/ci − 1

))−1

(7.11)

= Ω(k). (7.12)

In Equation 7.11,
∑n

i=2 1/ci is bounded by n because ci > c, i > 1. The last line then follows because

c1 = O(1/n).

Intuitively, the reason p1 does arbitrarily worse than p3 is that it doesn’t take advantage of an adver-

sary of size o(n) by putting probability on Ω(n) pairs, while p2 does arbitrarily worse than p3 because it

puts probability on pairs {ri, rj}, i, j > 1, that have Ω(n) times higher probability of being successfully

compromised than pairs including r1.

7.4 When pairing off, trust is everything

Allowing arbitrary trust values may be unnecessarily general. Users are unlikely to have precise knowledge

of the probability of compromise for each onion router in the network. Instead, they seem more likely to

have a few classes of trust into which they can partition the routers, or to have detailed knowledge about

only a small number of routers. This fact may help us deal with the apparent computational intractability

of the general problem. Also, the potentially complicated optima that result from arbitrary trust values may

not satisfy other criteria for path-selection strategies that are outside the given problem formulation. For

example, we may want the number of possible optimal strategies to be small so users share their behavior

with many others, or we may want the strategies to be robust to small changes in trust values.

Therefore, we now consider the case that there are only two trust values. We refer to the nodes with

higher trust as the trusted set, and nodes with lower trust as the untrusted set. This case is simple yet

results in non-obvious conclusions, and also still provides practical advice to users.

In Section 7.5 we show that, when there are only two trust values, there are three strategies that are

potentially optimal. But first we give here a lemma that allows us to consider only distributions that treat
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the routers within a trust set identically. Note that this lemma holds for general trust values.

Lemma 9. Let U be a set of routers with identical trust values c, where |U | = m. Let V be the rest of the

routers, where |V | = n. Then the set of routers is R = U ∪ V . There exists an optimal distribution p in

which the following hold:

1. For all {u, v}, {w, x} ∈
(
U
2

)
, p(u, v) = p(w, x).

2. For all v ∈ V , u,w ∈ U , p(v, u) = p(v, w).

Proof. Consider some distribution over pairs p :
(
R
2

)
→ [0, 1],

∑
{r,s}∈(R

2) p(r, s) = 1. Consider any subset

S ⊆ V . Let XS be a subset chosen randomly from all subsets X of size k such that X ∩ V = S. Let

j = k − |S| be the size of XS ∩ U . Let c(p,K) be the probability of compromise under p, given that set K

is chosen by the adversary. That is,

c(p,K) =
∑

{r,s}∈(K
2 )
p(r, s)crcs

We can calculate the expected probability of compromise of XS as follows:
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E [c(p,XS)]

=



(
m

j

)−1 ∑
T⊆(U

j )



∑
{t,u}∈(T

2)
p(t, u)c2+

∑
u∈T,v∈S

p(u, v)c · cv+

∑
{v,w}∈(S

2)
p(v, w)cvcw


(7.13)

=



(
m

j

)−1(
m− 2
j − 2

)
c2

∑
{t,u}∈(U

2)
p(t, u)+

(
m

j

)−1(
m− 1
j − 1

)
c
∑

v∈S,u∈U

p(v, u)cv+

∑
{v,w}∈(S

2)
p(v, w)cvcw

(7.14)

=



j(j − 1)c2

m(m− 1)

∑
{t,u}∈(U

2)
p(t, u)+

j · c
m

∑
v∈S,u∈U

p(v, u)cv+

∑
{v,w}∈(S

2)
p(v, w)cvcw

(7.15)

There must be some set T ⊆ U of size j such that c(p, S ∪ T ) is at least the expectation expressed

in Equation 7.15. If we modify p to treat all nodes in U the same, and thus satisfy the conditions in

the statement of the lemma, every such T achieves the value in Equation 7.15. Let p′ be this modified

distribution:

p′(r, s) =



∑
{t,u}∈(U

2) p(t, u)/
(
m
2

)
if {r, s} ∈

(
U
2

)
∑

u∈U p(r, u)/m if r ∈ V, s ∈ U∑
u∈U p(s, u)/m if r ∈ U, s ∈ V

p(r, s) if {r, s} ∈
(
V
2

)
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The probability of compromise for any value S ∪ T of XS is

c(p′, S ∪ T ) =
(
j

2

)(
m

2

)−1 ∑
{t,u}∈(U

2)
p(t, u)c2+

j

m

∑
v∈S

∑
u∈U

p(v, u)cvc+

∑
{v,w}∈(S

2)
p(v, w)cvcw.

(7.16)

Equations 7.15 and 7.16 are equal, and therefore

maxT :|T |=j c(p′, S ∪ T ) ≤ maxT :|T |=j c(p, S ∪ T ). Because this holds for all S ⊆ V , maxK:|K|=k c(p′,K) ≤

maxK:|K|=k c(p,K).

7.5 Choosing pairs to avoid compromise

Now we analyze optimal distributions for selecting pairs when there are two trust values in the network, c1

and c2, with c1 ≤ c2. We show that, in this case, one of the following strategies is always optimal: (i) choose

pairs such that p(r, s)crcs is equal for all {r, s} ∈
(
R
2

)
, (ii) choose a pair of trusted routers uniformly at

random, or (iii) choose only fully-trusted or fully-untrusted pairs such that the adversary has no advantage

in attacking either trusted or untrusted routers. Distribution (i) is analogous to distribution p2 as described

in Section 7.3.2. Distribution (ii) is analogous to distribution p1 of Section 7.3.2, with the difference that

(ii) spreads probability to all the most-trusted routers and not just two. Distribution (iii) shows that

non-obvious distributions can exist even when the trust values are very restricted.

Let U be the trusted set, with trust value c1, |U | = m. Let V be the untrusted set, with trust value c2,

|V | = n.

Theorem 16. Let v0 = max(k −m, 0) and v1 = max(k − n, 0). Then let g0 = v0(v0−1)
n(n−1) and g1 = v1(v1−1)

m(m−1) .

One of the following is an optimal distribution:
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p(r, s) =



(c2)
2

(m
2 )(c2)2+(mn)(c1c2)+(n

2)(c1)2

if {r, s} ∈
(
U
2

)
(c1c2)

(m
2 )(c2)2+(mn)(c1c2)+(n

2)(c1)2

if (r, s) ∈ U × V ∪ V × U

(c1)
2

(m
2 )(c2)2+(mn)(c1c2)+(n

2)(c1)2

if {r, s} ∈
(
V
2

)

(7.17)

p(r, s) =


(
m
2

)−1 if {r, s} ∈
(
U
2

)
0 otherwise

(7.18)

p(r, s) =



(
m
2

)−1 c2
2(1−g0)

c2
1(1−g1)+c2

2(1−g0)

if {r, s} ∈
(
U
2

)
(
n
2

)−1 c2
1(1−g1)

c2
1(1−g1)+c2

2(1−g0)

if {r, s} ∈
(
V
2

)
0

if (r, s) ∈ U × V ∪ V × U

(7.19)

Proof. Let p be some distribution on
(
R
2

)
. By Lemma 9, we can assume that p(t, u) = p(x, y), if t, u, x, y ∈ U .

Similarly, p(v, w) = p(x, y), if v, w, x, y ∈ V . Again using Lemma 9, p(u, v) = p(u, y) = p(x, y), if u, x ∈ U

and v, y ∈ V . This shows that all pairs intersecting both U and V have equal probability.

If k ≥ n+m, the adversary can try to compromise all routers. Thus the best strategy is to only choose

pairs from the trusted set U , as described in Equation 7.18. From now on, assume that k < n+m.

Let Kj ⊆ R be of size k and have an intersection with U of size j. The value of j alone determines the

probability of compromise for Kj , because it determines the number of pairs in
(
U
2

)
, U × V , and

(
V
2

)
. As

we have just shown, the exact pairs included do not matter because their probability is determined by their

class. Let p1 =
∑
{t,u}∈(U

2) p(t, u), p2 =
∑

(u,v)∈U×V p(u, v), and p3 =
∑
{v,w}∈(V

2) p(v, w). Then we can say
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that

c(p,Kj) =
(
j

2

)
(c1)2

p1(
m
2

) + j(k − j)c1c2
p2

mn
+(

k − j

2

)
(c2)2

p3(
n
2

) (7.20)

To narrow the set of possible optimal assignments of p1, p2, and p3, we will first consider the effect of

varying p2. The quantity we want to minimize is the maximum value of Equation 7.20. Equation 7.20 is a

quadratic function of j. Assume that the second derivative is non-zero. If it is zero it is easy to show that the

distribution p is the distribution described in Equation 7.17. Otherwise, we will show that we can improve

the maximum by changing p2. We can find the local extremum by taking the derivative of Equation 7.20

and setting it to zero. Solving for j gives

j∗ =

n(n− 1)p1c
2
1 − k(m− 1)(n− 1)p2c1c2+

(2k − 1)m(m− 1)p3c
2
2

2(n(n− 1)p1c
2
1 − (m− 1)(n− 1)p2c1c2+

m(m− 1)p3c
2
2)

. (7.21)

Unfortunately, j∗ must be integral to represent a worst-case subset, and therefore we cannot just substi-

tute the expression in Equation 7.21 into Equation 7.20 and solve for the optimal value of p2. There may

in fact be two values of j that are maxima, and varying p2 could possibly increase the value at one while

decreasing the value at other. Therefore, while varying p2, we simultaneously vary p1 and p3 to maintain

the local extremum of Equation 7.20 at j∗. Then both possible maxima are changed in the same way.

By observing that p3 = 1− p1− p2 in Equation 7.21 we can see that p1 and p2 are linearly related. Solve

this for p1 and call the expression p′1. Now let j′ ∈ N, 0 ≤ j′ ≤ k, be any value that maximizes c(p,Kj′). j′

is either an endpoint of [0, k] or a closest integer to a local maximum. Substitute p′1 for p1 in c(p,Kj′), and

the result is a linear function of p2. Therefore either increasing or decreasing p2 does not increase c(p,Kj′).

Suppose we move p2 in the direction that decreases c(p,Kj′). Because we vary p′1 (and p3) with p2 in such

a way as to maintain the extremum of the parabola at the same value j∗, j′ is maintained as a maximum of

c(p,Kj) as long as the second derivative of c(p,Kj′) remains non-zero.

The process of changing p2 stops when (i) the second derivative of c(p,Kj′) becomes zero, (ii) p2 reaches

zero, (iii) p3 reaches zero, or (iv) p1 reaches zero.
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Case (i): In this case, all sets have the same value. This is only satisfied when the distribution is that of

Equation 7.17.

Case (ii): In this case, all probability is in pairs of two trusted or two untrusted nodes. Therefore the

maximizing value of j must be when it is as small as possible or as large as possible, that is, at max(0, k−n)

or max(k,m). If the former case is strictly larger, we can reduce it by decreasing p3 and increasing p1. If the

latter case is strictly larger, we can do the reverse. Therefore the value in these two cases must be equal. To

find the probabilities p1 and p3 that satisfy this, let p3 = 1−p1, v0 = max(k−m, 0), and v1 = max(k−n, 0).

Then setting them equal and solving for p1 yields the condition

p1 =
c22

(
1− v0(v0−1)

n(n−1)

)
c21

(
1− v1(v1−1)

m(m−1)

)
+ c22

(
1− v0(v0−1)

n(n−1)

) . (7.22)

Equation 7.22 then gives us the probability for each pair in
(
U
2

)
and

(
V
2

)
, and this is the same as the

distribution in Equation 7.19.

Case (iii): In this case, p3 = 0. Then if p2 = 0 also, we put all probability in the trusted nodes, which is

the distribution described in Equation 7.18.

Now suppose that p2 > 0. We will consider moving probability between p1, p2, and p3 to show that this

case isn’t possible. Let p2 = 1−p1 in Equation 7.20 and call this c3(p,Kj). Then use this to consider trading

off p1 and p2 to find the optimal assignment. As p1 varies, the change in the value of the set Kj is

Dp1c3(p,Kj) =
jc1
m

[
(j − 1)c1
m− 1

− (k − j)c2
n

]
. (7.23)

Next, let p2 = 1− p1 − p3 in Equation 7.20 and call this c4(p,Kj). Moving p2 to p3 results in a change of

Dp3c4(p,Kj) =
(k − j)c2

n

[
(k − j − 1)c2

n− 1
− jc1

m

]
. (7.24)

Let j∗ ∈ argmaxjc(p,Kj) be the largest integer that is a maximum of c(p,Kj).

We observe that D2
j c(p,Kj) ≤ 0. If not, we would have j∗ = k. Then Equation 7.23 shows that decreasing

p1 would decrease the value at j∗, and p1 is non-zero so we could do this because, at p1 = 0, c(p,Kj) is

largest at j∗ = dk/2e 6= k. Such a decrease would contradict the optimality of j∗.

Now, because D2
j c(p,Kj) ≤ 0, there may be some ̂ ∈ argmaxjc(p,Kj) such that ̂ < j∗. There are

four cases to consider here: (1) Dp1c3(p,Kj∗), Dp1c3(p,K̂) ≤ 0, (2) Dp1c3(p,Kj∗), Dp1c3(p,K̂) ≥ 0, (3)
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Dp1c3(p,Kj∗) ≥ 0 and Dp1c3(p,K̂) ≤ 0, and (4) Dp1c3(p,Kj∗) ≤ 0 and Dp1c3(p,K̂) ≥ 0.

In case (1), we could decrease c at j∗ and ̂ by moving probability from p2 to p1. This would contradict

the optimality of p.

For case (2), we use the fact that

0 ≤ a < b⇒ a− 1
b− 1

<
a

b
. (7.25)

Inequality 7.25 implies that if Dp1c3(p,Kj) ≥ 0, then Dp3c4(p,Kj) ≤ 0. Therefore we could decrease c at j∗

and ̂ by moving probability from p2 to p3, contradicting the optimality of p.

For case (3), we show that we can still decrease both j∗ and ̂ while maintaining their equality, and hence

maximality, by moving some probability from p2 to p1 and p3. Moving probability from p2 to p1 increases

the value at j∗ and decreases the value at ̂. This implies, by Inequality 7.25, that moving probability from

p2 to p3 decreases the value at j∗. Furthermore, can assume that it increases it at ̂ because otherwise we

could decrease both j∗ and ̂ by moving probability directly from p2 to p3.

For j∗ and ̂ to be integral maxima of Equation 7.20, it must be that j∗ − 1 = ̂. Also, solving Dp1c3 =

Dp3c4 for j, we find that at this point, Dp1c3 ≤ 0 and Dp3c4 ≤ 0. Therefore, j∗ is at most one more than

this point. We can observe by calculation that within this range the ratio |Dp1c3/Dp3c4| is less than one.

Similarly, ̂ is at most one less than this point, and within this range the ratio |Dp1c3/Dp3c4| is greater than

one.

This shows that we can move probability from p2 to p1 and p3 at rates that decrease the value at both j∗

and ̂. Because they were maximum, we have lowered the value of the worst-case subset Kj∗ , contradicting

the optimality of p.

Case (4) is not possible because D2
j [Dp1c2] ≥ 0 and Dp1c3(p,K0) = 0.

Case (iv): In this case, if p2 > 0, the case is symmetric to the case of p1, p2 > 0 and we can apply the

same argument. Therefore assume that p2 = 0, which implies that p3 = 1. It must be that m < n because

otherwise we could set p1 = 1 and p3 = 0 and improve the worst case. But now consider moving some

probability from p3 to p1. Let p1 = 1 − p3 in Equation 7.20 and call this c3. The change in the worst-case

subset, Kn, is

Dp3c3(p,Kn) = c22 −
(k − n)(k − n− 1)c21

m(m− 1)
.

This must be greater than zero because c2 ≥ c1 and k− n < m. Therefore decreasing p3 decreases c(p,Kn),

contradicting the optimality of p.

107



7.6 Choosing a distribution

We have shown that there are three possibilities for an optimal strategy in choosing nodes that will minimize

the best chances a fixed size adversary has to compromise both endpoints of an onion-routing circuit when a

trusted set is available. To choose a distribution, a user can simply calculate the probability of compromise

in each case and use the distribution with the smallest result. The optimal distribution depends on all the

variables in the system: the trust values, the size of the trusted set, the size of the untrusted set, and the

size of the adversary.

In the first distribution, described in Equation 7.17, the user chooses pairs {i, j} to make p(i, j)cicj equal

for all i, j. This is a random choice of pairs weighted by the trust in the pair. The probability of compromise

under this strategy is

C1 =
k(k − 1)c21c

2
2

m(m− 1)c22 + 2mnc1c2 + n(n− 1)c21
. (7.26)

This strategy is optimal when the network is large compared to the adversary, and so it benefits the user to

spread out his distribution, even to less-trusted routers. It is also optimal when the trust values are close.

In the second distribution, described in Eq 7.18, the user randomly selects pairs from within the trusted

set. This can only be optimal if the size k of the adversary is larger than the size m of the trusted set.

Otherwise, the user could decrease the probability of compromise by putting some of the pair-selection

distribution on pairs outside the trusted set. Doing so would not change the adversary’s worst-case subset,

which is entirely in the trusted set, but it would decrease the probability that those nodes are chosen by the

user. The probability of compromise, assuming k > m, is simply

C2 = c21. (7.27)

We can compare this to Equation 7.26 and observe that c1 can always be made small enough to make this

value less than the value of the first strategy. These equations also show that choosing only trusted nodes

will be optimal when k is large relative to the network. When k = m+ n, this case is always optimal.

The third distribution, given in Equation 7.19, is perhaps the least obvious one, and arises as a result of

the fact that users choose their distribution over pairs, while the adversary attacks individual routers. This

distribution is only optimal when k > m or k > n. Otherwise, under this distribution, there is a worst-case

set K1 ⊆ U and a worst-case set K2 ⊆ V . Then the probability of compromise can be reduced by moving
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probability from pairs in U and pairs in V to the cross-pairs between U and V while maintaining K1 and K2

as worst-case sets. Therefore assume that k > m or k > n. Let v0 = max(k −m, 0) and v1 = max(k − n, 0).

Then let g0 = v0(v0 − 1)/(n(n− 1)) and g1 = v1(v1 − 1)/(m(m− 1)). The probability of compromise under

this distribution is

C3 =



c2
1c2

2(1−g0)

c2
1(1−g1)+c2

2(1−g0)
+

v0(v0−1)c2
1c2

2(1−g1)

n(n−1)(c2
1(1−g1)+c2

2(1−g0))

if k > m

v1(v1−1)c2
1c2

2(1−g0)

m(m−1)(c2
1(1−g1)+c2

2(1−g0))
+

c2
1c2

2(1−g1)

c2
1(1−g1)+c2

2(1−g0)

if k > n

(7.28)

To make some sense of this, it is helpful to consider some special cases. When n > k, m < k, a worst-case

set is contained in V , and so the probability of compromise is

C3 =
k(k − 1)c21c

2
2

n(n− 1)(c21 + c22(1− g0))

We can see that there is some large n such that C3 is less than C2 and C1. What happens in this case is

that there is a large number of routers, and the user wants to spread his probability among them. However,

because k > m, spreading the probability to all cross-pairs (pairs including one trusted and one untrusted

router) means that an adversary selecting as many trusted routers as possible gains (k − m)m/(mn) =

(k − m)/n of the probability on such pairs. On the other hand, when spreading probability to untrusted

pairs, (k − m)(k − m − 1)/(n(n − 1)) of the shifted probability is captured by the adversary. Therefore,

moving probability from cross-pairs to trusted pairs and untrusted pairs reduces the amount captured by

the adversary by a factor of O(1/n).
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Chapter 8

A Protocol for Highly-Anonymous

Low-Latency Communication

8.1 Introduction

In this chapter, we present a low-latency protocol that provides arbitrarily good anonymity. The barrier

to this in onion routing is the ability of the adversary to determine if two circuit locations that it observes

belong to the same circuit. Then, if the adversary controls the first and last routers, he can link the user

with his destination.

In the onion-routing protocol we give in Chapter 4, the adversary can link circuit locations by sending a

specific number of onions on a circuit after it has been constructed. If the same number of onions is observed

at another point, then the two locations are part of the same circuit. We can prevent this attack, and indeed

prevent any attack that involves changing or adding onions on the circuit, by using authentication codes to

verify the validity of onions. This is included in, for example, the Tor protocol [23]. However, the ability

to link locations remains, as the adversary can delay a message on a circuit, allow the rest of the messages

to be delivered, and then release the message. A router that receives protocol messages after that release

must be part of the same circuit. Our protocol is designed to make it very unlikely that the adversary is in

a position to control the timing of onion delivery in this way.

In order to capture the problem we add a notion of time to our model. This gives agents the power

to reason about the ordering of events in the system. Then they can react to their observations to make
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themselves act more like the other agents and thereby confuse the adversary. Also, our protocol will involve

intentional delays, and explicit timing allows us to estimate the impact on latency.

The key ingredients of our solution are timestamping onions with their intended send time and sending

multiple copies of the same onion over redundant paths. These ideas have appeared before in the literature

(cf. [49, 24] for timing techniques and [81, 46] for redundancy). The essential aspects of the protocol include:

1. A mesh topology from the user to the destination that balances limiting view of the user’s message to

a small number of routers while providing redundancy against malicious delays

2. A predefined return time from the destination to the user

3. A method to select free routes in the mesh topology

There are several choices in our protocol that are not optimized, and it seems quite possible that sub-

stantial improvements to anonymity and efficiency may yet be gained - for example, in the forward topology

and the use of cryptography. These were left open because the problem we investigated had a wide space of

possible outcomes. Could we achieve arbitrarily good security with reasonable performance? Was using free

routes possible once you leave the simple path topology? As a result, our aim was to show good asymptotic

peformance in our design criteria. The theoretical results, however, suggest that the approach is indeed

viable and that a promising next step is to optimize within the framework of the scheme we describe.

We are still, however, concerned with the eventual practicality of our protocol. Therefore we extend the

basic protocol to handle two-way communication over persistent connections. These are the communication

semantics of the TCP protocol and the kind of communication supported by Tor. Sending multiple onions

in each direction can be handled directly by our protocol. However, we need to make sure that the pattern

of traffic does not identify the users. To prevent this, we make black-box use of a padding scheme to prevent

passive timing attacks. Padding schemes specify how to delay and add dummy traffic to an input stream to

make different streams looks similar. Several padding schemes that defeat passive timing attacks have been

proposed [80, 34, 77, 87], and furthermore we believe that there is still potential for substantial improvement.

To evaluate the likely performance of our protocol in practice, we measure the feature of the underlying

network that affects the latency added by the protocol - delay variations in the host network. Specifically,

we measured the likely latency costs of running our protocol on the existing Tor network. The Tor network

consists of routers of widely different capacities located around the world and therefore is likely to exhibit

a high variability in performance. This provides a strenuous, real-world scenario in which to evaluate our
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protocol’s performance. We examine this by taking measurements of the inter-host network latencies and

the per-host processing delays of the Tor routers over the course of a month.

Our results are therefore both theoretical and experimental:

1. We show that the user can be made anonymous with arbitrarily high probability as long as b is less

than 1/2. The user is anonymous within the set of users with identical traffic patterns as produced by

the input padding scheme.

2. We prove that our mesh topology in the forward direction is optimal for anonymity in the limit.

3. The latency of our protocol is proportional to the length of the mesh and path. We show that the

probability of compromise decreases to zero polynomially in that length. This compares well with

onion routing, which adds latency proportional to its path length.

4. The bandwidth used is 2w + (l − 1)w2 + 1, where l is the mesh/path length, and w = Θ(log l). This

compares well asymptotically to the l + 2 copies that are sent in an onion-routing path of the same

total length.

5. For most of our measurements, we observe that added onion delay would need to be less than a factor

of two to achieve desirable reliability.

The results suggest that our approach indeed has the potential to mitigate active timing attacks. However,

the case is not fully made. A truly suitable padding scheme, with low overhead and large anonymity sets

(groups of users within which the adversary cannot distinguish users), does not currently exist. There still

exists many possible improvements to the construction of our scheme, such as changing the mesh/path length

or using persistant circuits and private keys. Moreover, most of the delays measured appear to be caused

by congestion at the router. Tor was designed for optimal throughput rather than predictable and reliable

latency, and therefore we expect that a usable network could be built with even better performance than

our measurements suggest.

8.2 Model

We describe and analyze our protocol using the network, user, and adversary models of Chapter 2. However,

we need to incorporate a more detailed model of timing and network delays. Agents need to be able to
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determine the global timing of events to enforce timing patterns. Also, network and processing delays need

to be somewhat predictable so that agents can take them into account.

8.2.1 Network

Each event in the network occurs at some global time. We assume that each user and router has a local

clock that accurately measures time, and that these clocks have run some sort of synchronization protocol

[59]. Let δsync be the largest difference between two synchronized clocks in the network.

There is some probabilistic network delay dnet(r, s) between every pair (r, s) of routers. This models the

unpredictable delay between routers due to factors such as congestion and route instability. There is also

some probabilistic processing delay dproc(r) at every router r. This reflects changes in delay at a router

due to timesharing with other processes. The delay of a message is the sum of delays drawn independently

from these two distributions. We also let the delay of one message be independent of the delays of the other

messages. We assume the distributions of both sources of delay is known to the system. In practice, this

may be achievable via network measurements.

8.2.2 Adversary

It seems plausible that an adversary can run routers that are at least as fast as the other routers on the

network, and that it may dedicate them to running the protocol. Therefore, in contrast to non-adversarial

routers, we pessimistically assume that the adversary has complete control over the processing delay dproc(a)

of routers a ∈ A.

8.3 A Time-stamping Solution

The adversary can take advantage of time in our model to deanonymize users in the onion-routing protocol

when he controls the first and last routers. To do so, the adversary delays the message from any given user

until the messages from all other users are highly likely to have been delivered. Then he forwards the delayed

message and observes which destination receives a message afterwards. In general, the adversary can affect

the arrival time of onions by delaying when he forwards them. To prevent this, for the message from the user

we include the time every onion should be forwarded. Also, we use redundant routers to send multiple copies

of a given onion. If at least one copy shows up in time, the onion is successfully forwarded. A reply sent
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from the destination to the user must, by our requirements, pass initially through a single router. Because

that last router may be compromised, we cannot trust it to send the onion at a specified time. However,

the reply is destined for an anonymity protocol participant, the user; therefore, unlike traffic from the user,

we can send a dummy reply if a real one doesn’t arrive in time. Observe that this does not work for the

message from the user, because the final router sees which onions actually contain a message.

8.3.1 From the user

First, consider what we could do if propagation and processing delays were deterministic. The user could

send through a simple path in the network an onion that in the ith layer includes the latest time that the

onion should arrive at the ith router. This would indicate the time that that router should process and

forward the onion. Any delay must be due to the adversary.

Using this scheme, the adversary could delay onions to create a gap that propagates down the path. Our

approach to this problem is to send multiple copies of an onion down redundant, intersecting paths. A router

on a path needs only one copy of the onion to arrive in time from any incoming path in order to forward it

by its send time.

This approach has limits, because each redundant router adds another chance for the adversary to observe

an entire path from source to destination. For example, suppose that we simply send onions over k paths

of length l that intersect at a final router, where every router is chosen uniformly at random. Let b be the

fraction of routers that are controlled by the adversary. The probability that at least one path is entirely

composed of compromised routers is b(1 − (1 − bl−1)k). This quickly goes to b as k increases. We use a

layered-mesh topology to balance the ability of the adversary to passively observe a path with his ability to

actively perform a timing attack and provide good total anonymity.

Unfortunately, in real networks, delays are somewhat unpredictable. For example, an onion might be

delayed by congestion in the underlying network. However, if the distribution of delays is known, we know

how long we need to wait at a router for onions to arrive with any fixed probability. We will set that

probability to balance decreasing added latency with decreasing the chance that the onion arrives later than

planned for, which creates the opportunity for a successful timing attack. Then we add in this buffer time

to the send time.
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Figure 8.1: Layered-mesh topology

Topology

The layered-mesh topology we propose is pictured in Figure 8.1. For some length l and width w, user u

sends a copy of the onion to the w members r1j of the first layer. Then, in layer i, each router rij sends one

copy of every onion it receives to each router r(i+1)k of the next layer. Finally, the routers rlj in last layer

send a copy of each onion received to a single router r, that finishes decrypting them and sends the data on

to the destination. We call this structure the layered mesh.

Timestamps

As described, the user sets timestamps to instruct routers to maintain a specific timing of events. A user

may have different latencies to the different routers in the first layer. If the time that one of these routers

is instructed to forward the onion only depended on the network and processing delays of that router, the

first-layer routers could send copies of the same onion at different times. This provides information to the

next layer about the identity of the user. Similarly, the adversary could use these different times to link

other layers in the mesh. Therefore, we set the send time for each layer to be the send time of the previous

layer plus the longest delay at our chosen reliability level p. We must also add some extra delay to allow for

clock skews.

Let d∗(r, s) be the amount of delay we need to ensure that an onion from r is processed at s with success

probability p:

p = Pr[dnet(r, s) + dproc(s) ≤ d∗(r, s)].

At time t, let user u send a message. The user chooses the same send time for all routers in the same

115



layer. The send time for routers r1j in the first layer is

t1 = t+ max
j
d∗(u, r1j).

The send time for routers rij in the ith layer is

ti = ti−1 + max
j,k

d∗(r(i−1)j , ri,k) + δsync.

If a router receives its first copy of an onion after the send time has passed, it immediately forwards the

onion to the routers in the next layer. At worst, the delay is the result of attempts by the adversary to

delay certain onions. Sending the onion later or not at all in that case would only make it easier for the

adversary to observe its lateness later in the mesh. Forwarding it immediately might even allow the onion

to eventually get back on schedule. At best, the delay is just a result of network delays and forwarding has

no effect on anonymity.

Onions

Let M be the message to be sent. We will encrypt the message with a public key shared by all members

of a layer. Given that the layers are set up in advance and known to all, such a key can be generated by a

trusted third party or by electing a leader to do it. Let {M}ri
denote the encryption of M with the public

key of layer i. Let nri , ns1 ∈ N be random integers. Then the onion that u sends to the routers in layer 1 is

{nr1 , t1, {nr2 , t2, · · · {nr, d, ns1 , kr,M}r · · · }r2}r1

For each layer i, a user generates the random number nri
∈ N as an onion identifier. The routers keep

track of the onion identifiers they have seen. When they receive an onion, they decrypt it and examine the

identifier. Routers only forward an onion if its identifier ni has not been seen before. ns1 is the identifier

that r should use with s1 when sending back any reply, and kr is a private key that will let r encrypt the

return message for u.

The onion encoding and forwarding scheme should provide anonymity by preventing attacks such as

determining the routing information in the encrypted onion, preventing forgery, and prohibiting replay

attacks. For clarity of presentation, we have described a simple scheme that achieves this. We observe,
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however, that several improvements to the protocol could be made. For example, the protocol could do

a more explicit connection open and close to reduce the lists of identifiers that routers have to maintain.

Also, symmetric keys could be exchanged to speed up onion processing. Another improvement that we could

incorporate is forward secrecy. There are numerous cryptographic details that must be carefully set out (for

example, as in [10]) for our protocol to have a cryptographically secure and efficient implementation. These

are not our focus here.

8.3.2 To the user

A message returning to the user from the destination must first pass through the one router that is selected

to communicate directly with the destination. This router may be compromised, and it may try to affect the

timing of in the return message. We manage this by giving the intermediate routers a send time for the return

message. They enforce it by delaying the return onion until that time, and by creating a dummy onion at that

point if no return onion has arrived. We note that this doesn’t work for the message from the user because

a dummy packet can be recognized by the final router as part of our functionality requirement. We choose a

simple path of length k for the return onion (Fig. 8.1), because there is no anonymity advantage to adding

redundancy here. We call this structure the return path. Note that specifying a return time beforehand

violates our functionality requirement in that it only delivers return messages that arrive before the send

time. We therefore must slightly adjust our functionality and assume that replies from the destination are

always sent within some bounded time. Then as long as the user chooses a longer return time, the protocol

will implement this functionality.

To communicate the desired return time to the return path, we take advantage of the one-way commu-

nication protocol already developed. The user sends the return time via the layered mesh to every router in

the return path. At the same time, the user generates the random numbers nsi ∈ N+, 1 ≤ i < k, and sends

two random numbers nsi
, nsi+1 and a key ksi

to each router si, again using the layered mesh,. These will

be the incoming and outgoing identifiers for the onion. The user also sends nk and u to sk. Let M be the

message to be sent back from d to u. The return onion sent to si is

Oi =< nsi
, {· · · {{M}kr

}ks1
· · · }ksi−1

> .

After r receives M from d, it will take ns1 and kr out of the inbound onion from the user and send O1 to
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s1. When si receives Oi it looks for a matching nsi in the pairs of number it has received and then forms

Oi+1 to send when the previously-arranged time arrives.

8.3.3 Choosing the routes

A simple method to select the layered mesh and return path would be for it to be chosen by the network

and shared among all users. This is analogous to cascades in mix networks [6]. A disadvantage of cascades

is that number of users that can be confused with one another, that is, the size of the anonymity set, is at

most the number of users that can simultaneously be handled by a router.

Therefore, we allow users to select their own routes, known as free routes. This can provide a much bigger

anonymity set. A relevant comparison of the approaches in the context of mix networks is given in [24].

This procedure must be designed carefully because users are no longer guaranteed that anybody else chooses

the same routers they do. We let the set of nodes be divided into groups of size w that form the layers

described above. These layers are further stratified by the position they can serve in a mesh, for example,

no second-layer group could serve in any other position in a route chosen by anyone else.

When the user first selects a layer that is completely uncompromised, his onion becomes indistinguishable

from the other users that select that layer. His onion can also be confused with routes that have consecutive

uncompromised layers covering the same mesh position because the adversary cannot tell what was selected

in that position. This continues until the end of the mesh or until the user selects a completely compromised

layer (after which the adversary can drop onions to create patterns that are detectable at the end). As the

user population grows, the expected number of users sharing a completely uncompromised layer reaches the

capacity of those routers. Therefore the expected size of the anonymity set grows with n and also depends

on b.

Though outside of our threat model, one can consider an attacker that attempts to compromise specific

nodes over an extended period in an attempt to increase the chances of owning an entire layer and an entire

path from a client to that layer. Against such an attacker one would want to have a dynamic network

structure in which the positions that layers can be in change periodically as does the composition of each

layer group. These may or may not change at the same rate. There are numerous tradeoffs to be made in

deciding how best to do this. It is beyond the scope of this work to do more than note the existence of such

responses to a long-term strategically roaming attacker.
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8.4 Anonymity

The purpose of our protocol is to provide better anonymity than onion routing at reasonable cost in latency

and bandwidth. A major drawback to onion routing is that the probability of compromise is b2 and cannot

be improved by making tradeoffs elsewhere in the protocol, for example by choosing a longer path. We will

show how in fact our scheme can provide arbitrarily good probability by increasing the length and width of

the layered mesh.

First, the design of the protocol onions essentially limits the adversary to observing directly and linking

the user and his destination. For the message from the user, the use of encryption and unique identifiers

forces it to be passed through the required layers and limits it to being forwarded by an honest router at

most once. It also hides the source and destination from all but the first and last routers, and it makes

messages leaving one layer unlinkable to messages leaving another layer. For a reply to the user, the source

and destination are not included in the onions, and encryption prevents an onion leaving one router from

being linked with a message leaving another router.

For the adversary to break a user’s anonymity, then, he will need to either observe the entire path between

source to destination or link onions at different steps on that path. The latter depends on the adversary’s

ability to delay the onion. To evaluate this possibility, we will make the simplifying assumption that the

network and processing delay between two routers r, s never falls above the time allowed for it d∗(r, s). In our

model, such failures can happen with probability 1− p, where p can be set arbitrarily close to 1. Certainly,

if the adversary can deanonymize a user even under this assumption, he can do so with possible link failures.

When such failures do occur, they open up the chance for an adversary to successfully delay onions. However,

late onions are typically irrelevant because the same onion will have been forwarded by another router in the

previous layer. Also, late onions that are the first of their type to arrive are immediately forwarded, thus

benign delays are somewhat self-correcting, and we estimate that they do not open up a large opportunity

for an active timing attack. However, if we wish to make a conservative estimate, we can expect that for any

given onion a fraction p of the onion copies will fail to arrive in time. We can simply add p to the fraction

of routers controlled by the adversary to obtain an effective fraction b∗ = b+ p of compromised routers that

can be used to determine the probability that the onion is successfully delayed or dropped.

Assuming no link failures, then, the anonymity of a user only depends on which routers the adversary

controls. Among users starting a connection at the same time as u, that have free routers overlapping u’s

route such that the adversary cannot distinguish them, and that are not deanonymized by the adversary,
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either u is anonymous or he can be fully identified via a delaying attack. Because the routers in the topology

are selected randomly, there is some probability that the adversary can deanonymize a user. Let C be the

event that the adversary can compromise anonymity. We can quantify the probability of C.

Theorem 17.

Pr[C] = bk+1 + b(1− bk)
[
bw

1− (1− (1− b)w − bw)l

bw + (1− b)w
+ (1− (1− b)w − bw)l

]
(8.1)

Proof. To compromise anonymity, the adversary must control the router r that communicates with the

destination. Therefore assume that r ∈ A. This happens with probability b.

Then he can link the destination via the return path only when he controls every router on it. This

happens with probability bk+1.

The adversary can deanonymize the user via the mesh in two ways. First, the adversary can control an

entire path from the first layer in the mesh to r, but not any entire layer. This happens with probability

(1− (1− b)w − bw)l. Second, if the adversary controls a path to a completely controlled layer i, he can then

use it to selectively delay onions from one user. He can identify the user to target because he controls a path

from that user to layer i. This happens with probability bw(1− (1− b)w − bw)i−1. If neither of these is the

case, then it must be that there is an honest path in the mesh leading to a completely honest layer. This

layer receives all onions from all users via the honest path, and beyond it the adversary cannot distinguish

between users. Therefore deanonymization is not possible.

Adding all of the probabilities, we get

Pr[C] = bk+1 + b(1− bk)
[
bw

l−1∑
i=0

(1− (1− b)w − bw)i + (1− (1− b)w − bw)l

]

Simplifying the partial geometric sum gives the theorem.

Theorem 17 shows that, when less than half of the routers are compromised, we can make the probability

that a user is anonymous arbitrarily high by setting w, l, and k large enough.

Corollary 4.

lim
w,l,k→∞

Pr[C] =


0 b ≤ 1/2

1/4 b = 1/2

b b > 1/2
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Proof. As k → ∞, the first term in Equation 8.1 goes to zero. As k, l → ∞, the second term goes to

bw+1/(bw + (1− b)w). When b < 1/2, this goes to zero, when b = 1/2, this goes to 1/4, and when b > 1/2,

this goes to b.

Corollary 4 shows that anonymity can be made arbitrarily good when b < 1/2, but that it is worse than

onion routing when b ≥ 1/2. Therefore assume from now on that b < 1/2. We would like to determine

how big the layered mesh and return path grow as we increase our desired level of anonymity. First, we

will consider how wide the mesh must be for a given depth to achieve optimal anonymity. This affects the

number of messages that need to be sent. Also, it will allow us to evaluate anonymity as a function of the

lengths k and l, quantities which we would like to keep small to provide good latency. Luckily, it turns out

that the optimal width w∗ grows slowly as a function of l.

Theorem 18. w∗ = O(log l)

Proof. Let A = Cc be the event that users are anonymous. From Thm. 17, we can determine that

Pr[A] = 1− b+ b(1− b)w 1− (1− bw − (1− b)w)l

bw + (1− b)w
. (8.2)

Let x be the third term in Equation 8.2. It is the only term that varies with w. Because b < 1/2, we can

replace b with 1− b at point in x to obtain a simpler upper bound:

x ≤ b(1− (1− (1− b)w)l). (8.3)

Similarly, we can replace 1− b with b to obtain a lower bound:

x ≥ b(1− (1− (1− b)w)l)/2. (8.4)

Equation 8.3 is decreasing in w. Equation 8.4 is increasing for small w, achieves a maximum at w =

log(1/2)/ log p, and is decreasing for larger w. At its maximum, Equation 8.4 has value b/2. Therefore Pr[A]

must be maximized at a smaller w than that at which the upper bound in Equation 8.3 reaches b/2. We can
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further approximate to find this w:

x ≤ b(1− (1− (1− b)w)l) (8.5)

≤ bl(1− b)w (8.6)

Expression 8.6 is b/2 when w is log(2l/b)
log(1/(1−b)) .

Network users are particularly sensitive to latency, and each additional step in the layered mesh and

return path represents a potentially global hop on our network. To keep the lengths l and k of the mesh and

return path small, then, we would like for Pr[C] to converge quickly to its limit. As suggested by Thm. 18,

let w = log l, and consider the convergence of Pr[C]. It is clear that the first term shrinks exponentially with

k. The convergence time of the second term is polynomial, although it does improve as b gets smaller.

Theorem 19. Let c1 = log b and c2 = log(1− b). Then

Pr[C] = Θ(lc1−c2).

Proof. Let us fix k and only consider how Pr[C] changes with increasing l. Let x be the part of Equation 8.1

that varies with l and substitute in w = log l:

x = blc1
1− (1− lc1 − lc2)l

lc1 + lc2
+ b(1− lc−1 − lc2)l.

The first term in x is less than l−c2 . We can give an upper bound for the second term by using the inequality

1− y ≤ e−y:

b(1− lc−1 − lc2)l ≤ b(1− lc2)l

≤ be−l1+c2

1 + c2 > 0 because b < 1/2. Therefore x ≤ b(lc1−c2) + e−l1+c2 = O(lc1−c2).
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We can give a lower bound for the first term in x by using the fact that 1− y ≥ e−2y for y ≤ 1/2:

blc1
1− (1− lc1 − lc2)l

lc1 + lc2
≥ blc1

1− e−2(lc1+lc2 )l

2lc2

≥ b

2
(1− e−2l1+c2 )lc1−c2

Therefore x = Ω(lc1−c2).

Our analysis shows how our scheme can provide arbitrarily good probability for b < 1/2. Is it possible to

improve this to include values of b greater than 1/2? Also, the convergence as the topology grows is not as

fast as we could hope. The return path converges exponentially to perfect anonymity, but the layered mesh

does not, and so far we have not justified the specific choice of a mesh. Is it possible that we could design a

topology that has improved convergence time?

First, we observe that some other plausible topologies do not perform as well. For example, suppose

the user sends onions to k routers, each of which forwards it to the same next router, and then from then

on there is a path to the destination. The probability that anonymity is compromised in this situation is

b(b(1− (1− b)k + (1− b)bk)). While for small values of k and b this is a small improvement over the simple

path in onion routing, as k grows the anonymity goes to zero.

As another example, consider using a binary tree. The user sends to the leaves of the tree, each child

forwards the onion to its parent, and the parent forwards one copy of the onions it receives. Set p so that

the probability of a sent onion arriving late is arbitrarily small. There are three events at a router r that

are relevant to onion loss propagating up the tree:

Cr r is compromised.

Dr Onions from all users can be stopped from coming through r.

Er Onions from a known user can be stopped from coming through r.

Let c1(r) and c2(r) be the children of r. These events at r can be described in terms of in the same

events at its children.

Dr = Cr ∨ (Dc1(r) ∧ Dc2(r))

Er = Cr ∧ (Ec1(r) ∨ Ec2(r)) ∨ (Ec1(r) ∧ Dc2(r)) ∨ (Dc1(r) ∧ Ec2(r))

We use these descriptions to give recurrence relations for the probabilities of the events. Let r be at
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distance i from a leaf. Let Di be the probability of Dr.

D0 = b

Di = b+ (1− b)D2
i−1

Let Ei be the probability of Er.

E0 = b

Ei = bEi−1(2− Ei−1) + (1− b)Ei−1(2Di−1 − Ei−1)

= Ei−1(2b+ 2(1− b)Di−1 − Ei−1)

The probability that the adversary can block all onions going through a router is always at least b, and

increasing its height in the tree increases the probability up to a limit.

Theorem 20.

lim
i→∞

Di =


b

1−b b ≤ 1
2

1 b ≥ 1
2

Proof. Let D∗ be the fixpoint of Di.

D∗ = b+ (1− b)(D∗)2

D∗ =
1− |1− 2b|

2(1− b)

It is clear from the definition that Di is strictly increasing for b > 0. Therefore D∗ is achieved in the limit.

We can use this result to determine the limit of Ei.

Theorem 21.

lim
i→∞

Ei =


0 b ≤ 1

4

4b− 1 1
4 ≤ b ≤ 1

2

1 b ≥ 1
2

Proof. Replace Di with D∗ in the definition of Ei, and call it E
′

i . We can compute the fixpoints for E
′

i :

E
′∗ = E

′∗(2b+ 2(1− b)D∗ − E
′∗)
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E
′∗ = 2b− |1− 2b| ∨ 0

We will treat these as the fixpoints for Ei, although more careful arguments need to be made to show that

we can treat Di as its limit in this way.

Observe that when b ≤ 1/4, Ei is strictly decreasing.

2b+ 2(1− b)Di ≤ 2b+ 2(1− b)D∗ ≤ 1

Therefore, in the limit, Ei reaches the higher fixpoint for E
′∗, which in this case is E∗ = 0.

Now consider the case that 1/4 ≤ b ≤ 1/2. When Ei > 2b+ 2(1− b)D∗ − 1, Ei decreases with i. When

Ei < 2b + 2(1 − b)Di−1 − 1, Ei is increasing. Careful limiting arguments show that as Di → D∗, Ei also

approaches a limit. Because Ei increases when it is small, this limit must be the fixpoint 2b−|1−2b| = 4b−1.

Finally, let b ≥ 1/2. Ei is multiplied each step by 2b + 2(1 − b)Fi − Ei, which, in this case, approaches

2 − Ei. Therefore, for large i, Ei is increasing, unless Ei is very close to 1. However, even then Ei cannot

decrease too much. Choosing a convergent sequence of Fi yields a sequence of Ei that approaches 1.

For the adversary to link a user with his destination, the final router rf must be compromised. Also, a

signal must propagate either up the send tree or down the return path. The probability of at least one of

these compromises occuring is at most b(Eh + 1− bl). Therefore, by Theorem 21, we can push it arbitrarily

low when b ≤ 1/4 by increasing h and l.

As Theorem 21 shows, anonymity in the binary tree is not as good as it is in the layered mesh. The

following theorem shows that the layered mesh is optimal in the limit among all topologies.

Theorem 22. Let c(b) be the probability of anonymity compromise when the fraction of adversarial routers

is b. Then, if b < 1/2, c(b) < ε implies that c(1− b) > 1− b− 1−b
b ε.

Proof. Compromise happens only when the adversary controls the last router and onions from certain users

can be selectively blocked before then. Even when the adversary controls an entire path from the user to

the destination, this can be viewed as a case in which he can selectively block onions. Cycles in the topology

do not affect which onions reach the destination. Therefore we can assume that the topology is acyclic.

We assume without loss of generality that there are two users, u and v, and the adversary is trying to

block an onion from u and while at the same time allowing an onion from v. To do this, it is always an

optimal strategy for the adversary to forward only v’s onion if it can determine the source and otherwise
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block all onions. Therefore we assume the adversary implements this strategy.

Assume that the router that communicates with the destination is adversarial. Then, for a given topology,

let α be a Boolean function on the remaining router positions that indicates if that position is controlled by

the adversary or not. If anonymity is not compromised under α, there must be a set of honest routers C

such that C forms a cut between the users and destination and every router in C sends onions from u and v.

To see this consider the induced subgraph of routers that send the onion from v but not from u. It cannot

connect u and the last router or anonymity would be compromised. Therefore, there must be a set of routers

that are outgoing neighbors to this subgraph. These routers and the honest first-hop routers constitute the

desired cut.

Every router in C must have a path of honest routers from the user. Otherwise there would be a set of

adversarial routers that cut a router in C from the users, and no onions from the users would reach that

router. Now consider the assignment α = 1 − α. If α provides anonymity, then in α there must be a cut

consisting of adversarial routers such that each router has a path of adversarial routers from the users. Thus

anonymity is compromised in α.

Let c′(b) be the probability of anonymity compromise given that the final router is compromised. The

probability of assignment α with a fraction b of compromised routers is equal to the probability of assignment

α with a fraction 1 − b of compromised routers. Because the complement of an assignment providing

anonymity is an assignment the compromises anonymity, we have

1− c′(b) ≤ c′(1− b). (8.7)

c(b) = bc′(b), and, therefore, if c(b) < ε, then c′(b) < ε/b. Combining this with Inequality 8.7, we get

that c′(1− b) > 1− ε/b, which implies that c(1− b) > 1− b− 1−b
b ε..

Theorem 22 implies that if the probability of compromise for a topology goes to zero for b ∈ [0, β], then

it must go to b for b ∈ [1 − β, 1]. This is achieved by the layered-mesh topology for the largest range of b

possible, [0, 1/2).
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8.5 Extended scheme

Our functionality up to this point has been very simple - we just require one message and one response to

be delivered. This requirement is enough to evaluate current schemes and our proposals, and its simplicity

keeps the analysis simple. However, we would ultimately like to come up with protocols that are useful in

practice. Therefore, we extend the protocol so that it can be used in a real system.

In practice, users and destination often wish to send multiple messages back and forth. In particular,

it is very useful to support two-way stream communication, in which users open bidirectional connections

with destinations, and messages inserted into the connection at any time by a communication partner are

delivered to the other partner. To extend our protocol to support multiple messages, we run multiple times

the protocol for a single message and response, with two small changes.

The first change modifies how messages are sent from the users to the destination. Our model was that

a group of users all want send a single message at the same time. To extend that assumption to multiple

messages, the entire group must send the same number of messages and must send them at the same time. It

seems quite unlikely that very many uncoordinated users will happen to synchronize for very long. Therefore,

we use a padding scheme to fit the messages from a user into a pattern that is more likely to be shared

by other users. The padding scheme P is a black box that, for every time step, takes the presence of data

from the user and returns whether or not an onion should be sent. If an onion is to be sent and there is no

message from the user, then a dummy onion with garbage message content is sent.

The second change modifies how replies are sent from the destination to the user. Our assumption has

been that the destination sends at most one reply after receiving the message. Again, it is unlikely that very

many destinations send all their responses messages simultaneously. Therefore, as before, we use a padding

scheme for the return traffic. However, we cannot rely on the final router to follow this scheme because it

may be adversarial. Therefore the scheme must be determined in advance and sent to every router on the

return path. Any router on the return path can therefore fill in missing onions. Unlike traffic from the user,

filling in delayed or dropped onions works for traffic from the destination because the dummy onions get

sent all the way to the user and aren’t revealed to the final router.

Let Su be the set of users with traffic patterns that are the same and are received by the network at the

same time as the traffic pattern of user u. Our proposed protocol relies on the effectiveness of the padding

scheme. At best, it makes u indistinguishable within the set Su supplied by P.

We will simply assume the existence of a suitable padding scheme. Several padding schemes that could
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be used in our context have already been proposed [80, 34, 77, 87], and future improvements may be used

as a component of our protocol. One existing padding scheme that could be used is constant-rate padding,

in which the length of the connection is chosen in advance and onions are sent at a constant rate in each

direction for the duration of the connection. This typically causes high added latency and/or message

overhead, however. The padding scheme of Shmatikov and Wang [77] could be adapted for use in our

protocol by fixing the return scheme (perhaps by sampling in advance from the delay distribution). It is not

hard to conceive of novel padding schemes that might satisfy these requirements, although getting a good

mix of anonymity and performance does not seem easy.

8.6 Latency Measurements

Our protocol requires routers to hold messages until a specified send time. Latency between routers varies,

and therefore this send time must be set high enough to guarantee with sufficiently high probability that

it occurs after the onion actually arrives. The amount of time that onions spend being delayed before the

send time depends on the variability of latency. Because network performance is critical to realizing effective

anonymous communication [22], and we wish to evaluate the latency in our protocol.

In order to do so, we have measured latency in the Tor [23] network. Performance data in the Tor network

gives us reasonable estimates for the performance of our protocol for several reasons. First, the essential

router operation in both protocols is decrypting and forwarding onions. Second, the network is globally

distributed and therefore includes a wide variety of network and host conditions. Third, the volunteer-run

network is the most successful example of anonymous communication in practice, and it seems likely that

any future system for anonymous communication would include a volunteer component.

We can therefore estimate the added delays in our protocol by simply using the network-delay and

processing-delay distributions we observe in the Tor network. In addition, we are able to examine the data

more closely and understand the underlying factors affecting these distributions, such as Internet route

congestion, bandwidth at Tor routers, and process load at Tor routers.

8.6.1 Methodology

During each experiment, we measured the latency of Tor routers in three ways:

1. For a given router, we first opened five TCP connections in a row and measured the time between the
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TCP SYN request and the SYNACK response. This provides an estimate of the network delay. We

refer to this delay as the round-trip time (RTT ).

2. We then created a circuit from a host on the Yale network to the router and opened a TCP stream over

that circuit from the router back to the Yale host. We measured the time between sending the stream-

open request to the router and receiving the TCP connection from the router. This time includes

host-processing delay from decrypting the onion and responding to the command. We refer to this

delay as the connection delay.

3. Finally, we sent five 400-byte segments of data up the established TCP stream. The segments were sent

every 500ms in separate Tor cells (Tor’s 512-byte packets). We measured the time between sending a

given segment and receiving all 400 bytes. This time includes host processing delay from decrypting

the onion and forwarding the data. We refer to this delay as the packet delay.

We took measurements in the Tor network from March 13, 2009, to March 30, 2009. Every hour, we

downloaded the latest router directories and used them to identify routers to test during that hour. Following

the Tor-specification instruction for choosing routers, we only measured routers with the modifiers “Exit”,

“Fast”, “Running”, “Stable”, and “Valid”. The routers also had to be non-hibernating and could not have

exit policies that disallowed connections to our host IP address and port. For every router we tested during

the hour, we started an experiment after an exponentially-distributed random delay. After each experiment

finished, we started another one after another exponentially-distributed random delay. There was an average

number of five experiments per router per hour.

The Yale host was located at 192.31.236.5 and the server port we used was 80. The Tor client was a

custom client written in Java. Packet traces were recorded using tcpdump. The timestamps on these were

used to determine the timing of events during the measurement process.

8.6.2 Results

Over the course of the month, 745 routers appeared that met our selection criteria. The average number

of experiments per router was 399, the median was 89, the minimum was 1, and the maximum was 1776.

These numbers reflect the uptime of Tor routers. A histogram of the number of measurement experiments

performed on the routers is given in Figure 8.2.

We estimate network delay by looking at the round-trip time of a TCP SYN/SYNACK pair. Round-trip
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Figure 8.2: Histogram of experiments performed on routers

times for all experiments are shown in Figure 8.3. The mean of these times is 161ms and the median is

110ms. Similar to the connection delays, we see a peak bin centered at 100ms. These data are consistent

with the measurements of Mukherjee [62], which, are shown to be well-modeled by a gamma distribution.

In particular, these delays are unimodal.

A histogram of all the connection delays measured is shown in Figure 8.4(a). The top 5% of delays have

been removed to show the rest in greater detail. It shows that nearly all delays are less than 1s. Also, we

can see that the distribution is bimodal, with peaks at about 120ms and 860ms.

This pattern is present when considering the connection delays per router. We group the delays up to

1s into bins of size 20ms. Then we examine the top three most-populated bins for evidence of bimodality.

We find 100 routers for which there exist, among these three bins, both one centered below 300ms and one

centered above 700ms. The connection delays over time for a one such router - b0b3r (193.221.122.229) - is

shown in Figure 8.4(b). The clear timing stratification suggests a cause other than varying Internet-route

congestion or host-resource contention. Furthermore, the RTTs are unimodal, and so the cause is likely to

be in the Tor routers. We believe that this is due to read/write rate-limiting that Tor servers manage by

periodically filling global token buckets.

We can combine the RTT and connection delay measurements to estimate the distribution of host pro-

cessing delays. For each router, we estimate the RTT and connection-delay distributions by partitioning

delay times from 0 to 1000ms into 50 bins and treating the normalized frequency counts as probabilities.
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Figure 8.3: Round-trip times (top 1% removed)

The connection delay is the sum of the RTT and the processing delay, and therefore, if we assume inde-

pendence of the RTT and processing-delay distributions, we can derive the processing delay distribution for

each router. Considering the resulting distribution over all routers, as shown in Figure 8.5, there is almost

a 40% probability of having a processing delay of nearly zero. Thus processing delays are not due to the

inherent cost of computation but to limited resources at the routers.

The delays of all 400-byte packets that were successfully forwarded is shown in Figure 8.6(a). We again

see times that cluster around certain levels. Here, there are six obvious levels, approximately centered at

125ms, 860ms, 1350ms, 1840ms, 2330ms, and 2820ms. To examine any such clustering per router, we group

the packet delays for each router by 20ms intervals from 0-5000ms and look at the largest six such groups.

There are 136 routers with two groups of these six within 100ms of the observed cluster peaks. There are 14

routers with three such groups. The delay time-series of the router b0b3r (193.221.122.229), which exhibits

clustering, is shown in Figure 8.6(b). We can see that the different levels are interleaved. Thus phenomenon

is undoubtedly due to the same mechanism underlying the similar pattern in connection delays.

From the delay measurements we can estimate the added delay that would have resulted from our protocol.

The protocol chooses a time t that must elapse from the time the packet is originally sent before the packet

is forwarded. It is set such that with some success probability p the packet arrives at the forwarding router

in less than t time. In our data, we examine the tradeoff that varying t sets up between the fraction p of

packets that arrive in time and the forwarding delay that gets added to them.
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(a) All delays (top 5% removed) (b) Delays for router b0b3r

Figure 8.4: Connection delays

We divide the delay measurements by router and into periods of 6 hours. This period length is large

enough to have an expected 30 experiments per period per router but is still short enough to adjust for

the changes in average delay that occurs in many routers over time. Within each period, to achieve success

probability p we set the send time t to be the smallest value that is larger than at least a fraction p of delays.

For those delays smaller than t, using the send time t adds some delay. We look at the relative increase,

that is, the total new delay divided by the original delay.

The distribution over all successfully-opened streams of relative connection delays to achieve a success

probability of 0.95 is shown in Figure 8.7(a). At the 50th percentile, the relative connection delay is less

than 1.48. We also must consider the failure rate of opened streams. We could simply consider failures to be

connection with infinite delay, but failures often occur for reasons that have nothing to do with congestion.

Therefore it is useful to keep them separate. These failures occur after a Tor circuit has been successfully

created with the destination router. It thus seems unlikely that most of these failures are due to resource

constraints. The distribution of connection failures over all periods is shown in Figure 8.7(b). At the 50th

percentile, the failure rate is less than 0.005.

The data for relative packet delays appears in Figure 8.8(a). At the 50th percentile, the relative packet

delay is just over 2.95. We also considered the distribution over periods of failure rates for forwarding packets,

shown in Figure 8.8(b). The rate stays below 0.005 until the 99th percentile. The reason for this is that

packet sends are not even attempted when the connection fails. It shows that once a router successfully

opens a connection, it is quite likely to successfully forward all the data that it receives.
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Figure 8.5: Processing distribution

(a) Packet delays (top 1% removed) (b) Packet delays for router b0b3r

Figure 8.6: Packet delays
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(a) Relative delays at p=0.95 (b) Failures

Figure 8.7: Connection delays and failures

(a) Relative delays at p=0.95 (b) Failures

Figure 8.8: Packet delays and failures
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Chapter 9

Conclusion and Future Work

We have been motivated by a gap between provably and highly-anonymous communication protocols such as

Dining Cryptographers networks and practical protocols such as Crowds. Onion routing, in particular, has

been intriguing because of its popularity, our incomplete understanding of its properties, and its potential

as a base for designing new protocols. In our attempt to analyze and improve upon it, rather than focus on

developing a set of tools and applying them to a set of technically-similar problems, we chose to follow the

topic from basic modeling and low-level analysis to new designs and network measurement.

Our models borrow heavily from existing literature, but do adhere to a standard of fully specifying all

components - the users, the network, the adversary, and the criteria for evaluation. They include several

features that we hope to see developed in future work on anonymous communication. One such feature is a

precise user model. Our user model, in which the population comes together at once to choose destinations

probabilistically and send messages to them, is incomplete in many ways. However, it shows that the

performance of anonymous communication networks depends closely on the behavior of users. This is in

contrast to traditional cryptographic operations in which the adversary is the main actor. How many users

there are, how active they are, and how they relate to each other is an important component of anonymous

communication. Another feature is the local, active adversary model. This model certainly does not capture

everything an adversary might plausibly do - for example, he might also add congestion into the network

or move around during protocol operation. However, the local, active adversary is realistic enough that

restricting ourselves to his behavior has and may continue to give insight into ways to protect against his

actions. A third key feature is the use of a precise probabilistic anonymity metric with which to perform
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analysis. Although much has already been written about different metrics, their relationship to one another

is not well-understood, and there does not seem to be consensus on their appropriateness for mathematical

analysis. We have seen the value of such precise definitions, though. In our probabilistic analysis of onion

routing, for example, we prove upper and lower bounds on user anonymity and isolate the effect of users on

each other’s anonymity. Finally, we explicitly consider latency and message complexity as important criteria

for protocol design.

We analyze the anonymity of onion routing possibilistically at a low level and the probabilistically at a

higher level. Our analysis of onion routing is unsurprising in many ways. The possibilistic analysis shows

that the adversary could only determine those parts of the circuit he directly observes. The probabilistic

analysis shows that, in at least one typical case, the dominating weakness in anonymity is the chance that

the adversary controls the first and last routers on a circuit. However, these calculations can be surprisingly

intricate, and by following a formal model and definitions, we were forced to consider the implications of the

behavior of the population on the individual.

We develop two proposals for improved efficient anonymous communication. The first considers using

trust to improve onion routing, and it uncovers a key tension between working with trusted components and

presenting a moving target to the adversary. The second considers the careful use of redundancy and the

explicit timing of events to defeat the first/last correlation attack and achieve anonymity below the barrier

faced by onion routing. At the same time, the protocol achieves reasonable efficiency. To evaluate this last

point, we performed several weeks of measurement on Tor, possibly the largest anonymous-communication

network publicly available. While the protocol design isn’t mature enough for implementation and testing,

the results of the study show that it has promise as a practical tool. Both new protocols offer perhaps the

most potential for future work.

There are several interesting and important questions on trust to examine: What happens when a network

is shared between entities that do not share trust levels placed on the nodes? What is the impact of trust

on profiling in this case? What is the effect of learning if we add time to the model and allow the adversary

to rove rather than conducting a one-off attack?

Though our motivation in our trust model is onion routing, our analysis applies to any network where it

would be beneficial to reduce the chance of circuit-endpoint threats by choosing circuits with less vulnerable

endpoints. It clearly generalizes to other low-latency anonymity designs, such as Crowds [68]. It also

applies beyond networks for anonymity to other concerns. For example, network endpoints may be able
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to collaborate to cover up checksum or other errors that might flag data-integrity attacks. And, capturing

internet traffic for any kind of analysis (cryptanalysis, textual analysis, traffic analysis, etc.) may be easier to

do or harder to detect or both if pairs of nodes are collaborating for route capture. Alternatively they might

collaborate for unfair resource sharing. Similar observations apply to ad-hoc and peer-to-peer networks and

to sensor networks, for which vulnerability of cheap, low-power, and physically accessible nodes is a known

concern. Going further, our results are not restricted in applicability to path endpoints. In any setting in

which sets of principals can collaborate so that a successfully compromised pair can conduct an attack our

results are potentially applicable. Examining larger numbers of nodes being attacked than just pairs is one

possible generalization of this work that should apply in many settings.

The protocol described in Chapter 8 would benefit from some developments that have to potential to

make it truly useful and effective.

Foremost among these is to design and evaluate a usable padding scheme. We would like it to provide

large anonymity sets and low overhead. It should also allow the return padding scheme to be predetermined.

It could be possible to weaken the total predictability of return traffic by allowing the user to send updates

of the return padding scheme to the return path. One would have to be careful to maintain a large set of

other users providing the same updates, however.

Also, we have avoided for now optimizing the efficiency of processing at the routers. Onion routing, in

particular, has developed good techniques to make this aspect of the protocol fast. For example, we could

use persistant circuits to speed up detecting duplicate packets. We could also switch to private keys to speed

up decryption.

Our analysis could be improved in some areas as well. First, we have considered benign link delays to

be failures to evaluate their effect on anonymity. However, the protocol calls for such late arrivals to be

immediately forwarded. The result of such forwarding seems likely to, at some point, lead to the packet

catching up to one of its send times. Understanding this process better could improve the expected anonymity

of the protocol. Also, we have observed that most of the delays measured appear to be due to congestion

at the router. Tor is not optimized for latency, and therefore we should seek to understand the underlying

resource issues in such network to accurately determine the added latencies of our protocol.
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[3] Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis attacks and trade-offs in anonymity providing

systems. In Proceedings of Information Hiding Workshop (IH 2001), pages 245–257, 2001.

[4] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Low-resource

routing attacks against tor. In Ting Yu, editor, WPES’07: Proceedings of the Workshop on Privacy in

the Electronic Society, pages 11–20. ACM Press, October 2007.

[5] Oliver Berthold, Hannes Federrath, and Marit Köhntopp. Project anonymity and unobservability in
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