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Abstract—Various cryptographic puzzle schemes are pro-
posed as a defense mechanism against denial of service attack.
But, all these puzzle schemes face a dilemma when there is a
large disparity between the computational power of attackers
and legitimate clients: increasing the difficulty of puzzles might
unnecessarily restrict legitimate clients too much, and lower
difficulty puzzles cannot sufficiently block attackers with large
computational resources. In this paper, we introduce guided
tour puzzle', a novel puzzle scheme that is not affected by
such resource disparity. A guided tour puzzle requires a client
to visit a predefined set of nodes, called tour guides, in a
certain sequential order to retrieve an n-piece answer, one
piece from each tour guide that appears in the tour. This puzzle
solving process is non-parallelizable, thus cheating by trying to
solve the puzzle in parallel is not possible. Guided tour puzzle
not only achieves all previously defined desired properties
of a cryptographic puzzle scheme, but it also satisfies more
important requirements, such as puzzle fairness and minimum
interference, that we identified. The number of tour guides
required by the scheme can be as few as two, and this extra
cost can be amortized by sharing the same set of tour guides
among multiple servers.

I. INTRODUCTION

A denial of service (DoS) or a distributed denial of
service (DDoS) attack is an attempt by malicious parties
to prevent legitimate users from accessing a service, usually
by depleting the resources of the server which hosts that
service and making the service unavailable to legitimate
users. The targeted resource of the attack can be bandwidth,
CPU, memory, disk capacity, or combination of the above.
In many cases, denial of service attacks are easy to mount
in that the server commits significant amount of resources
to process a request which consumes very few resources to
generate by a client.

Cryptographic puzzles are proposed to defend against
such denial of service attacks by better balancing the compu-
tational load of client and server. In a cryptographic puzzle
scheme, a client is required to solve a cryptographic puzzle
and submit the puzzle solution as proof of work before the
server commits substantial resources to its request. A cryp-
tographic puzzle is a computational problem whose solution

11t is called guided tour puzzle because completing a guided tour is like
solving a maze (a tour puzzle) to a malicious client that does not follow
the rules of the puzzle scheme.

requires moderate amount of cryptographic operations from
the solver, and the amount of work required is guaranteed by
the security of both the puzzle construction method and the
cryptographic algorithm used. In most puzzle schemes, each
puzzle requires an approximately fixed number of crypto-
graphic operations, such as hashing, modular multiplication,
or modular exponentiation, to compute the puzzle solution.
Thus, the more an attacker wants to overwhelm the server,
the more puzzles she has to compute, consequently the more
computational resources of her own she needs to consume.
The construction and verification of the puzzle are designed
to be very efficient to avoid DoS on the puzzle scheme itself.

Since first introduced by Dwork and Naor in [1] to combat
junk e-mails, cryptographic puzzles are extended to defeat
various attacks such as denial of service, Sybil attacks etc.
Moreover, new ways of constructing and distributing puzzles
are introduced one after another. But none of the proposed
schemes so far tried to solve what we call the resource
disparity problem. A resource disparity problem in puzzle
schemes appear when there exists a large disparity between
the computational power of attackers and legitimate clients,
significantly reducing the effectiveness of cryptographic
puzzles against DoS attacks. We use an example of the most
commonly used puzzle, hash-reversal puzzle, to explain the
problem.

In a hash reversal puzzle, such as [2][3][4][5][6], a puzzle
with difficulty d takes on average 2%~' hash operations to
compute its solution. Say a server can handle 1000 requests
per second, and a subset of clients have limited resources,
and can perform 10° hash operations per second at maxi-
mum. Assuming these clients can spend at most 50% of their
computational power on computing puzzles, then the server
should allow at least % ~ 20 seconds between sending
a puzzle and receiving its solution, for a hash-reversal puzzle
with difficulty d = 21. An attacker with an ASIC designed
for hash computation can perform 10° hash operations per
second [7], so she can compute 2397?89 = 20,000 puzzles
with the same difficulty during that 20-second period. This
means an attacker with just one such ASIC component can
easily overwhelm the server. For more powerful servers, an
attacker can still launch successful denial of service attack
using multiple such dedicated devices.




The server can try to further block such attackers by
increasing the difficulty of the puzzle, for example setting
d = 30, but that will restrict the legitimate clients too much.
Making it worse, some clients with limited computational
power might never be able to solve the puzzle on time,
hence never being able to get service. In fact, the server
should not even expect a client to make 50% of its com-
putational power available for puzzle computation, since a
client should use majority of its resources on normal user
operations. Thus, even assuming the ratio of computational
powers of legitimate clients and malicious clients is a small
number, such as 40 [8], the disparity between their available
computational power is amplified to a far bigger number due
to the fact that only a limited percentage of the resources
are available for puzzle computation at legitimate clients
whereas malicious clients can try to make the most of their
already strong computational power.

In this paper, we introduce a novel puzzle scheme, called
guided tour puzzle, that is not affected by the resource
disparity problem. We use the network round-trip delay as
the unit work in the puzzle solving process, and require a
client to complete a guided tour by visiting a predefined set
of nodes, called four guides, in a certain sequential visiting
order. Contribution of our work is the following:

o We study the state of the art in the cryptographic puz-
zles, and identify a comprehensive list of requirements
that a puzzle scheme should satisfy.

o We further extend this list by defining two highly
desired properties of a puzzle scheme that have not
been considered by previous works.

e« We explore a novel approach to designing crypto-
graphic puzzles by introducing guided tour puzzle.
Through analysis and experiments, we show that guided
tour puzzle achieves the desirable properties of a good
puzzle scheme. In particular, we show how guided tour
puzzle achieves puzzle fairness and minimum interfer-
ence properties, and why achieving them is essential
to the effectiveness of a puzzle scheme in preventing
denial of service attacks.

o We also provide a comprehensive survey of various
cryptographic puzzle schemes.

The rest of the paper is organized as follows. Section II
discusses a comprehensive set of requirements of a puzzle
scheme. Section III defines design goals of guided tour
puzzle and assumed threat model, followed by a formal
introduction of basic guided tour puzzle. Several improve-
ments to the basic scheme is proposed in Section IV. In
Section V, we use analysis and measurement techniques to
show that guided tour puzzle satisfies our requirements and
design goals. Section VI provides an overview of the related
work in cryptographic puzzle area, and we discuss future
improvements to our scheme and give a conclusion of the
paper in Section VIIL.

II. DESIRED PROPERTIES

Various cryptographic puzzle schemes are proposed so
far, each focusing only on a subset of requirements for
cryptographic puzzles. We made an endeavor to provide
a more comprehensive list of requirements that a crypto-
graphic puzzle scheme should satisfy.

A. General Properties

We use general properties to refer to puzzle properties
that are discussed to some extent in the existing literature.

Computation guarantee. The computation guarantee
means a cryptographic puzzle guarantees a lower and upper
bound on the number of cryptographic operations spent on
a client to find the puzzle answer. In other words, a mali-
cious client should not be able to solve a puzzle spending
significantly less number of operations than required.

Efficiency. The construction, distribution and verification
of a puzzle by the server should be efficient, in terms
of CPU, memory, bandwidth, hard disk etc. Specifically,
puzzle construction, distribution and verification should add
minimal overhead to the server to prevent the puzzle scheme
from becoming an avenue for denying service [3].

Adjustability of difficulty. This property is also referred
to as puzzle granularity [9]. Adjustability of puzzle difficulty
means the cost of solving the puzzle can be increased or
decreased in fine granularity. Adjustability of difficulty is
important, because finer adjustability enables the server to
achieve better trade-off between blocking attackers and the
service degradation of legitimate clients.

Correlation-free. A puzzle is considered correlation-free
if knowing the solutions to all previous puzzles seen by
a client does not make solving a new puzzle any easy.
Apparently, if a puzzle is not correlation-free, then it allows
malicious clients to solve puzzles faster by correlating
previous answers.

Stateless. A puzzle is said to be stateless if it requires the
server to store no client information or puzzle-related data
in order to verify puzzle solutions. Requiring the server to
use a small and fixed memory for storing such information
is also acceptable in most cases.

Tamper-resistance. A puzzle scheme should limit replay
attacks over time and space. Puzzle solutions should not be
valid indefinitely and should not be usable by other clients
[3].

Non-parallelizability. Non-parallelizability means the
puzzle solution cannot be computed in parallel using mul-
tiple machines [9]. Non-parallelizable puzzles can prevent
attackers from distributing computation of a puzzle solution
to a group of machines to obtain the solution quicker.

B. Puzzle Fairness and Minimum Interference

Puzzle fairness and minimum interference are two very
important properties that are little discussed and not ad-
dressed by previous schemes.



Puzzle fairness. Puzzle fairness means a puzzle should
take same amount of time for all clients to compute, re-
gardless of their CPU power, memory size, and bandwidth.
If a puzzle can achieve fairness, then a powerful DoS
attacker can effectively be reduced to a legitimate client. Not
being able to achieve fairness leads to the resource disparity
problem we mentioned earlier.

Minimum interference. This property requires that puz-
zle computation at the client should not interfere with
user’s normal operations. If a puzzle scheme takes up too
much resources and interfere with users’ normal computing
activity, users might disable the puzzle scheme or even try to
avoid using any service that deploys such a puzzle scheme.

III. GUIDED TOUR PUZZLE

In this section, we first describe our goals in designing
guided tour puzzle, and introduce a threat model that is
stronger than a model assumed by previous puzzle schemes.
Next, we present a basic version of the guided tour puzzle.

A. Design Goals

Although we introduce guided tour puzzle in a denial
of service prevention setting, we expect tour puzzles to be
used to defend against various attacks such as e-mail spams,
Sybil attacks etc. With this in mind, guided tour puzzle
aims to achieve all the desired properties of cryptographic
puzzles introduced in Section II. Among those properties,
puzzle fairness and minimum interference are not addressed
by any previous puzzle scheme, and are our main goals in
designing guided tour puzzle. Moreover, guided tour puzzle
strives to achieve better effectiveness against both DoS and
DDoS attacks.

B. Threat Model

Our threat model assumes a stronger attacker than all
previous schemes. First we assume an attacker can have best
commercially available hardware and bandwidth resources.
Meanwhile, attacker can coordinate all of her available
computation resources perfectly so as to take maximum
advantage of the resources. Next, attacker can eavesdrop
on all messages sent between a server and any legitimate
client. We assume that attacker can modify only a limited
number of clients’ messages that are sent to the server. This
assumption is reasonable since if an attacker can modify all
clients” messages, then she can launch DoS much easily just
by dropping all messages sent by all clients to the server.

Attacker can attack any part of the puzzle scheme,
whether it is puzzle construction, puzzle distribution, or
puzzle verification. Attacker can try to launch denial of
service attack on new components that introduced by our
puzzle scheme. Attacker may also attempt to solve puzzles
faster than legitimate clients using various methods, such as
guessing, correlating previous puzzle answers etc.

C. Basic Scheme

We consider an Internet-scale distributed system of clients
and servers. Attacker is a malicious entity whose aim is to
prevent legitimate clients from receiving service of a server.
A server operates as a standard server if it is not under attack.
When the server suspects it is under attack or its load is
above certain threshold, it replies to all client requests with a
‘service restricted’ message, indicating that a puzzle needs to
be solved in order to receive service. A client then completes
a tour puzzle by visiting a set of special nodes called four
guides, in a certain sequential order. Nodes within or outside
of a server’s domain can assume the role of tour guides. A
single tour guide might appear multiple times during a tour,
so a stop is used to represent a single appearance of a tour
guide in a tour.

A client computes the index of the tour guide at the first
stop using a hash value inside the server’s ‘service restricted’
message, and it can lookup the address of the tour guide at
the first stop, or any other tour guide for that matter, from
a mapping of indices to tour guide address. Then starting
from the first stop, the client contacts each stop and receives
a reply message each containing a unique hash value. The
hash value in the reply message from previous stop is used
for computing the index of the next stop tour guide, and also
sent to the next stop as one of the inputs to the calculation
of the next hash value. Reply message from the tour guide at
the last stop contains a hash value, which will be sent to the
server as puzzle answer. The server grants the client service
if the answer is valid. The rest of the section describes
guided tour puzzle in more detail using formal notations.

First, we set up N tour guides in the system, where N
must be at least two. The server establishes a shared secret
k;s with each tour guide G; using a secure channel, where
0 < j < N. The server also generates a short-lived secret
key K, for calculating the first hash value returned to a
client in a tour. The difficulty of a puzzle is controlled by
the tour length L in the guided tour puzzle. Figure 1 shows
an example of a guided tour when N =2 and L = 5.
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Figure 1. Example of a guided tour when N = 2 and L = 5. The order
of the tour is: G1—Go—G1—G1—Go.

Notations we used for describing guided tour puzzle is
summarized in Table 1.
1) Operation at the server:
o When the server receives a request from client x
without a puzzle answer attached, it replies with a 2-



Table I
NOTATIONS USED IN DESCRIBING GUIDED TOUR PUZZLE SCHEME.

Ay Address of client x
G, j-th tour guide, where 0 < j < N

N Number of tour guides in the system
kjs Shared key between the server and j-th tour guide
K Secret key only known to the server

S Index of the tour guide at the [-th stop, where 0 < I < L
L Length of a guided tour

ts Timestamp

A cryptographic hash function

B Size of a hash digest in bits

tuple (hg, L) as a puzzle. The server computes hash
value hgy by

ho = hash(Ag||L||ts||Ks) (1)

where, || means concatenation, A, is the address (or
any unique value) of the client x, ¢s is a coarse times-
tamp, and hash is a cryptographic hash function such
as SHA-1 [10]. The granularity of ¢ts can be decided
based on the minimum time it takes to complete the
tour on average.

« When the server receives a request from client x with
a puzzle answer (hg, hr) attached, it first checks to see
if ho sent by the client is equal to the hy computed
using formula (1). If so, the server further verifies h
by computing A, using formula (2). Since the server
has shared keys ki, kos, ..., kns, it can compute the
chain of hashes without contacting any tour guide.

2) Operation at a tour guide: When a tour guide G
receives a 3-tuple (h;, [ + 1, L) from a client z, it replies
with a hash value h;;; which is computed by

hiy1 = hash(hi||l + 1||L|| Az ||ts||k;s) 2)

where, [ + 1 means the tour guide G; is at the (I + 1)-th
stop of the client’s tour, and 0 <[ < L.
3) Operation at a client:

o When client x receives a 2-tuple (hg, L) from the server
as a reply to its service request, the client understands
it has to finish a length L guided tour before it can
receive service. So, client starts its tour by computing
S1, the index of the first tour guide in the tour, using
formula (3). The client then sends a 3-tuple (hg, 1, L)
to the tour guide G'g,.

e When client x receives a hash value h; from a tour
guide during its tour, it computes the index of the next
tour guide S;11 by

Sl+1 = (hl mod N) (3)

The client then sends a 3-tuple (h;, [+ 1, L) to the tour
guide G, ;.

e« When client = receives hash value Ay from the tour
guide at the last stop of the tour, it re-sends its original

service request together with the puzzle answer (hg,
hp) to the server. The client receives service after its
puzzle answer verified by the server.

Each hash value in a tour puzzle is computed using the
previous hash value as one of its inputs. A client is forced to
wait until it receives h; from the [-th stop before it can ask
(I 4+ 1)-th stop to send h;y;1. Thus the main time consumed
at the client is the round-trip delay, and the time spend at
the client for calculating the next stop is trivial.

Next, we present a few improvements to the basic scheme
we just introduced.

IV. IMPROVEMENTS TO THE BASIC SCHEME

Although our basic scheme already has many advantages
over existing puzzle schemes, there is still room for much
improvement. In this section, we first improve the fault-
tolerance and robustness of tour guides. Then, we modify the
puzzle verification at the server to increase its verification
efficiency.

A. Tour Guides

In the guided tour puzzle scheme, we introduced multiple
tour guides to share the server’s workload of managing
puzzles. An attacker might adopt her strategy and attack one
of the tour guides, and indirectly launch DoS attack on the
server. Moreover, in the basic scheme, the failure of a single
tour guide affects many clients in the system. Specifically,
the probability of a failed tour guide never appearing in a
single tour is (%)L, assuming that a tour guide appearing
at the stop ¢ and stop j are independent events for any
1 < L,j < L and i # j. The probability of none of the
M tours include the failed tour guide is (22)M>*L, which
is a very small number for a large value of M and L.

We propose two improvements to the basic scheme in
order to achieve better fault-tolerance as well as robustness
against DoS on the tour guides.

1) Two operation modes of tour guides: This improve-
ment defines each tour guide to operate in two different
modes: active and tarpit. When a tour guide is in active
mode, it behaves the same as in the basic scheme with slight
difference. However, when a tour guide is in tarpit mode, it
prevents a malicious client from completing any tour and
directs the malicious client to other tarpit tour guides to
keep it busy. A tour guide considers a client malicious if
the client contacts it during its tarpit mode period, since an
honest client who is following the exact guidance of active
tour guides will never be directed to a tarpit tour guide.

We divide the time into smaller time periods of length ¢,
where t is on the order of several minutes, and use 7; to
denote the i-th time period. All tour guides share a common
secret k. with the server. The server or any tour guide can
compute the mode ag; of a tour guide G for the time period
T, by

ag; = LSBlhash(j||Ti||kes)] (G))



where, j is the index of the tour guide G;, LSB][-| means
the least significant bit. This state information can be stored
in an array TG S[], where TGS[j] = ag,. As we can see,
ag; takes a value of 0 or 1, where O denotes a tarpit mode
and 1 denotes an active mode. Since lower bits of output of
a secure hash function is uniformly distributed [11], we can
be certain that on average 50% of the tour guides will be in
active mode, while the remaining half is in the tarpit mode.

The operation on a client is essentially the same as in
the basic scheme, except now the client does not have to
compute the index of next tour guide since it will be given
in the reply message from the previous tour guide. Only the
operations on the server and tour guides that are different
from the ones in the basic scheme are described in the
following.

Operation on the server: When the server receives a
request from client  without a puzzle answer attached, it
replies with a 3-tuple (hg, L, S1), where S; is computed
using the function introduced next.

Operation on a tour guide: When a tour guide Gj;
receives a 3-tuple (h;, [ + 1, L) from a client z, there are
two cases depending on the current mode of G .

o TGS[j] = 1 (active). The tour guide replies with a
2-tuple (hyjy1, Sit1), where the index S;y; can be
computed using the simple function given below:

d <= hl+1 mod N

while TGS[d] # 1 do
d<=d+1

end while

Sl+1 <=d

e TGS[j] = 0 (tarpit). The tour guide replies with a 2-
tuple (r, SZH), where 7 is a B bit random number, SlJrl
is computed in the exact opposite way of computing
Si+1. That is, instead of finding the index of next active
tour guide, it finds the index of next tarpit.

The rationale behind adopting a tarpit mode for tour guide
is as follows. Attacking a tarpit tour guide does not have any
effect on legitimate clients, since legitimate clients will never
visit a tarpit tour guide. A better strategy for the attacker is
to figure out the tour guides in active mode during each time
period, and only attack these active guides. In order to do
that, an attacker has to follow the exact guidance of the tour
guides to finish multiple tours during each T, since one tour
might not include all active tour guides for that time period.
Therefore, by the time the attacker figures out all active tour
guides by completing one or multiple tours, an active tour
guide will most likely switch into tarpit mode.

2) Puzzle construction at the server: We can further
improve the fault-tolerance of tour guides by allowing a
client to contribute some randomness to the computation
of the hash value hg in formula (1). The client x sends a
randomly generated nounce 7, to the server, and the server

will compute hg using the new formula
ho = hash(n||Az||L||ts|| Ks) (5)

By sending different n,, client x can affect the value
ho, consequently affecting the entire tour in an ‘uncertain’
manner. Here, ‘uncertain’ means that client x can experience
different guided tour by sending different n,, but it cannot
decide which tour guides will be in the tour and in what
order. The benefit of adopting such a modification is that a
client can try to avoid the failing tour guide by changing
n, and trying to have different tour. The client sends n, to
the server as part of the puzzle answer at the end, hence the
server does not have to remember it.

B. Puzzle Verification at the Server

We can improve the efficiency of the puzzle answer
verification at the server by letting the server to pre-compute
puzzle answers during idle CPU cycles, and store the answer
in a bloom filter [12] indexed by A,. To avoid an attacker
launch memory exhaustion attack on the server, we can use
a fixed-size bloom filter. Using a 0.1% false positive bloom
filter that uses 14.4 bits to store an element, we can store
more than 22;58 = 219 puzzle answers in a IMB bloom
filter. Now the verification of puzzle answer takes only a
single memory lookup.

V. ANALYSIS

In this section we use analytical reasoning and experiment
results to show how guided tour puzzle can meet our
proposed design goals.

A. General Puzzle Properties

For each property, we briefly explain how that property
is achieved in guided tour puzzle.

Computation guarantee. Each client is required to com-
pute L modulo operation in order to find out the next tour
guide in a tour. Since this operation is the easiest way to find
the right tour guides, there is no other way that takes lesser
number of operations, achieving computation guarantee for
all clients.

Efficiency. In guided tour puzzle, construction of a puzzle
takes only a single hash operation to compute hg at the
server, and verification of a puzzle answer takes one memory
lookup in the improved scheme. Transferring of puzzle from
server to the client requires B/8 plus few extra bytes, where
B is usually 160 ~ 256 bits.

Adjustability of difficulty. The difficulty of a tour puzzle
is adjusted by adjusting the tour length L, which can
be increased or decreased by one. Therefore, guided tour
puzzles provide linear adjustability of difficulty.

Correlation-free. Guided tour puzzles are correlation-
free, because knowing all previous puzzle answer does not
help solve the current puzzle in any way. This property is
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Figure 2. The tour delays of clients. (a) Example of tour delay at a single point in time (20:11:26 on May 23, 2009), the number of tour guides N = 4.

(b) Average tour delay of all client nodes for two-week period when N = 4.

provided by the security of the one-way hash chain we used
in guided tour puzzle.

Stateless. Guided tour puzzle does not require the server
to store any client or puzzle related information, except
for the cryptographic keys that are used for the hash cal-
culation. Puzzle answer verification using memory lookup
does require few megabytes of memory space in total, but it
is negligible considering the large memory size of modern
Servers.

Tamper-resistance. The coarse timestamp used in the
computation of each h; guarantees a limited validity period
of a puzzle answer. Meanwhile, the puzzle answer computed
by one client cannot be used by any other client, since a
value unique to each client is included in the computation
of each h;.

Non-parallelizability. Guided tour puzzle cannot be com-
puted in parallel. An attacker with N malicious clients can
assign each client to contact one tour guide, and try to com-
pute the puzzle answer in parallel. But each malicious client
has to first get a h; from the tour guide it is responsible for,
and sends it to the next malicious client that is responsible
for the next tour guide in the tour. Thus even with multiple
malicious clients, attacker still has to compute the puzzle
answer sequentially.

B. Achieving Puzzle Fairness

In guided tour puzzle, the time delay enforced on a client
mainly comes from the round trip to multiple tour guides.
The advantage of this is that nobody, not even a powerful
attacker, can control the round trip delay occurred in an
Internet-scale distributed system. Due to the variation in the
round trip delay across multiple clients, it is possible that
the sum of round trip delays, which we will refer to as
tour delay from now on, experienced by an attacker is much

smaller than by a legitimate client for a single tour. However,
it can also be the opposite. Meanwhile, the variation in
average tour delay across multiple clients is within a small
factor as shown next by the experiment results. Although
a small variation in the tour delay is inevitable, it cannot
be effectively manipulated by an attacker to achieve unfair
advantage over legitimate clients, regardless of attacker’s
CPU, memory, or bandwidth advantage. Therefore, guided
tour puzzle achieves a fairness that is far better than any
existing puzzle scheme can.

An attacker can try to minimize the puzzle solving time
by using multiple malicious clients, where each malicious
client is responsible for contacting the tour guide closest to
it. But this kind of attacker actually cannot gain significant
advantage over a legitimate client, because each malicious
client has to wait one round-trip time to get the reply of the
tour guide it is closest to, and figure out the index of the
next tour guide, then spend another half a round trip delay
to send this information to the malicious client closest to
the next tour guide. Furthermore, the extra one-way delay
is likely to be large, because the next tour guide is more
likely to be far from the previous malicious client due to
the ‘greedy’ positioning of malicious clients.

Next, we use experiment results to show that the variation
in the tour delays across multiple clients is within a small
factor for a large-scale distributed system like Internet. This
variation should not be confused with the delay variation
across multiple round trips for a fixed sender-receiver pair.

We used measurement data from PlanetLab Scalable
Sensing Service (S3) [13] that are collected over two-
week period. PlanetLab has a collection of over 1000 nodes
distributed across the globe, and provides a realistic network
testbed that experiences congestion, failures, and diverse link
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Figure 3. (a), (b) Average tour delay of all clients when the number of tour guides NV = 8 and N = 12 respectively. (c) Probability density of tour delay

(unit: millisecond) when N = 4 and tour length L = 10. (d) Q-Q plot of tour delay against normal distribution when N = 4, L = 10.

behaviors [14]. S2 provides end-to-end latency data for all
pairs of nodes in PlanetLab. About half of all the PlanetLab
nodes have latency data available throughout the two weeks
we collected data, so our experiments use these nodes only.

We choose 20 PlanetLab nodes at maximum as tour
guides, based on the better connectivity of these nodes to
all other PlanetLab nodes, and do not try to optimally pick
them to achieve the least delay variation. The remaining
PlanetLab nodes are treated as client nodes. The number of
tour guides N is varied from 4 to 20, and the tour length L
is varied from 2 to 18. For each (N, L) pair, we compute
guided tours using formula (1) and (2) for all client nodes,
and compute a tour delay for each tour based on the collected
data. As an example of tour delay at a single point in time,

Figure 2a shows the tour delays of all client nodes for the
setting N = 4 and L = 4,6,8,10,12 on May 23, 2009.
For this particular data, the ratio of tour delays of the client
with the most delay and the client with the least delay is 13,
when the 4% clients nodes with exceptionally large delays
are excluded.

To give a better idea of how the tour delay vary across
clients on average, we averaged tour delays of all clients
over two-week period. To find the average tour delay of a
client for a specific (INV, L) setting, all tour delays of the
client for that (N, L) during the two-week period are taken
average. Then, the average tour delays are sorted from the
least to the most, in order to provide a better view of delay
variation across all clients. Figure 2b and Figure 3a and 3b



shows the average tour delays computed using this method
for all client nodes when N=4, 8, 12. Results for other
values of N are skipped due to space limitation, but they are
very similar to the results shown here. When excluding 5%
client nodes with exceptionally large delays, the ratio of tour
delays of the client with the most delay and the client with
the least delay is around 5. This disparity is several orders
of magnitude smaller when compared to the disparity in
available computational power (which can be in thousands).
Figure 3c and 3d shows that majority of tour delays are
clustered within a tight area of delay and the distribution of
tour delays closely simulates a normal distribution. Overall,
experiment results strongly supported our claim about the
fairness of guided tour puzzle.

C. Achieving Minimum Interference

In guided tour puzzle scheme, a client has to perform
two types of operations: modulo operations for computing
the index of the next tour guide, and sending packets to tour
guides. To complete a guided tour puzzle with length L, a
client only needs to perform L modulo operations plus send
and receive a total of 2 x L packets with about 20~32 bytes
of data payload, where L is usually a small number below
30. This creates negligible CPU and bandwidth overhead
even for small devices such as PDAs or cell phones.

D. Effectiveness Against DoS and DDoS

We now analyze the effectiveness of guided tour puzzle
against DoS and DDoS attacks. Since guided tour puzzle
can be used independently or in combination with other
mechanisms to prevent denial of service attacks at the var-
ious levels of the network, we do not discuss our scheme’s
denial of service capability in terms of a specific layer of the
network. One might argue that the bandwidth available to the
server can be flooded, making the server unable to use the
protection provided by puzzles. We believe that deploying
capability-based denial of service prevention schemes [15]
[16] in conjunction with guided tour puzzle can prevent such
flooding attacks.

1) DoS Attack: If an attacker with single malicious client
launches denial of service attack on the server, guided tour
puzzle can easily prevent the attack regardless of attacker
is spoofing a single or multiple addresses. As with other
cryptographic puzzle schemes, guided tour puzzle imposes
a commitment on a client before granting service, and
effectively controls the request arrival rate. In essence, the
commitment imposed on clients by all cryptographic puzzles
is time. All previous puzzle schemes try to achieve this time
commitment at the client by means of computations that
require significant CPU and/or memory overhead, but they
unfairly give advantage to strong attackers and are obtrusive
to end users. Guided tour puzzle instead achieves this time
commitment in a guaranteed and unobtrusive manner, and
most of all, all clients have to commit same amount of time

to complete a tour puzzle regardless the amount of resources
available to them. Therefore, a single attacker essentially
reduced to a single legitimate client, and that only increases
the number of legitimate clients by one.

2) DDoS Attack: In a DDoS attack, an attacker perpetrate
attack on the victim using multiple malicious clients, thus
the power of the attacker is roughly multiplied by the
number of malicious clients she has. Previous cryptographic
puzzle defense mechanisms against DDoS suffer from the
resource disparity problem we discussed in Section I. Since
guided tour puzzle achieves puzzle fairness, the number of
malicious clients required to send requests at a rate that
reaches the server’s maximum capacity is orders of mag-
nitude larger than the number of malicious clients required
when previous puzzle schemes are used. The protection of
guided tour puzzle comes from the fact that it effectively
reduces a malicious client into a legitimate client. Of course,
attacker can still overwhelm the server when she has enough
malicious clients, but so does the same number of legitimate
clients.

Fortunately, a server with guided tour puzzle can still
prevent itself from crashing, despite the fact that there are too
many clients (whether they malicious or not), by increasing
the puzzle difficulty and imposing longer delays at the
client. Meanwhile, guided tour puzzle achieves minimum
degradation in the service quality when compared with
previous puzzle schemes. The degradation of service by
such large amounts of malicious clients is extremely hard to
prevent without being able to differentiate malicious clients
from the legitimate ones.

VI. RELATED WORK

Currently there are many different type of DoS and
DDoS defense mechanisms such as filtering based [17][18],
traceback and pushback based [19][20][21], capability based
[16][15] and cryptographic puzzle based defense mecha-
nisms. Due to the enormity of various such proposals, this
related work survey only focuses on cryptographic puzzle
based mechanisms.

A. Client Puzzles

Dwork and Noar [1] were the first to introduce the concept
of requiring a client to compute a moderately hard but not
intractable function, in order to gain access to a shared
resource. However this scheme is not suitable for defending
against the common form of DoS attack due to its allowance
of puzzle solution pre-computations.

Juels and Brainard [2] introduced a hash function based
puzzle scheme, called client puzzles, to defend against
connection depletion attack. Client puzzles addresses the
problem of puzzle pre-computation. Aura et al. [4] extended
the client puzzles to defend DoS attacks against authentica-
tion protocols, and Dean and Stubblefield [5] implemented a
DoS resistant TLS protocol with the client puzzle extension.



Wang and Reiter [6] further extended the client puzzles
to prevention of TCP SYN flooding, by introducing the
concept of puzzle auction. Price [22] explored a weakness of
the client puzzles and its above mentioned extensions, and
provided a fix for the problem by including contribution
from the client during puzzle generation.

Waters et al. [23] proposed outsourcing of puzzle dis-
tribution to an external service called bastion, in order to
secure the puzzle distribution from DoS attacks. However,
the central puzzle distribution can be the single point of
failure, and the outsourcing scheme is also vulnerable to the
attack introduced by Price [22].

Wang and Reiter [24] used a hash-based puzzle scheme to
prevent bandwidth-exhaustion attacks at the network layer.
Feng et al. argued in [25] that a puzzle scheme should be
placed at the network (IP) layer in order to prevent attacks
against a wide range of applications and protocols. And Feng
and Kaiser et al. [3] implemented a hint-based hash reversal
puzzle at the IP layer to prevent attackers from thwarting
application or transport layer puzzle defense mechanisms.

Portcullis [8] by Parno et al. used a puzzle scheme
similar to the puzzle auction by Wang [6] to prevent
denial-of-capability attacks that prevent clients from setting
up capabilities to send prioritized packets in the network.
Portcullis moves the puzzle generation to clients, eliminating
the puzzle construction overhead at the server. However,
clients willing to solve harder puzzles that require more
computation are given higher priority, thus giving unfair
advantage to powerful attackers.

B. Non-Parallelizable Puzzles

Non-parallelizable puzzles prevents a DDoS attacker that
uses parallel computing with large number of compromised
clients to solve puzzles significantly faster than average
clients. Rivest at al. [26] designed a time-lock puzzle which
achieved non-parallelizability due to the lack of known
method of parallelizing repeated modular squaring to a
large degree [26]. However, time-lock puzzles are not very
suitable for DoS defense because of the high cost of puzzle
generation and verification at the server.

Ma [27] proposed using hash-chain-reversal puzzles in the
network layer to prevent against DDoS attacks. Hash-chain-
reversal puzzles have the property of non-parallelizability,
because inverting the digest ¢ in the chain cannot be started
until the inversion of the digest 7+ 1 is completed. However,
construction and verification of puzzle solution at the server
is expensive. Furthermore, using a hash function with shorter
digest length does not guarantee the intended computational
effort at the client, whereas using a longer hash length makes
the puzzle impossible to be solved within a reasonable time.

Another hash chain puzzle is proposed by Groza and
Petrica [28]. Although this hash-chain puzzle provides non-
parallelizability, it has several drawbacks. The puzzle con-
struction and verification at the server is relatively expensive,

and the transmission of a puzzle to client requires high-
bandwidth consumption.

More recently Tritilanunt et al. [9] proposed a puzzle
construction based on the subset sum problem [29], and
suggested using an improved version [30] of LLL lattice
reduction algorithm by Lenstra et al. [31] to compute the
solution. Problems with the subset sum puzzles include high
memory requirements and the failure of LLL in dealing with
large instance and high density problems.

C. Memory-Bound Puzzles

Abadi et al. [32] argued that memory access speed is
more uniform than the CPU speed across different computer
systems, and suggested using memory-bound function in
puzzles to improve the uniformity of puzzle cost across
different systems. Dwork et al. [33] further investigated
Abadi’s proposal and provided an abstract memory-bound
function with a amortized lower bound on the number of
memory accesses required for the puzzle solution. Although
these results are promising, there are several issues need to
be solved regarding memory-bound puzzles.

First, memory-bound puzzles assume a upper-bound on
the attacker machine’s cache size, which might not hold
as technology improves. Increasing this upper-bound based
on the maximum cache size available makes the memory-
bound puzzles too expensive to compute by average clients.
Secondly, deployment of proposed memory-bound puzzle
schemes require fine-tuning of various parameters based on
a system’s cache and memory configurations. Furthermore,
puzzle construction in both schemes is expensive, and band-
width consumption per puzzle transmission is high. Last,
but not least, clients without enough memory resources,
such as PDAs and cell phones, cannot utilize both puzzle
schemes, hence require another service that performs the
puzzle computation on their behalf.

D. Related Work Summary

None of the puzzle schemes in all three categories we
discussed provides solution to the resource disparity prob-
lem. Moreover, the puzzle computation interferes with the
concurrently running user applications on client machines,
in the form of cache displacement (memory-bound puzzles)
or competing for CPU power (CPU-bound puzzles).

VII. CONCLUSION AND FUTURE WORK

In this paper, we showed that most of the existing cryp-
tographic puzzle schemes do not consider the resource dis-
parity between clients. Although some proposals suggested
using memory-bound puzzles, practicality of such schemes
is still an open question. We argued using examples that
resource disparity reduces or even removes the effectiveness
of cryptographic puzzle schemes as a defense against denial
of service attacks. We introduced guided tour puzzle, and
showed that the guided tour puzzle achieves all desired



properties of an effective and efficient cryptographic puzzle
scheme. In particular, we showed how guided tour puzzle
achieves puzzle fairness, minimum interference properties,
and how guided tour puzzle can achieve better defense
against denial of service attacks.

As a future work, we would like to further improve guided
tour puzzle in terms of the following. First, we would like to
eliminate the need for the server’s involvement in the puzzle
generation process. Although currently puzzle construction
requires only one hash operation at the server, we think this
can be eliminated. Second, locations of tour guides most
likely to have direct impact on the optimality of the guided
tour puzzle, hence further investigation is needed to find
out optimal ways to position tour guides in the network.
Last but not least, more extensive evaluation of guided tour
puzzle using both simulation and practical network testbed
is needed to further consolidate our analysis of guided tour
puzzle.
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