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1 INTRODUCTION

The Internet has evolved from a mere communication network used by millions of users to a
global platform for social networking, communication, education, entertainment, trade, and po-
litical activism used by billions of users. In addition to the indisputable societal benefits of this
transformation, the mass reach of the Internet has created new powerful threats to online privacy.
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The widespread dissemination of personal information that we witness today in social media
platforms and applications is certainly a source of concern. The disclosure of potentially sensitive
data, however, not only happens when people deliberately post content online but also becomes
possible inadvertently by merely engaging in any sort of online activities. This inadvertent data
disclosure is particularly worrisome because non-expert end-users cannot be expected to under-
stand the dimensions of the collection taking place and its corresponding privacy implications.

Widely deployed communication protocols only protect, if at all, the content of conversations,
but do not conceal from network observers who is communicating with whom, when, from where,
and for how long. Network eavesdroppers can silently monitor users’ online behavior and build up
comprehensive profiles based on the aggregation of user communications’ metadata. Today, users
are constantly tracked, monitored, and profiled, both with the intent of monetizing their personal
information through targeted advertisements and by nearly omnipotent governmental agencies
that rely on the mass collection of metadata for conducting dragnet surveillance at a planetary
scale.

Anonymous Communication (AC) systems have been proposed as a technical countermeasure
to conceal from network observers who is communicating with whom, when, from where, and
for how long, mitigating the threats of communications surveillance. The concept of AC systems
was introduced by Chaum (1981) in 1981, with his proposal for implementing an anonymous email
service that aimed at concealing who sent emails to whom. The further development of this concept
in the past 2 decades has seen it applied to a variety of problems and scenarios, such as anonymous
voting (Sako and Kilian 1995; Jakobsson et al. 2002), Private Information Retrieval (PIR) (Dingledine
et al. 2000), censorship-resistance (Waldman et al. 2000; Waldman and Mazières 2001), anonymous
web browsing (Goldschlag et al. 1996), hidden web services (Dingledine et al. 2004), and many
others.

Public interest in AC systems has strikingly increased in the past few years. This could be ex-
plained as a response to recently revealed dragnet surveillance programs, the fact that deployed
AC networks seem to become (according to leaked documents1) a major hurdle for communica-
tions surveillance, and to somewhat increased public awareness on the threats to privacy posed
by modern information and communication technologies.

The literature offers a broad variety of proposals for anonymity network designs. Several of
these designs have been implemented, and some are successfully deployed in the wild. Of the
deployed systems, the most successful example to date is the Tor network, which is used daily by
about two million users (The Tor Project 2017).

Existing designs take a variety of approaches to anonymous routing for implementing the AC
network. Routing determines how data is sent through the network, and it as such is the core
element of the AC design, determining to a large extent both security and performance of the
system. State-of-the-art approaches rely on different threat models and sets of assumptions, and
they provide different guarantees to their users. Even though survey articles on AC systems ex-
ist (Erdin et al. 2015; Sampigethaya and Poovendran 2006; Conrad and Shirazi 2014; AlSabah and
Goldberg 2015; Ren and Wu 2010; Edman and Yener 2009; Danezis and Díaz 2008; Serjantov 2004;
Raymond 2000), we still lack a systematic understanding, classification, and comparison of the
routing characteristics of the plurality of existing AC approaches.

The purpose of this survey is to provide a detailed overview of the routing characteristics of
current AC systems and to discuss how their routing features impact anonymity against different
types of adversaries, as well as overall performance. To this end, we first identify the routing char-

acteristics that are relevant for AC protocols and provide a taxonomy for clustering the systems

1https://wikileaks.org/.
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with respect to their routing characteristics, deployability, and performance. Then, we apply the
taxonomy to the extensive literature on AC systems, in particular including Mixnets, DCnets, Tor-
related systems, and Random Walk/Distributed Hash Table (DHT)-based protocols. To select AC
protocols for our examination we chose systems that have presentation value in terms of routing.
Most of the reviewed protocols are systems designed as overlay networks. We excluded next-
generation Internet AC solutions such as Sankey and Wright (2014) and Hsiao et al. (2012). Finally,
we discuss the relationship between different routing decisions, and how they affect performance
and scalability.

Outline. Section 2 provides our taxonomy for anonymous routing and describes the various
routing features and dimensions that we are considering for our evaluation and discusses the rela-
tionship between these routing features. Section 3 gives a compact tabular overview describing the
classification of existing systems in our taxonomy and reviews existing AC systems with respect
to their routing characteristics. Section 4 compares the four main categories of AC protocols in
terms of anonymity goals against different types of adversaries, scalability, and their applications.
Section 5 concludes the paper.

2 ANONYMOUS ROUTING PROTOCOL CHARACTERISTICS

In this section, we introduce the routing characteristics, deployability, and performance metrics
considered in our taxonomy, and we discuss the relationship between these characteristics.

2.1 Routing Characteristics

Generally, routing in a communication network refers to the selection of nodes for relaying com-
munication through the network. Routing schemes, however, require some essential design com-
ponents. For anonymous communication, we consider four building blocks that are relevant to
routing in AC networks. These building blocks are node management, transfer/retrieval of node
information to/by the routing decision maker, path selection, and forwarding or relaying; where
path selection is the main design component of routing schemes for AC protocols.

Several taxonomies and classifications for routing protocols have been proposed in the litera-
ture (Bell and Jabbour 1986; Feeney 1999; Zou et al. 2002). However, AC networks aim to conceal
the metadata of communications and thus have security requirements that make them fundamen-
tally different from other networks.

In this section, we present a classification for anonymous routing protocols (see Table 1). Our
classification (see Tables 2 and 5) is an adaptation of Feeney’s taxonomy (Feeney 1999), which
classifies the routing characteristics of mobile ad hoc networks into four categories:

(1) Communication model describes whether the communication is based on a single- or multi-
channel.

(2) Structure describes whether or not nodes are treated equally.
(3) State information describes where the topology information is maintained.
(4) Scheduling describes whether the information about routes is maintained at the source or

is instead computed on-demand.

This taxonomy does not address several relevant design features of AC networks, such as prob-
abilistic node selection for constructing circuits and security considerations for protecting routing
information from different network adversaries. In addition, not all the characteristics identified by
Feeney are relevant to AC routing. For example, the distinction between single- and multi-channel
features is not relevant to overlay networks, which constitutes a standard design choice for many
AC networks.

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.
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Table 1. Overview of the Protocol Routing Characteristics

We redefine Feeney’s criteria to account for design choices that are relevant to anonymous
routing protocols. Nevertheless, we distinguish three groups of features inspired by Feeney’s cat-
egories: network structure, routing information, and communication model:

(1) Network structure describes the characteristics of the anonymous relays, the connections
between them, and the underlying network topology.

(2) Routing information describes the network information available to entities deciding on
the route of an anonymous connection.

(3) Communication model defines the entities that make the routing decisions and describes
how these decisions are made.

In what follows, we describe these features in more detail, including their various sub-features
and corresponding notation symbols used to denote individual feature instantiations. We refer to
Table 1 for a general overview of the resulting taxonomy.

2.1.1 Network Structure. We consider first the network features that are relevant to anony-
mous routing. These are, specifically, features related to: (a) the topology of the network, which
describes how nodes are connected; (b) the connection type, describing the characteristics of the
connections between nodes; and (c) symmetry, describing whether the entities participating in
the network are all similar, or if they can take on different roles and responsibilities for routing
data through the network.

(a) Topology. The topology describes the arrangement of various elements of the network,
such as routers and communication links between those routers. We only take the logical
topology of the network into account, which determines how data flows within it. We
note that physical topology characteristics, such as the geographical location of comput-
ers, sometimes matters in anonymous routing decisions, for example, when considering

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.
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adversaries who control an Autonomous System (AS) (Feamster and Dingledine 2004;
Edman and Syverson 2009).

We consider the network as a graph in which the routers are represented by graph
nodes. An edge between two nodes exists if the routing strategy allows both nodes to be
directly connected as part of the same anonymous circuit.

The connectivity of nodes varies widely across AC network designs, and the advantages
and disadvantages of high and low levels of connectivity have been the subject of debate
for over a decade (Böhme et al. 2005).

Restricted routing proposals (Danezis 2003a) have shown that for applications that
are latency-tolerant, partially connected networks with certain topological characteris-
tics (e.g., based on expander graphs) provide optimal anonymity and latency trade-offs
and mitigate certain attacks. These results further emphasize the impact of network con-
nectivity features for anonymous routing.

We classify anonymity networks into three categories according to their connectivity:
fully connected, mostly connected, and partially connected networks.
• We consider a network to be fully connected (�)2 when nodes can potentially connect to

most (or all) other nodes. Note that our rule of thumb is that a node on average should
be able to connect to at least 95% of the other nodes.

• We call a network mostly connected (�) if its nodes can potentially connect to at least
half of the nodes.

• Finally, in partially connected (�) networks, nodes only connect to a relatively small
subset of the whole network.

Higher connectivity in the network topology leads to better resilience (availability) against
node failure, such as Denial of Service (DoS) attacks; such resilience might have, in turn,
a positive influence on anonymity (Böhme et al. 2005). While having a fully connected
topology is better than having a very restricted network topology, such as a fixed sequence
of relays, called cascade, Diaz et al. have shown a partially connected network structure—
in particular, a stratified topology—can provide better anonymity than a fully connected
network structure (Diaz et al. 2010). However, eliminating connections that might induce
security problems, such as the connection between two nodes from the same IP family
that may be easier to control by an adversary, can be beneficial to anonymity. The same
holds for eliminating connections that would induce higher latency, which would, in turn,
improve the performance of the system.

(b) Connection Type. Here, we consider the direction and synchronization of connections.
As far as the direction is concerned, we consider the following options:
• A connection is unidirectional (→) if the data flow between two entities can only be in

one direction.
• A connection between two entities is bidirectional (↔) if data can flow in both directions

and the same connection is used for sending back the response to a received message.
Typically, interactive applications, such as web browsing, require bidirectional channels,
while non-interactive applications, such as email, can just close the connection as soon as
the message has been forwarded.

Bidirectional circuits have the advantage that they induce less overhead in terms of cir-
cuit construction. Unidirectional connections have the advantage that they are less vulner-
able to timing attacks, as a malicious node can only observe data flowing in one direction,
which is less informative than bidirectional connections in which patterns of requests

2In parenthesis, we define the symbol or the keyword that is used in the comparative Tables 2, 3, 4, and 5 to indicate the

corresponding characteristic.
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and response are visible to all nodes in the path. However, note that in a unidirectional
connection, a larger number of nodes are going to be involved in relaying the communi-
cation between a sender and a receiver.

Further, we consider whether the anonymity system involves connection synchroniza-

tion:
• A connection is asynchronous (�) if the establishment of connections and relaying of

messages is initiated by a user without any timing coordination with other participants.
• Connections are synchronous (�) if they begin and end at specific timings and mes-

sages are also relayed at specific moments in time, based on some timing coordination
between network entities.

Asynchronous systems are conceptually simpler as they impose fewer constraints on the
activity of network participants. However, the distinct timing of actions leaks information
valuable to perform traffic analysis and, for example, reveals long-term communication
patterns (Danezis 2003b) or perform end-to-end correlation attacks (Levine et al. 2004;
Bauer et al. 2007; Zhu et al. 2010).

Synchronous systems are often more difficult to engineer and come with a performance
or usability penalty; moreover, secure and reliable time becomes an additional dependency
of the system, and a possible point of failure or vulnerability to attack. However, synchro-
nization constitutes a very powerful design feature to offer robust anonymity guarantees
in the presence of powerful adversaries, because it disables trivial end-to-end correla-
tion attacks based on start and end times of connections (Murdoch and Zielinski 2007),
and other timing data that synchronization makes less granular, enabling the aggregation
of participants, connections, and events in anonymity sets. Synchronous anonymity sys-
tems were proposed in the early 1990s by Pfitzmann et al. to anonymize ISDN telephony
calls (Pfitzmann et al. 1991). These proposals were both feasible from an engineering per-
spective (compatible with the network requirements and introducing a low-efficiency cost)
and clearly spelled-out anonymity guarantees as well as full unobservability for local calls.

(c) Symmetry. We consider symmetry in the roles of the network entities. An anonymity
system is intuitively “more symmetric” when all the participating entities have similar
roles and responsibilities and “less symmetric” if there are different roles, capabilities, and
trust assumptions among the entities that participate in the routing.

We thus first examine the overlap between the roles of end-users who initiate commu-
nications and relaying nodes. We distinguish three types of systems.
• We classify a system as peer-to-peer (•· · ·•· · ·•) when end-users are expected (often even

obliged) to operate as relaying nodes in order to use the AC network.
• At the other end of the spectrum, in client-server (•· · · •) systems, users are not expected

(often even forbidden) to operate as relaying nodes in order to use the system.
• We call a system hybrid (•· · · ◦· · · •) if it combines characteristics of both peer-to-peer

and client-server systems, i.e., end-users may or may not operate as relaying nodes.
These different levels of symmetry come with advantages and disadvantages (Böhme et al.
2005). Peer-to-peer systems can better scale as the number of users grows, because new
users also increase the capacity of the network. Further, peer-to-peer networks are more
resilient to node failures and have better availability properties. In client-server architec-
tures, however, it is possible to run nodes more reliably and securely (as nodes are not
necessarily run by laymen end-users), which in particular helps to handle liability issues
with respect to complaints. Having end-users run just client software has a lower cost for
end-users in terms of resources and offers opportunities for simpler, and thus often more
usable, client software.

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.
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Second, we distinguish whether nodes are organized in a flat or a hierarchical structure
with respect to the routing. We call the resulting feature the topology:
• A network has a flat (· · · ) structure if every node has the same importance and rank

when making routing decisions.
• A network has a hierarchical (✤) structure if nodes have different capabilities and pri-

orities toward the routing algorithm.
Hierarchical structures are often introduced to improve efficiency and performance. How-
ever, a non-flat hierarchy can make the network less resilient to attacks, as the failure of
a node that is placed high in the hierarchy has a severe impact on the performance of the
network.

The third and last dimension of symmetry addresses the degree of decentralization of
network services other than (but auxiliary to) the routing itself. Note that we are not
considering centralized models, because they are a single point of failure for surveillance
and insecure by design.
• A network is semi decentralized (�) if it includes one or a small number of entities per-

forming a service critical to routing (e.g., compiling and distributing network directory
information). This accounts for the fact that especially high levels of trust are placed on
these entities, which constitute more of a point of failure than a simple relay.

• A network is fully decentralized (�) if the system design does not include entities that
have to be especially trusted for the provision of functionalities that enable the routing.
Fully decentralized systems have a better distribution of trust.

2.1.2 Routing Information. We now consider the information available to the entity (or entities)
that decides on the route of a connection and how that information is made available.

(a) Network View. This determines the completeness of information available to establish a
route.
• The routing decision-maker has a complete view (�) of the system if routing information

about all nodes is available.
• The decision maker has a partial view (��) of the system if the available routing infor-

mation only cover a subset of the nodes that form the AC network.
A complete view allows the decision maker to choose among the full set of nodes. How-
ever, a partial view improves the scalability of the network, as the distribution of rout-
ing information for the full network may consume significant bandwidth and network
resources. There are also some attacks that become possible when the routing decision
makers only have a partial view of the network. For example, route fingerprinting attacks
(Danezis and Clayton 2006; Danezis and Syverson 2008) are possible if each user knows
different subsets of routers. In these attacks, the initiator of a connection can be identified
by the nodes that make up the route, since typically a very small number of users will
know a certain combination of network nodes.

(b) Updating. This determines how frequently routing information is updated.
• Routing information is updated periodically ( ) if it is updated at predefined time inter-

vals.
• Routing information is updated event-based ( ) if the updates are triggered by events in

the network other than timeouts.
• No updating mechanism is in place (✗).

2.1.3 Communication Model. We finally consider features that describe the creation of anony-
mous routes.

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.
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(a) Routing Type. This refers to the selection of nodes to determine a route.
• The routing decision is source-routed (•· · · ) if the initiator of the communication selects

the set of nodes that will form the anonymous route.
• The routing decision is hop-by-hop (· · ·•· · · ) (also called “random routing”) if the initiator

only selects the first relay node, which in turn picks the second, and so on, until the
message reaches its final destination.

• We refer to the routing type broadcasting ( ) when there is no routing decision made
explicitly, but rather the data is only forwarded to multiple or all nodes. Flooding refers
to broadcasting over more than one hop and when the data is broadcasted without any
restriction; gossiping (Haas et al. 2006) refers to forwarding the data only to a subset of
nodes, which is technically not a broadcast but multicast.

Source-routing enables the initiator to pick nodes it trusts, and prevents adversaries from
biasing the node selection towards compromised nodes. A variation of the basic source-
routed model is found in some systems that provide receiver anonymity. In these systems,
the initiator and the receiver select, respectively, the first and second halves of the route,
which are joined in the middle at a rendezvous point. An advantage of hop-by-hop routing
is that even if the initiator only knows a subset of nodes, her connections might be routed
throughout the whole network, mitigating route fingerprinting attacks (Danezis and
Clayton 2006). In literature, other node selection strategies have been proposed, which
we have not taken into consideration such as dynamic routing schemes using distance
vector routing (i.e., Perkins and Royer (1997)) and link-state routing (i.e., Moy (1998)). In
fact, such algorithms are often disregarded for AC networks because of the predictability
they offer, which is in conflict with anonymity.

(b) Scheduling. This refers to the way a node serves incoming scheduling requests.
• Fair (≡) scheduling means that all types of connection are treated same.
• Prioritized (�) scheduling means that certain connections are given priority over others.
Prioritized scheduling can improve performance and reduce congestion. However, differ-
ential treatment of traffic may undermine anonymity as the traffic of different priorities
would be distinguishable and thus not conform a single (larger) anonymity set. An exam-
ple of prioritized scheduling is when the scheduling follows an economic model, which
might mitigate flooding attacks (Grothoff 2003).

(c) Node Selection. This refers to the protocol features that determine which nodes are se-
lected to be part of an anonymous route. The number of nodes that are selected to form
the anonymous connection can either be fixed (deterministically) or be computed proba-
bilistically according to some distribution.
• Node selection can either be deterministic (✔) or non-deterministic (probabilistic) (✗).

To characterize node selection, we consider the selection set that determines which nodes
are eligible for being on the route and the selection (probability) distribution that de-
scribes the likelihood of each of the nodes in the selection set being chosen for a route.

• The selection set may contain all nodes ( ) of the network.
• It may contain a security-restricted subset ( ) of all network nodes, i.e., a subset that

is selected according to some security-restrictions, for example, establishing that all the
nodes in a route must be in different /16 IP subnets.

• It may contain a network-restricted subset ( ) of all network nodes, e.g., a subset aimed
at guaranteeing the quality of the communication by, for example, avoiding congested
links and nodes.

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.
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• And finally, the selection set may be user-specific, considering user preferences and trust

assumptions (�).
We are left to define the selection probability with which individual nodes are chosen.
• The probability distribution that describes how nodes are selected may be uniform (�).
• The probability distribution is statically weighted, i.e., weighted based on general, static

parameters ( ), for example, the bandwidth of the nodes.
• The probability distribution is dynamically weighted based on state-specific dependencies

(❋), for example, the nodes’ response time.
Even for general parameters, the weighted selection often requires frequent updates so
they reflect the current state of the network. In other words, we consider parameters that
are calculated in real-time to be dynamic biases, and parameters based on routing infor-
mation that is unchanged until the next periodic update to be static. The uniform selection
typically offers better anonymity levels, while the weighted selection often improves per-
formance.

2.2 Performance and Deployability

In addition to the routing characteristics identified before, we identify the following list of metrics
that can be used to evaluate performance and deployability characteristics of AC protocols.

(1) Latency. In the literature, AC protocols are usually classified into three performance cat-
egories:
• Protocols with low-latency (L) incorporate no latency to the communication and typi-

cally support applications that require real-time communication (e.g., web browsing).
• Protocols with high-latency (H) do not require real-time communications and support

applications that can tolerate a certain delay between requests and responses (e.g., email
communication).

• Protocols with mid-latency (M) introduce a random delay and may induce a restricted
latency; hence, these protocols support applications that can tolerate a restricted delay
between requests and responses (e.g., file-sharing).

(2) Communication Mode. We distinguish two kinds of communication modes, depending
on the longevity of individual connections.
• We classify protocols as connection-based (�) if routes between senders and receivers

are maintained for a certain amount of time and used for exchanging multiple data
transfers.

• If routes are created just to send a message and no state is maintained for further ex-
changes, then we classify a protocol as message-based ( ).

(3) Implementation and Code Availability. This indicates whether or not a prototype of
the protocol has been implemented and if the code is publicly available. In both cases, the
answer is either yes (✔) or no (✗).

(4) Context/application. We specify the context/application in which the protocols are de-
signed to be used. We identify several basic context/applications: namely, protocols for
anonymous messaging ( ), email communication (@); protocols for real-time commu-

nication such as telephony ( ); web communication, such as anonymous browsing ( )

that needs to be low-latency and microblogging ( ) that can tolerate more latency; bul-

letin boards, auctions, voting, group messaging ( ); file-sharing ( ); and protocol that
are used in the context of a wireless ad hoc networks ( ). If the protocols do not spec-
ify explicitly the context in which they are used, then we assign context/application
to them mainly based on the latency and the number of intended recipients of the
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communication. However, this does not rule out that AC protocols could be used for other
contexts/applications as well (in some cases with minor changes). For example, AC sys-

tems that are used for often also can also be used for @ and are categorized as
in most cases, because they provide low-latency anonymous communication that is not
necessary for email applications.

2.3 Correlation Among Routing Features

Next, we address some direct and indirect correlations (i.e., dependencies and conflicts) among
the routing features. We have defined the network topology based only on the connectivity of
the relaying routers (see Section 2.1), where users and administrative entities are not taken into
account. Therefore, according to our definition in Section 2.1, there is no correlation between
topology and the roles feature, and neither between topology and the decentralization feature.

There is an evident correlation between hierarchy and network topology of AC networks. A hi-
erarchical AC network does not have a fully connected network structure. Moreover, the network
view of the routing decision maker can have an influence on the topology of the AC network.
Generally speaking, a partial network view might lead to a partially connected network topology
for the AC network, because the routing decision maker might have difficulties accessing routing
information of certain nodes. For example, if the topology is partially connected, it might be that
the routing decision maker has a partial view.

Another evident correlation exists between the network topology and the selection set. Restric-
tions in the selection set lead to reduced connectivity of the network topology.

Although the synchronization feature is not directly correlated to scheduling, depending on the
forwarding strategy of the of relays, there can be a correlation. There is also an evident correlation
between scheduling and latency, because, in a prioritized scheduling algorithm, some traffic is
delayed.

AC networks with a hierarchical structure have a partially connected network structure. By def-
inition, hierarchical organization of nodes restricts the selection set. Moreover, a partial network
view limits the selection set, because the routing decision maker can only select nodes within its
view.

Finally, there is an apparent correlation between latency and communication mode. High la-
tency AC networks usually use a message-based communication mode and vice versa. Due to the
temporal nature of the message-based communication, where connections are not going to be used
further (e.g., replies are not going to be sent in a short time), setting up a circuit is unnecessary.

3 ROUTING CLASSIFICATION OF AC PROTOCOLS

In this section, we present a categorization of AC protocols. We have categorized AC protocols
based on their routing type: being source-routed, hop-by-hop routed, or broadcast. Moreover, we
classified the protocols into five main families, namely: (1) Mixnet protocols and (2) Tor-related
protocols as source-routed protocols, (3) Random Walk and DHT-based protocols as hop-by-hop
routed, and (4) DCnet protocols as the broadcast routing type. Finally, (5) Miscellaneous include
a few protocols that do not fit into the aforementioned categories. A few protocols are presented
in the most representative category, albeit they technically borrow some minor techniques from
other categories as well. We summarize our classification of the routing aspects in four comparative
tables (namely, Table 2, Table 3, Table 4, and Table 5).

Next, we discuss the AC protocols individually, starting with Mixnet protocols (from Section 3.1
to Section 3.1.3), and then we proceeding with Tor-related protocols (Section 3.2), Random Walk

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.



A Survey on Routing in Anonymous Communication Protocols 51:11

Table 2. Routing Classification of Anonymous Communication Protocols: Mixnet Protocols

and DHT-based protocols (Sections 3.3), DCnet protocols (Section 3.4), and finally, the class of
miscellaneous protocols (Section 3.5).

3.1 Mixnet-Based Protocols

The idea of anonymous communication was originally proposed by Chaum in 1981 (Chaum 1981)
and initiated a new field of privacy research. The central concept proposed by Chaum is the use of
mix nodes, or mixes for short. Mix nodes cryptographically transform messages so that they cannot
be traced based on their content. Further, mixes shuffle (“mix”) input messages and output them
in a reshuffled form. Thereby, they hide the input-output relation between individual messages,
such that an adversary is not able to establish a correlation between input and output messages. In
Chaumian mixes, the mix node does not output the messages immediately upon arrival but instead
collects a certain number of messages (up to a threshold) into a so-called batch, which introduces
a delay in message transmission. The mix shuffles input messages within a batch and flushes them
out, which are ordered lexicographically.

3.1.1 Mix Selection Strategies. To distribute trust, Chaum proposed to relay messages through a
fixed sequence of mix nodes3 called a mix cascade. Chaum proposes a deterministic node selection
without specifying how the nodes are selected (node selection strategy) for mix cascades. He only
suggests that certain factors such as the networks topology and user’s trust can be used for mix
node selection. In a mix cascade, messages are successively encrypted (in a layered fashion) with
the public key of each mix in the cascade (see Figure 1).

As the message is transferred from one mix to the next, the current mix peels off (decrypts)
the corresponding layer (i.e., remove one layer of encryption with its private key), obtains the
inner layer together with the corresponding address of the next destination, and sends the

3In the literature, a sequence of mixes is usually referred to as path or route.
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Fig. 1. A mix cascade with two mixes: (a) The users encrypt their message successively with the public key

of each mix in the cascade and send it to the first mix (Mix 1). (b) The mix receives the messages, removes

one layer of the encryption using its own private key, shuffles the messages, and forwards them to the next

mix in the cascade. (c) Finally, once the last mix in the cascade (Mix 2) receives the messages, it decrypts the

final layer of the encryption, shuffles the messages, and outputs the original messages in a reshuffled form.

Note that the input-output relation between individual messages is hidden.

message to that destination. This procedure is repeated until the last mix delivers the data to
its final destination. To receive replies for messages while staying untraceable (to obtain recipi-
ent anonymity (Pfitzmann and Köhntopp 2000)), return addresses are used. Chaum proposed to
encrypt the address of the recipient of replies separately so that the respondent only needs to ap-
pend the untraceable return address to its replies. The anonymous replies are also sent similarly
in a layered fashion to the respondent. From now on, we refer to the encrypted return address
block as the reply block. Note that in the case of the anonymous replies, the recipient of the re-
ply is the routing decision maker. An alternative cryptographic model for mix cascades is using
re-encryption mixes, where mixes re-encrypt messages instead of decrypting them.

To overcome a single point of failure in availability of mix cascades, free-route mix networks have
been proposed (Gülcü and Tsudik 1996; Möller et al. 2003). In free-route mix networks, the route
is not fixed and any sequence of nodes from the network can be used for relaying messages. An
important aspect of mix cascades and free-route mix networks design is the node selection strategy.
Selecting mixes for a mix cascade or for a path in a free-route mix network may follow different
strategies. Namely, a deterministic strategy, a uniformly random selection, or a variation, such
as random selection biased by network state or reputation/reliability scores. When multiple mix
cascades are available for the users to choose from, node selection has two dimensions: selecting
a set of mixes for building the cascades and selecting a particular mix cascade for relaying the
messages. Moreover, predefined probability distributions and topological restrictions can also be
taken into account for mix selection. Danezis (2003a) proposed the restricted routes mix networks
that leverage the mix cascade and free-route mix networks by being less vulnerable to intersection
attacks and being secure against global adversaries like mix cascades and being scalable like free-
route mix networks. He proposes a mix network topology that is based on constant degree graphs
(sparse expander graphs), where each mix only communicates with a few neighboring nodes based
on a predefined probability distribution. Next, we review two variants of mix selection, one for
free-route mix networks and one for mix cascades.

Mixes that fail lead to further delays in mix networks, thus selecting reliable mix nodes can lead
to better performance. Dingledine et al. (2001) developed a method to identify mixes that fail and
used a reputation system for mix selection leading to better reliability and efficiency for the mix
network. In their proposed system, mixes issue receipts for each received message. After a mix
has sent a message to the next mix, if it is not receiving a receipt within a restricted time, then it
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asks a set of witnesses to resend the message and receive the receipt and forward it to the original
mix. The system establishes routing paths following the free-route node selection strategy, where
the mixes are selected based on their past behavior (reputation score). Such a strategy suggests
use of a non-deterministic node selection, biased toward mix nodes with high reputation scores.
Mixes that have no positive ratings at all are avoided for mix selection. The main weakness of their
scheme is that the reliability depends on the witnesses that need to be trusted, or at least a core
group of trusted witnesses.

Unlike the previous system, which relies upon trusted global witnesses, Dingledine and
Syverson (2002) proposed a mix cascade protocol with distributed trust. To obtain more reliable
cascades, they propose to use a reputation mechanism for rearranging mix cascades. The construc-
tion of such cascade utilizes communal randomness and reputation scores provided by all of the
mixes; therefore, there is no need of a trusted central authority. To mitigate the weakness of the
previous work, mix nodes of a cascade act as witnesses for the reliability of their own cascade.
All mixes submit random values to the configuration servers, which order mixes based on their
reputation score and pick the top mix nodes to create a pool of mixes. From this pool, the mixes
are selected randomly. For each cascade, routing relevant information such as available bandwidth
or expected waiting time is published. Based on this information and the reputation score of the
mixes, users choose mix cascade for their messages. Note that if the mix network is large, the
network view might not be complete for the users.

3.1.2 Variations of Flushing Strategies. Flushing algorithm (or batching strategies) specifies the
precise timing at when a batch of collected messages is flushed out of the mix to be simultaneously
delivered to the respective recipients. Flushing strategies are analogous to the forwarding com-
ponent of the routing and they highly influence the scheduling routing characteristic defined in
Section 2.1. Recall that Chaumian mixes collect messages until a certain threshold is reached. Such
mixes are called threshold mixes. Threshold mixes might induce very high-latency if the traffic
load is low. Thereafter, other flushing algorithms have been proposed in the literature.

Mixes that delay messages individually, for example, based on a certain probability distribution,
and lead to continuous flushing are called continuous mixes. One example of continuous mixes is
the Stop-and-Go mixes (SG-mix) (Kesdogan et al. 1998) system. The initiator of a message assigns
for each mix in the path a randomly selected delay (from an exponential distribution). The inde-
pendent random delays that are assigned to each message make the performance and anonymity of
each message independent of the other users in the system. However, a drawback of their system is
that SG-mixes are vulnerable when incoming traffic is low (Díaz and Preneel 2004). Another type
of flushing algorithms is pool mixes that only flush out a fraction of messages of a batch at each
round and keep the remainder in the memory of the mix (pool) for next flushing rounds. In pool
mixes, the number of messages that are forwarded may be determined by deterministic or non-
deterministic functions, and the message selection may be uniformly random or weighted based
on dynamic conditions (e.g., based on incoming traffic). When the average delay of the messages is
equal, pool mixes offer better anonymity, since the anonymity set is bigger. Another advantage of
pool mixes is that they are suitable for networks with fluctuating traffic load. Pool mixes, however,
still need to specify when messages are flushed out and therefore combined with other flushing
techniques such as threshold (described above) or time restrictions. Timed mixes enforce a time
restriction for flushing out messages. The anonymity of timed mixes is vulnerable to low traffic,
since if only one message arrives before the time restriction is met, the mix provides no anonymity
measure for that message. Moreover, a combination of the aforementioned flushing strategies can
also be used by mixes (Díaz and Preneel 2004; Serjantov 2004). For example, the two prominent
remailers, namely Mixmaster (Möller et al. 2003) and Mixminion (Danezis et al. 2003), use timed
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dynamic pool mixes as flushing strategies (Serjantov et al. 2003), which are a combination of timed
and threshold pool flushing techniques, where the parameters depend on the network traffic. The
flushing algorithm of Mixmaster has been characterized by generalized mixes (Díaz and Serjantov
2003). We review these remailer protocols in Section 3.1.3.

Next, we review some mix protocols in the literature that have been suggested for applications
such as ISDN telephone, web browsing, and anonymous emails. To anonymize ISDN telephone
communication with its intrinsic requirements on low-latency, Pfitzmann et al. (1991) introduced
the concept of ISDN mixes. An important feature of ISDN mixes is to maintain constant traffic in
the network to avoid traffic analysis. ISDN mixes are a type of threshold mixes. To obtain sender
and receiver anonymity simultaneously, ISDN mixes use two mix cascades that are selected by
the sender and receiver, respectively, connected either by a connecting mix or when used in long
distance communications by the long distance network operators. Initially, a broadcast takes place
to exchange the connecting details and the time where the communication takes place. To achieve
constant traffic, a number of ISDN channels, with an equal amount of messages, need to start
and end their communication at the same time (in a so-called time-slice). However, this is time-
consuming and would lead to blocking the connection, which is not suitable, since ISDN mixes
use narrow-banded channels and were designed for low-latency communication. In Table 2, we
disregard the setup broadcast message used for exchanging information for ISDN mixes. The basic
design of ISDN mixes was later generalized by Jerichow et al. (1998) to a system that enables low-
latency, real-time communication.

A real-world realization built on ISDN mixes are Webmixes (also known as JAP) (Berthold et al.
2000a, 2000b) designed for real-time Internet applications, passing the traffic to several available
mix cascades. In Webmixes, the mixes transform the messages cryptographically and reshuffle
their order before flushing them out. However, messages are not delayed by flushing strategies.
Webmixes use an adaptation of the time-slice method introduced by ISDN mixes. Routes in Web-
mixes consist of JAP proxies, which are local software at the users, one (or several) mix cascade(s)
consisting of reliable and high capacity mix nodes, and a cache-server. Web requests are sent from
the users JAP proxy through the mix cascade and the cache-server and, furthermore, delivered to
the destination server. The web replies are sent back through the same route and a copy of the
reply is saved at the cache-server. Hourly mix cascade information is published by so-called info

servers. Users can choose among the published mix cascades by the info servers. To build mix cas-
cades, ISDN mixes, real-time mixes, and Webmixes use deterministic node selection, where nodes
selection for the cascades relies on the network state.

3.1.3 Prominent Applications of Mixes: Remailers. The original concept of mixes has an
immediate application to high-latency remailer systems for providing anonymous e-mail
service.

Babel (Gülcü and Tsudik 1996) aims at mitigating traffic analysis attacks by delaying only some
messages of the batches. Babel uses independent forward routes and return routes. Forward routes
may include a reply block (where the return route mix addresses are encrypted in a layered fashion)
that may be used by recipients for anonymous replies. Forward routes are considered to have better
anonymity; one of the reasons for this is that reply blocks enable replay attacks on anonymous
replies (Danezis et al. 2010). Babel introduces intermix detours, where mix nodes choose a random
sequence of mixes and relay the message through them before forwarding the message further to
the next mix of the original route. In Babel, the flushing algorithm uses time restrictions (intervals)
and thresholds for flushing out messages. Another technique Babel proposes to use is probabilistic

deferment, where a number of messages (determined by a biased coin) are delayed at each mix
(this is similar to pool mixes). Babel proposes to use of free-route mix networks, where mixes are

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.



A Survey on Routing in Anonymous Communication Protocols 51:15

chosen uniformly random for each route by the user. However, there were no details given about
how routing information could be communicated to users.

Mixmaster (Möller et al. 2003) is an anonymous remailer, where mixes transform messages cryp-
tographically into uniform sizes by adding random data at the end of each data packet. If a message
is too large, then Mixmaster splits up the message to achieve uniform sized packets and sends these
packets independently of each other through a series of mixes, which do not necessarily need to
be all the same. Only the last mix needs to be the same for all packets of one email message,
which has been split up before. Mixmaster adopts a free-route path selection (Danezis et al. 2010),
where the users choose nodes with a non-deterministic algorithm that uses statistics on the re-
liability of mixes bias node selection (Danezis 2003a). Although the Mixmaster protocol did not
specify details about maintaining mix information, later implementations of Mixmaster adopted
an ad hoc scheme for distributing routing information (Danezis et al. 2003). One of the main weak-
nesses of Mixmaster is that it only guarantees sender anonymity, since reply blocks are not used in
Mixmaster.

Mixminion (or Type III remailer) (Danezis et al. 2003) are widely considered as the state-of-the-
art remailer. To guarantee equal routing information for all senders, Mixminion deploys a group
of redundant and a synchronized system of directory servers, which was not considered in the
Mixmaster design. Note that we disregard the directory servers synchronization for our classifi-
cation in Table 2. Like Mixmaster, Mixminion also uses “timed dynamic pool.” Mixminion uses
reply blocks. Generally, reply blocks enable replay attacks; hence, Mixminion introduces Single

Use Reply Blocks (SURB), where for each reply message, the content of the reply is appended to
the SURB and sent through the mix network. In the Mixminion communication model, the routing
path is divided into two so-called legs, each consisting of half of the mixes in the route. For reply
messages, where both sender and receiver anonymity is desirable, in the first leg of the route, the
sender of the reply chooses the mixes and appends the SURB for the second leg. When the message
is traversing the route, at a crossover point (the last mix in the first leg), the SURB replaces the first
leg, and the message is routed further to the intended recipient. In such cases, the route consists
of mixes, which are half chosen by the sender and half chosen by the recipient. Thus, Mixminion
aims at providing sender anonymity and recipient anonymity for email messages. Moreover, since
forward and reply messages are not distinguishable from each other by outsiders and intermediate
mix nodes themselves, they share the same anonymity set. The exceptions are the crossover points
that have partial knowledge and the exit mix nodes, because they can observe whether the content
has been encrypted or is in plain text. Mixminion also suggests choosing nodes from preferably
a large pool; however, further details on the node selection strategy have not been specified in
Mixminion.

3.1.4 Discussion. Mixnets, as classified in Table 2, show very heterogeneous routing designs
due to their routing diversity on multiple routing building blocks, which in turn lead to topological
differences.

As mentioned earlier, existing routing strategies can be classified into free-routes mix networks
and mix cascades. However, we distinguish whether a connection is potentially allowed between
two nodes or not based on routing of the messages. Hence, we marked most of the mix cascade
networks as fully connected. The connectivity in restricted route mix networks and Webmixes
is restricted due to restrictions in the selection set, which leads to a partially connected network
topology.

Generally speaking, mix cascade networks employ rather synchronized connection, because
messages are sent in batches and mostly depend on their flushing algorithms on a timely sched-
ule. For example, timed mixes lead to synchronized message transmission. Recall that the flushing
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algorithm in Mixmaster and Mixminion partially uses time restrictions. However, we consider
these two protocols with asynchronous message transmissions due to the possibility that low traf-
fic might lead to a threshold restriction instead of a time restriction. As for free-route systems, in
SG-mixes, message transmission is also synchronized due to assigned time ranges by the routing
initiator. Nevertheless, these timing ranges are not coordinated with other users or mix nodes.

In Mixnets, node management is not always specified in the protocol description. For example,
in Chaumian mixes, the view of the routing decision maker is not discussed; however, it can be
implicitly deduced that it is complete. The anonymous remailer Mixmaster does not discuss node
management either; however, the later implementation uses ad hoc systems, which suggests a
partial view (Danezis et al. 2003). The remailer Mixminion defines a node management strategy to
insure a complete view for the routing decision maker.

Source-routing is one of the inherent routing features of mix cascade protocols, because the
routing paths are fixed beforehand. Choosing the mixes for the mix cascade might be either de-
terministic, such as in the case of Webmixes, or non-deterministic, such as in the case of Reliable
mix cascades.

Flushing algorithms do apparently impact scheduling. Note that some of the protocols in Table 2
use randomness in the scheduling process (e.g., pool mixes). Consequently, some messages are
forwarded later than others. Since individual messages do not have priorities by themselves, we
categorized them also as fair. How the set of nodes is derived for node selection has also not
been specified precisely for mix networks. The same holds for selection probability, such as for
Chaumian mixes. For mix networks, we categorized the selection probability as deterministic,
because all mixes are chosen for a single mix cascade. For both mix cascade protocols and free-
route mix networks, the selection set varies depending on the application of the AC network and
on the potential anonymity properties.

As mentioned in Section 3.1, in mix cascades, the selection probability has two dimensions when
more than one cascade exists. For instance, Webmixes can provide multiple mix cascades, where
mixes are chosen by the network administrator for each mix cascade. Thereafter, the user manually
selects one of these mix cascades for routing her messages. Another mix cascade protocol, where
mixes are selected deterministic, is ISDN mixes.

All mix cascade protocols are high-latency AC networks and have a message-based commu-
nication mode; exceptions are ISDNs, Real-time mixes, and Webmixes, which are designed for
low-latency applications, such as web browsing. Note that the latencies might be restricted, for
instance in case of SG-mixes, where the delays are randomly selected from a restricted time range.

3.2 Tor-Related Protocols

Tor is based on onion-routing (Goldschlag et al. 1996; Reed et al. 1998) designed for anonymous
communication for applications with low-latency constraints, such as web browsing. An onion-
routing network consists of a set of nodes so-called Onion Routers (ORs). Users choose an or-
dered sequence of ORs to establish a bidirectional channel, so-called circuit, for relaying their data
through the onion-routing network. The communication is encrypted in a layered fashion and
the ORs in the circuit each can decrypt their corresponding layer. When the communication is
relayed by an OR in the circuit, the OR removes the corresponding layer of encryption and for-
wards the data to the next OR in the circuit (see Figure 2). The last OR forwards the data to the
destination. Each OR only knows their predecessor and successor in the circuit, and the complete
sequence is only known to the circuit initiator (the user). Therefore, only the first OR in a cir-
cuit is aware of the IP address of the user who has initiated the circuit and only the last OR of
a circuit is aware of the destination of the communication, which is relayed through the circuit.
The response of the receiver is relayed back to the initiator through the same circuit. Similar to
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Fig. 2. The concept of onion-routing: (a) The sender chooses an ordered sequence of onion routers for relay-

ing his message. For instance, the sender chooses Router A, B, and C. She then encrypts the message in a

layered fashion starting with the key of the last onion router (Router C) along with an instruction that in-

dicates the next hop in the sequence. The newly created data structure is called onion. Finally, she forwards

the onion to the first onion router in the sequence (Router A), so called entry node. (b) Once the message is

delivered to the entry node, the router decrypts one layer of encryption with its corresponding key and for-

wards it to the next hop following the instruction within the layer. At this point, the onion router is aware of

the identity of the sender and the next hop. (c) Router B receives the onion, removes one layer of encryption,

and forwards it to the next hop (Router C). (d) Finally, Router C receives the onion, removes the last layer of

the encryption and forwards the message to its final destination. Note that, the exit node (Router C) does

not who is the sender, it is only aware of the final destination and its predecessor node.

Table 3. Routing Classification of Anonymous Communication Protocols: Tor-Related Protocols
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Webmixes, in onion-routing, the ORs implement First-In First-Out (FIFO)-like forwarding strategy
to provide low-latency services. Having no delays at the ORs and due to missing cover traffic onion-
routing are susceptible to a number of attacks, such as traffic analysis and timing attacks, where
an adversary may identify and correlate traffic patterns at the initiator and receiver (Danezis and
Díaz 2008; Ren and Wu 2010), thus de-anonymizing the connection. Nonetheless, onion-routing is
a promising design to provide a low-latency AC network, and many currently used systems can
build upon this design.

Onion-routing used in Tor (Dingledine et al. 2004) constitutes an extension of the original onion-
routing design, with some modifications to achieve better security, efficiency, and deployability.
The Tor network, an open-source and a free-to-use framework, consists of a large set of volun-
teering routers (at the time of writing, there exist more than 7,000 routers (The Tor Project 2017)).
The network is mostly connected, because routers can connect to any router from the Tor net-
work, except for connections between routers located in the same IP /16 subnet space, which is
not possible. Tor’s services are used daily by approximately 2,000,000 users (The Tor Project 2017).
Each user runs a piece of software called Onion Proxy (OP) that manages all Tor-related processes,
e.g., establishing circuits or handling connections from user applications. Tor deploys a group of
well-known and trusted authoritative servers that publish on a regular basis (typically, every hour)
a list of all active Tor nodes with their characteristics, e.g., estimated bandwidth, IP addresses, and
cryptographic keys. This list is called a consensus. After the user has obtained the consensus, the
OP of the user chooses an ordered set of usually three ORs to build a circuit. The first node in a
circuit is called the entry node, the second node is the middle node, and the last node in the circuit
is the exit node. The first node that is selected is the exit node, then the entry node of the circuit
is selected, and last the middle node of the circuit is selected. After selecting a set of ORs, the OP
contacts the entry node and builds a circuit with it. This newly created circuit is used to contact the
middle OR to extend the circuit and similarly through the middle node the exit node is contacted
to extend the circuit. The established circuit can now be used to anonymously relay data.

In 2002, Wright et al. introduced the predecessor attack (Wright et al. 2002) on onion-routing.
To defend against this and related attacks, selecting a small set of nodes was introduced for
Tor (Wright et al. 2003). Previously, each user maintained a list of three randomly pre-selected
(so-called guard) nodes with high bandwidth and uptime. This list was updated every 30–60 days
and the user could choose uniformly random an entry node from this list for each path construc-
tion. This has changed recently, because Tor is starting to let each user select only one fixed entry
guard node for 9 months (Dingledine et al. 2014).

In the early onion-routing design, uniformly random node selection was suggested (Syverson
et al. 2001). Due to performance considerations, Tor’s routing policy does not select nodes with
the same probability, but rather preference is given to high-bandwidth nodes. The likelihood that
nodes are chosen for certain positions in a given route depends on the ratios of overall node band-
widths and node characteristics such as the IP addresses and whether they can be selected as
entry node or as exit node. Moreover, some additional bandwidth weights are used to balance off
the node selection. As mentioned before, a further development in the routing policy is to disallow
a communication to pass through two nodes within the same /16 subnet IP address. The implica-
tions of these changes with respect to structural node corruption have been recently explored by
Backes et al. (2013) and Backes et al. (2014).

Next, we review two prominent attacks on Tor’s routing. Murdoch et al. have proposed a traffic-
analysis attack using timing information to identify Tor nodes and to infer traffic load to a specific
initiator. Their investigation shows a degradation of Tor’s anonymity against such attacks. They
furthermore propose some strategies to prevent the risk of such attacks, mainly by increasing
communication latency (Murdoch and Danezis 2005). Bauer et al. have proposed a traffic analysis
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attack aimed at decreasing the anonymity of Tor (Bauer et al. 2007). Their attack investigates the
load balancing that is performed by Tor, where high-bandwidth nodes are preferred in the node
selection strategy. They show that performance optimization impairs the anonymity of Tor against
end-to-end traffic analysis attacks.

Since Tor has been proposed, there has been a great deal of research on extending Tor’s routing
strategy. The proposed extensions to the Tor routing protocol aim mostly at improving either the
achieved anonymity of Tor or the performance that Tor users experience.

Improvements to Tor’s anonymity have been often realized by aiming at an improved node se-
lection. For example, improving anonymity by using better weighting at the node selection phase
has been proposed in Panchenko et al. (2012) and Backes et al. (2014). Involving AS-level informa-
tion in the node selection has been proposed by Edman and Syverson (2009) and Akhoondi et al.
(2014). Moreover, offering the user a tune-up option between uniformly random node selection (for
high anonymity) and weighted random node selection with a bias toward high-bandwidth nodes
(for better performance) has been suggested by Snader and Borisov Snader and Borisov (2011).

Tor’s performance problems have several causes, and hence suggested improvements aim at
different aspects of the Tor routing protocol. One cause of Tor performance is high conges-
tion (AlSabah and Goldberg 2015; Dingledine and Murdoch 2009), often caused by bulk traffic,
which induces high-latency for interactive/web traffic. Several solutions to solve the problem of
high waiting times for interactive traffic have been proposed. One possible solution is to increase
the number of connections between two nodes (Geddes et al. 2014; AlSabah and Goldberg 2013;
Gopal and Heninger 2012; AlSabah et al. 2013), which can be used to separate interactive and bulk
traffic into different connections. Another solution is to prioritize interactive traffic in the sched-
uling phase (Tang and Goldberg 2010; AlSabah et al. 2012). An alternative solution is to improve
how Tor’s resources are used by improving node selection with a more realistic estimation of the
available bandwidth of nodes (Panchenko et al. 2012). Furthermore, another solution to Tor’s con-
gestion problem is to enforce avoiding congested nodes at the node selection phase (Wang et al.
2012). Another reason for Tor’s high-latency is circuitous paths (Akhoondi et al. 2014). To solve this
problem, node selection strategies have been proposed that take the destination between chosen
nodes into account (Akhoondi et al. 2014; Sherr et al. 2009; Panchenko et al. 2012).

The scalability of Tor has also been subject to new proposals for the Tor routing protocol in the
literature. One proposal to tackle scalability issues is to give the user only the information about the
necessary nodes for path construction and to hide the complete view of the system from the user
by either managing Tor nodes as a DHT table and using Kademlia for node retrieval (McLachlan
et al. 2009) or by using private node retrieval (Mittal et al. 2011b).

3.2.1 Discussion. On a conceptual level, all Tor-related protocols are equally characterized by
their routing features. However, there are three exceptions that affect this: the completeness of
the network view, the fairness of scheduling, and the node selection probability (leaving apart the
non-technical question if the code has been made publicly available). Their differences, however,
often lie in implementation details, which are not necessarily relevant to routing, such as reducing
buffer size (AlSabah et al. 2011). In addition, differences in the routing policy, which do not change
the routing feature on a conceptual level, such as changing node selection probabilities (Backes
et al. 2014; Panchenko et al. 2012), are equally classified in the table, even though node selection
probabilities could be different.

One inherent routing feature of Tor-related protocols, due to preventing additional latency, is
to have no synchronization, which makes such protocols sensitive to timing attacks and global
adversaries. Another inherent feature is that all Tor-related protocols have a client-server model,
which improves their usability and leads to a higher number of users, thus contributing to better
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Table 4. Routing Classification of Anonymous Communication Protocols: Random

Walks and DHT-Based Protocols

anonymity for Tor-related protocols (Dingledine and Mathewson 2006). They are characterized
as complete network view due to a central authority, which distributes the list of Tor routers.
One exception is Mittal et al. (2011b), which realizes private node retrieval and thereby constrains
the decision maker’s view of the network. A complete view helps against adversary biasing node
selection and is preferred in source-routing to prevent the decision maker from choosing from a
smaller set of nodes.

Further inherent routing features concerning the communication model include routing type,
scheduling, determinism in the node selection, and the selection set. The exceptions here are Tang
and Goldberg (2010) and AlSabah et al. (2012), who suggest a prioritization at the scheduling phase
in favor of interactive traffic to reduce delays that interactive users might experience.

Node selection in all Tor-related protocols is non-deterministic. This is important, since the Tor
network consists of volunteers and is very likely to have a fraction of malicious nodes among them.
A non-deterministic node selection reduces the chances of consistently selecting malicious nodes.
Given a large number of Tor relays that are spread around the world, and since the adversary is
assumed to be local, a non-deterministic node selection makes targeted surveillance harder. Barton
and Wright proposed an AS aware node selection for Tor (Barton and Wright 2016) to improve
Tor’s resilience against adversaries controlling an AS.

Furthermore, the node selection probability is generally weighted using static parameters, ex-
cept for a few approaches that dynamically adjust weights, e.g., for balancing security versus per-
formance (Snader and Borisov 2011) and for avoiding congestion (Wang et al. 2012; AlSabah et al.
2013). Tor-related protocols are low-latency and have circuit-based communication mode, which
are both inherent routing features of these protocols. Although we classify Tor as a protocol where
the routing decision maker has a complete view, it is worth mentioning that the unlisted relays,

ACM Computing Surveys, Vol. 51, No. 3, Article 51. Publication date: June 2018.



A Survey on Routing in Anonymous Communication Protocols 51:21

Fig. 3. The basic concept of Crowds: In this simple scenario, two users want to send their messages (message

A and message B) to Website A and Website B, respectively. First, they send their message to a randomly

selected node (step a1) and (step b1). The receiving node flips a coin to decide whether to send the message

to another node or to its final destination. The receiving node of the message A randomly decides to send the

message to another node (step a2), while the receiving node of the message B decides to send the message

to its final destination (step b2). The receiving node of message A, again by flipping a coin, decides to send

the message to another node (step a3). The message goes further until a node decides to send it to the final

destination (step a4). Finally, the third receiving node decides to forward the message to its destination (step

a4).

known as bridges, are not part of this view. MTor is an extension built on top of Tor to facilitate
group communication within Tor (Lin et al. 2016), which is designed to be scalable.

3.3 Random Walks, Structured and Unstructured DHT-Based Protocols

In this section, we review Random Walk protocols, where the communication is relayed randomly
through the network. We consider a protocol a Random Walk protocol if node selection is hop-by-
hop routed and a random selection. Random Walk protocols are often combined with peer-to-peer
network structures.

Crowds (Reiter and Rubin 1998) is one of the early AC systems designed for anonymous web
browsing. The key design feature of Crowds is a random peer selection and a peer-to-peer struc-
ture, where all users of the system are nodes themselves. In Crowds, all nodes are grouped into
so-called crowds and a so-called blender is responsible for managing and administrating nodes; all
nodes within a crowd might connect to each other for relaying a communication. To use Crowds, a
user randomly selects a node and sends her message (i.e., website request). Upon receiving the re-
quest, this node flips a biased coin to decide whether to send the request directly to the receiver or
to forward it to another node selected uniform at random. This continues until the message arrives
at the destination (see Figure 3). The server replies are relayed through the same nodes in reverse
order. Wright et al. showed that Crowds is vulnerable to so-called predecessor attacks (Wright
et al. 2002, 2004). In this attack, the attacker tracks an identifiable stream of communications over
a number path reformations and logs the nodes that send the message. Eventually, the attacker
sees the initiation more often than the other nodes. To prevent such type of attacks, Crowds sug-
gests to employ static route (a user keeps the route for a while) such that an attacker does not have
multiple routes to link to the same node (Reiter and Rubin 1998). However, even keeping routes
static for a day is not enough to prevent predecessor attacks (Danezis et al. 2010).

MorphMix (Rennhard and Plattner 2002, 2004) is a dynamic peer-to-peer AC network. Techni-
cally, MorphMix establishes circuit-based connections using layered encryption, where the anony-
mous route is established iteratively by the nodes on the route. Each node is typically only aware
of a set of network nodes, which is not necessarily covering all nodes. To avoid repeated connec-
tions with the same set of nodes, a node has to forget about nodes it has not been connected and
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Fig. 4. An overview of a general DHT network (left image) and a DHT network where the search algorithm

for routing indexes uses binary trees (image on the right), such as Salsa or DHT networks using the Kademlia

look-up method.

constantly require new node information. After an initiator selects the first node, it selects ran-
domly a witness for each hop thereafter, randomly chosen from the nodes in its local database and
asks the next hop to extend the route with the assistance of the witness. Each node then proposes
a set of candidate nodes for the next hop and the corresponding witness chooses one of these can-
didates as the next hop. To prevent path compromise, nodes can only propose nodes with different
IP prefix to its own IP address to the witness. The witness should not be selected from the nodes to
which the initiator is connected currently to avoid initiators being identified by witness nodes. To
mitigate guessing whether a node was the initiator of the path by the next hop, the initiator adds
random delays to its communication before forwarding them in the tunnel establishment phase.

Tarzan (Freedman et al. 2002; Freedman and Morris 2002) is a peer-to-peer anonymous fully de-
centralized IP-level network overlay. All participants are peers; they are all potential originators of
traffic and also potential relays. Tarzan nodes do not implement any mixing strategies and simply
forward incoming traffic. After the initiator node selects a set of nodes (preferably from existing
connections from previous communication rounds) to form a route through the overlay network,
a tunnel via these nodes is established for relaying communication. Unlike the early design of the
protocol (Freedman et al. 2002), where the peers only needed to know about a random subset of
nodes, the later version (Freedman and Morris 2002) introduces a gossip-based protocol based on
the Name-Dropper protocol (Harchol-Balter et al. 1999), where more node information is requested
from randomly chosen nodes. The aim is to gain information about all available servers in the net-
work to avoid attacks that are facilitated due to churn, such as fingerprinting attacks (Danezis and
Clayton 2006). Node information is stored in a ring model and lookups are carried out using the
Chord algorithm (Stoica et al. 2001). The initiator only selects nodes randomly from distinct IP
subnets, a three-layer hierarchy selection is used to make sure nodes are from distinct subnets.

Efficiency is one of the main problems in Random Walk protocols. In the next section, we re-
view Random Walk protocols that employ DHT lookups to gain better efficiency (e.g., AP3 proto-
col (Mislove et al. 2004)).

3.3.1 DHT-Based Protocols. In distributed systems, where there are network administrators,
a challenge is to locate a node. One solution is to use DHTs to manage the distributed nature
of the data (relaying nodes or distributed storage). Generally, DHT refers to a trust-distributing,
structured data management model for storing (value, key) pairs and is accompanied with key-
based lookups for locating the corresponding stored value (see Figure 4). The value might be,
for example, either the router information of relaying nodes in a distributed network or a stored
content (file). The keys are hashed from the identifier of the value (for nodes, their IP addresses
are hashed into keys). In the literature, several lookup strategies for the DHT-based structures
have been proposed, aiming at efficient searching. Some popular lookup strategies are Kademlia
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(Maymounkov and Mazières 2002) (locating the nodes based on their estimated distance using an
XOR metric), Chord (Stoica et al. 2001) (using a clockwise circle metric, where at each hop of the
lookup, the distance to the node is decreased, at least half), and Pastry (Rowstron and Druschel
2001) (carrying out lookups based on numerical identifiers).

DHT structures enable efficient routing even when the peers of a DHT structure keep only
information (key-value pairs) of a partial subset of all the other peers of the DHT structure; this,
in turn, leads also to improved scalability of such systems. Another important feature of DHT-
based structures is having better load balancing. For systems where nodes have only a partial
view of the structure, hop-by-hop routing is preferable. Some AC protocols use randomness in the
routing strategy in addition to the typical lookup method, for example, by selecting a randomly
constructed key and a classical lookup method, such as an adaptation of Chord, Kademlia, or Pastry,
to find that key. Next, we review AC protocols that use an adaptation from Kademlia, Chord, Pastry
for their node lookup (considered as structured DHT-based protocols). We proceed by reviewing
independent DHT-based routing proposals for AC that are considered unstructured DHT-based
protocols. We start with AP3 (Mislove et al. 2004), a Random Walk protocol aiming at offering
anonymity when a large part of the nodes is compromised. AP3 uses the same routing strategy as
Crowds, with the difference that the node information is retrieved using Pastry and that the node
does not have a complete view of the system.

Next, we review two protocols that aim at replacing node selection of source-routed protocols
such as Tor-related protocols with structured DHT systems making them suitable to be combined
with onion-routing. Salsa (Nambiar and Wright 2006), proposed by Nambiar et al., aims to pro-
vide scalability and prevent malicious colluding nodes from biasing routing. Salsa virtually divides
nodes into groups, which are organized in a binary tree form. For routing, simultaneous redun-
dant lookups and bound checking are used to avoid malicious nodes returning wrong addresses.
The lookup queries are carried out similar to the Chord lookup in a recursive fashion. In Salsa,
the routing information that is available to each node is partial; however, the tree structure allows
nodes to carry out source-routing.

McLachlan et al. have proposed Torsk (McLachlan et al. 2009), a peer-to-peer AC protocol, re-
placing Tor’s node selection and directory service with a DHT design to provide better scalability
for Tor. Their design uses DHT tables for node selection by using a randomly chosen key that
is looked up in the table using Kademlia. To secure lookups, Torsk uses the “root certification”
approach proposed by Myrmic (Wang et al. 2006) and randomly selected secret “secret buddies.”

Panchenko et al. proposed NISAN (Panchenko et al. 2009), an AC protocol that aims at achieving
high scalability and preventing adversaries from bias routing. NISAN uses iterative search to select
nodes randomly for constructing anonymous paths and uses an adaptation of Chord, where the
node lookups are aggregated to hide which node is exactly looked up for the next hop. Moreover,
NISAN hides the node that it is looking up, by requiring the complete routing table and enforcing
bound checking to further prevent selecting nodes from routing tables, which were manipulated
by malicious nodes.

Octopus (Wang and Borisov 2012) aims at preventing malicious nodes from biasing the routing
procedure and provides anonymity by hiding which nodes have been looked up for anonymous
paths. For routing, Octopus uses iterative lookups by sending the query to the closest node to the
searched key in the local routing table and then retrieving the routing table from that node until
the node containing the corresponding value to the key is found. Node selection is carried out in
two phases, where in the first phase nodes are selected by the path initiator (user) and in the second
phase the last node selected in the first phase chooses the remaining nodes. Therefore, Octopus is
not purely a Random Walk protocol. After establishing anonymous paths, Octopus splits queries
to different paths and adds dummy traffic to hide the real queries among them. Furthermore, as
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security measures, Octopus enforces bound-checking on the received routing tables to prevent
using manipulated routing tables, and it proactively tries to identify and remove malicious nodes.

Next, we review two file-sharing protocols that use DHT for routing file requests and their
responses. They, however, use unstructured routing. Clarke et al. proposed Freenet (Clarke et al.
2001), a peer-to-peer censorship-resistant system for sharing storage space. Freenet offers strong
decentralization to provide privacy and robustness against attacks, where the key design feature is
based on storage replication and plausible deniability. The relaying nodes only know their prede-
cessor and the successor in order provide privacy and when a request is sent or receiver the node
does not know whether the predecessor was the initiator or whether the successor is the recipient.
Files are stored multiple times at the nodes, are indexed by binary file keys, and can be looked up
by their corresponding key. Replication of files provides resilience against node failure and node
overloads. Each node has a dynamic routing table including the node information with the stored
keys, where routing tables are updated periodically to achieve better performance. Freenet uses
an adaptive routing using DHTs with keys that are location-independent. The original Freenet
design uses a heuristic-based deterministic routing that is a distance-directed depth-first search
(with backtracking) (Clarke et al. 2010; Roos et al. 2014) and uses potentially all participating nodes
choosing mostly neighborhood nodes (currently called Opennet mode).

When a file request arrives at a node, including a key and a value for hops-to-live, if the file is not
stored locally, the node looks up the node with the nearest key in the routing table and forwards
the file request to the corresponding node. The node receiving the request repeats the process
until either the file is found or the hops-to-live is reached. If the requested file is found, then the
node forwards the file to the node from which it has received the request, stores a copy of the
file locally and updates its routing table into optimize routing for future requests. In case the node
that is contacted is not responding, the node sends the request to the node with the second-nearest
key and if that node is also unresponsive, it contacts the third-nearest one, and so on. If the file
is not retrieved within the hops-to-live number of hops, then the search is aborted and the file
requester is informed. The nodes that are forwarding the requested file back to the file requester
change randomly the sender address, providing reasonable deniability for the node that has stored
the file (Clarke et al. 2001).

The Opennet mode was vulnerable to various attacks. In particular, nodes participating in
Freenet were not protected, and an attacker could easily find out whether a router is a partici-
pating Freenet node. In 2010, Freenet has been extended by a membership-concealing Darknet
mode that uses trusted connections for routing (Clarke et al. 2010), where such shortcomings are
addressed. In the Darknet mode, the routing table is consisting of nodes derived from a fixed graph,
which is the social graph of the node and the user chooses the nodes from her trusted nodes (Clarke
et al. 2010). Since the Darknet mode is based on the trusted network of a user, the structure of the
network is following Kleinberg’s small-world model (Kleinberg 2000).

GNUnet (Bennett et al. 2002) was originally designed as a peer-to-peer censorship-resistant con-
tent sharing system, but has been expanded into other applications such as anonymous file-sharing
using the GAP protocol (Bennett and Grothoff 2003). GAP aims at providing requester and respon-
der anonymity for file search and file-sharing. In GAP, a node that is relaying a message in the
forward route has the option to “drop out” from the reply route (for example, due to network state
and its own heavy load) and when the reply is sent back, the node is over-jumped. Moreover, when
queries arrive at the nodes, they can be dropped if the node has already too much load. Routing
in GAP uses a credit rating scheme, where relaying requests and replies increase the credit and
sending uses the credit. The credit score is local at each node. In GAP, the file request can either
be sent to newly selected nodes or to a node where there is already a connection established. This
is decided based on the node’s current CPU and load, the credit rating and a random factor. The
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Table 5. Routing Classification of Anonymous Communication Protocols:

DCnets and Miscellaneous Protocols

node selection is random with a bias towards nodes, which have a closer identifier to the hash
value of the file that is queried. Moreover, the network activity is also taken into account in node
selection (giving preference to “hot paths”). GAP uses a time-to-live restriction to avoid routing
loops and when time-to-live is reached, the query is forwarded directly to the destination with a
certain probability. For flushing in GAP, nodes use a combination of time and threshold mixes for
flushing batches of messages, where the time restriction is selected randomly.

3.3.2 Discussion. Crowds and Morphmix are two of the early Random Walk protocols that were
proposed for anonymous communication. However, they present conceptual differences in terms
of routing features. Both Crowds and Morphmix have fully connected topologies, since every node
may build a connection with every other node, resulting in better availability of the system, which
leads to a bigger attack surface for timing attacks. Tarzan originally had a partially connected
topology that was due to its partial network view of the route initiator. However, in the later
version of Tarzan, a gossip-based strategy has been proposed to have a complete view for the
route initiator, which leads to a fully connected topology as marked in Table 5.

The path length in Crowds may vary and is determined in a non-deterministic manner to make
simple timing attacks harder for external, local, and passive adversaries. Still, this does not neces-
sarily hold for the case that at least one of the nodes in the path is malicious. In Morphmix, the
initiator does not select the nodes of the route itself, rather decides on the number of nodes and
establishes the connection.

Crowds is semi-decentralized, because routing information of nodes is distributed by a central
entity (the blender), which introduces a single point of failure with respect to node administration.
Morphmix, however, has a fully decentralized structure. The network view is complete in Crowds,
which, on the one hand, protects Crowds from eclipse attacks and, on the other hand, is important,
since Crowds has a hop-by-hop routing type that makes the node selection sensitive to be biased
by adversaries. In Morphmix, the network view is partial, and therefore, witnesses were introduced
to prevent the biased node selection. Moreover, an inherent feature of Random Walk protocols is
that the node selection is non-deterministic. In Crowds, each node is chosen from the set of all
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nodes based on a geometric distribution (Danezis et al. 2009); whereas, in Morphmix, the initiator
knows a subset of nodes.

An inherent routing feature of DHT-based protocols is partially connected topology and a par-
tial network view. The routing information is distributed among nodes and no single node has
the complete list. Such a design increases the scalability of the protocols. A partially connected
network topology makes DHT-based protocols less resilient against DoS attacks, which aim at
disconnecting the network as much as possible compared to Tor-related protocols. The connec-
tion direction is bidirectional for the majority of protocols with two exceptions. The exceptions
are the file-sharing applications Gnunet and Freenet Opennet mode.

Generally, DHT-based protocols are fully peer-to-peer protocols. There are two exceptions in
this category, namely, Torsk and Salsa, where the first one has a hybrid role structure while the
latter one allows both hybrid and fully peer-to-peer role structures. For being partially connected,
DHT-based protocols provide a partial view of the network to the routing decision maker. Note
that this may introduce a series of attacks. Examples of attacks against protocols that provide
only a partial view of the network to the routing decision maker are route fingerprinting attacks
(Danezis and Clayton 2006), and route bridging attacks (Danezis and Syverson 2008). Another
series of attacks, which might be possible due to a partial network view, are attacks that aim at
disconnecting target nodes from the rest of the network, such as eclipse attacks (Castro et al. 2002).

Most of the DHT-based protocols are characterized by a hop-by-hop routing type. Exceptions
are NISAN, Salsa, and Octopus, with source-routing. In Octopus, there are two decision makers
for node selection; the path initiator who decides only about a segment of the path and the last
node of that segment, which initiates the rest of the path. In our study, we could not find much
information about the scheduling of DHT-based protocols, in particular for protocols that have not
been deployed. Most of the DHT-based protocols have non-deterministic node selection, where
again, exceptions are the file-sharing applications, where the routing path does not need to be
anonymous.

The set selection for DHT-based protocols is, in most cases, all nodes within the routing table
(i.e., all nodes available to the decision maker). However, there are two exceptions: Torsk, where
the set selection is restricted by security and network restrictions, and Freenet in the Darknet
mode, where the set selection is based on trust assumptions of the user. For most of DHT-based
protocols, the selection probability is uniform, exceptions are Freenet and Gnunet. Both protocols
do not aim at achieving unlinkability (Pfitzmann and Köhntopp 2000) nor they hide that a user is
participating in the network. Nevertheless, they hide the role of the peer in the network. Most of
the DHT-based protocols are message-based except Torsk, AP3, and Salsa.

3.4 DCnets

The idea of DCnets was first proposed by Chaum (1988) and later revisited (Golle and Juels 2004;
Waidner and Pfitzmann 1990). As reflected by its name, DCnet is inspired by a scenario in which
three cryptographers sit together for dinner in a restaurant and are interested in identifying
whether the dinner is paid by the National Security Agent (NSA) or one of them. Each cryp-
tographer flips a coin and shares the outcome with the cryptographer on her right. Next, each
cryptographer tells to all whether the two coins she can see are the same or different. The cryp-
tographer who pays the bill states the opposite. One can count the number of differences: an odd
number of differences indicates that a cryptographer has paid, while an even number shows that
the NSA has paid. If it is a cryptographer, then the other two do not learn who has paid, unless
they collude together (see Figure 5).

The key concept is that every participant outputs a message that is disguised by XORing them
with the keys the participants are sharing pairwise with other participants. The participants
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Fig. 5. The concept of Dining Cryptographers Networks: Each cryptographer flips a coin and shares the

outcome with the cryptographer on her right. Next, each cryptographer tells whether the two coins she

sees are the same or different. The cryptographer who pays the bill states the opposite. An odd number of

differences indicates that a cryptographer has paid, while an even number shows that the NSA has paid.

combine their outputs and share the output with each other (i.e., they broadcast their output).
When the encrypted messages are combined, the keys cancel each other out, and the message is
revealed; however, the sender remains unknown.

DCnets are an important alternative to mix-based schemes and their extensions due to their re-
sistance against traffic analysis attacks. DCnets offer non-interactive anonymous communication
using secure multi-party computation with information-theoretically secure anonymity, guaran-
teeing sender anonymity while enabling all participants to verify the final outcome.

The DCnet concept can be generalized, to transmit large messages simply by repeating the pro-
tocol as desired (Golle and Juels 2004). DCnet expects all participants to be involved in every run of
the protocol and requires pairwise shared keys between the participants. Moreover, every partici-
pant needs to disclose the same number of bits in each round. The participants can share the keys
for every round, or they can repeatedly use the same key; this makes DCnet unconditionally or
computationally secure, under the assumption that the protocol is executed correctly. Moreover,
DCnets also have practical challenges, such as the message transmission or avoiding collisions
(unintentional) and disruptions (intentional collisions). Since a collision invalidates the message
(bit), when only one-bit messages are sent, just one of the participants may transmit at a time (al-
though all participants are involved in each round). If multiple participants want to send messages
within a block of communication, then they need to occupy different positions within the block.
One proposed solution is to randomly pick a position (slot) in the block that is going to transmit
and reserve the position in earlier rounds (pre-transmission round). However, this might only shift
problem and again in the reservation round collisions might occur. The basic DCnet does not pre-
vent any disruption, such as actively blocking participants from sending the message; hence, it is
susceptible to anonymous DoS attacks. To partially address this problem, some solutions to detect
disrupters in DCnets have been proposed in the literature (Bos and den Boer 1990; Waidner 1990).
Furthermore, recovering from a fault is only possible by re-broadcasting the messages.

Chaum proposed to either use a ring topology for sharing the messages or use broadcast to
transmit messages to all participants at once. The ring topology solution has a problem of detect-
ing the disruptions, because malicious participants can adapt their answers to avoid being detected.
Basically, if two users submit reverse bits, they cancel each other out and the disruptions remain
undetected. Other topologies that have been proposed for DCnets are tree (Dolev and Ostrobsky
2000) or star topologies (Pfitzmann and Waidner 1986). The broadcast solution has the problem
of being expensive and introduces the problem of collision. The major limitations of DCnet are
the strong assumptions that they require: first, participants follow the protocol honestly and are
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expected not to collude; second, unconditional sender anonymity is guaranteed only if there is an
unconditional secure channel between every pair of participants. Furthermore, DCnets are vul-
nerable to Sybil attacks (Douceur 2002).

Herbivore (Goel et al. 2003) is built on top of DCnets aiming at better efficiency and scalabil-
ity and managing churn. To improve scalability, Herbivore breaks down the participants into
smaller groups called cliques, a message can only be traced to a clique but not to the corresponding
sender/receiver within their clique. Within a clique, participants are organized in a star topology,
where the central node relays all messages between members of a clique. The central node is
changed for each new round of communication. For inter-clique communication, the cliques are
connected to each other in a ring topology. For locating cliques, Herbivore employs the Chord
protocol (Stoica et al. 2001). To mitigate intersection attacks, nodes departure from a clique can be
vetoed by the node that is in the middle of a long-run transmission. Although authors claim Her-
bivore can is a low-latency AC system, we decided to classify the protocols as being mid-latency,
since it contains a central node that has to wait for messages from all other nodes in the clique.
One of the main weaknesses of Herbivore is that smaller anonymity sets are achieved and the ap-
plications have a time restriction based on the cliques lifetime. Moreover, the star topology makes
the design vulnerable to DoS attacks.

Dissent (Dinning-cryptographers Shuffled-Send Network) (Corrigan-Gibbs and Ford 2010) is a
latency-tolerant protocol for anonymous communication. It is the first protocol that provides ac-
countability for a small-size group, and also maintains integrity. Dissent is built on top of DCnets,
but relaxes the aforementioned assumption that all participants follow the protocol correctly. Al-
though Dissent, in fact, combines DCnets and Mixnets, we categorized it as DCnet, because its
DCnet features are more essential to its design. In Dissent, anonymous communication is guar-
anteed for members of a group. Apart from the multi-party computation and layered encryption
to hide the sender of the messages, to solve the collision problem, each group member influences
the position of the messages of other group members in the final transmission block. Dissent con-
sists of two sub-protocols: a shuffle protocol and a bulk protocol. In the bulk protocol, each member
creates an assignment table for each of the other member, so-call message descriptors. The shuffle
protocol is used to shuffle these messages descriptors. Based on these message descriptors, each
participant inserts its messages to a cipher stream, which is a slice of the message block that needs
to be transmitted. The shuffle protocol functions similar to mix cascades; each participant receives
the set of message descriptors encrypted in a layered fashion, which she shuffles and passes over
to the next participant. Thereafter, each member transmits one cipher stream. When these cipher
streams are combined, a vector of concatenated messages is obtained. Dissent uses broadcasting for
intermediate runs of its protocols such as sharing keys. However, the final cipher streams are not
necessarily broadcasted, and can be sent to a single group member or non-member node. Hence,
Dissent primarily guarantees only sender anonymity and further protocol setup details determine
whether recipient anonymity is also achieved. To mitigate untraceable DoS attacks (disruptions),
go/no-go messages and blame phases are used in Dissent, which identify collisions and malicious
participants and enables accountability.

Wolinsky et al. have extended Dissent to improve scalability and efficiency (Wolinsky et al.
2012a). They propose to group participants and use designated servers, where the group mem-
bers share keys with these servers instead of each other (the network consists of server nodes and
participant nodes). In the basic version of Dissent, the group size was restricted; however, in the
extended version, the participants may form larger groups, though the servers consist of a sig-
nificantly smaller group, while still being not completely centralized to avoid the single point of
failure. Hence, the extended Dissent builds an asymmetric topology for key sharing. At least one
of the servers needs to be honest to prevent compromises. While latency introduced at the shuffle
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protocol made the basic version of Dissent unsuitable for interactive and low-latency applications,
the extended Dissent, if used in a local-area setting, can be suitable for low-latency communication.

3.4.1 Discussion. DCnet protocols, as classified in Table 5, have some general inherent rout-
ing features that are due to the broadcast nature of their communication. These inherent routing
features include unidirectional connection, asynchronous connection, and network structure in-
volving centralized entities. Moreover, the routing type is source-routing with deterministic node
selection and statically weighted selection probability.

Furthermore, DCnet protocols incur high-latency and have message-based communication
models. In DCnets, we regard avoiding collusion and shuffling as routing relevant aspects of these
protocols. The first designs of DCnets (Chaum 1988; Waidner and Pfitzmann 1990; Golle and Juels
2004) and Dissent (Corrigan-Gibbs and Ford 2010) are the direct realization of the original DCnet;
therefore, they are similarly characterized. Inherent characteristics of such protocols are fully con-
nected network structures, having a fully peer-to-peer role model. They support flat topologies,
selecting all nodes for the selection set and offer a uniform selection probability for node selection.

To improve efficiency and performance, some DCnet protocols (Wolinsky et al. 2012a, 2012b;
Goel et al. 2003) have been proposed, which vary in their routing features. Unlike the first group,
in these protocols, the network structure is partially connected. For example, in Herbivore, partici-
pants are organized in star topologies, which are then connected in a ring topology. The organiza-
tion of the nodes yields a hierarchical structure for the second group of DCnet protocols. Moreover,
in the extended version of Dissent, users do not share keys with each other but rather with desig-
nated servers. Furthermore, the new versions of DCnet protocols enforce network restrictions to
the selection set to increase efficiency and performance.

3.5 Miscellaneous Protocols

In this section, we review I2P that is alternative source-routed solutions to Tor and two broadcast-
ing protocols that are alternative broadcasting solutions.

I2P (Timpanaro et al. 2012) is a distributed overlay network, originally aimed at enabling anony-
mous communication between two nodes within the I2P network. Note that currently there is a
service built on top of I2P to allow getting connected to web servers (Timpanaro et al. 2011). Cur-
rently, the number of I2P routers is estimated to be between 40,000 and 50,000 (Project 2016b).

The network metadata (containing router contact information and destination contact informa-
tion) is distributed among a subset of all nodes, so-called floodfill nodes, and is managed using
DHT structure by employing Kademlia for node lookups. At bootstrapping, users obtain a list of
I2P peers from websites and then contact two floodfill routers from the list and requests router in-
formation that is available to that floodfill node. In order to mitigate that malicious floodfill nodes
are not biasing node selection by providing manipulated router information, router information is
stored at eight floodfill nodes (Egger et al. 2013).

Nodes are categorized into tiers (called peer profiling) based on the previous performance (re-
sponse times) and reliability (uptime) of nodes. Three main types of tiers are defined in I2P: high
capacity, fast, and standard. The routing protocol of I2P, so-called garlic routing, is source-routed
with a randomized node selection biased towards faster nodes (Schimmer 2009).

In I2P, communication channels are unidirectional and called tunnels; tunnels for outgoing traf-
fic are called outbound and tunnels for incoming traffic are called inbound. Each user maintains
a number of inbound and outbound tunnels; outbound/inbound tunnels of other users can be
retrieved from the floodfill nodes. When users want to relay communication to each other, the
nodes in the chosen inbound and outbound tunnels shape the relaying route. Moreover, there
are two types of tunnels in I2P—client tunnels and exploratory tunnels—for which different peer
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selection strategies are used. Client tunnels are used for application traffic, and exploratory tunnels
are used to send administrative information. For client tunnels, peers are selected randomly from
the nodes that are categorized as fast-tier nodes, which is done locally by the client using previous
measurements. For exploratory tunnels, peers are selected randomly from the set of nodes that are
categorized as a standard tier. The communication through I2P is protected using garlic encryption,
which is very similar to onion encryption with the difference that multiple data messages may be
contained in a single garlic message. P5 (Sherwood et al. 2002) is an anonymous communication
system where users are divided into subgroups correlated to P5 nodes. The P5 routing scheme uses
a logical tree structure to broadcast messages to other nodes. If a user has joined one of the nodes
higher in the hierarchy, then it receives communication more efficiently; however, this comes at
cost of reduced anonymity. Another example of AC networks that use the broadcasting routing
type is Chain-based Anonymous Routing (CAR) protocol designed by Shokri et al. (2007), which
is an anonymous communication solution for on-demand ad hoc settings. CAR uses flooding for
route discovery; however, once the route is constructed the data is transferred only through this
route and is not broadcasted. Therefore, in CAR only the route discovery is using the broadcasting
routing type, data forwarding is using source-routing. Another example of AC protocols for ad
hoc settings that uses broadcasting is TEAP (Gunasekaran and Premalatha 2013).

3.5.1 Discussion. Connectivity of I2P is similar to Tor-related protocols due to the similarities
for the node selection. I2P is characterized with unidirectional connection, which reduces the tim-
ing data that a single relay can have. However, multiple relays participate in the communication
between a sender and receiver. The routing information of I2P is managed in a DHT-like fashion.
Each database node (floodfill peer) has a slice of the information (Schimmer 2009), which could
enable adversaries to carry out eclipse attacks targeting floodfill nodes (Egger et al. 2013). Since a
user obtains node information from more than one floodfill node (up to eight), the union of this
information might cover most of the I2P network and give the decision maker an almost complete
view. I2P uses a source-routing approach, allowing the users to choose nodes that are faster. The
selection probability in I2P is non-deterministic with a bias towards nodes that are profiled as fast
responding nodes. Response times of these nodes differ among users; hence, timing attacks are
more difficult to mount compared to Tor, where the node selection is biased using publicly known
information (Project 2016a). Since response times are continuously measured, we have marked the
selection probability with a bias based on dynamic restrictions. At the node level, I2P nodes use a
prioritized scheduling mechanism, where each task has “bid,” and the task with the lowest (best)
bid is served first (Project 2016c).

P5 protocol uses broadcasting using logical hierarchies to improve efficiency and scalability.
Compared to DCnets, they also have more flexibility for adding new nodes and changing the effi-
ciency/anonymity trade-off after the initial setup has taken place. The CAR protocol uses broad-
casting over several hops, while DCnets use a 1-hop broadcasting. This allows CAR nodes and
users to have a partial view of the system and the participants of the protocol, which makes CAR
more scalable than DCnets. However, DCnets have the advantage compared to CAR that they guar-
antee information-theoretically secure anonymity, while CAR’s anonymity relies on the security
of cryptographic primitives.

4 DISCUSSION

In this section, we discuss challenges and trade-offs between the investigated classes of AC proto-
cols with respect to their routing characteristics and the relevance of their routing characteristics
for real-world applications.
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Mixnets are designed to be secure against traffic analysis and global adversaries by aggregating
messages into batches; however, this comes with a latency overhead and makes them more appro-
priate for latency-tolerant applications, such as micro-blogging, email, questionnaires, collecting
statistics, and electronic voting.

Since Mixnets are secure against a global adversary the system can consist of fewer nodes than
systems that are vulnerable against a local adversary. However, like any other system, mix cascades
are still vulnerable to collusion of mixes; therefore, the number of mixes needs to be appropriately
large, which adds to the latency. Mixnets are also vulnerable to flooding attacks (Serjantov et al.
2003), and there needs to be a large amount of traffic entering the system to make this attack
infeasible for the adversary. Mix cascades are not resilient to DoS attacks, and changing their
initial setup is difficult. In mix cascades that are using layered encryption, if a mix fails to operate,
all encrypted messages on the line are lost. The encryption layers of the encrypted messages need
to be changed according to the new setup of the cascade and re-sent to the new mix cascade.
Also, in decryption mix cascades messages need to add layers of encryption depending on the
length of the cascade, which can lead to a large increase in message size. On the other hand, if
a mix cascade is using re-encryption model instead, it is easier to recover from mix failure and
messages have fixed sized regardless of the length of the cascade. In both types of mix cascades,
since the users are not selecting the mixes, they do not need to maintain a complete view of the
system, but although low overhead for users is a key factor in terms of scalability, mix cascades are
not scalable, because their bandwidth can only be expanded vertically. This is because every mix
needs to relay all the messages and therefore adding a mix to the mix cascade would not expand
the bandwidth but improve anonymity by distributing trust one mix further. If a mix cascade is
using varying sizes of mixes, then the bandwidth of the cascade is limited to the bandwidth of its
smallest mix. Hence, increasing bandwidth can only be achieved by increasing the size of all nodes
in the mix cascade. Expanding the bandwidth by adding a new mix cascade leads to splitting up
the anonymity set size among the mix cascades and the increase in traffic would have no impact on
achieving stronger anonymity. Free-route mix networks scale better than mix cascades in terms of
bandwidth expansion, which helps with increasing the anonymity set size. They are more resilient
against DoS attacks and increase the attack surface, which makes attacks more expensive for the
adversary. However, the increased traffic needs to be load-balanced, which is a difficult task.

Tor comprises a large number of volunteer nodes including a large number of high-bandwidth
nodes among them. This leads to a network with many high-bandwidth nodes that are highly
connected with each other (Brinkmeier et al. 2009), which makes Tor resilient against DoS attacks
(Shirazi et al. 2015), fast, and suitable for low-latency applications, such as web browsing or in-
stant messaging. Both Mixnets and Tor are source-routed, which makes users responsible for path
selection. Although this makes sense to provide sender anonymity, it makes achieving receiver
anonymity difficult. Tor achieves receiver anonymity, by so-called hidden services (Dingledine et al.
2004), where two source-routed paths are connected together at a pre-defined meeting point. How-
ever, when the meeting point and an additional node from the hidden services part of the route are
controlled by the adversary, receiver anonymity can be broken (Biryukov et al. 2013). Moreover,
if the meeting point is controlled by the adversary, anonymity is weakened (Lazar and Zeldovich
2016). The fact the hidden services use six nodes, compared to three nodes for usual Tor traffic,
which already weakens their anonymity by separating them from the rest of Tor traffic (Kwon
et al. 2015).

Moreover, since Tor uses source-routing almost a list of all Tor nodes need to be known to the
routing decision maker, except for a list of nodes that are not publicly available for censorship pur-
poses. The complete list of relays needs to be periodically updated, which makes it more expensive
for users and can hurt scalability. Roos and Strufe have proved that efficient routing in dynamic
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overlay networks is not scalable, in particularly for a client-server model (Roos and Strufe 2015).
Furthermore, Tor is designed to be secure only against local adversaries and it is vulnerable to
traffic analysis attacks (Murdoch and Danezis 2005; Chakravarty et al. 2010; Nathan S. Evans 2009;
Johnson et al. 2013; Mittal et al. 2011a; O’Gorman and Blott 2009), in particular, if the adversary
can see both ends of the communication.

Peer-to-peer networks rely on Random Walk protocols and DHT protocols, which use hop-by-
hop routing. Using hop-by-hop routing increases scalability, because the network view for users is
incomplete and does not need to be maintained, which can be problematic if the network grows. In
particular, peer-to-peer networks, where peers are based on friendship relationship, are the most
promising type in terms of scalability (Roos 2016). Another advantage of hop-by-hop routing is
that it facilitates load balancing, which is one of the challenges of source-routing protocols. One
solution to this challenge would be providing real-time network data for the routing initiator,
however, this solution would worsen scalability of source-routing protocols even further. Such
systems are suitable, for instance, for anonymous file-sharing, where the nodes have to dedicate
a considerable amount of resources. However, being fully peer-to-peer may affect the usability
of the protocol, because users are required to participate as a relay, which increases the cost of
using anonymous communication. Unfortunately, this might lead to a decrease in the number of
users of such systems and in turn reduce anonymity (Dingledine and Mathewson 2006). The main
drawback of using hop-by-hop routing is the malicious influence that compromises nodes can have
on the path selection, leading to route-capture attacks (Danezis and Clayton 2006).

Classic DCnets provide information-theoretic anonymity; whereas, Mixnets, for example, only
provide computational security. However, DCnets are often vulnerable against active adversaries,
in particular, if the adversary is internal. Early designs of DCnets required a restricted setting,
where all users or nodes need to be honest and were also not resilient against DoS attacks. Follow-
up AC systems such as Dissent have incorporated detection techniques for malicious nodes into
their protocol. While for DCnets, like for mix cascades, anonymity guarantees are given with the
assumption that the adversary can track the users’ communication route; for Tor-related protocols
and Random Walk and DHT protocols, this breaks their anonymity guarantees that are based on
a local adversary assumption. This is mainly because in DCnets and mix cascades the communi-
cation route of several users is common, hence, a user’s communication is hidden among them.
While in Tor-related protocols and Random Walk/DHT protocols the anonymity set size per route
is one. Since the route does need to be kept secret for both mix cascades and DCnets, a significantly
smaller number of nodes in the AC networks can be sufficient, because local adversaries are only
reasonable if the system has many relays and a large user-base. Moreover, the broadcasting rout-
ing type, in comparison to source-routing and hop-by-hop routing, is more resilient against DoS
attacks, and data can be sent over the shortest route (Shokri et al. 2007) without the need to trans-
fer information about the network topology to the communication initiator. Although this comes
at a cost of using bandwidth excessively. However, not all broadcasting AC systems are resilient,
for example, if only one relay goes offline in Dissent the protocol halts completely and the com-
position of the relays cannot be changed after the initial setup (Lin et al. 2016). DCnets tend to
have a large communication overhead and do not scale well, because each relay needs to process
all messages like mix cascades their bandwidth can be only expanded vertically. Even the newer
version of Dissent, which employs a client-server approach for better scalability, can only scale up
to a few thousand clients (Wolinsky et al. 2012a). Therefore, DCnet protocols are more suitable for
applications such as group communication/messaging or micro-blogging at a small scale.

Table 6 summarizes challenges that our four routing classes face in terms of routing and the
adversary model (see Raymond (2001) for the definition of AC adversaries) that is assumed for
anonymity.
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Table 6. Overview of the Adversary Assumptions, Focus of Routing Feature, and Challenges

That Our Four Routing Classes Face

Routing Class Challenges Adversary Type

Mixnet Protocols Traffic analysis attacks, such as flooding
attacks

Global & active

Tor-related Protocols Traffic analysis attacks, such as timing
attacks

Local & active

Random Walk/DHT

Protocols

Partitioning attacks & biasing node
selection

Local & active

DCnet Protocols Collision and disruption Global & passive

5 CONCLUDING REMARKS

In this work, we identified key anonymous routing characteristics and classified AC systems in
groups according to their routing features. Moreover, we introduced and evaluated the main ex-
isting AC protocols under our classification. Furthermore, we discussed the relevance of routing
characteristics in such networks and their influence on anonymity and security. We have drawn
several lessons from conducting our survey. On the one hand, there are trade-offs between se-
curity, anonymity, scalability, and performance goals, because the routing decisions that support
each of these goals often conflict with each other. This is especially true for achieving simultane-
ously strong anonymity and good performance, which is still an open problem. On the other hand,
routing aspects are related to each other; for example, a partial view of the system (in the routing
information) often supports the hop-by-hop routing. We observe that making certain routing de-
cisions leads often to a trade-off between security, anonymity, scalability, and performance goals.
Finally, our classification uncovers which routing decisions have to be tailored to the security,
anonymity, scalability, and performance goals that are necessary for a specific use case of a given
AC protocol.
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