
Towards an Analysis of Onion Routing Security

Paul Syverson � Gene Tsudik y Michael Reed � Carl Landwehr z

Abstract

This paper presents a security analysis of Onion Routing, an application independent

infrastructure for tra�c-analysis-resistant and anonymous Internet connections. It also in-

cludes an overview of the current system design, de�nitions of security goals and new adver-

sary models.

Keywords: Security, privacy, anonymity, tra�c analysis.

1 Introduction

This paper presents a security analysis of Onion Routing, an application independent infras-
tructure for tra�c-analysis-resistant and anonymous Internet connections. It also includes an
overview of the new system, de�nitions of security goals and new adversary models. Although
the conceptual development and informal arguments about the security of Onion Routing have
been presented elsewhere [9, 15, 16, 10], we have not previously attempted to analyze or quantify
the security provided against speci�c attacks in detail. That is the primary contribution of this
paper.

The primary goal of Onion Routing is to provide strongly private communications in real
time over a public network at reasonable cost and e�ciency. Communications are intended to
be private in the sense that an eavesdropper on the public network cannot determine either the
contents of messages
owing from Alice and Bob or even whether Alice and Bob are communi-
cating with each other. A secondary goal is to provide anonymity to the sender and receiver, so
that Alice may receive messages but be unable to identify the sender, even though she may be
able to reply to those messages.

An initial design has been implemented and �elded to demonstrate the feasibility of the
approach. This prototype, which uses computers operating at the Naval Research Laboratory in
Washington, D.C., to simulate a network of �ve Onion Routing nodes, attracted increasing use
over the two years it was available. While in operation, users in more than sixty countries and
all seven major US top level domains initiated up to 1.5 million connections per month through

�Center for High Assurance Computer Systems, Code 5540, Naval Research Laboratory, Washington DC 20375,
USA. flastnameg@itd.nrl.navy.mil

yInformation and Computer Science Dept., University of California, Irvine CA 92697-3425, USA.
gts@ics.uci.edu

zMitretek Systems, Inc., 7525 Colshire Drive, McLean VA 22102, USA. Carl.Landwehr@mitretek.org (Work
by this author was primarily performed while employed at the Naval Research Laboratory.)

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Towards an Analysis of Onion Routing Security

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Overall Onion Routing Usage

0

10000

20000

30000

40000

50000

60000

D
a

te

0
2

/1
3

/9
8

0
2

/2
6

/9
8

0
3

/1
1

/9
8

0
3

/2
4

/9
8

0
4

/0
6

/9
8

0
4

/1
9

/9
8

0
5

/0
2

/9
8

0
5

/1
5

/9
8

0
5

/2
8

/9
8

0
6

/1
0

/9
8

0
6

/2
3

/9
8

0
7

/0
6

/9
8

0
7

/1
9

/9
8

0
8

/0
1

/9
8

0
8

/1
4

/9
8

0
8

/2
7

/9
8

0
9

/0
9

/9
8

0
9

/2
2

/9
8

1
0

/0
5

/9
8

1
0

/1
8

/9
8

1
0

/3
1

/9
8

1
1

/1
3

/9
8

1
1

/2
6

/9
8

1
2

/0
9

/9
8

1
2

/2
2

/9
8

0
1

/0
4

/9
9

0
1

/1
7

/9
9

0
1

/3
0

/9
9

0
2

/1
2

/9
9

0
2

/2
5

/9
9

0
3

/1
0

/9
9

Date

T
ot

al
 N

um
be

r
of

 C
on

ne
ct

io
ns

/d
ay

Series1

Figure 1: 30 Day Rolling Average of Onion Routing Usage: 3/1/98 { 3/1/99

the prototype system; cf. also Figure 1, which shows connections per day averaged over the
preceding 30 days. This demand demonstrates both an interest in the service and the feasibility
of the approach. However, the initial prototype lacked a number of features needed to make the
system robust and scalable, and to resist insider attacks or more extensive eavesdropping. A
design for a second generation system that addresses these issues is complete, and the processes
required to release the source code for public distribution have been initiated. Several companies
have contacted NRL to with intent to commercially license Onion Routing.

This paper analyzes the protection provided by the second generation design. We start by
describing, brie
y, the architecture and features of the second generation system relevant to our
analysis. In section 3 we de�ne security goals for anonymity and/or tra�c-analysis-resistance.
In section 4 we give some assumptions about the con�guration of our network. In section 5,
we set out our adversary model. In section 6, we present a security assessment based on the
de�nitions and assumptions made in earlier sections. Finally, we compare Onion Routing to
systems with similar goals, most speci�cally with Crowds [17].

2

2 Onion Routing Overview

This section provides a brief overview of Onion Routing for readers not familiar with it. Con-
ceptual development of Onion Routing as well as a description of the design for the previous
system can be found in [9, 16]. Brief description of di�erent aspects of the current design can
be found in [10, 20]. Readers familiar with Onion Routing may wish to skip to the next section.

Onion Routing builds anonymous connections within a network of onion routers, which are,
roughly, real-time Chaum Mixes [3]. A Mix is a store-and-forward device that accepts a number
of �xed-length messages from di�erent sources, performs cryptographic transformations on the
messages, and then forwards the messages to the next destination in an order not predictable
from the order of inputs. A single Mix makes tracking of a particular message either by speci�c
bit-pattern, size, or ordering with respect to other messages di�cult. By routing through nu-
merous Mixes in the network, determining who is talking to whom is made even more di�cult.
While Chaum's Mixes could store messages for an inde�nite amount of time waiting to receive
an adequate number of messages to mix together, a Core Onion Router (COR) is designed to
pass information in real time, which limits mixing and potentially weakens the protection. Large
volumes of tra�c (some of it perhaps synthetic) can improve the protection of real time mixes.

Onion Routing can be used with applications that are proxy-aware, as well as several non-
proxy-aware applications, without modi�cation to the applications. Supported protocols include
HTTP, FTP, SMTP, rlogin, telnet, NNTP, �nger, whois, and raw sockets. Proxies have been
designed but not development for Socks5, DNS, NFS, IRC, HTTPS, SSH, and Virtual Private
Networks (VPNs).

The proxy incorporates three logical layers: an optional application speci�c privacy �lter, an
application speci�c translator that converts data streams into an application independent format
of �xed length cells accepted by the Onion Routing (OR) network, and an onion management
layer (the onion proxy) that builds and handles the anonymous connections. The onion proxy is
the most trusted component in the system, because it knows the true source and destination of
the connections that it builds and manages. To build onions and hence de�ne routes the onion
proxy must know the topology and link state of the network, the public certi�cates of nodes in
the network, and the exit policies of nodes in the network.

Onion Routing's anonymous connections are protocol independent and exist in three phases:
connection setup, data movement, and connection termination. Setup begins when the initiator
creates an onion, which de�nes the path of the connection through the network. An onion is a
(recursively) layered data structure that speci�es properties of the connection at each point along
the route, e.g., cryptographic control information such as the di�erent symmetric cryptographic
algorithms and keys used during the data movement phase. Each onion router along the route
uses its private key to decrypt the entire onion that it receives. This operation exposes the
cryptographic control information for this onion router, the identity of the next onion router in
the path for this connection, and the embedded onion. The onion router pads the embedded
onion to maintain a �xed size and sends it onward. The �nal onion router in the path connects
to a responder proxy, which will forward data to the remote application.

After the connection is established, data can be sent in both directions. The initiator's
onion proxy receives data from an application, breaks it into �xed size cells (128 bytes long,
at present), and encrypts each cell multiple times { once for each onion router the connection

3

traverses { using the algorithms and keys that were speci�ed in the onion. As a cell of data
moves through the anonymous connection, each onion router removes one layer of encryption,
so the data emerges as plaintext from the �nal onion router in the path. The responder proxy
regroups the plaintext cells into the data stream originally submitted by the application and
forwards it to the destination. For data moving backward, from the recipient to the initiator,
this process occurs in the reverse order, with the responder proxy breaking the tra�c into cells,
and successive onion routers encrypting it using (potentially) di�erent algorithms and keys than
the forward path. In this case the initiator's onion proxy decrypts the data multiple times,
regroups the plaintext cells, and forwards them to the application.

Normally, either the application that initiates a connection or the destination server will
terminate it. Since onion routers may fail, however, any onion router involved in a connection
can cause that connection to be terminated. To an application (either at the initiating site or at
the destination), such a failure looks the same as if the remote site had simply closed its TCP
connection.

Longstanding TCP connections (called `links' or `thick pipes') between CORs de�ne the
topology of an OR network. Links are negotiated pairwise by CORs in the course of becoming
neighbors. All tra�c passing over a link is encrypted using stream ciphers negotiated by the
pair of onion routers on that link. This cipher is added on top of the onion layers by the COR
sending a cell across a link and stripped o� again by the receiving COR. Since TCP guarantees
sequential delivery, synchronization of the stream ciphers is not an issue. To support a new
anonymous connection, an onion proxy creates a random route within the current OR network
topology. The (�xed) size of an onion would limit a route to a maximum of 11 nodes in the
current implementation. Because connections can be tunneled, however, arbitrarily long routes
are possible, even though they will become impractical at some point because of the resulting
network latencies.

An eavesdropper or a compromised onion router might try to trace packets based on their
content or on the timing of their arrival and departure at a node. All data (onions, content,
and network control) is sent through the Onion Routing network in uniform-sized cells (128
bytes). Because it is encrypted (or decrypted) as it traverses each node, a cell changes its
appearance (but not its size) completely from input to output. This prevents an eavesdropper
or a compromised onion router from following a packet based on its bit pattern as it moves
across the Onion Routing network. In addition, all cells arriving at an onion router within a
�xed time interval are collected and reordered randomly (i.e., \mixed") before they are sent to
their next destinations, in order to prevent an eavesdropper from relating an outbound packet
from a router with an earlier inbound one based on timing or sequence of arrival.

If tra�c levels are low and requirements for real-time transmission are high, waiting for
enough tra�c to arrive so that mixing provides good hiding might cause unacceptable transmis-
sion delays. In this case, padding (synthetic tra�c) can be added to the thick pipes. Conversely,
an attacker might try to use a pulse of tra�c to track cells
owing through the system. This
attack can be made more di�cult by imposing limits on the tra�c
ow over particular links,
though this strategy can increase latency.

If a link between two CORs goes down or comes up, that information is propagated among
the active CORs and proxies (again using the �xed cell size, and with the same protections as
other OR tra�c). This information permits proxies to build onions with feasible routes. Since

4

routes are permitted to have loops of length greater than one hop, the number of active nodes
does not limit the route length, as long as at least two nodes are active.

An onion router cannot tell the ultimate destination of tra�c it forwards to another onion
router. The Responder Proxy running on the last onion router in a path, however, can determine
where tra�c leaving the OR network is bound. Some operators of onion routers may wish to
restrict the set of destinations (non onion-router destinations) to which their machines will
forward tra�c. For example, a commercial onion router might decide that it would forward
tra�c only to .com sites, or a government onion router might decide only to permit outgoing
tra�c destined for .gov sites. We call this an \exit policy," and have implemented software
so that sites can de�ne and enforce such policies. The onion proxy creating a path through
the OR network needs information about exit policies, so that it doesn't create an infeasible
route, and the second generation system provides this information. The use of this mechanism
could of course warp the tra�c
ows through the network and might therefore permit some
inferences about tra�c
ow. To counteract the ability of compromised CORs to lie about
network topography, public keys, or exit policies, an external audit and veri�cation system for
this information has been built into every component. Without both mechanisms, however,
we believe far fewer institutions would be willing to operate ORs, and the decreased level of
participation could also reduce the e�ectiveness of our scheme.

The initial OR prototype, since it was not intended for wide deployment, took a number of
short cuts. It enforced a �xed length (�ve hops) for all routes. It did not provide a method for
maintaining topology information or communicating topology information among nodes. It did
not provide padding or bandwidth limiting facilities. All of these mechanisms are included in
the second generation system. To ease its widespread distribution, the second generation system
does not include actual cryptographic software. Cryptographic functions are invoked via calls to
Crypto APIs, and the operator must provide cryptographic libraries to implement those APIs.

3 Security Goals

Protection of communications against tra�c analysis does not require support for anonymous
communication. By encrypting data sent over a tra�c-analysis-resistant connection, for exam-
ple, endpoints may identify themselves to one another without revealing the existence of their
communication to the rest of the network. However, tra�c analysis is a potent tool for reveal-
ing parties in conversation, thereby compromising a communication that was intended to be
anonymous. Thus, we consider goals for anonymous, as well as private, communication. In fact,
the goals for these two cases di�er very little; the distinction comes in the speci�cation of the
adversary.

There are various basic properties relating initiators, responders, and connections that we
wish to protect. P�tzmann and Waidner[22] have described sender and receiver anonymity
as respectively hiding the identity of the sender or receiver of a particular message from an
attacker, and unlinkability as a somewhat weaker property, preventing an attacker from linking
the physical message sent by the sender with the physical message received by the recipient. In
a similar vein, we de�ne:

Sender activity: the mere fact that a sender is sending something.

5

Receiver activity: the mere fact that a receiver is receiving something.1

Sender content: that the sender sent a particular content.

Receiver content: that the receiver received a particular content.

These are the basic protections with which we will be concerned. We will also be concerned
with more abstract anonymity protection. For example, it may be far more revealing if these are
compromised in combination. As one example, consider 50 people sending the message \I love
you" to 50 other people, one each. We thus have sender and receiver activity as well as sender
and receiver content revealed for all of these messages. However, without source and destination
for each of these, we don't know who loves whom.

One of the combined properties that concerns us is:

Source-destination linking that a particular source is sending to a particular destination.2

This may or may not involve a particular message or transmission. Building on our previous
example, suppose 50 people send 50 messages each to 50 other people (2500 messages total).
Then, for any sender and receiver, we can say with certainty that they were linked on exactly
one message; although we may not be able to say which one. For purposes of this paper we
will be concerned with connections, speci�cally, the anonymity properties of the initiator and
responder for a given connection.

4 Network Model

For purposes of this analysis, an Onion Routing network consists of onion proxies (or simply
proxies), Core Onion Routers (CORs), links, over which CORs pass �xed length cells, and
responder proxies, which reconstruct cells into the application layer data stream.

An attempt to analyze the tra�c on a real onion routing network might try to take advantage
of topological features, exit policies, outside information about communicants, and other details
that we cannot hope to incorporate in a mathematical assessment of onion outing networks
generally. We make a number of general and speci�c assumptions to permit us to proceed with
the analysis. We also comment on the validity of these assumptions below.

Assumption 1. The network of onion routers is a clique (fully connected graph).

Since links are simply TCP/IP connections traversing the Internet, a COR can main-
tain many such connections with relatively little overhead, and the second generation

1It may be useful to distinguish principals that actually receive messages from those that are the target
(intended receiver) of a message. For example, if a message is public-key encrypted for a principal and broadcast
to this principal and 99 others, then barring transmission problems, all 100 received the message. However, only
one was the intended destination of the message. In this paper, it is with the intended receiver that we are
concerned.

2In [17], `unlinkability' is limited to the case where a sender and receiver are both explicitly known to be active
and targeted by an adversary; nonetheless they cannot be shown to be communicating with each other. Onion
Routing does provide such unlinkability in some con�gurations, and depending on the adversary, but this is not
a general goal for all connections.

6

implementation allows a COR to have on the order of �fty thick pipe links to other CORs.
Beyond that size, one is likely to �nd regions of highly connected nodes with multiple
bridges between them. Assumption 1 thus seems reasonable for OR networks of up to 50
CORs.

Assumption 2. Links are all padded or bandwidth-limited to a constant rate.

This simpli�cation allows us to ignore passive eavesdroppers, since all an eavesdropper
will see on any link is a constant
ow of �xed length, encrypted cells. In fact, we expect
that padding and limiting will be used to smooth rapid (and therefore potentially track-
able) changes in link tra�c rather than to maintain absolutely �xed tra�c
ows. Even if

uctuations could be observed, no principal remote from a link can identify his own tra�c
as it passes across that link, since each link is covered by the stream cipher under a key
that the remote principal does not possess.

Assumption 3. The exit policy of any node is unrestricted.

As noted in section 2, we expect that many CORs will conform to this assumption, but
some may not. Restrictive exit policies, to the extent that they vary among CORs, could
a�ect the validity of Assumption 4, since the exit policy will limit the choice of the �nal
node in a path. However, since in our adversary model the last COR may always be
compromised, it makes no di�erence to the security of a connection given our other as-
sumptions. Also note that this assumption is independent of whether or not the connection
of some destinations to the �nal COR is hidden, e.g., by a �rewall.

Assumption 4. For each route through the OR network each hop is chosen at random.

This assumption depends primarily on the route selection algorithm implemented by the
onion proxy, and secondarily on con
icts between exit policies and connection requests.
In practice, we expect this assumption to be quite good.

Assumption 5. The number of nodes in a route, n, is chosen from 2 � n <1 based on repeated

ips of a weighted coin.

Note that the expected route length is completely determined by the weighting of the
coin. The length is extended by one for each
ip until the coin-
ip comes up on the
terminate-route side|typically the more lightly weighted side. Thus, for example, if the
coin is weighted so that the probability of extending the route is :8, then the expected
route length is 5. Choosing route length by this means, as opposed to choosing randomly
within some range was largely motivated by the Crowds design and the security analysis
in [17], of which we will say more below.

Many con�gurations of Onion Routing components are possible, all yielding di�erent kinds
and degrees of assurance. [20] We will limit our analysis to the two con�gurations that we expect
to be both the most common and the most widely used.

7

In the remote-COR con�guration, the onion proxy is the only OR system component
that runs on a machine trusted by the user. The �rst COR (and any infunnels) are running on
a remote untrusted machine.

In the local-COR con�guration, all components up to the �rst COR are running on locally
trusted machines. This corresponds to a situation where a COR is running on an enclave �rewall,
and onions might be built at individual workstations or at the �rewall depending on e�ciencies,
enclave policy, etc. It also corresponds to a situation where an individual with good connections
to the Internet is running his own onion router to reduce the amount of information available
to untrusted components. The important aspect of this connection is that the system from end
application to the �rst COR is essentially a black box. Perhaps contrary to initial appearance,
a PC using dial-up connection to a (trustworthy) ISP might naturally be considered to be in
this con�guration. This view is appropriate with respect to any attacker residing entirely on
the Internet because it is excluded from the telephone dial-up connections running between the
customer and the ISP, and the ISP is assumed to be trusted.

We must also make assumptions about the entrance policy of sites. Since entrance policy is
controlled by the proxy, it is natural to assume that anyone may connect using any protocol in
the remote-COR con�guration. In practice, CORs might only accept connections from speci�c
principals (subscribers?); although the COR will be unable to determine, hence control, the
application being run. In the local-COR con�guration, the entrance policy is e�ectively to
exclude all connections from outside the black box. (However, it still will forward connections
from any other COR, and it is assumed to have an open exit policy.) These assumptions are
then:

Assumption 6. Every COR is connected to the OR network and the outside via either the
remote-COR con�guration or the local-COR con�guration, but not both.

Assumption 7. The entrance policy for entering the OR network via the remote-COR con�gu-
ration is unrestricted.

Assumption 8. The entrance policy for entering the OR network via the local-COR con�gura-
tion is to exclude all but internal connections.

Notice that these policy assumptions also determine the initiator being protected by use of
the OR network. For the remote-COR con�guration, it is the end application (via its proxy)
that is being protected. For the local-COR con�guration, it is the local COR that is e�ectively
the initiator being protected. This conforms well with the possibility that a corporate or other
enclave may wish to protect not just the activity of individual users of the network but that of
the enclave as a whole. Likewise, an individual who is running his own COR would clearly want
to protect connections emanating from that COR since he is the only possible initiator of those
connections.

5 Adversary Model

One of the main challenges in designing anonymous communications protocols is de�ning the
capabilities of the adversary. Given the tools at our disposal today, the adversary model es-

8

sentially determines which salient characteristics the system should deploy in order to defeat
her.

The basic adversaries we consider are:

Observer: can observe a connection (e.g., a sni�er on an Internet router), but cannot initiate
connections.

Disrupter: can delay (inde�nitely) or corrupt tra�c on a link.

Hostile user: can initiate (destroy) connections with speci�c routes as well as varying the
tra�c on the connections it creates.

Compromised COR: can arbitrarily manipulate the connections under its control, as well as
creating new connections (that pass through itself).

All feasible adversaries can be composed out of these basic adversaries. This includes combi-
nations such as one or more compromised CORs cooperating with disrupters of links on which
those CORs are not adjacent, or such as combinations of hostile outsiders and observers. How-
ever, we are able to restrict our analysis of adversaries to just one class, the compromised COR.
We now justify this claim.

Especially in light of our assumption that the network forms a clique, a hostile outsider can
perform a subset of the actions that a compromised COR can do. Also, while a compromised
COR cannot disrupt or observe a link unless it is adjacent to it, any adversary that replaces
some or all observers and/or disrupters with a compromised COR adjacent to the relevant
link is more powerful than the adversary it replaces. And, in the presence of adequate link
padding or bandwidth limiting even collaborating observers can gain no useful information about
connections within the network. They may be able to gain information by observing connections
to the network (in the remote-COR con�guration), but again this is less than what the COR
to which such connection is made can learn. Thus, by considering adversaries consisting of
collections of compromised CORs we cover the worst case of all combinations of basic adversaries.
Our analysis focuses on this most capable adversary, one or more compromised CORs.

The possible distributions of adversaries are

� single adversary

� multiple adversary: A �xed, randomly distributed subset of CORs is compromised.

� roving adversary: A �xed-bound size subset of CORs is compromised at any one time.
At speci�c intervals, other CORs can become compromised or uncompromised.

� global adversary: All CORs are compromised.

Onion Routing provides no protection against a global adversary. If all the CORs are com-
promised, they can know exactly who is talking to whom. The content of what was sent will be
revealed as it emerges from the OR network, unless it has been end-to-end encrypted outside
the OR network. Even a �rewall-to-�rewall connection is exposed if, as assumed above, our goal
is to hide which local-COR is talking to which local-COR.

9

6 Security Assessment

As discussed above, there are several possible adversary models. Having speci�cally ruled out
the case of a global adversary, we now focus on the roving adversary model. (The remaining
models are subsumed by it.) We begin the security assessment by de�ning some variables and
features of the environment.

Recall that routes are of indeterminate length and that each route is a random walk from
the route origin through the network.

We assume a closed system composed of a multitude of users and a set S of CORs. Let r be
the total number of active CORs in the system, and|as mentioned in Section 4|let n be the
(variable) length of a speci�c route R = fR1; :::; Rng, where each Rj is a COR in the route R.
Routes are selected randomly (each route is a random walk from the Route origin through the
network) and hops within a route are selected independently (except cycles of length one are
forbidden).

Our roving adversary is characterized by c, the maximum number of CORs the adversary is
able to corrupt within a �xed time interval (a round). At the end of each round, the adversary
can choose to remain in place or shift some of its power to corrupt other CORs. In the latter
case, previously-corrupted CORs are assumed to be instantly \healed", i.e., they resume normal,
secure operation. Ci represents the set of CORs controlled by the adversary at round i (Ci � S).
We note that this roving adversary model closely follows that found in the literature on proactive
cryptography, e.g., [2, 13]. This is a standardly accepted model based on the view that system
locations can be compromised periodically, but periodic security checks will detect compromises.
Resulting responses as well as periodic system updates, etc. will return compromised components
to normal.

At present, most connections through an Onion Routing network are likely to be for Web
browsing or email. Given the short duration of typical Web and email connections, a static
attack is all that can realistically be mounted; by the time a roving attacker has moved, the
typical connection will have closed, leaving no trace amongst honest CORs. (This is in contrast
to Crowds, cf. below.) Roving attacks are more likely to be e�ective against longer telnet or ftp
connections.

We �rst analyze connections initiated from the remote-COR con�guration and then connec-
tions initiated from the local-COR con�guration. Within each case we consider short-lived and
long-lived connections.

6.1 Assessment for Remote-COR Con�guration

Given a route R as above, suppose that some but not all of the CORs in the route are compro-
mised. There are three signi�cant cases:

1. R1 2 Ci
The �rst node is compromised. In this case sender activity is established by the adversary.
Sender content is not lost since senders always pre-encrypt tra�c. The probability of this
event, assuming a random route and random node compromises, is P1 = c=r.

2. Rn 2 Ci The last node in the route is compromised. In this case receiver content as well as

10

receiver activity are compromised. Sender content, sender activity, and source-destination
linking remain protected. The probability of this event is P2 = c=r.

3. R1 and Rn 2 Ci Both the �rst and last node in the path are compromised, so sender/receiver
activity and receiver content are compromised. Moreover, the COR end-points are now
able to correlate cell totals and compromise source-destination linking. Consequently,
sender content can be simply inferred. The probability of this event is P3 = c2=r2 (unless
n = 2, in which case P3 = c(c� 1)=r2 since self-looping is not allowed).

R1 2 Ci Rn 2 Ci R1 and Rn 2 Ci
sender activity Yes No Yes

receiver activity No Yes Yes

sender content No No Yes (inferred)

receiver content No Yes Yes

source-destination linking No No Yes

probability c=r c=r c2=r2

Table 1: Properties of Attack Scenarios.

The adversary's goal must be to compromise the endpoints, since he gains little by controlling
all intermediate (Ri for 1 < i < n) CORs of a given route R = fR1; :::; Rng. In the case of short-
lived connections, the roving adversary has, in e�ect, only one round in which to compromise
the connection, and succeeds in compromising all properties of a connection with probability
c2=r2 (or c(c � 1)=r2).

We now consider the roving adversary against a long-lived connection.
At route setup time, the probability that at least one COR on the route of length n is in C1

is given by:

1� P (R \ C1 = ;) = 1�
(r � c)n

rn

We now make (a perhaps optimistic) assumption that, if none of the CORs on the route
are compromised at route setup time, then the adversary will not attempt the attack. In any
case, for such an adversary the expected number of rounds must be at least one more than for
an adversary that starts with at least one compromised COR on the route. Given at least one
compromised COR on the route, how many rounds does it take for the adversary to achieve
source-destination linking?

In general, the attack starts when one of the subverted CORs receives a route setup request.
She then proceeds to attempt the discovery of the route's true endpoints.

In either case, at round 1, the adversary can establish:

Rs where s = min(j 2 [1::n] and Rj 2 R \ C1)

as well as:
Re where e = max(j 2 [1::n] and Rj 2 R \ C1)

11

While the actual indices e and s are not known to the adversary, she can identify Rs and Re by
timing the propagation of route setup. Moreover, the adversary can trivially test if Re = R1 or
Rs = Rn.

The adversary's subsequent optimal strategy is illustrated in Figure 2. As shown in the
pseudocode, the game played by the adversary is two-pronged:

1. In each round she moves one hop closer towards route endpoints (moving to the preceding
hop of Rs and next hop of Re.)

2. She also randomly picks a set of (at least c � 2) routers to subvert from among the
uncorrupted set (which is constantly updated). When one of the end-points is reached,
the adversary can concentrate on the other, thus having c�1 routers to corrupt (at random)
at each round.

In the worst case, it takes a (c � 2)-adversary MAX (s; n� e) rounds to reach both endpoints.
More generally, the greatest value of MAX (s; n�e) is n. (Also, a single roving adversary always
takes exactly n rounds to compromise source and destination.)

An interesting open issue is the expected number of rounds a (c � 2)-adversary needs in
order to reach the route endpoints provided that she starts out with at least one compromised
COR on the route. In lieu of an analytic solution, it might be interesting to run this for sample
sets of test con�gurations of nodes and adversary nodes for various possible (sets) of connections.
We leave this for future work.

6.2 Assessment For Local-COR Con�guration

The local-COR con�guration is distinguished from the remote-COR con�guration by the fact
that the �rst COR in the connection is assumed to be immune from compromise. In the remote-
COR con�guration, compromising the �rst COR is the only way to compromise sender prop-
erties or source-destination linking. In the local-COR con�guration, the only way that source-
destination linking or any sender properties can be compromised is if the adversary can somehow
infer that the �rst COR is in fact �rst. There is no way for this to happen within our threat
model unless all other CORs are compromised. (If all CORs connected to the local-COR were
compromised they could infer that this was the �rst COR, but since we have assumed a clique
of CORs, this would imply that the local-COR is the only uncompromised COR in the onion
routing network.)

There is a way that the �rst COR could be identi�ed as such that is outside of our described
threat model: if the second COR is compromised, and if it is possible to predict that some data
cells will produce an immediate response from the initiator, then the second COR may be able
to infer that the �rst COR is �rst by the response time. This possibility is less remote if the last
COR is also compromised and we assume that the data sent over it is not end-to-end encrypted
for the responder. We will return to this discussion below.

12

/* assume at least one router initially compromised */

/* assume t>=2 */

/* HEALTHY_ROUTERS is the set of hereto uncorrupted routers */

/* remove_from_set() returns set minus element to be removed; */

/* if an element not in set, return set unchanged */

/* compute_max_span() returns R_s and R_e, the compromised routers

* farthest apart on the route;

R_1_found = R_n_found = false;

available_random = c-2;

HEALTHY_ROUTERS = ALL_ROUTERS;

while ((! R_1_found) && (! R_n_found))

{

/* identify first, last subverted routers */

compute_max_span(R_s,R_e);

/* note that it's possible that R_s=R_e */

if (R_s==R_1)

{ R_1_found = true;

available_random ++;

}

if (R_e==R_n)

{ R_n_found = true;

available_random ++;

}

R_s = prev_hop (R_s);

R_e = next_hop (R_e);

subvert (R_s);

remove_from_set(HEALTHY_ROUTERS, R_s);

subvert (R_e);

remove_from_set(HEALTHY_ROUTERS, R_e);

/* subvert a set of random routers */

for (i=0; i<available_random; i++)

{ j = random_router_index(HEALTHY_ROUTERS);

subvert (R_j);

remove_from_set(HEALTHY_ROUTERS, R_j);

}

}

Figure 2: Pseudo-code for the adversary's game.

13

7 Related Work

Basic comparison of Onion Routing to broadly related anonymity mechanisms, such as remailers
[11, 5] and ISDN-Mixes [14] can be found in [16]. Also mentioned there are such complementary
connection-based mechanisms as LPWA [7] and the Anonymizer [1]. These are both very e�ective
at anonymizing the data stream in di�erent ways, but they both pass all tra�c directly from
the initiator via a single �ltering point to the responder. There is thus minimal protection for
the anonymity of the connection itself, which is our primary focus. We therefore restrict our
comments to related work that is directed to wide-spread Internet communication either below
the application layer or speci�cally for some form of connection based tra�c. For this reason,
direct comparisons to local anonymity systems such as TG and SS [12] are omitted due to their
small deployable size and tight timing constraints.

We know of only one other published proposal for application-independent, tra�c-analysis-
resistant Internet communication, viz: that of [6], wherein a system is described that e�ectively
builds an onion for every IP packet. There is thus no connection, either in the sense of a
TCP/IP socket, or more signi�cantly, in the sense of a path of nodes that can perform fast
(symmetric) encryption on passing tra�c. In Onion Routing, computationally expensive public-
key cryptography is used only during connection setup. Using an onion for every IP packet
makes for real-time capabilities signi�cantly slower than those of Onion Routing and thus less
applicable to such things as telnet connections or even Web tra�c|if loading pages is expected
to be anywhere close to current speeds. On the other hand, for applications that do not have
these requirements, such a design may o�er better security since there is no recurrent path for
packets in an (application) connection.

A commercial system that appears to be quite similar to Onion Routing is being built by
Zero Knowledge Systems (www.freedom.net). Like Onion Routing, it establishes a connection
in the form of a path of routers that have been keyed for subsequent data passing; however,
its underlying transmission is based on UDP rather than TCP/IP. While the system provides
other services, such as pseudonym management, it appears to be limited to the con�guration
comparable to a customer building onions and connecting to an onion router at an ISP. Unless
the ISP is trusted, this constitutes the remote-COR con�guration. Also, routes appear to be
limited to a �xed length of three hops. This means that the middle hop knows the entire route.
Besides being more vulnerable to a roving attacker, these observations show that the system
is not suited to enclave level protection without some modi�cation and extension. This is not
surprising since the design appears focused on the protection of individual users.

Given the above, our remaining comparative comments will be with respect to Crowds. We
begin with a brief comparative description. The �rst thing to note is that Crowds is designed
exclusively for Web tra�c. Interestingly, though Crowds is only to be used for (short-lived)
Web connections, it make use of longstanding cryptographic paths. Once a path is established
from an initiator through a Crowd, all subsequent HTTP connections are passed through that
path. (The tail of a path is randomly regenerated only beyond a break point and only when
broken. Whole paths are regenerated only when new members are brought into the Crowd.)
This means that a path initiator is less likely to be identi�ed than would be the case if a
new path were built for each connection [17]. This is especially important because, unlike in
Onion Routing, a compromised node knows content and destination of all connections passing

14

through it (see below). This means that adversaries have a better means to build likely pro�les
of repeated connections by the same initiator. The static paths of Crowds makes such pro�le
information less useful by making it harder to know which Crowds member is pro�led. If a
new path were built for each connection, compromised nodes would have a better chance of
intersecting predecessors with the same pro�le and thus identifying the initiator. On the other
hand, known (rather than inferred) path pro�les in that case would be much less complete,
i.e., forward anonymity (in the sense of [21]) is worse for static paths. Put another way, in
the remote-COR con�guration, assuming a �xed distributed adversary, the likelihood that some
connection one makes will have a compromised �rst and last node increases over the number
of connections made (if the �rst COR is chosen di�erent each time). However, the compromise
pertains only to the current connection. If paths are static, compromise is ongoing.

Encrypted tra�c looks the same as it passes along a path through a Crowd. And, the
decryption key is available to all path participants. Thus, any compromised node on the path
compromises both receiver activity and receiver content. Also, link padding is not a system
option. As a result, a local eavesdropper (observing links from the initiator) and any one
compromised member of a path completely compromise all properties mentioned in section 3.
A local eavesdropper in the remote-COR con�guration of Onion Routing compromises sender
activity; however, unless the last COR in the connection is also compromised, nothing else is
revealed. On the other hand, in this con�guration, the �rst untrusted component of the system
is able to compromise sender activity. And, a local eavesdropper together with a compromised
last COR compromise all properties in section 3. For Crowds without a local eavesdropper, the
�rst untrusted component of the system (i.e., the next node on the path) cannot identify the
initiator with certainty, in fact with any more likelihood than that dictated by the probability
of forwarding (i.e., the probability of extending the path vs. connecting to the responder).

In the local-COR con�guration Onion Routing provides similar protections to Crowds of
sender activity, source-destination linking, and sender content, and much better protection
against receiver activity or receiver content, with the adversary model we have set out above and
without a local eavesdropper. If we add to the adversary model, things get more complicated.

As noted in section 6.2, if an adversary that has compromised the second COR in a route
can predict which data will prompt an immediate response from the initiator (e.g., if the �nal
COR is also compromised), then she may be able to time responses to determine that there can
be at most one COR prior in the route. This sort of problem was recognized early on in the
design of Crowds. It is a more serious problem for Crowds because the second node alone can
read requests and responses, making it easy to �nd the timing-relevant data. In Crowd, if URLs
are included in data coming from a responder that will prompt a subsequent request from the
initiator, nodes later on the path will themselves parse the HTML and make these requests back
in the direction of the responder, thus eliminating the timing distinction between the �rst node
and any others.

Timing information is thus obscured by having the nodes on the path actively processing and
�ltering data as well as managing the connection. This is important because it means that all
nodes must be able to read all tra�c so that the data stream must be anonymous. Therefore,
unlike Onion Routing, Crowds inherently cannot be used in circumstances where one would
like to identify (and possibly authenticate) oneself to the far end but would like to hide from
others with whom one is communicating. Perhaps more importantly, as ever more functionality

15

is added to Web browsers, and since nodes on a Crowds route must be able to read and alter
all tra�c on a connection, a single compromised node can embed requests, either for identifying
information or to open connections directly back to it|bypassing the crowd and identifying
the originator. Obvious means of attack such as by use of cookies, or by Java, Javascript,
etc. are easily shut o� or �ltered (along with their provided functionality). However, other
more subtle mechanisms are also available (cf. www.onion-router.net/Tests.html for a list of test
sites, in particular www.onion-router.net/dynamic/snoop), and more are becoming available
all the time. The upshot of all this is that, for Crowds, the anonymity of the connection is
always at best as good as the latest installed �ltering code for anonymity of the data stream.
For Onion Routing, these two functions|anonymity of the connection and anonymity of the
data stream|are separate, and a new means to identify the initiator via the data stream only
a�ects the anonymity of the data stream. Even then, it is only employable at the far end of a
connection, rather than by any node on an anonymized connection.

The last point of comparison we discuss is performance. Direct comparison in practice is
nearly impossible. Each onion routing connection requires several public-key decryptions. So,
with respect to cryptographic overhead Crowds has much better performance potential. On
the other hand, within an onion routing network, connections are expected to be longstanding
high-capacity channels between dedicated machines, possibly with cryptographic coprocessors.
The major performance limitation is often likely to be the end user's Internet connection. But,
for Crowds the end users are the network. Thus, Crowds members with slow or intermittent
connections will a�ect the performance of everyone in their crowd. One can limit Crowds
participation to those with longstanding, high-speed (say T1 or better) Internet connections.
But, this will seriously limit the population for whom it is feasible. Depending on the user
population, network con�guration, and the components that make up the network, one is likely
to �nd very di�erent performance numbers in each of the systems.

8 Conclusions and Future Work

We have presented some of the features of the current Onion Routing design and analyzed its
resistance to worst-case adversaries. This design generally resists tra�c analysis more e�ectively
than any other published and deployed mechanisms for Internet communication.

We note some ways that the design might be changed to improve security: Adding a time
delay to tra�c at the proxy could complicate timing attacks against the local-COR con�guration
to determine the �rst COR. (Similarly, if the last COR is local to the responder, in the sense
of this paper, then it would be possible to add a time delay at the responder proxy.) Of course,
this is only necessary when the goal is actually to protect the local COR, for example to protect
the activity of an enclave or if the COR is run by one or a few individuals who are the only ones
accessing/exiting the onion routing network through that COR. Suppose a typical customer-ISP
con�guration, in which the initiator is someone connecting through dial-up to an ISP running an
onion router. As noted above in Section 4, this could be viewed as a local-COR con�guration.
But, in this case, it is the anonymity of the individual source rather than the COR that matters.
Thus, no delay is necessary. (One could address a semi-trusted local-COR by building onions
at the workstation for a COR, e.g., at an ISP or an enclave �rewall. Such options are discussed

16

in [20].)
Finally, if partial-route padding is used on individual connections, besides link padding,

then compromise by even internal attackers is complicated. For example, a local eavesdropper or
compromised �rst COR (in the remote-COR con�guration) would not be able to easily cooperate
with a compromised last COR to break source-destination linking. In fact, the second generation
design has been made consistent with the possibility that onion proxies can choose to do this
via in-channel signaling to intermediate CORs if they so desire. Also, long-lived application
connections could be hopped between shorter-lived Onion Routing connections using specialized
proxies. This would both frustrate a roving attacker, and make such connections look more like
short-lived connections even to network insiders. We have discussed some of the features such
proxies might have, but such proxies have not yet been designed.

Acknowledgments

This work supported by ONR and DARPA. Jim Proto and Jeremy Barrett have done much
of the coding of the second generation system, and Mark Levin did much of its design speci�-
cation. Lora Kassab has investigated route selection algorithms, and her work has in
uenced
the above discussion. Thanks to Mike Reiter and Avi Rubin for helpful discussions about the
goals of Crowds. Thanks to Ira Moskowitz, Cathy Meadows, and LiWu Chang for other helpful
discussions.

References

[1] The Anonymizer. http://www.anonymizer.com

[2] R. Canetti and A. Herzberg. \Maintaining Security in the Presence of Transient Faults",
Advances in Cryptology|CRYPTO'94 , LNCS vol. 839, Springer-Verlag, 1994, pp. 425{438.

[3] D. Chaum. \Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms",
Communications of the ACM , vol. 24, no. 2, Feb. 1981, pages 84-88.

[4] D. Chaum. \The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability", Journal of Cryptology , vol. 1, no. 1, 1988, pages 65-75.

[5] L. Cottrell. Mixmaster and Remailer Attacks,
http://obscura.obscura.com/e loki/remailer/remailer-essay.html

[6] A. Fasbender, D. Kesdogan, O. Kubitz. \Variable and Scalable Security: Protection of
Location Information in Mobile IP", 46th IEEE Vehicular Technology Society Conference,
Atlanta, March 1996.

[7] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. \How to Make PersonalizedWeb Browsing
Simple, Secure, and Anonymous", in Financial Cryptography: FC `97, Proceedings, R.
Hirschfeld (ed.), Springer-Verlag, LNCS vol. 1318, pp. 17{31, 1998.

17

[8] I. Goldberg and D. Wagner. \TAZ Servers and the Rewebber Network: Enabling Anony-
mous Publishing on the World Wide Web", First Monday , vol. 3 no. 4, April 1998.

[9] D. Goldschlag, M. Reed, P. Syverson. \Hiding Routing Information", in Information Hiding ,
R. Anderson, ed., LNCS vol. 1174, Springer-Verlag, 1996, pp. 137{150.

[10] D. Goldschlag, M. Reed, P. Syverson. \Onion Routing for Anonymous and Private Internet
Connections," Communications of the ACM, vol. 42, num. 2, February 1999.

[11] C. G�ulc�u and G. Tsudik. \Mixing Email with Babel", in 1996 Symposium on Network and
Distributed System Security , San Diego, February 1996.

[12] D. Martin Jr., \Local Anonymity in the Internet", Ph.D. Dissertation, Boston University,
1999.

[13] R. Ostrovsky and M. Yung. \How to Withstand Mobile Virus Attacks", in Proceedings of
the Tenth ACM Symposium on Principles of Distributed Computing (PODC '91), ACM
Press, 1991, pp. 51{59.

[14] A. P�tzmann, B. P�tzmann, and M. Waidner. \ISDN-Mixes: Untraceable Communica-
tion with Very Small Bandwidth Overhead", GI/ITG Conference: Communication in Dis-
tributed Systems, Mannheim Feb, 1991, Informatik-Fachberichte 267, Springer-Verlag, Hei-
delberg 1991, pp. 451-463.

[15] M. Reed, P. Syverson, and D. Goldschlag. \Protocols using Anonymous Connections: Mo-
bile Applications", in Security Protocols: Fifth International Workshop, B. Christianson,
B. Crispo, M. Lomas, and M. Roe, eds., LNCS vol. 1361, Springer-Verlag, 1997, pp. 13{23.

[16] M. Reed, P. Syverson, and D. Goldschlag. \Anonymous Connections and Onion Routing",
IEEE Journal on Selected Areas in Communications, vol. 16 no. 4, May 1998, pp. 482{494.
(A preliminary version of this paper appeared in [19].)

[17] M. Reiter and A. Rubin. \Crowds: Anonymity for Web Transactions", ACM Transactions
on Information System Security , vol. 1, no. 1, November 1998, pp. 66{92. (A preliminary
version of this paper appeared in [18].)

[18] M. Reiter and A. Rubin. Crowds: Anonymity for Web Transactions, DIMACS Technical
Reports 97-15, April 1997 (Revised August 1997).

[19] P. Syverson, D. Goldschlag, and M. Reed. \Anonymous Connections and Onion Routing",
in Proceedings of the IEEE Symposium on Security and Privacy , Oakland, CA, IEEE CS
Press, May 1997, pp. 44{54.

[20] P. Syverson, M. Reed, and D. Goldschlag. \Onion Routing Access Con�gurations", in
DISCEX 2000: Proceedings of the DARPA Information Survivability Conference and Ex-
position, Hilton Head, SC, IEEE CS Press, January 2000, pp. 34{40.

18

[21] P. Syverson, S. Stubblebine, and D. Goldschlag, \Unlinkable Serial Transactions", in Fi-
nancial Cryptography: FC `97, Proceedings, R. Hirschfeld (ed.), Springer-Verlag, LNCS vol.
1318, pp. 39{55, 1998.

[22] A. P�tzmann and M. Waidner, \Networks without User Observability", Computers & Se-
curity , vol. 6 (1987), pp. 158{166.

19

