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Abstract. 

The intriguing notion of a Zerc-Knowledge Proof System has been introduced by 
Goldwasser, Micali and Rackoff [GMR] and its wide applicability has been demonstrated 
by Goldreich, Micali and Wigderson (GMWl]-[GMWZ]. 

Based on complexity theoretic assumptions, Zero-Knowledge Proof Systems exist, 
provided that 

(i) The prover and the verifier are allowed to talk back and forth. 
(ii) The verifier is allowed to  flip coins whose result the prover cannot see. 

Blum, Feldman and Micali [BFM] have recently shown that, based on specific com- 
plexity theoretic assumption (the computational difficulty of distinguishing products of 
two primes from those product of three primes), both the requirements (i) and (ii) above 
are not necessary to the existence of ZereKnowledge Proof Systems. Instead of (i), it is 
enough for the prover only to  talk and for the verifier only to listen. Instead of (ii), it is 
enough that both the prover and verifier share a randomly selected string. 

We strengthen their result by showing that Non-Interactive Zero-Knowledge Proof 
Systems exist based on the weaker and well-known assumption that quadratic residuosity 
is hard. 

t Dipartimento di Inforrnatica ed Applicazioni, UniversitL di Salerno, 84100 Salerno, 

* MIT, Laboratory for Computer Science, Cambridge, Mass. 02139. Supported by NSF 
Italy. 

grant DCR-8413577. 

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 52-72, 1988. 
0 Spnnger-Verlag Berlin Heidelberg 1988 



53 

1. Introduct ion.  

In many scenarios, like cryptographic ones, “knowledge” is the most valuable resource 

and thus one may not want to  give away more knowledge than “absolutely needed”. 

This has been formalized by Goldwasser, Micali and Rackoff [GMR] who introduced 

the somewhat paradoxical notion of a Zero-Knowledge Proof System (ZKPS). Since then 

other definitions of Zero-Knowledge has been given by [GHY] and [BC]. 

This is a special way of proving theorems. It allows A, who holds the proof of a given 

theorem 7, to convince a poly-bounded B that T is true without revealing any additional 

information. In other words, in a ZKPS A allows B to verify that a theorem 7 is true; 

however, he does not allow B, after verifying the proof, to compute more than he could 

have computed after being only told (without any proof) that T was indeed true. 

Under the assumption that one-way functions exist, Goldreich, Micali and Wigderson 

[GMWl] show that membership in any language in N P  can be proved in Zero-Knowledge. 

ZKPS is indeed a powerful notion and have had a strong impact in the field of cryptographic 

protocols; see [FFS], [FMRW] and most notably, the recent completeness theorem for 

protocols with honest majority of [GMW2]. 

1.1 T h e  communication model needed for  Zero-Knowledge. 

ZKPS’s have been defined and have been shown to exist for a particular communi- 

cation model between “prover” and “verifier”: the interactive Turing machine model of 

[GMR]. The salient features of this model of communication are the following two: 

(i) Interaction. The prover and the verifier are allowed to talk back and forth. 

(ii) Privacy. The verifier is allowed to  flip coins whose result the prover cannot see. 

Though interaction and privacy of computation are requirements that can be met, in 

practice they may not be readily available. For example this is the case if A will be away 

for 10 years and the mail is the only way to communicate with B. During this trip, each 

time A will succeed in proving a new theorem, he may wish to prove it in Zero-Knowledge 

to B by simply sending B a letter to which B need not to reply. Thus 

Is A’s wish possible? 

This question has been addressed by Blum, Micali and Feldman [BMF]. Rephrasing 

it in a more theoretical way: 
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W h a t  are the essential communication features 

tha t  make ZereKnowledge proofs possible? 

Assuming that quadratic residuosity is hard, an assumption widely used in Cryptog- 

raphy [GM], we show that ZKPS’s exist provided that 

the prover and the verifier share 

(i.e. have as input a common) 

random enough string. 

The communication model consisting of sharing a random string was proposed in 

[BFM]. They showed that in this model ZKPS’s exist if it is difficult to distinguish numbers 

product of two primes from those product of three primes. Our result improves on theirs 

as the Quadratic Residuosity Assumption is weaker than the assumption used in (BFM]. 

In fact, if i t  is easy to distinguish a quadratic residue from a quadratic non residue then 

it is also easy to distinguish a number product of two primes from one product of three 

primes, while the converse is not known to be true. Our result is also an improvement in 

that our algorithm is simpler. 

Notice that sharing a random stTing is a weaker communication model than the one 

proposed by (GMR]. In fact, in the [GMR] model, prover and verifier may agree on a ran- 

dom enough string by using a coin-flipping protocol [B]. Actually, the new communication 

model, in a sense explained in section 3.1, is the minimal one supporting ZKPS’s. 

The new model dispenses with the need of privacy of coin tosses as the verifier does 

not need to  use more randomness than the one contained in the common string. Moreover, 

it dispenses with the need of interaction as well. Once the prover and the verifier share 

a random string u, to  prove that z E L E N P ,  it is enough for the prover to compute a 

proof (string), in a special way on input z and u, and send it to the verifier. 

The verifier, computing on input u, z and Proofi ,g wiIl correctly check that z E L while 

receiving zero additional knowledge. 

Let us rephrase this in terms of our previous example, where the prover A was leaving 

for a long trip. Here, if A and B, before A leaves for his long trip, have witnessed some 

random events, (e.g. a lottery, the sun stains, ...) or have consulted the RAND tables, 

then A can prove a theorem in Zero-Knowledge just by writing a letter to which B need 

not to reply. 
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Let us now proceed more formally. 

2. Preliminaries. 

2.1 Notations and conventions. 

Let us quickly recall the standard notation of [GoMiRi]. 

We emphasize the number of inputs received by an algorithm as follows. If algorithm 

A receives only one input we write “A( . )” ,  if it receives two inputs we write “A( . , - )”  and 

so on. 

If A ( . )  is a probabilistic aIgorithm, then for any input z, the notation A ( z )  refers to the 

probability space that assigns to the string Q the probability that A,  on input z, outputs 

Q. If S is a probability space, then Prs(e)  denotes the probability that S associates with 

the element e. 

If j ( . )  and g ( - ,  . . . , .) are probabilistic algorithms then f(g(. ,  . . . , .)) is the probabilistic 

algorithm obtained by composing f and g (i.e. running f on g’s output). For any inputs 

z, y, . . . the associated probability space is denoted by f (g(z ,  y, . . .)). 
If S is any probability space, then z +- S denotes the algorithm which assigns t o  z an 

element randomly selected according to S. If F is a finite set, then the notation z + F 

denotes the algorithm which assigns to z an element selected according to the probability 

space whose sample space is F and uniform probability distribution on the sample points. 

The notation Pr(z +- S; y +- T; . . . : p(z, y, ..)) denotes the probability that the predi- 

cate p(s, y, . . .) will be true after the ordered execution of the algorithms z +- S, y + T, . . . 
The notation {z t- S; y + T; . . . : (z, y, . . .)} denotes the probability space over 

((z, y,. . .)} generated by the ordered execution of the algorithms z +- S, y +- T, . . .. 
Let 11s recall the basic definitions of (GMR]. We address the reader to the original 

paper for motivation, interpretation and justification of these definitions. 

Let U = { U ( z ) }  be a family of random variables taking values in {O, l}* ,  with the 

parameter z ranging in (0 ,  I}*. U = { U ( z ) }  is called poly-bounded family of random 

variables, if, for some constant e E N ,  all random variables V(z) E U assign positive 

probability only to  strings whose length is exactly /zIc. 

Let C = {C,} be a poly-size family of Boolean circuits, that is, for some constants 

c , d  > 0, all C, have one Boolean output and at  most lziC gates and lzld inputs. In the 
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following, when we say that a random string, chosen according to U ( z ) ,  where { U ( Z ) )  is 

a poly-bounded family of random variables, is given as input to C,, we assume that the 

length of the strings that are assigned positive probability by U ( z )  equals the number of 

boolean inputs of C,. 

Definition (Indistinguishability). Let L c {0,1)* be a language. Two poly-bounded 

families of random variables U = { U ( z ) }  and V = {V(z))  are indistinguishable on L i f  for 

all poiy-size families o f  circuits C = {C,}, 

Pr(a +- ~ ( z )  : ~ , ( a )  = 1) - Pr(a  +- ~ ( z )  : c,(u) = 1) < ~ z l - ~ ( ' )  

with z E L. 

Definition (Approximability). Let L c {0,1)* be a language. A family o f  random 

variables U = { U ( z ) }  is approximable on L if there exists a Probabilistic Turing Machine 

M ,  running in expected polynomial time, such that the families { U ( z ) )  and { M ( z ) }  are 

indistinguishable on L. 

2.2 Number theory. 

Let N denote the natural numbers, z E ,U, 2: = {y I 15 y < x ,  gcd(z,y) = 1) and 

22' = {y E Z:l(y I z) = +l}, where (y I z) is the Jacobi symbol. We say that y E 2: is a 

quadratic residue modulo z iff there is w E 2: such that wz = y mod z. If this is not the 

case we call w a quadratic non residue modulo 2. 

Define the quadratic residuosity predicate to be 

0, 
Q=(Y) = { 1, otherwise; 

if y is a quadratic residue modulo x ;  

and the languages QR and QNR as 

Let Z.(") denote the set of n-bit integers product of s 2 1 distinct primes. In the following 

we will use the: 



57 

Quadratic Residuosity Assumption (QRA). For each poly-size fami ly  of circuits 

{Cn I n E J) ,  

The QRA is widely used in Cryptography, see for example [GM]. 

The current fastest algorithm to compute Q,(y) is to first factor x and then compute 

Q,(y), while i t  is well known that, given the factorization of 2, Qz(y) can be computed in 

O(lx13) steps. Therefore it is usual to choose x product of two large primes of the same 

length since these integers constitute the hardest input for a factoring algorithm. 

3. The main results. 

To prove the existence of Non-Interactive Zero-Knowledge Proof Systems for all N P  

languages, it is enough to  prove it for the NP-complete language SSAT [GJ]. For k > 0, 

we define the language 3SATk = {z E 3SAT I Iz/ 5 k}. 
We present our result first in a weaker form, for simplicity sake. 

3.1 A first solution. 

Here we show that  if a n3-bit long string is randomly selected and given to  both parties, 

then the prover can show that any single x E 3SATn is indeed satisfiable. Notice that this 

is not aa general as what we promised in the introduction. Only in section 3.2 we will show 

that, for each polynomial Q(-), using the same randomly chosen n3-bit long 0, any Q(n) 

formulae ~ 1 , .  . . , ZQ(,) E SSAT,  can be shown to be satisfiable in Zero-Knowledge. 

In the following we formally define the Single-Theorem Non-Interactive ZKPS. 

Definition. A Single-Theorem Non-Interactive ZKPS is a pair (A,B) where A is a Prob- 

abilistic Turing Machine and B(., ., -) is a deterministic algorithm running in  t ime  polyno- 

mial in the length o f  i t s  first input,  such that: 

I)  Completeness. (The  probability of succeeding in proving a true theorem is over- 

whelming.) 

3c > 0 such that V x  E SSAT, 
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2) Soundness. (The probability of succeeding in proving a false theorem is negligible.) 

3 c  > 0 such that Vz # 3SATn and for each Probabilistic Turing Machine A' 

3) Zero-Knowledge. (The proof gives no information but the validity of the theorem.) 

3c > 0 such that the fa.mily of random variables V = {V(z)} where 

V(z) = {O  + {0,1}'2'";~+ A(~,~):(o,Y)} 

is approximable over 3 s  AT.  

Comment. As promised in the introduction we give evidence that our model is the 

minimal supporting Zero-Knowledge. 

The simplest communication model is certainly NP. In it the verifier is deterministic 

and thus needs not t o  worry about the privacy of his (non existent) coin tosses. Moreover 

the interaction is absolutely elementary: on input x E L E N P ,  the prover has to  talk only 

once and the verifier has only to  listen. What the prover says is wz, a witness that z E L. 

Unfortunately, such simplicity does not support Zero-Knowledge. It is not hard to  prove 

that if a language L possesses an NP Proof System that is Zero-Knowledge, then L E P.  

Consider a probabilistic version of N P  in which the verifier checks that w, is a proper 

witness in probabilistic poly-time. Then it is easy to prove that if L possessed such a proof 

system that is Zero-Knowledge, L would belong to BPP. 

SO if the prover and the verifier are completely independent, Zero-Knowledge proofs 

are not possible. In order to have Zero-Knowledge proofs, the prover and the verifier must 

have something random in common and the simplest way to do this is sharing a random 

string. 

In the following we exhibit a Single-Theorem Non-Interactive ZKPS. We first present 

informally our protocol and then we prove the following 

Theorem 1. Under the QRA, there exists a Single-Theorem Non-Interactive Z X P S  (A$). 
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An informal view of our protocol. 

Let u = uo . . .6,3+7,0-1 be a random string shared by A and B. 

Let C = { c ~ , c z ,  ..., c,,,}, C E 3SAT,, a collection of clauses on the set U = 

(u1, ~ 2 , .  . . , uk} of boolean variables. A wants to prove to B that there is a truth as- 

signment that satisfies all the clauses in C, without yielding any additional information. 

Let t: U + {T, F} be a truth assignment satisfying C. 

A’s proof consists of two parts: first he exhibits a pair (z, y) such that z E &(n) and 

(y ,x)  E QNR, then he proves C E 3 S A T .  

A chooses a random x E 22(n), and divides the first 7nZ bits of u in 7n n-bit strings, 

thus obtaining 7n integers. A discards those integers not in 2,”’ and partitions the re- 

maining integers in two equivalence classes (one formed of residues and one formed of non 

residues). To show that two integers, a and b, are in the same class, that is Q,(a) = Q,(b), 

A exhibits a random square root modulo z of ab. 

A then, chooses two random elements, yo, yl, one from each class, if any, and computes 

y = yoyl mod z. Note that Q,(yo) # Q,(y,) and so, by Fact 1, y is anon quadratic residue 

modulo 2. 

B is now convinced that z E &(n) and (y,z) E QNR. 

A associates an element w j  E Z$’ to each literal u, in such a way that w, is a non 

quadratic residue modulo x iff u, is true under t. To make this association, for each variable 

u j ,  A chooses a random r j  E 2:. Then if uj is true under t ,  A associates r: mod z to the 

literal uj and yr; mod z to i i j .  If uj is false under t, A associates yr; mod z to the literal 

U j  and y2r! mod z to Ej. A t  this point B can check that, for each variable, the value 

associated to u, is a quadratic residue iff the value associated to r, is a non quadratic 

residue and so he is sure that exactly one of the two literals uj and rj is true under t .  

In this way a triple of values is naturally associated to each clause and A has to prove 

that each triple is not formed by 3 quadratic residues, that is each clause is satisfied by t .  

A divides the last n3 bits of u in n sets formed of n strings of n-bit, thus obtaining n 

sets of n integers. Each set is associated to a clause. 

For each clause, A discards from the associated set the integers not in 2;’ and groups 

the remaining integers in triple. Since each element of a triple can be a quadratic residue or 

not, the triples obtained can be partitioned in 8 equivalence classes, that must be roughly 
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of the same size since z E 22 (n) . 
A computes the partition and shows that it is correct in the following way. TO show 

that the tern (a ,b , c )  is in the same class as ( d , e , j ) ,  A exhibits random square roots 

modulo x of ad, be, c f. B can check the correctness of the step, but does not know which 

kind of triples are in any equivalence class. A can show the class consisting of the terns 

formed by three quadratic residues by simply disclosing their square roots modulo z. 

Finally, let (h, I ,  rn) be the tern associated to the clause c;. A shows that (h, I ,  m) 

belongs to one of the remaining classes, by disclosing three square roots as done above. B 

can easily check the correctness of the last step. Moreover B knows nothing but that the 

triple (h,l,m) is not formed by three quadratic residues. 

Proof (of theorem 1). 

We start by formally describing the protocol (A,B) 

A's protocol. 

When we say "A writes r " ,  we mean that A appends r followed by a special symbol, such 

as #, to  the string Proof that will be sent to B. 

Let Q = a0 . . . Q , , J + ~ , , ~ - ~ .  

Let C = { c ~ , c z , . .  . , c m } ,  C E JSAT,,, a collection of clauses on the set U = 

{ul, u2,. . . , uk} of boolean variables. A wants to prove B that there is a truth assign- 

ment that satisfies all the clauses in C ,  without yielding any additional information. Let 

t: U -+ {T, F} be a t ruth assignment satisfying C. 

1) A sets Proof = empty string and writes C. 

2) A chooses a random z E &(n) and writes it. 

A sets Eo, El= empty set. 

3) For i = l,.. . , 7n .  Let s; be the integer whose binary representation is 

Q(i- l )n. . .Qin- i .  If in Ej ,  j E {0,1}, there is 

an element s such that ( s s ; , ~ )  E QR then A writes ( j , s , 7 ) ,  where 7 is a random 

square root modulo x of ssi, and puts s, in E,. Otherwise A puts s; in one of the 

empty sets, El ,  and writes ( j ,  0,s;). 

If s i  $Z 2:' then A discards s,. 

4) If Eo or El (or both) is empty then A halts. 
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Otherwise, A randomly chooses yo E Eo and yl E El, computes y = yoyl n o d  z and 

writes (Y, Yo , Yl 1. 
5) A picks a t  random r, E Zz, j = 1,. . . , k. 

If t(uj) = F A sets w j  = rj’ mod z, otherwise A sets w j  = y r j  mod x. A writes 

(w1, w2,. . ., Wk). 
6) For each clause c;, i = 1,. . . rn, A performs steps 6.1-6.6. 

6.1) Let the clause c; consist of literals Z ; ~ , Z ; ~ , L ; ~ .  If the literal zij, j = 1,2,3, is 

the variable u[ then A sets q;, = wl.  If the literal zi j  is the complement of the 

variable ul then A sets q;, = yw[ mod z. 

6.2) A sets ST = empty stack and repeats n times step 6.3. 

6.3) For j = 0,. . . , n - 1. Let z be the element whose binary representation is 

Q7n2+(i--l)n2 + ( j -  1)n - * * 07na +(i- l)n3+ jn- 1 -  

If z $! 2;’ then A discards z,  otherwise A puts z in the stack ST. 
6.4) A sets E,  = empty set, s = 1,. . . , 7 .  

A repeats step 6.5 until the number of elements in the stack ST is less than 3. 

6.5) A picks three elements al, 0 ~ 2 , ( ~ 3  from the stack ST. If al, a2, a3 are quadratic 

residue modulo z, then A sets y j  = a random square root of C Y ~  modulo x, 

j = 1,2,3, and writes (O,al,a2,a3,71,72,r3). Otherwise, if there is a triple 

(P1,@2,/33) in the set E,, 1 5 s 5 7, such that alP1, a2P2, a& are quadratic 

residue modulo x then A puts (al,az,a3) in the set E,,  sets 7, = a random 

square root of a,/3j modulo z, j = 1,2,3, and writes (~,81,82,P3,71,y2,y3); 

otherwise A puts (al, a2, a3) in the empty set E,, 1 5 s 5 7, with smallest index 

(i.e. 1 5 j < s implies Ej not empty) and writes (s,O, O,O,O,O, 0). 

6.6) If there is a triple (,01,/32,P3) in the set E,, such that qilP1,qi2P2,vi3P3 are 

quadratic residues modulo 2, A sets 7 ,  = a random square root of r]i,b, modulo 

z>j= 1 ~ ~ 7 3 1  and writes (siPl,P2,P3rrl,rZ,r3). 

B’s protocol. 

1) B reads the collection C = ( c 1  l .  . . , c,} of clauses and sets Eo, El = empty set. 

2) For i = 1,. . . ,7n, let s; the integer whose binary representation is gin-,, . . . uiin-l. If 

s; @ 2:’ then B discards s i .  Otherwise B reads the triple (dl,dz,d3). If d2 # 0 then 
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B checks that s;dz E dz mod x, that dz E Ed, and puts s, in Ed, .  If dz = 0 then B 

checks that Ed, is empty and puts s; in E d l .  

3) B checks that Eo and El are not empty. B reads ( y , y o , y l )  and checks that y = 

yoyl  mod z and that yo E Eo and y l  E E l .  

4) B reads ( w l ,  w2 , .  . . , w k ) .  B checks that w ,  E Z:', j = 1 , 2 , .  . . , k. 
5) For each clause c;, i = 1, . . . rn, B performs steps 5.1-5.5. 

5.1) B sets ST = empty stack and repeats n times step 5.2. 

5.2) For j = 0, .  . . , n - 1. Let z be the element whose binary representation is 

u7n2+ (i- 1) n2 + ( j -  1 )  n * a * u7.1n2 +(;- 1) n2 +in - 1 .  

If 5 $! 2:' then B discards z ,  otherwise B puts z in the stack ST. 

5.3) B sets E,  = empty set, s = 1,. . . , 7 .  B repeats step 5.4 until the number of 

elements in the stack ST is less than 3. 

5.4) B picks three elements ( ~ 1 , a 2 , ~ 3  from the stack ST. B reads the 7-tuple 

(ko,. ..,ks) from the letter. If ko = 0 then B checks that aj = k;+3 mod x, 

j = 1,2,3. Otherwise if ko = s, 1 5 s 5 7, and E,  is not empty B checks 

that ( k l , k z ,  k3) E E, and that k j a j  3 k:+3 mod 2, j = 1,2,3, and then puts 

( a l , a 2 ,  a3) in E,. Otherwise B checks that ko = s, 1 5 s 5 7 ,  E ,  is empty, and 

that Ej is not empty for J' = 1,. . . ,s - 1 and then puts (al ,az,  a3) in E,. 

5.5) If each E,, s = 1,. . . , 7 ,  is not empty then B reads the 7-tuple (ko,. . . , k6) from 

the letter. Let the clause c; consists of literals z ; ~ ,  z i2 ,  z i3 .  If the literal z i j ,  

j = 1,2,3, is the variable ul then B sets q i j  = wi. If the literal z;,, j = 1,2,3, 

is the complement of the variable ul then B sets q i j  = ywl mod 2. B checks that 

ko = S, 1 5 s 5 7, ( k l ,  kz, k3) E E,  and that k j9 i j  E kj+3 mod x, j = 1,2,3. 

If all the checks are successful B stops and accepts, otherwise B rejects. 

In the following we prove Theorem 1 by showing that the above protocol is a Single- 

Theorem Non-Interactive ZKPS. 

(A,B) satisfies the Completeness  requirement. 

Say that B has received a proof that the collection of clause C = (c1  . . . c,} over the 

set ,U = { u l  . . . uk} of boolean variables is satisfiable. 
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Assume that C is indeed satisfiable, let t be a truth assignment that satisfies C and 

suppose that A and B follow the specification of the protocol. 

Let pz, z E N, be the probability that a random y, I y 151 z 1, is in Z:, i.e. pz = 

Pr(y + (210 I z < 2Iz1} : y E 2;). Notice that p z  > 2/5, for all x E &(n) and sufficiently 

large n. 

A halts at  step 4 only when among the 7n integers obtained from CT those in 2;' 

are all quadratic residues or all non quadratic residues modulo x. Denote with QZ the 

probability of this event. One has that QZ satisfies 

and so is negligible. 

Consider the relation = on the set 2:' x 2;' x 2;' defined as: R 

R It can be easily seen that = is an equivalence relation and that the quotient set (2:' x 2:' x 

Z$')/  = consists of 8 equivalence classes, EQo, . . . , EQ7. Let EQo be the equivalence class 

formed of triple constituted of 3 quadratic residues. 

R 

If A follows the protocol properly then all the non empty sets E,, 1 5 s 5 7 ,  are 

subsets of different equivalence classes. Furthermore all the triples that A does not put in 

any set E,, 1 5 s 5 7, a t  step 6.5 (that is the triples formed by 3 quadratic residues) are 

all in EQo. Therefore if A follows the protocol then he can always perform step 6.5 and 

all the checks made by B a t  step 1-5.5 are successful. 

Consider now the clause ci  and let qi, , q i 2 ,  7i3 be the values computed at  step 6.1 by 

A. Two cases are possible : 

i) The sets E,, s = 1 , .  . . , 7  are non empty. Thus there is a set, E,, such that each 

(p1,82,&) E E,  is equivalent to ( q i 1 , q i 3 , q i 3 ) .  A can prove such an  equivalence 

by simply showing (p1 ,Pz ,P3)  and exhibiting random square roots modulo z of 

qil  PI 9 t7i, 8 2  9 t l i ,  A- 
ii) Some of the E,, 1 < s < 7, are empty and ( q i l ,  q i a ,  q;,) is not equivalent to any triple 

in the non empty sets. 
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From the above discussion we conclude that if A follows the protocol and doesn't halt 

at  step 4, B always accepts. Therefore, the Completeness requirement of Single-Theorem 

Non-Interactive ZKPS's is met. 

(A,B) satisfies the Soundness requirement. 

B accepts a non satisfiable collection of clauses C either if 

i) A cheated him during the proof that z E &(n) and (y,z) E Q N R .  

ii) z E &(n) and (y, x )  E Q N R  but A cheated him in proving that each clause is satisfied. 

We now show that the probabilities of i) and ii) are negligible. 

Suppose k E Z.(n), s > 2. Consider the equivalence relation 4 defmed over 2:' as 

Y l  YO ( ~ 1 ~ 2 , z )  E QR. 

2:' is partitioned by the relation in 2O-l equivalence classes. The only case in which 

B accepts z is when among the 7n integers obtained from u, those with Jacobi symbol +l 

belong to at most two equivalence classes. Let Pa denote this probability. From 

y - 1 -  28-2 - l p z ) 7 n +  ( 2 7 )  - 28 - 28-1 - 1 7n 

26- 1 28 Pz) 
Pa 5 (2J (1 - 

and s < n we obtain that P, is negligible. 

The only case in which A can make B accept (y ,z)  Q N R  is when among the 7n 

integers obtained from those in 2:' are all quadratic residues or all non quadratic 

residues modulo x .  Note that when A chooses z, he already knows u and so he could 

choose z such that this event occurs. So we have to show that the probability that,  given 

7n randomly chosen n-bit integers, q, . . . , ZT,,, there exists a x E &(n) such that those 

integers t ,  E 2," are all quadratic residues or all non quadratic residues modulo z is 

negligible. The probability, Q ( n ) ,  of this event is, from (I), 

Thus the probability of i) is negligible. 

Now suppose that z E & ( R )  and (y,x) E Q N R .  
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The only case in which ii) occurs is when there is an equivalence class, EQ,, 1 5 s 5 7, 
such that no triple of i t  is in the stack ST during the proof that a clause c, is satisfied. 

Indeed if there is a triple for each EQ., 1 5 s 5 7, then each E, is not empty and if the 

clause c i  is not satisfied by the truth assignment t ,  A at step 6.6 cannot prove (qil ,  v;, , v,,) 
to be equivalent t o  any triple in any of the sets E,, s = 1, ..., 7. 

On the other hand, if there is a EQ, such that no triple of it is in the stack ST then 

A could split the set of triples formed of 3 quadratic residues in two parts. Then he could 

reveal that one of these two parts is formed of 3 quadratic residue by sending (0,. . .) along 

with the 3 square roots modulo z and finally could put the remaining triples in the empty 

set E,. In this way A could show the equivalence of (q,, , , qi,) with an element in such 

a set. 

From the above discussion, we can say that the probability that B accepts a non 

satisfiable C, in the case ii), is no greater than the probability that during one of the n 

iterations of steps 6.1-6.5 at least one of the equivalence classes E Q B ,  s = 1,. . . , 7 ,  has no 

triple in the stack ST. Let R denote this event. Then 

1 4 3 ~  
Pr(R)  = Pr (R  I there are j triples in ST )Pr(there are j triples in ST ) 

j = O  

1 4 3 ~  
= (i)JPr( there are j triples in ST ). 

j =O 

The probability that  there are 1 elements in the stack is (;)qL(l- qz)"- ' ,  where qz = p z / 2  

is the probability that at step 6.3 A puts the element z in the stack. Then the probability 

of putting j triples in the stack, for each clause c;, is 

O((1- . 0 2 p z y ) .  
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(A,B) satisfies the Zero-Knowledge requirement. 

For the Zero-Knowledge part, we exhibit, a Probabilistic Turing machine M that, 

in expected polynomial time, approximates the family of random variables V = {V(z)}, 

where V ( z )  = {u + {O,l}lzle;y t A ( a , z ) :  (u,y)}, over 3SAT. 

M's simulation protocol. 

1) M chooses a random z E Zz(n) along with its factorization, z = pq. 

2) M sets u = empty string and repeats step 3 7n times. 

3) M chooses a random n-bit integer v. If either u @ 2;' then M adds the binary 

representation of Y to  u. Otherwise M chooses a random p in 2: and adds the binary 

representation of p2 mod x to u. 

4) M adds n3 random bits to u. Let u = 00.. . ~ ~ 7 ~ 2 ~ ~ 3 - 1 .  

5 )  M sets &,El= empty set. 

6) For i = 1,. . . ,7n,  let s; be the integer whose binary representation is . . . uin-l. 

If s i  2:' then M discards it. Otherwise M tosses a fair coin. If HEAD (TAIL) then 

M puts S i  in &(El) .  If &(El) is not empty M writes (0, s, a) ((1, s, a)), where s 

is a random element in &(El) and a is a random square root modulo x of ssi. If 

E O ( E ~ )  is empty M writes (o,o, a) ((1,0, a)). 

7 )  If EO or El (or both) is empty then M halts. 

Otherwise, M randomly chooses yo E Eo and yl E E l ,  computes y = yoyl mod z and 

writes (Y, YO, YI) . 
8) M picks at random r, E Z:, j = 1,. . . , k, computes w, = r? mod 3: and writes 

( W l r w Z , .  * ,wk). 

9) From this point on, M performs the same protocol as -4. 
(Note that M can perform A's protocol in polynomial time since he knows the fac- 

torization of z.) 

The output of M is different from that of A only because in one case the string CT is 

random while in the other its first 7n2 bits are either the binary representation of elements 

not in 2;' or quadratic residues modulo z. Under the quadratic residuosity assumption 

these two distributions are indistinguishable (which is not hard to prove). 
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3.2 A st ronger  version of our result. 

The Single-Theorem Non-Interactive ZKPS of section 3.1 has a limited applicability. 

This is a drawback that  is best illustrated by our conceptual example of the prover A who 

is leaving for his trip. 

It is unlikely that for each theorem T that A finds, a string UT comes from the sky 

"devoted" to T and is presented to  (is read by) both A and B. It is instead more probable, 

that A and B may have witnessed the same common random event of size n once, when and 

because they were together (or else, it is more probable that they generated a (common) 

random event. For instance by the coin flipping protocol as explained in section 1.1). 

However the Proof System of section 3.1 will enable A to  subsequently prove in Zero- 

Knowledge to B only a theorem of smaller size, roughly $% bit long. He is out of luck 

would he discover the proof of a theorem of bigger size. 

Moreover, the n-bit long string A leaves with will not enable him to not interactively 

and in Zero-Knowledge prove to  B many theorems. Below we modify the definition of 

Non-Interactive Zero-Knowledge Proof Systems with common coins and our solution SO to  

allow A to prove to  a B with which he shares an n-bit string, poly(n) theorems of poly(n)  

size. 

We Erst define formally what this means. 

Definition. A Non-Interactive ZXPS is a pair (A,B) where A is a pair, (Ao,A1), of 

Probabilistic Turing Machines and B(., ., ., -) is a deterministic algorithm running in time 

polynomial in the length of its first input, such that: 

j=1 

2) (Soundness) For all polynomials P,Q, for all ( ~ 1 ~ 2 2 , .  . . , z ~ ( n ) )  ( 3 S A 7 " ~ ( n ) ) ~ ( ~ )  
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is approximable over Un(3SAT)Q(").  

Comment. Notice that we let A send first the proof of a theorem (yo) other than the 

ones he is interested in communicating: ~ 1 ~ ~ 2 , .  . .. Notice that A is able to  prove each 

'interesting" theorem essentially independently from all the other theorems (only memory 

of yo is needed by A to prove each single theorem). Also A need only to be poly-time if 

he has a suitable witness among his available inputs. This is not inherent to our definition 

of Non-Interactive ZKPS's. It is rather due to our specific solution. However i t  does not 

change the rules of the game in an essential way. 

Notice also that B verifies each theorem independently (only memory of yo is needed); 

we essentially have one prover and many independent verifiers. Moreover, the proof of each 

subset of the interesting theorems is Zero-Knowledge. 

Theorem 2. Under the QRA, there exists a Non-Interache ZKPS. 

Proof. The proof is similar to  that of Theorem 1 but more technical and cumbersome. 

Our protocol uses random functions [GGM] to Uexpandn the initial random seed. It will 

appear in the final paper. 0 
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3.3 Open Problems. 

Our results can be extended in two directions. 

The first extension deals with a scenario in which we have many independent provers, 

using the same random string 0 to  prove different theorems. A partial solution of this 

problem will appear in the final paper. 

The second extension concerns the Complexity Theoretic Assumption on which OUT 

results are based. Namely, can we replace the QRA with the weaker assumption of the 

Existence of One-way functions? This question is discussed in the following and we address 

the reader to [DMP! for a partial solution of it. 

3.3.1 Many Independent Provers. 

We live in a scientific community in which all libraries possess copies of the same 

tables of random numbers prepeared by RAND corporation, the RAND tables. This is 

essentially a short string shared by the scientific community. Can we use the RAND tables 

to give one another Non-Interactive Zero-Knowledge Proofs? 

Here the problem is not so much the fact that we share a random string of fixed length, 

rather than on for each n. In fact the RAND table is long enough to allow us to prove an 

arbitrary polynomial number of theorems. The fact is that 3.2 tells us that a single prover 

releases Zero-Knowledge. Is this also true if we have (as it is the case) many provers? This 

problem is similar to  that discussed in section 3.2. 

We know that the answer is "Yes" if at most O(1ogn) provers are active, when a string 

of length n is available. The protocol can be accommodated to M ( n )  provers. However 

each prover is obliged to  invest a multiplicative factor of M ( n )  in his computational effort 

(whether or not there really are M ( n )  provers). This is unsatisfactory. I t  should be 

contrasted with the P ( - )  size and with the Q(.)  many theorems of protocol 3.2. 

We are thus naturally led to the definition of Economical Non-Interactive ZKPS. 

Definition. An Economical Non-Interactive ZKPS is a pair (A,B) where A is a Probabilis- 

tic Turing Machine and B(., ., .) is a deterministic algorithm running in time polynomial 

in the length of its first input, such that: 

1) (Completeness) For all polynomials P,Q, and for all (z~,z~,...,zQ(~)) E 
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3) (Zero-Knowledge) For each polynomial Q, the family of random variables V = 

i V ( Z l  ,. * 9 ZQ(n))  }, where 

v(zl,...,z*[n)) = { o t  {o,l}no(l);  y1 +- A(o,z1); 

is approximable over U n ( 3 S A T ) Q ( n )  

Comment. Notice that the above definition is different from that of Non-Interactive 

ZKPS in the requirement that  a proof of a theorem depends only on o and not on any 

previously proved theorem (yo). 

3.3.2 Relaxing the assumpt ion .  

Our protocol relies on the fact that deciding Quadratic Residuosity is hard. 

One would like to prove our result under the assumption that one-way functions exist. 

This is the weakest possible assumption in Cryptography, since if one-way functions do not 

exist then public-key cryptography is not possible. In [DMP] we present a partial solution 
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to this problem. Namely we exhibit a protocol that allows a prover to non interactively 

prove any theorem of size n after an interactive preprocessing step whose computational 

effort is roughly n3. 

References. 

PI 
[BCI 

M. Blum, Coin Flipping By Telephone, IEEE COMFCON '82. 

G. Brassard, C. Crepeau, Non Transitive Transfer of Confidence: A 
Perfect Zero-Knowledge Interactive Protocol for Sat and Beyond, Pro- 
ceedings of the 27th Symposium on Foundations of Computer Science, 
1986. 

M. Blum, P. Feldman, S. Micali, in preparation. 

A. De Santis, S. Micali, G. Persiano, in preparation. 

M. Fischer, S. Micali, C. Rackoff and D. Witenberg, A Secure Protocol 
for the Oblivious Transfer, in preparation 1986. 

U. Feige, A. Fiat and A. Shamir, Zero Knowledge Proofs of Iden- 
tity, Proceedings of the 19th Annual ACM Symposium on Theory of 

Computing, 1987. 

0. Goldreich, S. Goldwasser, S. Micali, How to Construct Random 
Functions, Journal of ACM, vol. 33, No. 4, October 1986. 

2. Galil, S. Haber, M. Yung, A Private Interactive Test of a Boolean 
Predicate and  Minimum- Knowledge Public-Ke y Cr yptos ystem, Pro- 
ceedings of the 26th Symposium on Foundations of Computer-Science, 
1985. 

M. Garey, D. Johnson, Computers and Intractability : a Guide to the 
Theory of NP-Completeness, W. H. Freeman & Co., New York, 1979. 

S. Goldwasser, S. Micali, Probabilistic Encryption, Journal of Com- 
puter and System Science, vol. 28, No. 2, 1984. 

S. Goldwasser, S. Micali, C. Rackoff, The Knowledge Complezity of 
Inteructivc Proof-Systems, Proceedings of the 17th Annual ACM Sym- 
posium on Theory of Computing, 1985. 



72 

[GMWl] 0. Goldreich, S. Micali, A. Wigderson, Proofs That Yield Nothing But 
Their Validity and a Methodology of Cryptographic Protocols Design, 
Proceedings of the 27th Symposium on Foundations of Computer- 
Science, 1986. 

[GMWZ] 0. Goldreich, S. Micali, A. Wigderson, How to Play Any Mental 
Game, Proceedings of the 19th Annual ACM Symposium on Theory 
of Computing, 1987. 

S. Goldwasser, S. Micali, R. Rivest, A Digital Signature Scheme Secure 
Against Adaptive, Chosen Cyphertezt Attack, to appear in SIAM J. 
on Computing. 

[GoMiRi] 


