
The Lyra2 reference guide

Marcos A. Simplicio Jr

(mjunior@larc.usp.br)

Leonardo C. Almeida

(lalmeida@larc.usp.br)

Ewerton R. Andrade

(eandrade@larc.usp.br)

Paulo C. F. dos Santos

(psantos@larc.usp.br)

Paulo S. L. M. Barreto

(pbarreto@larc.usp.br)

http://www.lyra2.net/

Version 2.0 Escola Politécnica

January 15, 2015 Universidade de São Paulo (Poli-USP)

São Paulo, Brazil

mailto:mjunior@larc.usp.br
mailto:lalmeida@larc.usp.br
mailto:eandrade@larc.usp.br
mailto:psantos@larc.usp.br
mailto:pbarreto@larc.usp.br
http://www.lyra2.net/

The Lyra2 reference guide

Revision Pane

� Version 0.3.0 (30-Mar-2014): Original version. Submitted to the Password Hashing Com-

petition (PHC) as �v0�.

� Version 1.0.1 (01-Apr-2014): Details added: (1) little endianness; (2) initialization of

underlying sponge's state; (3) block length used in benchmarks.

� Version 1.0.2 (04-Apr-2014): Details added: params (instead of discussing that extra

parameters could appear as part of the salt). Update: Inversion on the order in which the

salt and password are fed into the sponge (easier to accommodate params and follows the

general rule �feed data into hash functions in order of decreasing entropy� [45].) Submitted

to the Password Hashing Competition (PHC) as �v1�.

� Version 2.0 (15-Jan-2015) In what follows we describe each tweak introduced in the new

version of Lyra2, submitted to the PHC as �v2�. Along the discussion, we (1) outline the

modi�cation, (2) discuss its rationale and why it is useful, and (3) argue about the amount

of change it introduces and, thus, why it can be considered �minor� when compared with the

original submission. In summary, we believe that the modi�cations introduced preserve the

original design of Lyra2, which consists in a sponge that (1) initializes a memory matrix by

reading and updating previously-initialized rows in a deterministic fashion and then (2) pseu-

dorandomly visits the whole matrix to ensure that all rows are still in memory. Therefore, the

proposed tweaks basically explore di�erent aspects of possible attacks against the algorithm

(as discussed in the updated security analysis described in Section 5) without bringing too

much impact to its performance (as shown by our benchmarks in Section 7), or originated

from testing the �possible extensions� originally proposed in Section 6 of v1 (as is the case

of the parallelizable version of the algorithm, now fully described and implemented). Never-

theless, we are fully aware that the PHC committee has the �nal word on what is considered

acceptable as a change, and will promptly roll-back any modi�cation that is not considered

minor when compared to the original submission.

1. For better readability, we re-factored the pseudocode in terms of logical structure (e.g.,

replacing the �do-while� by the �for� construction) and of some variable names. In

what follows, we provide a summary of the notation changes appearing in the resulting

pseudocode.

(a) In version 1, two �new� (as opposed to �recently modi�ed�) rows are fed to the

sponge, name row and row∗. They were renamed simply rowi, for i = {0, 1}
(b) The wordwise truncation truncL(x,W) was renamed simply lsw(x) � �least-signi�cant

word�

(c) The �basil� variable was renamed �params�, which describes better its contents: the

concatenation of all parameters passed to the algorithm.

(d) The wordwise rotations performed are now denoted simply rot instead of rotW ,

and are all turned into right rotations. Since left or right rotations are equally

2

The Lyra2 reference guide

adequate for the algorithm's purposes, this approach is adopted basically to simplify

the notation and to make the algorithm's structure more uniform.

2. The rows fed to sponge are not XORed anymore, but combined using wordwise addition

(i.e., ignoring carries between words), operation denoted �.

� Rationale: The reason for this tweak is that the XOR operation could cancel previous

sponge outputs that composed the value of the pairs of rows fed to the sponge.

Avoiding this issue would require a more careful management of what would feed

the sponge, especially during the Wandering phase. This does not happen with

the � operation, and does not bring any impacting the algorithm's performance.

It also allows the �⊕prev� in line 19 of version 1 to be eliminated, simplifying the

(pseudo)code: that additional operation had as only goal to avoid picking the same

row twice to feed the sponge (which would result in the duplexing of zeros), which

is not an issue with the � operation.

� Why we believe it is minor : this is a simple replacement of ⊕ by � in the pseu-

docode and the removal of �⊕prev� when pseudorandomly picking rows during the

Wandering phase, which brings minimal impacts on the code itself.

3. When initializing a row M [i] during Setup, the sponge's output �rand is not directly

written to that row as done in line 9 of version 1, but it is �rst XORed with M [prev] =

M [i− 1].

� Rationale: Albeit far from essential, this additional XOR makes the algorithm's

structure more uniform, since the sponge's output is always XORed with something

that is likely already in cache before being written to memory. There is also a

small security advantage in the fact that, except for the �rst row, no data output

by the sponge is ever directly available in memory: as a result, it is slightly more

di�cult to combine rows left in memory to recover other rows. This can be seen

in the following example (for notation details, see Sec. 5.1.1): suppose an attacker

wants to recompute M [04] = M [0]⊕ rot(r4), which was previously discarded; in this

case, recomputing M [0] with the processing cost of σ and having M [4] = M [3]⊕ r4
in memory is not enough, because the value of r4 cannot be extracted from M [4]

without the knowledge of M [3]; if we had simplyM [4] = r4 as in version 1 of Lyra2,

however, that would be perfectly possible. Obviously, this is not a huge security

advantage of version 2, but since the performance penalty of this approach very low,

it seems a worthy trade-o�.

� Why we believe it is minor : This tweak only a�ects one line of the pseudocode

(namely, line 9), and involves only variables that are already provided to the sponge

as input (namely, M [prev]), so the impact on the code itself is also very small.

4. In the Setup phase, the columns of each row are written from the highest to the lowest

index instead of the from the lowest to the highest index, although they are still read as

in version 1 (in the latter order).

� Rationale: This tweak allows the Setup phase to avoid pipeline-based attacks, in

which each column of a discarded row is recomputed and consumed right away,

liberating space for the next column. As discussed in detail along the new Section

3

The Lyra2 reference guide

5.1.2.5, this is easy to accomplish if the rows are written and read in the same order,

but not if the read/write order is reversed and it is hard to inverse the sponge's

underlying (reduced-round) permutation.

� Why we believe it is minor : this modi�cation a�ects only how the rows are initialized,

which a�ects basically line 9 of version 1 (rows initialized during the Filling Loop)

and the rows that are explicitly initialized before that (namely, M [0] and M [1] in

version 1; in version 2, this applies to M [0], M [1] and M [2] due to tweak 5).

5. During the Setup and the Wandering phases, the sponge is now fed with (1) the two rows

that are going to be modi�ed by the sponge's output (namely: row0 and row1, the former

being treated as a row �lled with zeros for this purpose) and (2) the two rows that have

been modi�ed in the previous iteration (namely: prev0 and prev1). This di�ers from

version 1, in which the sponge was fed with only one of the rows to be modi�ed (namely,

row∗, but not row) and one of the rows modi�ed in the previous iteration (namely: prev,

but not a �prev∗�). This does not apply to M [0], M [1] and M [2], however, which are

initialized simply from their corresponding M [prev] because they do not have enough

predecessors.

� Rationale: This tweak was motivated by some factors. First, and more impor-

tantly, it gives better protection against low-memory attacks, in especial against the

sentinel-based strategy discussed in [47] for version 1 and in the newly added Section

5.1.4 for this new version. The reason is that this attack strategy consists basically

in storing intermediate processing states to allow recomputations to restart from the

corresponding processing points. Therefore, if the sponge takes a single row that has

been recently modi�ed as input (e.g., M [prev], as in version 1), each sentinel can

be composed of that row and the sponge's corresponding internal state; if two rows

are taken as input (M [prev0] and M [prev1], as in this new version), however, the

amount of memory required by each sentinel approximately doubles. As a result,

if the memory budget reserved for sentinels is �xed, the number of sentinels avail-

able to attackers with this tweak is roughly halved, making recomputations more

expensive.

A second factor is that this approach makes better use of cache, since bothM [prev0]

and M [prev1] are likely to be in cache anyway after being initialized/updated.

Hence, the performance impact of handling this additional input is imperceptible

to legitimate users according to our tests, while it puts an extra burden on attackers

trying to recompute previously discarded rows during a low-memory attack.

Third, as a result of feeding M [row0] and M [row1] to the sponge, the recompu-

tation of M [row1
row0] (i.e., the value of M [row1] after it is updated by the same

sponge output asM [row0]) requires the recomputation ofM [row0] itself, not only of

M [row1] as it would be the case ifM [row0] was not fed to the sponge. An analogous

reasoning applies to M [row0
row1].

Fourth, making M [row0] and M [row1] take part as the sponge's input enforces the

need of maintaining all rows in fast memory so the algorithm can run more smoothly.

In other words, if only M [prev0] and M [prev1] were used as inputs to the sponge,

one could proceed with the duplexing operation over the latter rows while M [row0]

4

The Lyra2 reference guide

andM [row1] are being fetched from (a potentially slower) memory; if the duplexing

itself takes longer than this fetching operation, the latency of the fetching process

could be hidden, accelerating the algorithm's execution. Since special-purpose at-

tack platforms are more likely to bene�t from this acceleration opportunity than

legitimate users in general-purpose machines, forcing all rows involved in the du-

plexing operation to be in memory before it can be performed can be seen as a way

of �leveling the �eld� for all.

� Why we believe it is minor : This tweak a�ects only what is fed to the sponge in each

duplexing operation (lines 8 and 21, besides the lines corresponding to rows M [0]−
−M [2], which are explicitly initialized). It also basically reuses the same variables

already available in the �rst version of Lyra2, except for the newly added �prev1�

variable that stores the index of the already existing �row1� variable (originally

named row∗) between iterations of the Filling/Visitation Loop.

6. During the Setup phase, instead of using a step of -1 when revisiting all rows in the

window of previously initialized rows, the new version adopts a step that corresponds

roughly to the square root of that window, as de�ned by the �stp← sqrt+gap� variable.

� Rationale: One issue with the �xed -1 step adopted in Lyra2's version 1 is that

it would create �clustered visitations�, i.e., computing any sequence of rows M [i]

to M [i + δ], for arbitrary values of (i, δ), would require rows that were previously

initialized/updated in points separated by at most δ iterations of the Filling Loop. In

particular, this characteristic of the Setup phase would facilitate the sentinel-based

attacks discussed in the newly added Section 5.1.4 for this new version of Lyra2,

which are analogous to the attack described in [47] for version 1: when computing

a discarded row M [i + δ] from a sentinel M [i], if the δ values of M [row1] required

during this process are clustered together, they can all be recovered from a single

sentinel M [j], although they have to be all bu�ered before use to account for the

fact that they are consumed in the reverse order of their computation. by iteratively

doing so, the processing of a single sentinel can be supported by O(lg(R)) sentinels

(1 per window) and a single bu�er of δ rows, with a processing cost of δ iterations of

the Filling Loop per sentinel. This is illustrated in Figure R1, for a memory usage

of R/4 besides the storage employed for the sentinels themselves.

Figure R1: Low-memory attack using sentinels: against v1.

5

The Lyra2 reference guide

The pseudorandom nature of the Wandering phase would still provide protection

against such attacks, raising the processing cost of this strategy by a factor higher

than 2n when reducing the memory usage to 2−n, but this still indicated that the

simple �reverse� visitation order was sub-optimal: it would be better to have visita-

tions far away from each other in every visitation window. This is exactly the goal

of the proposed tweak, which ensures that the δ values of M [row1] required by any

given sentinel are scattered all over the window from which those rows are picked.

The speci�c step adopted � of stp =
√
wnd+ 1 when wnd is a square number, and

stp = 2
√
wnd/2−1 otherwise, � was motivated by the fact that: on one extreme, a

small step such as 1 does not create enough distance between the indices ofM [row1]

picked in consecutive iterations of the Filling Loop; on the other extreme, a large

step that creates a huge gap between the indices ofM [row1], such as an odd number

around wnd/α for a small α, leads to nearby rows being visited after approximately

α iterations due to the cyclic visitation of the window. In both cases, a few values

of M [row1] computed from a same sentinel M [j] would end up being useful in the

computation of M [i + δ] from another sentinel M [i], potentially reducing the total

number of sentinels involved in those recomputations. Hence, a step around
√
wnd

can be seen as a compromise for obtaining a large gap between rows and also a long

cycle, which end up being both around
√
wnd.

Simply employing a step computed from
√
wndn for all values of wndn = 2n would

have a drawback, though: whenever wndn is not a perfect square (i.e., for every

other window), the step would have to be rounded to an integer number, and then

forced to be odd so all rows in the window are visited. The step computed from

2
√
wndn/2 adopted for those cases not only avoids the need of dealing with this

rounding issue, but also interacts well with the step from the previous and subsequent

windows. In especial, as illustrated in Figure R2, it creates a criss-crossed pattern

with the sequence of rows initialized and also with the sequence of rows updated in

the previous window. Therefore, recovering several M [row1] in the order they are

required is expected to involve many sentinels. For example, as suggested in Figure

R2 for R = 128, the 4 sentinels equally distributed over windows 5 and 6 are all

present in every 8 steps of the Filling Loop while building windows 6 and 7. This

does not mean that clusters are completely absent between two or more consecutive

windows. Indeed, Figure R2 does show a repetition of sentinels in two consecutive

steps while building window 6. Nevertheless, the higher the number of sentinels

employed for obtaining a better performance of the attack, the lower the frequency

in which such clusters appear.

� Why we believe it is minor :

Aesthetically, this tweak is likely to be responsible for the highest amount of modi-

�cation to the original algorithm, but this occurs basically because it replaces �xed

values by variables. Namely, the visitation step is controlled by the newly intro-

duced stp variable, �xed to �-1� in version 1. This variable is computed from two

auxiliary integers: sqrt, which oscillates between �
√
wnd� and �2

√
wnd/2�, and is

employed simply to avoid the need of actually computing a square root operation;

6

The Lyra2 reference guide

Figure R2: Low-memory attack using sentinels: against v2.

and gap, which oscillates between �1� and �-1� and is analogous to the dir variable

employed in the Wandering phase to reverse the visitation order in version 1. The

wnd variable, on its turn, was implicitly computed by the Filling Loop in version 1

(with the �if(row∗) 6= 0 test) to cover all rows initialized prior to R/2, and now is

made explicit due to the need of performing a modular reduction in line 18 of this

new version.

7. During the Wandering phase, both rows fed to the sponge are now pseudorandomly

picked, instead of combining a pseudorandom and a deterministic row. More precisely,

we have row0 ← lsw(rand) mod R and row1 ← lsw(rot(rand)) mod R in line 24 of this

new version, instead of the original row∗ ← (lsw(rand)⊕prev) mod R (line 19 of version

1) and row ← row + dir (line 27 of version 1).

� Rationale: This approach simpli�es the algorithm, since it does not distinguish

between the two rows picked in each iteration of the Visitation Loop. It also provides

better security: it hinders attackers trying to prefetch any of those rows in a slow-

memory attack; it makes it harder to plan which rows to leave in memory for better

7

The Lyra2 reference guide

performance during a low memory attack; it avoids the clustered visitations of rows

that appeared in version 1 due to the �reverse� visitation with a step of 1 originally

adopted for the deterministically picked row. Finally, according to our benchmarks,

these bene�ts come with no impact in the algorithm's performance on modern CPUs.

� Why we believe it is minor : This is basically a simpli�cation of the original algorithm,

in which the row variable is treated similarly to row∗. The exact way in which those

indices are picked follows the extension idea already presented in Section 6.3 of the

original document (�Higher resistance against time-memory trade-o�s�), in which we

show how several pseudorandom rows could be picked. Therefore, this tweak can

be seen as the direct application of that extension into the core algorithm, while

removing the row that was originally picked in a deterministic manner.

8. In the Wandering phase, the columns of M [prev0] and M [prev1], which have been mo-

di�ed in the previous iteration of the Visitation Loop, are picked in a pseudorandom

manner instead of sequentially. Namely, they are indexed by variables col0 and col1,

computed in line 26 from the sponge's output.

� Rationale: As discussed in Section 5.2 of this document, the goal of this approach

is to take better advantage of a legitimate platform's caching capabilities while

thwarting the construction of simple pipelines for their visitation. More precisely,

since the whole M [prev0] and M [prev1] are read in iteration i of the Visitation

Loop, all of their columns are likely to be in cache when they are once again read

in iteration i + 1. Hence, the performance impact of these pseudorandom reads

are expected to be low, which was con�rmed experimentally in our benchmarks.

An attacker using a platform with a lower cache size, however, should experience

a lower performance due to cache misses. In addition, this pseudorandom pattern

hinders the creation of simple pipelines in hardware for visiting those rows: even if

the attacker keeps all columns in fast memory to avoid latency issues, some selection

function will be necessary to choose among those columns on the �y.

� Why we believe it is minor : The main idea behind this tweak, of making better use

of data already available in cache, was originally discussed in Section 6.2 (�Higher

resistance against slow-memory attacks�) of Lyra2's version 1. Speci�cally, that sec-

tion already mentioned that rows in cache could be read in a pseudorandom fashion

by indexing that rows' columns with a �row∗� variable computed from the sponge's

output, rand. Therefore, this tweak is basically an optimized implementation of

what was presented in the original document: while in version 1 we considered the

idea of making additional reads on the recently updated rows in the same iteration

in which they were updated, in version 2 we are making those pseudorandom reads

in the subsequent operation, when those rows will have to be read anyway. In addi-

tion, it only a�ects two lines of the pseudocode, namely line 26 (in which col0 and

col1 are computed) and line 27 (in which they are both employed).

9. We �nalized the speci�cation and implementation of the parallelizable version of Lyra2,

based on the draft originally described in Section 6.1 of version 1 (�Allowing parallelism

on legitimate platforms: Lyra2p�).

8

The Lyra2 reference guide

� Rationale: as originally, one main goal of the parallelizable version of Lyra2 is to have

p parallel threads working on the same memory matrix in such a manner that (1) the

di�erent threads do not cause much interference on each other's operation, but (2) all

p slices of the shared memory matrix depend on rows generated from many threads.

The di�erences when compared with the original description are mainly that, besides

following this new version of Lyra2, it: (A) does not have a embarrassingly parallel

Setup phase, but instead have the threads synchronize their execution and change the

thread from which they pick M [row1] after approximately
√
wnd is revisited, thus

preventing the di�erent slices from being processed separately with a reduced amount

of memory; (B) during the Wandering phase, the same synchronization frequency is

adopted, leading to a more uniform design; and (C) there is no restriction on which

slice j a sponge Si will read from (i.e., now j = i is not treated as a especial case as

originally suggested), which simpli�es the code (no need for an additional �if�).

� Why we believe it is minor : Albeit not implemented in the original submission,

the support for parallelization was discussed on the corresponding documentation.

Compared to the speci�cation thereby described, most of the changes are a direct

result of the other tweaks introduced in this new version, except basically for the

tweaks (A), (B) and (C) mentioned above. Nevertheless, those tweaks a�ect only

a few lines of pseudocode: the modi�cations caused by (A) are concentrated in

line 22 of Algorithm 3 (which deals with the synchronizations between threads in

the Setup phase); (B) adds line 35 to Algorithm 3 for synchronizing the threads

during the Wandering phase, which was not explicit (but was necessary) in the draft

speci�cation of the original submission's Algorithm 6; and (C) removes the �if j = i

then j ← i+ dir end if � in line 32 of the original submission's Algorithm 6.

10. In addition to Blake2b, we now discuss also another function, codenamed �BlaMka�, that

could be used as the sponge's underlying permutation.

� Rationale: BlaMka is a slightly modi�ed version Blake2b that includes, besides

the usual ARX instructions, multiplications. Namely, BlaMka replaces addition

operations (e.g., a+ b) by a variant of the latin-square operation (namely, a+ b+ 2 ·
lsw(a) · lsw(b)) wherever the former appears in Blake2b. The interest of including

multiplications on the underlying function is that, as discussed in the newly added

Section 4.4.1, the performance gain o�ered by hardware implementations of this

operation is not much higher than what is obtained with software implementations

running on x86 platforms, for which multiplications are already heavily optimized.

Nevertheless, since we could not �nd in the literature any e�cient cryptographic

function that takes advantage of multiplications (after all, usually cryptographic

functions are expected to be fast in hardware, not slow), we considered it to be

useful for users looking for an alternative that does so.

� Why we believe it is minor : Lyra2 never imposed any restriction on the under-

lying sponge employed, allowing users to choose their preferred secure permutation.

Hence, we believe that this is hardly classi�ed as a tweak, but rather an expansion

of the discussion on the options available to legitimate users, as many other options

exist. In addition, as discussed above, BlaMka di�ers only slightly from Blake2b.

9

The Lyra2 reference guide

Abstract

We present Lyra2, a password hashing scheme (PHS) based on cryptographic sponges. Lyra2

was designed to be strictly sequential (i.e., not easily parallelizable), providing strong security even

against attackers that uses multiple processing cores (e.g., custom hardware or a powerful GPU).

At the same time, it is very simple to implement in software and allows legitimate users to �ne

tune its memory and processing costs according to the desired level of security against brute force

password-guessing. Lyra2 is an improvement of the recently proposed Lyra algorithm, providing an

even higher security level against di�erent attack venues and overcoming some limitations of this

and other existing schemes.

Keywords: Password hashing, processing time, memory usage, cryptographic sponges.

10

CONTENTS The Lyra2 reference guide

Contents

1 Introduction 12

2 Background: Cryptographic Sponges 13

2.1 Notation and Conventions . 13
2.2 Cryptographic Sponges: Basic Structure . 13
2.3 The duplex construction . 14

3 Password Hashing Schemes (PHS) 15

3.1 Attack platforms . 16
3.1.1 Graphics Processing Units (GPUs). 16
3.1.2 Field Programmable Gate Arrays (FPGAs). 16

3.2 Scrypt . 17

4 Lyra2 18

4.1 Structure and rationale . 20
4.1.1 Bootstrapping . 20
4.1.2 The Setup phase . 20
4.1.3 The Wandering phase . 23
4.1.4 The Wrap-up phase . 23

4.2 Strictly sequential design . 24
4.3 Con�guring memory usage and processing time . 25
4.4 On the underlying sponge . 25

4.4.1 A dedicated, multiplication-hardened sponge: BlaMka 26
4.5 Practical considerations . 27

5 Security analysis 28

5.1 Low-Memory attacks . 29
5.1.1 Preliminaries . 30
5.1.2 The Setup phase . 31
5.1.3 Adding the Wandering phase: consumer-producer strategy. 39
5.1.4 Adding the Wandering phase: sentinel-based strategy. 43

5.2 Slow-Memory attacks . 46
5.3 Cache-timing attacks . 47

6 Some extensions of Lyra2 48

6.1 Controlling the algorithm's bandwidth usage . 48
6.2 Allowing parallelism on legitimate platforms: Lyra2p 49

6.2.1 Structure and rationale . 50
6.2.2 Security analysis . 52

7 Performance for di�erent settings 54

7.1 Benchmarks for Lyra2 without parallelism . 55
7.2 Benchmarks for Lyra2 with parallelism . 57
7.3 Benchmark of GPU-based attacks . 59
7.4 Benchmarks for Lyra2 with the BlaMka G function 61
7.5 Expected attack costs . 63

8 Conclusions 64

11

The Lyra2 reference guide 1 INTRODUCTION

1 Introduction

User authentication is one of the most vital elements in modern computer security. Even though

there are authentication mechanisms based on biometric devices (�what the user is�) or physical

devices such as smart cards (�what the user has�), the most widespread strategy still is to rely on

secret passwords (�what the user knows�). This happens because password-based authentication

remains as the most cost e�ective and e�cient method of maintaining a shared secret between a

user and a computer system [19, 22]. For better or for worse, and despite the existence of many

proposals for their replacement [16], this prevalence of passwords as one and commonly only factor

for user authentication is unlikely to change in the near future.

Password-based systems usually employ some cryptographic algorithm that allows the genera-

tion of a pseudorandom string of bits from the password itself, known as a password hashing scheme

(PHS), or key derivation function (KDF) [55]. Typically, the output of the PHS is employed in one

of two manners [60]: it can be locally stored in the form of a �token� for future veri�cations of the

password or used as the secret key for encrypting and/or authenticating data. Whichever the case,

such solutions employ internally a one-way (e.g., hash) function, so that recovering the password

from the PHS's output is computationally infeasible [44, 60].

Despite the popularity of password-based authentication, the fact that most users choose quite

short and simple strings as passwords leads to a serious issue: they commonly have much less

entropy than typically required by cryptographic keys [56]. Indeed, a study from 2007 with 544,960

passwords from real users has shown an average entropy of approximately 40.5 bits [32], against the

128 bits usually required by modern systems. Such weak passwords greatly facilitate many kinds of

�brute-force� attacks, such as dictionary attacks and exhaustive search [19, 40], allowing attackers to

completely bypass the non-invertibility property of the password hashing process. For example, an

attacker could apply the PHS over a list of common passwords until the result matches the locally

stored token or the valid encryption/authentication key. The feasibility of such attacks depends

basically on the amount of resources available to the attacker, who can speed up the process by

performing many tests in parallel. Such attacks commonly bene�t from platforms equipped with

many processing cores, such as modern GPUs [29, 75] or custom hardware [29, 49].

A straightforward approach for addressing this problem is to force users to choose complex

passwords. This is unadvised, however, because such passwords would be harder to memorize and,

thus, more easily forgotten or stolen due to the users' need of writing them down, defeating the

whole purpose of authentication [19]. For this reason, modern password hashing solutions usually

employ mechanisms for increasing the cost of brute force attacks. Schemes such as PBKDF2 [44]

and bcrypt [64], for example, include a con�gurable parameter that controls the number of iterations

performed, allowing the user to adjust the time required by the password hashing process. A more

recent proposal, scrypt [60], allows users to control both processing time and memory usage, raising

the cost of password recovery by increasing the silicon space required for running the PHS in custom

hardware, or the amount of RAM required in a GPU. There is, however, considerable interest in the

research community in developing new (and better) alternatives, which recently led to the creation

of a competition with this speci�c purpose [62].

Aiming to address this need for stronger alternatives, our studies led to the proposal of Lyra [1], a

mode of operation of cryptographic sponges [13, 14] for password hashing. In this article, we propose

an improved version of Lyra, called simply Lyra2. Lyra2 preserves the security, e�ciency and

12

2 BACKGROUND: CRYPTOGRAPHIC SPONGES The Lyra2 reference guide

�exibility of Lyra, including: (1) the ability to con�gure the desired amount of memory, processing

time and parallelism to be used by the algorithm; (2) the capacity of providing a high memory

usage with a processing time similar to that obtained with scrypt. In addition, it brings important

improvements when compared to its predecessor: (1) it allows a higher security level against attack

venues involving time-memory trade-o�s; (2) it allows legitimate users to bene�t more e�ectively

from the parallelism capabilities of their own platforms; (3) it includes tweaks for increasing the

costs involved in the construction of dedicated hardware to attack the algorithm.

The rest of this paper is organized as follows. Section 2 outlines the concept of cryptographic

sponges. Section 3 describes the main requirements of PHS solutions and discusses the related

work. Section 4 presents the Lyra2 algorithm and its design rationale, while Section 5 analyzes

its security. Section 6 discusses extensions of Lyra2, all of which can be integrated into the basic

algorithm discussed in Section 4, presenting in especial the parallelizable version of the algorithm,

called Lyra2p. Section 7 shows our benchmark results. Finally, Section 8 presents our �nal remarks.

2 Background: Cryptographic Sponges

The concept of cryptographic sponges was formally introduced by Bertoni et al. in [13] and is

described in detail in [14]. The elegant design of sponges has also motivated the creation of more

general structures, such as the Parazoa family of functions [2]. Indeed, their �exibility is probably

among the reasons that led Keccak [15], one of the members of the sponge family, to be elected as

the new Secure Hash Algorithm (SHA-3).

2.1 Notation and Conventions

In what follows and throughout this document, we use the notation show in Table 1. All

operations are made assuming a little-endian convention, and should be adapted accordingly for

big-endian architectures (this applies basically to the rot operation).

Symbol Meaning

⊕ bitwise Excusive-OR (XOR) operation

� wordwise add operation (i.e., ignoring carries between words)

‖ concatenation

|x| bit-length of x, i.e., the minimum number of bits required for representing x

len(x) byte-length of x, i.e., the minimum number of bytes required for representing x

lsw(x) the least signi�cant word of x

x≫ n n-bit right rotation of x

rot(x) ω-bit right rotation of x

roty(x) ω-bit right rotation of x repeated y times

Table 1: Basic notation used throughout the document.

2.2 Cryptographic Sponges: Basic Structure

In a nutshell, sponge functions provide an interesting way of building hash functions with

arbitrary input and output lengths. Such functions are based on the so-called sponge construction,

13

The Lyra2 reference guide 2 BACKGROUND: CRYPTOGRAPHIC SPONGES

an iterated mode of operation that uses a �xed-length permutation (or transformation) f and a

padding rule pad. More speci�cally, and as depicted in Figure 1, sponge functions rely on an internal

state of w = b + c bits, initially set to zero, and operate on an (padded) input M cut into b-bit

blocks. This is done by iteratively applying f to the sponge's internal state, operation interleaved

with the entry of input bits (during the absorbing phase) or the subsequent retrieval of output bits

(during the squeezing phase). The process stops when all input bits consumed in the absorbing

phase are mapped into the resulting `-bit output string. Typically, the f transformation is itself

iterative, being parameterized by a number of rounds (e.g., 24 for Keccak operating with 64-bit

words [15]).

Figure 1: Overview of the sponge construction Z = [f, pad, b](M, `). Adapted from [14].

The sponge's internal state is, thus, composed by two parts: the b-bit long outer part, which

interacts directly with the sponge's input, and the c-bit long inner part, which is only a�ected by

the input by means of the f transformation. The parameters w, b and c are called, respectively,

the width, bitrate, and the capacity of the sponge.

2.3 The duplex construction

A similar structure derived from the sponge concept is the Duplex construction [14], depicted

in Figure 2.

Figure 2: Overview of the duplex construction. Adapted from [14].

Unlike regular sponges, which are stateless in between calls, a duplex function is stateful: it

takes a variable-length input string and provides a variable-length output that depends on all inputs

received so far. In other words, although the internal state of a duplex function is �lled with zeros

upon initialization, it is stored after each call to the duplex object rather than repeatedly reset. In

this case, the input string M must be short enough to �t in a single b-bit block after padding, and

the output length ` must satisfy ` 6 b.

14

3 PASSWORD HASHING SCHEMES (PHS) The Lyra2 reference guide

3 Password Hashing Schemes (PHS)

As previously discussed, the basic requirement for a PHS is to be non-invertible, so that recov-

ering the password from its output is computationally infeasible. Moreover, a good PHS's output

is expected to be indistinguishable from random bit strings, preventing an attacker from discarding

part of the password space based on perceived patterns [46]. In principle, those requirements can

be easily accomplished simply by using a secure hash function, which by itself ensures that the

best attack venue against the derived key is through brute force (possibly aided by a dictionary or

�usual� password structures [56, 80]).

What any modern PHS do, then, is to include techniques that raise the cost of brute-force

attacks. A �rst strategy for accomplishing this is to take as input not only the user-memorizable

password pwd itself, but also a sequence of random bits known as salt. The presence of such random

variable thwarts several attacks based on pre-built tables of common passwords, i.e., the attacker

is forced to create a new table from scratch for every di�erent salt [44, 46]. The salt can, thus, be

seen as an index into a large set of possible keys derived from pwd, and need not to be memorized

or kept secret [44].

A second strategy is to purposely raise the cost of every password guess in terms of computational

resources, such as processing time and/or memory usage. This certainly also raises the cost of

authenticating a legitimate user entering the correct password, meaning that the algorithm needs

to be con�gured so that the burden placed on the target platform is minimally noticeable by humans.

Therefore, the legitimate users and their platforms are ultimately what impose an upper limit on

how computationally expensive the PHS can be for themselves and for attackers. For example, a

human user running a single PHS instance is unlikely to consider a nuisance that the password

hashing process takes 1 s to run and uses a small part of the machine's free memory, e.g., 20 MB.

On the other hand, supposing that the password hashing process cannot be divided into smaller

parallelizable tasks, achieving a throughput of 1,000 passwords tested per second requires 20 GB of

memory and 1,000 processing units as powerful as that of the legitimate user.

A third strategy, especially useful when the PHS involves both processing time and memory

usage, is to use a design with low parallelizability. The reasoning is as follows. For an attacker

with access to p processing cores, there is usually no di�erence between assigning one password

guess to each core or parallelizing a single guess so it is processed p times faster: in both scenarios,

the total password guessing throughput is the same. However, a sequential design that involves

con�gurable memory usage imposes an interesting penalty to attackers who do not have enough

memory for running the p guesses in parallel. For example, suppose that testing a guess involves

m bytes of memory and the execution of n instructions. Suppose also that the attacker's device

has 100m bytes of memory and 1000 cores, and that each core executes n instructions per second.

In this scenario, up to 100 guesses can be tested per second against a strictly sequential algorithm

(one per core), the other 900 cores remaining idle because they have no memory to run.

Aiming to provide a deeper understanding on the challenges faced by PHS solutions, in what

follows we discuss the main characteristics of platforms used by attackers and then how existing

solutions avoid those threats.

15

The Lyra2 reference guide 3 PASSWORD HASHING SCHEMES (PHS)

3.1 Attack platforms

The most dangerous threats faced by any PHS comes from platforms that bene�t from �economies

of scale�, especially when cheap, massively parallel hardware is available. The most prominent ex-

amples of such platforms are Graphics Processing Units (GPUs) and custom hardware synthesized

from FPGAs [29].

3.1.1 Graphics Processing Units (GPUs).

Following the increasing demand for high-de�nition real-time rendering, Graphics Processing

Units (GPUs) have traditionally carried a large number of processing cores, boosting its paralleliza-

tion capability. Only more recently, however, GPUs evolved from speci�c platforms into devices

for universal computation and started to give support to standardized languages that help harness

their computational power, such as CUDA [58] and OpenCL [48]). As a result, they became more

intensively employed for more general purposes, including password cracking [29, 75].

As modern GPUs include a few thousands processing cores in a single piece of equipment, the

task of executing multiple threads in parallel becomes simple and cheap. They are, thus, ideal when

the goal is to test multiple passwords independently or to parallelize a PHS's internal instructions.

For example, NVidia's Tesla K20X, one of the top GPUs available, has a total of 2,688 processing

cores operating at 732 MHz, as well as 6 GB of shared DRAM with a bandwidth of 250 GB per

second [57]. Its computational power can also be further expanded by using the host machine's

resources [58], although this is also likely to limit the memory throughput. Supposing this GPU

is used to attack a PHS whose parametrization makes it run in 1 s and take less than 2.23 MB of

memory, it is easy to conceive an implementation that tests 2,688 passwords per second. With a

higher memory usage, however, this number is deemed to drop due to the GPU's memory limit of

6 GB. For example, if a sequential PHS requires 20 MB of DRAM, the maximum number of cores

that could be used simultaneously becomes 300, only 11% of the total available.

3.1.2 Field Programmable Gate Arrays (FPGAs).

An FPGA is a collection of con�gurable logic blocks wired together and with memory elements,

forming a programmable and high-performance integrated circuit. In addition, as such devices are

con�gured to perform a speci�c task, they can be highly optimized for its purpose (e.g., using

pipelining [28, 43]). Hence, as long as enough resources (i.e., logic gates and memory) are available

in the underlying hardware, FPGAs potentially yield a more cost-e�ective solution than what would

be achieved with a general-purpose CPU of similar cost [49]. When compared to GPUs, FPGAs

may also be advantageous due to the latter's considerably lower energy consumption [21, 34], which

can be further reduced if its circuit is synthesized in the form of custom logic hardware (ASIC) [21].

A recent example of password cracking using FPGAs is presented in [29]. Using a RIVYERA S3-

5000 cluster [68] with 128 FPGAs against PBKDF2-SHA-512, the authors reported a throughput of

356,352 passwords tested per second in an architecture having 5,376 password processed in parallel.

It is interesting to notice that one of the reasons that made these results possible is the small

memory usage of the PBKDF2 algorithm, as most of the underlying SHA-2 processing is performed

using the device's memory cache (much faster than DRAM) [29, Sec. 4.2]. Against a PHS requiring

20 MB to run, for example, the resulting throughput would presumably be much lower, especially

16

3 PASSWORD HASHING SCHEMES (PHS) The Lyra2 reference guide

considering that the FPGAs employed can have up to 64 MB of DRAM [68] and, thus, up to three

passwords can be processed in parallel rather than 5,376.

Interestingly, a PHS that requires a similar memory usage would be troublesome even for state-

of-the-art clusters, such as the newer RIVYERA V7-2000T [69]. This powerful cluster carries up to

four Xilinx Virtex-7 FPGAs and up to 128 GB of shared DRAM, in addition to the 20 GB available

in each FPGA [69]. Despite being much more powerful, in principle it would still be unable to test

more than 2,600 passwords in parallel against a PHS that strictly requires 20 MB to run.

3.2 Scrypt

Arguably, the main password hashing solutions available in the literature are [62]: PBKDF2 [44],

bcrypt [64] and scrypt [60]. Since scrypt is only PHS among them that explores both memory and

processing costs and, thus, is directly comparable to Lyra2, its main characteristics are described

in what follows. For the interested reader, a discussion on PBKDF2 and bcrypt is provided in the

appendices.

The design of scrypt [60] focus on coupling memory and time costs. For this, scrypt employs

the concept of �sequential memory-hard� functions: an algorithm that asymptotically uses almost

as much memory as it requires operations and for which a parallel implementation cannot asymp-

totically obtain a signi�cantly lower cost. As a consequence, if the number of operations and the

amount of memory used in the regular operation of the algorithm are both O(R), the complexity

Algorithm 1 Scrypt.

Param: h . BlockMix 's internal hash function output length

Input: pwd . The password

Input: salt . A random salt

Input: k . The key length

Input: b . The block size, satisfying b = 2r · h
Input: R . Cost parameter (memory usage and processing time)

Input: p . Parallelism parameter

Output: K . The password-derived key

1: (B0...Bp−1)←PBKDF2HMAC−SHA−256(pwd, salt, 1, p · b)
2: for i← 0 to p− 1 do

3: Bi ←ROMix(Bi, R)
4: end for

5: K ←PBKDF2HMAC−SHA−256(pwd,B0 ‖B1 ‖ ... ‖Bp−1, 1, k)
6: return K . Outputs the k-long key

7: function ROMix(B,R) . Sequential memory-hard function

8: X ← B
9: for i← 0 to R− 1 do . Initializes memory array M

10: Vi ← X ; X ←BlockMix(X)
11: end for

12: for i← 0 to R− 1 do . Reads random positions of M

13: j ← Integerify(X) mod R
14: X ←BlockMix(X ⊕Mj)
15: end for

16: return X
17: end function

18: function BlockMix(B) . b-long in/output hash function

19: Z ← B2r−1 . r = b/2h, where h = 512 for Salsa20/8

20: for i← 0 to 2r − 1 do

21: Z ← Hash(Z ⊕Bi) ; Yi ← Z
22: end for

23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)
24: end function

17

The Lyra2 reference guide 4 LYRA2

of a memory-free attack (i.e., an attack for which the memory usage is reduced to O(1)) becomes

Ω(R2), where R is a system parameter. We refer the reader to [60] for a more formal de�nition.

The following steps compose scrypt's operation (see Algorithm 1). First, it initializes p b-

long memory blocks Bi. This is done using the PBKDF2 algorithm with HMAC-SHA-256 [54] as

underlying hash function and a single iteration. Then, each Bi is processed (incrementally or in

parallel) by the sequential memory-hard ROMix function. Basically, ROMix initializes an array M

of R b-long elements by iteratively hashing Bi. It then visits R positions ofM at random, updating

the internal state variable X during this (strictly sequential) process in order to ascertain that

those positions are indeed available in memory. The hash function employed by ROMix is called

BlockMix , which emulates a function having arbitrary (b-long) input and output lengths; this is

done using the Salsa20/8 [11] stream cipher, whose output length is h = 512. After the p ROMix

processes are over, the Bi blocks are used as salt in one �nal iteration of the PBKDF2 algorithm,

outputting key K.

Scrypt displays a very interesting design, being one of the few existing solutions that allow the

con�guration of both processing and memory costs. One of its main shortcomings is probably the

fact that it strongly couples memory and processing requirements for a legitimate user. Speci�cally,

scrypt's design prevents users from raising the algorithm's processing time while maintaining a

�xed amount of memory usage, unless they are willing to raise the p parameter and allow further

parallelism to be exploited by attackers. Another inconvenience with scrypt is the fact that it

employs two di�erent underlying hash functions, HMAC-SHA-256 (for the PBKDF2 algorithm) and

Salsa20/8 (as the core of the BlockMix function), leading to increased implementation complexity.

Finally, even though Salsa20/8's known vulnerabilities [4] are not expected to put the security of

scrypt in hazard [60], using a stronger alternative would be at least advisable, especially considering

that the scheme's structure does not impose serious restrictions on the internal hash algorithm used

by BlockMix . In this case, a sponge function could itself be an alternative, with the advantage

that, since sponges support inputs and outputs of any length, the whole BlockMix structure could

be replaced.

Inspired by scrypt's design, Lyra2 builds on the properties of sponges to provide not only a sim-

pler, but also more secure solution. Indeed, Lyra2 stays on the �strong� side of the memory-hardness

concept: the processing cost of attacks involving less memory than speci�ed by the algorithm grows

much faster than quadratically, surpassing the best achievable with scrypt and thwarting the ex-

ploitation of time-memory trade-o�s (TMTO). This characteristic should discourage attackers from

trading memory usage for processing time, which is exactly the goal of a PHS in which usage of

both resources are con�gurable. In addition, Lyra2 allows for a higher memory usage for a simi-

lar processing time, increasing the cost of regular attack venues (i.e., those not exploring TMTO)

beyond that of scrypt's.

4 Lyra2

As any PHS, Lyra2 takes as input a salt and a password, creating a pseudorandom output that

can then be used as key material for cryptographic algorithms or as an authentication string [55].

Internally, the scheme's memory is organized as a matrix that is expected to remain in memory

during the whole password hashing process: since its cells are iteratively read and written, discarding

18

4 LYRA2 The Lyra2 reference guide

a cell for saving memory leads to the need of recomputing it whenever it is accessed once again,

until the point it was last modi�ed. The construction and visitation of the matrix is done using a

stateful combination of the absorbing, squeezing and duplexing operations of the underlying sponge

(i.e., its internal state is never reset to zero), ensuring the sequential nature of the whole process.

Also, the number of times the matrix's cells are revisited after initialization is de�ned by the user,

allowing Lyra2's execution time to be �ne-tuned according to the target platform's resources.

In this section, we describe the core of the Lyra2 algorithm in detail and discuss its design

rationale and resulting properties. Later, in Section 6, we discuss some possible variants of the

algorithm that may be useful in di�erent scenarios.

Algorithm 2 The Lyra2 Algorithm.

Param: H . Sponge with block size b (in bits) and underlying permutation f

Param: Hρ . Reduced-round sponge for use in the Setup and Wandering phases (e.g., f with ρ)

Param: ω . Number of bits to be used in rotations (recommended: a multiple of the machine's word size, W)

Input: pwd . The password

Input: salt . A salt

Input: T . Time cost, in number of iterations (T > 1)

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix (recommended: C · ρ > ρmax)

Input: k . The desired hashing output length, in bits

Output: K . The password-derived k-long hash

1: . Bootstrapping phase: Initializes the sponge's state and local variables

2: params← len(k) ‖ len(pwd) ‖ len(salt) ‖T ‖R ‖C . Byte representation of input parameters (others can be added)

3: H.absorb(pad(pwd ‖ salt ‖ params)) . Padding rule: 10∗1. Password can be overwritten after this point

4: gap← 1 ; stp← 1 ; wnd← 2 ; sqrt← 2 . Initializes visitation step and window

5: prev0 ← 2 ; row1 ← 1 ; prev1 ← 0

6: . Setup phase: Initializes a (R× C) memory matrix, it's cells having b bits each

7: for (col←0 to C−1) do {M [0][C−1−col]← Hρ.squeeze(b)} end for . Initializes M [0]

8: for (col←0 to C−1) do {M [1][C−1−col]←M [0][col]⊕Hρ.duplex(M [0][col], b)} end for . Initializes M [1]

9: for (col←0 to C−1) do {M [2][C−1−col]←M [1][col]⊕Hρ.duplex(M [1][col], b)} end for . Initializes M [2]

10: for (row0 ← 3 to R− 1) do . Filling Loop: initializes remainder rows

11: for (col← 0 to C − 1) do . Columns Loop: M [row0] is initialized; M [row1] is updated

12: rand← Hρ.duplex(M [row1][col]�M [prev0][col]�M [prev1][col], b)
13: M [row0][C − 1− col]←M [prev0][col]⊕ rand
14: M [row1][col]←M [row1][col]⊕ rot(rand) . rot(): right rotation by ω bits (e.g., 1 or more words)

15: end for

16: prev0 ← row0 ; prev1 ← row1 ; row1 ← (row1 + stp) mod wnd . Rows to be revisited in next loop

17: if (row1 = 0) then .Window fully revisited

18: wnd← 2 · wnd ; stp← sqrt+ gap ; gap← −gap . Doubles window and adjusts step

19: if (gap = −1) then {sqrt← 2 · sqrt} end if . Doubles sqrt every other iteration

20: end if

21: end for

22: .Wandering phase: Iteratively overwrites pseudorandom cells of the memory matrix

23: for (wCount← 0 to R · T − 1) do . Visitation Loop: 2R · T rows revisited in pseudorandom fashion

24: row0 ← lsw(rand) mod R ; row1 ← lsw(rot(rand)) mod R . Picks pseudorandom rows

25: for (col← 0 to C − 1) do . Columns Loop: updates M [row0,1]

26: col0 ← lsw(rot2(rand)) mod C ; col1 ← lsw(rot3(rand)) mod C . Picks pseudorandom columns

27: rand← Hρ.duplex(M [row0][col]�M [row1][col]�M [prev0][col0]�M [prev1][col1], b)
28: M [row0][col]←M [row0][col]⊕ rand . Updates �rst pseudorandom row

29: M [row1][col]←M [row1][col]⊕ rot(rand) . Updates second pseudorandom row

30: end for . End of Columns Loop

31: prev0 ← row0 ; prev1 ← row1 . Next iteration revisits most recently updated rows

32: end for . End of Visitation Loop

33: .Wrap-up phase: output computation

34: H.absorb(M [row0][0]) . Absorbs a �nal column with full-round sponge

35: K ← H.squeeze(k) . Squeezes k bits with full-round sponge

36: return K . Provides k-long bitstring as output

19

The Lyra2 reference guide 4 LYRA2

4.1 Structure and rationale

Lyra2's steps are shown in Algorithm 2. As highlighted in the pseudocode's comments, its

operation is composed by four sequential phases: Bootstrapping, Setup, Wandering and Wrap-up.

4.1.1 Bootstrapping

The very �rst part of Lyra2 comprises the Bootstrapping of the algorithm's sponge and internal

variables (lines 1 to 5). The set of variables {gap, stp, wnd, sqrt, prev0, row1, prev1} initialized in

lines 4 and 5 are useful only for the next stage of the algorithm, the Setup phase, so the discussion

on their properties is left to Section 4.1.2.

Lyra2's sponge is initialized by absorbing the (properly padded) password and salt, together

with a params bitstring, initializing a salt- and pwd-dependent state (line 3). The padding rule

adopted by Lyra2 is the multi-rate padding pad10∗1 described in [14], hereby denoted simply pad.

This padding strategy appends a single bit 1 followed by as many bits 0 as necessary followed by a

single bit 1, so that at least 2 bits are appended. Since the password itself is not used in any other

part of the algorithm, it can be discarded (e.g., overwritten with zeros) after this point.

In this �rst absorb operation, the goal of the params bitstring is basically to avoid collisions

using trivial combinations of salts and passwords: for example, for any (u, v | u + v = α), we

have a collision if pwd =0u, salt = 0v and params is an empty string; however, this should not

occur if params explicitly includes u and v. Therefore, params can be seen as an �extension� of

the salt, including any amount of additional information, such as: the list of parameters passed to

the PHS (including the lengths of the salt, password, and output); a user identi�cation string; a

domain name toward which the user is authenticating him/herself (useful in remote authentication

scenarios); among others.

4.1.2 The Setup phase

Once the internal state of the sponge is initialized, Lyra2 enters the Setup Phase (lines 6 to 21).

This phase comprises the construction of a R × C memory matrix whose cells are b-long blocks,

where R and C are user-de�ned parameters and b is the underlying sponge's bitrate (in bits).

For better performance when dealing with a potentially large memory matrix, the Setup relies

on a �reduced-round sponge�, i.e., the sponge's operation are done with a reduced-round version of

f , denoted fρ for indicating that ρ rounds are executed rather than the regular number of rounds

ρmax. The advantage of using a reduced-round f is that this approach accelerates the sponge's

operations and, thus, it allows more memory positions to be covered than with the application of

a full-round f in a same amount of time. The adoption of reduced-round primitives in the core

of cryptographic constructions is not unheard in the literature, as it is the main idea behind the

Alred family of message authentication algorithms [26, 27, 71, 72]. As further discussed in Section

4.2, even though the requirements in the context of password hashing are di�erent, this strategy

does not decrease the security of the scheme as long as fρ is non-cyclic and highly non-linear, which

should be the case for the vast majority of secure hash functions. In some scenarios, it may even be

interesting to use a di�erent function as fρ rather than a reduced-round version of f itself to attain

higher speeds, which is possible as long the alternative satis�es the above-mentioned properties.

Except for rows M [0] to M [2], the sponge's reduced duplexing operation Hρ.duplex is always

20

4 LYRA2 The Lyra2 reference guide

called over the wordwise addition of three rows (line 12), all of which must be available in memory

for the algorithm to proceed (see the Filling Loop, in lines 10�21).

� M [prev0]: the last row ever initialized in any iteration of the Filling Loop, which means

simply that prev0 = row0 − 1;

� M [row1]: a row that has been previously initialized and is now revisited; and

� M [prev1]: the last row ever revisited (i.e., the most recently row indexed by row1).

Given the short time between the computation and usage of M [prev0] and M [prev1], accessing

them in a regular execution of Lyra2 should not be a huge burden since both are likely to remain in

cache. The same convenience does not apply to M [row1], though, since it is picked from a window

comprising rows initialized prior to M [prev0]. Therefore, this design takes advantage of caching

while penalizing attacks in which a given M [row0] is directly recomputed from the corresponding

inputs: in this case, M [prev0] and M [prev1] may not be in cache, so all three rows must come from

the main memory, raising memory latency and bandwidth. A similar e�ect could be achieved if

the rows provided as the sponge's input were concatenated, but adding them together instead is

advantageous because then the duplexing operation involves a single call to the underlying (reduced-

round) f rather than three.

After the reduced duplexing operation is performed, the resulting output (rand) a�ects two

rows (lines 13 and 14): M [row0], which has not been initialized yet, receives the values of rand

XORed with M [prev0]; meanwhile, the columns of the already initialized row M [row1] have their

values updated after being XORed with rot(rand), i.e., rand rotated to the right by ω bits. More

formally, for ω = W and representing rand as an array of words rand[0] . . . rand[b/W − 1] (i.e.,

the �rst b bits of the outer state, from top to bottom as depicted in Figures 1 and 2), we have that

M [row0][C−1−i]←M [prev0][i]⊕rand[i] andM [row1][i]←M [row1][i]⊕rand[(i−1) mod (b/W)]

(0 6 i 6 b/W − 1). We notice that the rows are written from the highest to the lowest index,

although read in the inverse order, which thwarts attacks in which previous rows are discarded for

saving memory and then recomputed right before they are used, as further discussed in Section

5.1.2.5. In addition, thanks to the rot operation, each row receives slightly di�erent outputs from

the sponge, which reduces an attacker's ability to get useful results from XORing pairs of rows

together. Notice that this rotation can be performed basically for free in software if ω is set to a

multiple ofW as recommended: in this case, this operation corresponds to rearranging words rather

than actually executing shifts or rotations. The left side of Figure 3 illustrates how the sponge's

inputs and output are handled by Lyra2 during the Setup phase.

Figure 3: Handling the sponge's inputs and outputs during the Setup (left) and Wandering (right) phases
in Lyra2.

21

The Lyra2 reference guide 4 LYRA2

The initialization of M [0] −M [2] in lines 7 to 9, in contrast, is slightly di�erent because none

of them has enough predecessors to be treated exactly like the rows initialized during the Filling

Loop. Speci�cally, instead of taking three rows in the duplexing operation, M [0] takes none while

M [1] and (for simplicity) M [2] take only their immediate predecessor.

The Setup phase ends when all R rows of the memory matrix are initialized, which also means

that any row ever indexed by row1 has also been updated since its initialization. These row1 indices

are deterministically picked from a window of size wnd, which starts with a single row and doubles

in size whenever all of its rows are visited (i.e., whenever row1 reaches the value 0). The exact

values assumed by row1 depend on wnd, following a logic whose aim is to ensure that, if two rows

are visited sequentially in one window, during the subsequent window they are visited (1) in points

far away from each other and (2) approximately in the reverse order of their previous visitation.

This hinders the recomputation of several values of M [row1] from scratch in the sequence they are

required, thwarting attacks that trade memory and processing costs, which are discussed in detail

in Section 5.1. To accomplish this goal in a manner that is simple to implement, the following

strategy was adopted (see Table 2):

� When wnd is a square number: the window can be seen as a
√
wnd ×

√
wnd matrix. Then,

row1 is taken from the indices in that matrix's cyclic diagonals, starting with the main

diagonal and moving right until the diagonal from the upper right corner is reached. This is

accomplished by using a step variable stp =
√
wnd+ 1, computed in line 18 of Algorithm 2,

using the auxiliary sqrt =
√
wnd variable to facilitate this computation.

� Otherwise: the window is represented as a 2
√
wnd/2×

√
wnd/2 matrix. The values of row1

start with 0 and then corresponding to the matrix's cyclic anti-diagonals, starting with the

main anti-diagonal and cyclically moving left one column at a time. In this case, the step

variable is computed as stp = 2
√
wnd/2 − 1 in the same line 18 of Algorithm 2, once again

using the auxiliary sqrt = 2
√
wnd/2 variable.

Table 2 shows some examples of the values of row1 in each iteration of the Filling Loop (lines

10�21), as well as the corresponding window size. We note that, since the window size is always a

power of 2, the modular operation in line 16 can be implemented with a simple bitwise AND with

wnd− 1, potentially leading to better performance.

[
0
$$
2

1 3

] 
0 4

1

::
5

2 6

3

::
7




0
##
4 8 C

1 5
$$
9 D

2 6 A
%%
E

3 7 B F


︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

row0 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B . . .

prev0 � 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A . . .

row1 � � � 1 0 3 2 1 0 3 6 1 4 7 2 5 0 5 A F 4 9 E 3 8 D 2 7 . . .

prev1 � � � 0 1 0 3 2 1 0 3 6 1 4 7 2 5 0 5 A F 4 9 E 3 8 D 2 . . .

wnd � � � 2 2 4 4 4 4 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 . . .

Table 2: Indices of the rows that feed the sponge when computing M [row] during Setup (hexadecimal
notation).

22

4 LYRA2 The Lyra2 reference guide

4.1.3 The Wandering phase

The most time-consuming of all phases, the Wandering Phase (lines 23 to 32), takes place after

the Setup phase is �nished, without resetting the sponge's internal state. Similarly to the Setup,

the core of the Wandering phase consists in the reduced duplexing of rows that are added together

(line 27) for computing a random-like output rand (line 27), which is then XORed with rows taken

as input. One distinct aspect of the Wandering phase, however, refers to the way it handles the

sponge's inputs and outputs, which is illustrated in the right side of Figure 3. Namely, besides

taking four rows rather than three as input for the sponge, these rows are not all deterministically

picked anymore, but all involve some kind of pseudorandom, password-dependent variable in their

picking and visitation:

� rowd (d = 0, 1): indices computed in line 24 from the �rst and second words of the sponge's

outer state, i.e., from rand[0] and rand[1] for d = 0 and d = 1, respectively. This particular

computation ensures that each rowd index corresponds to a pseudorandom value ∈ [0, R− 1]

that is only learned after all columns of the previously visited row are duplexed. Given the

wide range of possibilities, those rows are unlike to be in cache; however, since they are visited

sequentially, their columns can be prefetched by the processor to speed-up their processing.

� prevd (d = 0, 1): set in line 31 to the indices of the most recently modi�ed rows. Just like

in the Setup phase, these rows are likely to still be in cache. Taking advantage of this fact,

the visitation of its columns are not sequential but actually controlled by the pseudorandom,

password-dependent variables (col0, col1) ∈ [0, C − 1]. More precisely, each index cold (d =

0, 1) is computed from the sponge's outer state; for example, for ω = W , it is taken from

rand[d + 2]) right before each duplexing operation (line 26). As a result, the corresponding

column indices cannot be determined prior to each duplexing, forcing all the columns to

remain in memory for the whole duplexing operation for better performance and thwarting

the construction of simple pipelines for their visitation.

The treatment given to the sponge's outputs is then quite similar to that in the Setup phase:

the outputs provided by the sponge are sequentially XORed withM [row0] (line 28) and, after being

rotated, with M [row1] (line 29). However, in the Wandering phase the sponge's output is XORed

with M [row0] from the lowest to the highest index, just like M [row1]. This design decision was

adopted because it allows faster processing, since the columns read are also those overwritten; at

the same time, the subsequent reading of those columns in a pseudorandom order already thwarts

the attack strategy discussed in Section 5.1.2.5, so there is no need to revert the the reading/writing

order in this part of the algorithm.

4.1.4 The Wrap-up phase

Finally, after (R · T) duplexing operations are performed during the Wandering phase, the

algorithm enters the Wrap-up Phase. This phase consists of a full-round absorbing operation (line

34) of a single cell of the memory matrix, M [row0][0]. The goal of this �nal call to absorb is mainly

to ensure that the squeezing of the key bitstring will only start after the application of one full-

round f to the sponge's state � notice that, as shown in Figure 1, the squeezing phase starts with

b bits being output rather than passing by f and, since the full-round absorb in line 3, the state

23

The Lyra2 reference guide 4 LYRA2

was only updated by several calls to the reduced-round f . This absorb operation is then followed

by a full-round squeezing operation (line 35) for generating k bits, once again without resetting

sponge's internal state to zeros. As a result, this last stage employs only the regular operations

of the underlying sponge, building on its security to ensure that the whole process is both non-

invertible and the outputs are unpredictable. After all, violating such basic properties of Lyra2 is

equivalent to violate the same basic properties of the underlying full-round sponge.

4.2 Strictly sequential design

Like with PBKDF2 and other existing PHS, Lyra2's design is strictly sequential, as the sponge's

internal state is iteratively updated during its operation. Speci�cally, and without loss of generality,

assume that the sponge's state before duplexing a given input ci is si; then, after ci is processed,

the updated state becomes si+1 = fρ(si⊕ ci) and the sponge outputs randi, the �rst b bits of si+1.

Now, suppose the attacker wants to parallelize the duplexing of multiple columns in lines 11�15

(Setup phase) or in lines 25�30 (Wandering phase), obtaining {rand0, rand1, rand2} faster than
sequentially computing rand0 = fρ(s0 ⊕ c0), rand1 = fρ(s1 ⊕ c1), and then rand2 = fρ(s2 ⊕ c2).

If the sponge's transformation f was a�ne, the above task would be quite easy. For example, if

fρ was the identity function, the attacker could use two processing cores to compute rand0 = s0⊕c0,
x = c1 ⊕ c2 in parallel and then, in a second step, make rand1 = rand0 ⊕ c1, rand2 = rand0 ⊕ x
also in parallel. With dedicated hardware and adequate wiring, this could be done even faster, in

a single step. However, for a highly non-linear transformation fρ, it should be hard to decompose

two iterative duplexing operations fρ(fρ(s0⊕ c0)⊕ c1) into an e�cient parallelizable form, let alone

several applications of fρ.

It is interesting to notice that, if fρ has some obvious cyclic behavior, always resetting the sponge

to a known state s after v cells are visited, then the attacker could easily parallelize the visitation

of ci and ci+v. Nonetheless, any reasonably secure fρ is expected to prevent such cyclic behavior by

design, since otherwise this property could be easily explored for �nding internal collisions against

the full f itself.

In summary, even though an attacker may be able to parallelize internal parts of fρ, the stateful

nature of Lyra2 creates several �serial bottlenecks� that prevent duplexing operations from being

executed in parallel.

Assuming that the above-mentioned structural attacks are unfeasible, parallelization can still be

achieved in a �brute-force� manner. Namely, the attacker could create two di�erent sponge instances,

I0 and I1, and try to initialize their internal states to s0 and s1, respectively. If s0 is known, all

the attacker needs to do is compute s1 faster than actually duplexing c0 with I0. For example, the

attacker could rely on a large table mapping states and input blocks to the resulting states, and

then use the table entry (s0, c0) 7→ s1. For any reasonable cryptographic sponge, however, the state

and block sizes are expected to be quite large (e.g., 512 or 1,024 bits), meaning that the amount of

memory required for building a complete map makes this approach unpractical.

Alternatively, the attacker could simply initialize several I1 instances with guessed values of s1,

and use them to duplex c1 in parallel. Then, when I0 �nishes running and the correct value of

s1 is inevitably determined, the attacker could compare it to the guessed values, keeping only the

result obtained with the correct instantiation. At �rst sight, it might seem that a reduced-round

f facilitates this task, since the consecutive states s0 and s1 may share some bits or relationships

24

4 LYRA2 The Lyra2 reference guide

between bits, thus reducing the number of possibilities that need to be included among the guessed

states. Even if that is the case, however, any transformation f is expected to have a complex relation

between the input and output of every single round and, to speed-up the duplexing operation, the

attacker needs to explore such relationship faster than actually processing ρ rounds of f . Otherwise,

the process of determining the target guessing space will actually be slower than simply processing

cells sequentially. Furthermore, to guess the state that will be reached after v cells are visited, the

attacker would have to explore relationships between roughly v · ρ rounds of f faster than merely

running v · ρ rounds of fρ. Hence, even in the (unlikely) case that guessing two consecutive states

can be made faster than running ρ of f , this strategy scales poorly since any existing relationship

between bits should be diluted as v · ρ approaches ρmax.
An analogous reasoning applies to the Filling / Visitation Loop. The only di�erence is that, to

parallelize the duplexing of inputs from its consecutive iterations, ci and ci+1, the attacker needs

to determine the sponge's internal state si+1 that will result from duplexing ci without actually

performing the C · ρ rounds of f involved in this operation. Therefore, even if highly parallelizable

hardware is available to attackers, it is unlikely that they will be able to take full advantage of this

parallelism potential for speeding up the operation of any given instance of Lyra2.

4.3 Con�guring memory usage and processing time

The total amount of memory occupied by Lyra2's memory matrix is b · R · C bits, where b

corresponds to the underlying sponge function's bitrate. With this choice of b, there is no need

to pad the incoming blocks as they are processed by the duplex construction, which leads to a

simpler and potentially faster implementation. The R and C parameters, on the other hand, can

be de�ned by the user, thus allowing the con�guration of the amount of memory required during

the algorithm's execution.

Ignoring ancillary operations, the processing cost of Lyra2 is basically determined by the number

of calls to the sponge's underlying f function. Its approximate total cost is, thus: d(|pwd|+ |salt|+
|params|)/be calls in Bootstrapping phase, plus R·C ·ρ/ρmax in the Setup phase, plus T ·R·C ·ρ/ρmax
in the Wandering phase, plus dk/be in the Wrap-up phase, leading roughly to (T +1) ·R ·C ·ρ/ρmax
calls to f for small lengths of pwd, salt and k. Therefore, while the amount of memory used

by the algorithm imposes a lower bound on its total running time, the latter can be increased

without a�ecting the former by choosing a suitable T parameter. This allows users to explore the

most abundant resource in a (legitimate) platform with unbalanced availability of memory and

processing power. This design also allows Lyra2 to use more memory than scrypt for a similar

processing time: while scrypt employs a full-round hash for processing each of its elements, Lyra2

employs a reduced-round, faster operation for the same task.

4.4 On the underlying sponge

Even though Lyra2 is compatible with any hash functions from the sponge family, the newly

approved SHA-3, Keccak [15], does not seem to be the best alternative for this purpose. This

happens because Keccak excels in hardware rather than in software performance [35]. Hence, for

the speci�c application of password hashing, it gives more advantage to attackers using custom

hardware than to legitimate users running a software implementation.

25

The Lyra2 reference guide 4 LYRA2

Our recommendation, thus, is toward using a secure software-oriented algorithm as the sponge's

f transformation. One example is Blake2b [9], a slightly tweaked version of Blake [6]. Blake itself

displays a security level similar to that of Keccak [20], and its compression function has been shown

to be a good permutation [5, 50] and to have a strong di�usion capability [6] even with a reduced

number of rounds [42, 76], while Blake2b is believed to retain most of these security properties [37].

The main (albeit minor) issue with Blake2b's permutation is that, to avoid �xed points, its

internal state must be initialized with a 512-bit initialization vector (IV) rather than with a string

of zeros as prescribed by the sponge construction. The reason is that Blake2b does not use the

constants originally employed in Blake2 inside its G function [9], relying on the IV for avoiding

possible �xed points. Indeed, if the internal state is �lled with zeros as usually done in crypto-

graphic sponges, any block �lled with zeros absorbed by the sponge will not change this state value.

Therefore, the same IV should also be used for initializing the sponge's state in Lyra2. In addition,

to prevent the IV from being overwritten by user-de�ned data, the sponge's capacity c employed

when absorbing the user's input (line 3 of Algorithm 2) should have at least 512 bits, leaving up to

512 bits for the bitrate b. After this �rst absorb operation, though, the bitrate may be raised for

increasing the overall throughput of Lyra2 if so desired.

4.4.1 A dedicated, multiplication-hardened sponge: BlaMka

Besides plain Blake2b, another potentially interesting alternative is to employ a permutation

that involves integer multiplications among its operations. The reason is that, as veri�ed in several

benchmarks available in the literature [70, 73], the performance gain o�ered by hardware imple-

mentations of the multiplication operation is not much higher than what is obtained with software

implementations running on x86 platforms, for which such operations are already heavily opti-

mized. Those optimizations appear in di�erent levels, including compilers, advanced instruction

sets (e.g., MMX, SSE and AVX), and architectural details of modern CPUs that resemble those of

dedicated FPGAs. Hence, if a legitimate user prefers to rely on a function that provides further

protection against hardware platforms while maintaining a high e�ciency on platforms such as

CPUs, multiplications may be an interesting approach. Indeed, this is the main idea behind the

�multiplication-hardening� strategy discussed in [24, 61].

For this purpose the Blake2b structure may itself be adapted to integrate multiplications.

Namely, multiplications can be integrated into Blake2b's G function (see the left side of Figure

4), which relies on sequential additions, rotations and XORs (ARX) for attaining bit di�usion and

a ← a+ b
d ← (d⊕ a)≫ 32
c ← c+ d
b ← (b⊕ c)≫ 24
a ← a+ b
d ← (d⊕ a)≫ 16
c ← c+ d
b ← (b⊕ c)≫ 63

(a) Blake2 G function.

a ← a+ b+ 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ 32
c ← c+ d+ 2 · lsw(c) · lsw(d)
b ← (b⊕ c)≫ 24
a ← a+ b+ 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ 16
c ← c+ d+ 2 · lsw(c) · lsw(d)
b ← (b⊕ c)≫ 63

(b) BlaMka G function.

Figure 4: Multiplication-hardened (right) and original (left) G(a, b, c, d) function from Blake2b.

26

4 LYRA2 The Lyra2 reference guide

creating a mutual dependence between those bits [5, 50]. If the additions employed are replaced by

a permutation that includes a multiplication and provides at least the same level of di�usion, its

security should not be negatively a�ected.

One suggestion, originally made by Samuel Neves (one of the authors of Blake2) [52], is to

replace the additions of integers x and y by something like the latin square function [79] f(x, y) =

x + y + 2 · x · y. To make it more friendly for implementation using the instruction set of modern

processors, however, one can use a slightly modi�ed construction that employs the least signi�cant

bits of x and y, namely f ′(x, y) = x + y + 2 · lsw(x) · lsw(y), as shown in the right side of Figure

4. As a result, this function can be e�ciently implemented using fast SIMD instructions (e.g.,

_mm_mul_epu, _mm_slli_epi, _mm_add_epi), and keeps an homogeneous distribution for

the F2n
2 7→ Fn2 mapping.

In terms of security, in a preliminary analysis the di�usion capability of f ′ seems to be at least

as high as that provided by the simple word-wise addition employed by Blake2b. This impression

comes from the assessment of XOR-di�erentials over f ′, de�ned in [7] as:

De�nition 1. Let f : F2n
2 7→ Fn2 be a vector Boolean function and let α, β and γ be n-bit sized

XOR-di�erences. We call (α, β) 7→ γ a XOR-di�erential of f if there exist n-bit strings x and y

that satisfy f ′(x ⊕ α, y ⊕ β) = f ′(x, y) ⊕ γ. Otherwise, if no such n-bit strings x and y exist, we

call (α, β) 7→ γ an impossible XOR-di�erential of f .

Speci�cally, conducting an exhaustive search for n = 8, we found 4 di�erentials that hold for all

65536 pairs (x, y), both for f ′ and for the addition operation: (0x00, 0x00) 7→ 0x00, (0x80, 0x80) 7→
0x00, (0x00, 0x80) 7→ 0x80, and (0x80, 0x00) 7→ 0x80 (in hexadecimal notation). However, while

the addition operation displays 168 XOR-di�erentials that hold for 50% of all (x, y) pairs, the f ′

operation hereby described has only 48 of such XOR-di�erentials, which have the second highest

probability for both functions. XOR-di�erentials with lower, but still high probabilities are also

less frequent for f ′ that for the simple addition operation � e.g., 288 instead of 3024 di�erentials

that hold for 25% of all (x, y) pairs, � although the former displays di�erentials with probabilities

that do not appear in the latter � e.g., 12 di�erentials that hold for 19200 out of the 65536 (x, y)

pairs, the third highest di�erential probability for f ′.

Even though this multiplication-hardened structure based on Blake2b (codenamed BlaMka)

shows promise, we emphasize that it requires further security analysis to be indeed considered a

recommended function for use with Lyra2. Indeed, actual instances of BlaMka would use n = 32 or

n = 64 rather than the n = 8 considered in the simple example above, and di�erential cryptanalysis

is not the only family of attacks that needs to be taken into account. As a remark, we note that,

since the f ′ function is structurally similar to what is done in the NORX authenticated encryption

scheme [8], but in the additive �eld, it is quite possible that analyses of this latter scheme can also

apply to the construction hereby described. Providing such analysis remains, however, as a matter

of future work.

4.5 Practical considerations

Lyra2 displays a quite simple structure, building as much as possible on the intrinsic properties

of sponge functions operating on a fully stateful mode. Indeed, the whole algorithm is composed

basically of loop controlling and variable initialization statements, while the data processing it-

27

The Lyra2 reference guide 5 SECURITY ANALYSIS

self is done by the underlying hash function H. Therefore, we expect the algorithm to be easily

implementable in software, especially if a sponge function is already available.

The adoption of sponges as underlying primitive also gives Lyra2 a lot of �exibility. For example,

since the user's input (line 3 of Algorithm 1) is processed by an absorb operation, the length and

contents of such input can be easily chosen by the user, as previously discussed. Likewise, the

algorithm's output is computed using the sponge's squeezing operation, allowing any number of

bits to be securely generated without the need of another primitive (e.g., PBKDF2, as done in

scrypt).

Another feature of Lyra2 is that its memory matrix was designed to allow legitimate users to

take advantage of memory hierarchy features, such as caching and prefetching. As observed in

[60], such mechanisms usually make access to consecutive memory locations in real-world machines

much faster than accesses to random positions, even for memory chips classi�ed as �random access�.

As a result, a memory matrix having a small R is likely to be visited faster than a matrix having

a small C, even for identical values of R · C. Therefore, by choosing adequate R and C values,

Lyra2 can be optimized for running faster in the target (legitimate) platform while still imposing

penalties to attackers under di�erent memory-accessing conditions. For example, by matching b ·C
to approximately the size of the target platform's cache lines, memory latency can be signi�cantly

reduced, allowing T to be raised without impacting the algorithm's performance in that speci�c

platform.

Besides performance, making C > ρmax is also recommended for security reasons: as discussed

in Section 4.2, this parametrization ensures that the sponge's internal state is scrambled with

(at least) the full strength of the underlying hash function after the execution of the Setup or

Wandering phase's Columns Loops. The task of guessing the sponge's state after the conclusion of

any iteration of a Columns Loop without actually executing it becomes, thus, much harder. After

all, assuming the underlying sponge can be modeled as a random oracle, its internal state should

be indistinguishable from a random bitstring.

One �nal practical concern taken into account in the design of Lyra2 refers to how long the

original password provided by the user needs to remain in memory. Speci�cally, the memory

position storing pwd can be overwritten right after the �rst absorb operation (line 3 of Algorithm

2). This avoids situations in which a careless implementation ends up leaving pwd in the device's

volatile memory or, worse, leading to its storage in non-volatile memory due to memory swaps

performed during the algorithm's memory-expensive phases. Hence, it meets the general guideline

of purging private information from memory as soon as it is not needed anymore, preventing that

information's recovery in case of unauthorized access to the device [38, 82].

5 Security analysis

Lyra2's design is such that (1) the derived key is both non-invertible and collision resistant,

which is due to the initial and �nal full hashing operations, combined with reduced-round hashing

operations in the middle of the algorithm; (2) attackers are unable to parallelize Algorithm 2 using

multiple instances of the cryptographic sponge H, so they cannot signi�cantly speed up the process

of testing a password by means of multiple processing cores; (3) once initialized, the memory

matrix is expected to remain available during most of the password hashing process, meaning that

28

5 SECURITY ANALYSIS The Lyra2 reference guide

the optimal operation of Lyra2 requires enough (fast) memory to hold its contents.

For better performance, a legitimate user is likely to store the whole memory matrix in volatile

memory, facilitating its access in each of the several iterations of the algorithm. An attacker running

multiple instances of Lyra2, on the other hand, may decide not to do the same, but to keep a smaller

part of the matrix in fast memory aiming to reduce the memory costs per password guess. Even

though this alternative approach inevitably lowers the throughput of each individual instance of

Lyra2, the goal with this strategy is to allow more guesses to be independently tested in parallel,

thus potentially raising the overall throughput of the process. There are basically two methods

for accomplishing this. The �rst is what we call a Low-Memory attack, which consists of trading

memory for processing time, i.e., discarding (parts of) the matrix and recomputing the discarded

information from scratch, when (and only when) it becomes necessary. The second it to use low-

cost (and, thus, slower) storage devices, such as magnetic hard disks, which we call a Slow-Memory

attack.

In what follows, we discuss both attack venues and evaluate their relative costs, as well as

the drawbacks of such alternative approaches. Our goal with this discussion is to demonstrate

how Lyra2's design discourages attackers from making such memory-processing trade-o�s while

testing many passwords in parallel. Consequently, the algorithm limits the attackers' ability to

take advantage of highly parallel platforms, such as GPUs and FPGAs, for password cracking.

In addition the above attacks, we also discuss the so-called Cache-Timing attacks [33], which

employ a spy process collocated to the PHS and, by observing the latter's execution, could be able

to recover the user's password without the need of engaging in an exhaustive search.

5.1 Low-Memory attacks

Before we discuss low-memory attacks against Lyra2, it is instructive to consider how such

attacks can be perpetrated against scrypt's ROMix structure (see Algorithm 1). The reason is that

its sequential memory hard design is mainly intended to provide protection against this particular

attack venue.

As a direct consequence of scrypt's memory hard design, we can formulate Theorem 1:

Theorem 1. Whilst the memory and processing costs of scrypt are both O(R) for a system parame-

ter R, one can achieve a memory cost of O(1) (i.e., a memory-free attack) by raising the processing

cost to O(R2).

Proof. The attacker runs the loop for initializing the memory array M (lines 9 to 11 of Algorithm

1), which we call ROMixini. Instead of storing the values of M [i], however, the attacker keeps only

the value of the internal variable X. Then, whenever an element M [j] of M should be read (line 14

of Algorithm 1), the attacker simply runs ROMixini for j iterations, determining the value of M [j]

and updating X. Ignoring ancillary operations, the average cost of such attack is R + (R · R)/2

iterative applications of BlockMix and the storage of a single b-long variable (X), where R is scrypt's

cost parameter.

In comparison, an attacker trying to use a similar low-memory attack against Lyra2 would run

into additional challenges. First, during the Setup phase, it is not enough to keep only one row in

memory for computing the next one, as each row requires three previously computed rows for its

computation.

29

The Lyra2 reference guide 5 SECURITY ANALYSIS

For example, after using M [0]�M [2], those three rows are once again employed in the computa-

tion of M [3], meaning that they should not be discarded or they will have to be recomputed. Even

worse: since M [0] is modi�ed when initializing M [4], the value to be employed when computing

rows that depend on it (e.g., M [8]) cannot be obtained directly from the password. Instead, recom-

puting the updated value of M [0] requires (a) running the Setup phase until the point it was last

modi�ed (e.g., for the value required byM [8], this corresponds to whenM [4] was initialized) or (b)

using some rows still available in memory, XORing them together to obtain the values of rand[col]

that modi�ed M [0] since its initialization.

Whichever the case, this creates a complex net of dependencies that grow in size as the algo-

rithm's execution advances and more rows are modi�ed, leading to several recursive calls. This

e�ect is even more expressive in the Wandering phase, due to an extra complicating factor: each

duplexing operation involves a random-like (password-dependent) row index that cannot be deter-

mined before the end of the previous duplexing. Therefore, the choice of which rows to keep in

memory and which rows to discard is merely speculative, and cannot be easily optimized for all

password guesses.

Providing a tight bound for the complexity of such low-memory attacks against Lyra2 is, thus,

an involved task, especially considering its non-deterministic nature. Nevertheless, aiming to give

some insight on how an attacker could (but is unlikely to want to) explore such time-memory trade-

o�s, in what follows we consider some slightly simpli�ed attack scenarios. We emphasize, however,

that these scenarios are not meant to be exhaustive, since the goal of analyzing them is only to

show the approximate (sometimes asymptotic) impact of possible memory usage reductions over

the algorithm's processing cost.

Formally proving the resistance of Lyra2 against time-memory trade-o�s (e.g., using the theory

of Pebble Games [23, 39, 30] as done in [33, 31]) would be even better, but doing so, possibly

building on the discussion hereby presented, remains as a matter for future work.

5.1.1 Preliminaries

For conciseness, along the discussion we denote by CL the Columns Loop of the Setup phase

(lines 11�15 of Algorithm 2) and of the Wandering phase (lines 25�30). In this manner, ignoring

the cost of XORing, reads/writes and other ancillary operations, CL corresponds approximately to

C · ρ/ρmax executions of f , a cost that is denoted simply as σ.

We denote by s0i,j the state of the sponge right before M [i][j] is initialized in the Setup phase.

For i > 3, this corresponds to the state in line 11 of Algorithm 2. For conciseness, though, we

often omit the �j� subscript, using s0i as a shorthand for s0i,0 whenever the focus of the discussion

are entire rows rather than their cells. We also employ a similar notation for the Wandering phase,

denoting by sτi the state of the sponge during iteration R · (τ − 1) + i of the Visitation Loop (with

1 6 τ 6 T), before the corresponding rows are e�ectively processed (i.e., the state in line 23 of

Algorithm 2). Analogously, the i-th row (0 6 i < R) output by the sponge during the Setup phase

is denoted r0i , while r
τ
i denotes the output given by the Visitation Loop's iteration R · (τ −1)+ i. In

this manner, the τ symbol is employed to indicate how many times the Wandering phase performs

a number of duplexing operations equivalent to that in the Setup phase.

Aiming to keep track of modi�cations made on rows of the memory matrix, we recursively use

30

5 SECURITY ANALYSIS The Lyra2 reference guide

the subscript notation M [XY−Z−...] to denote a row X modi�ed when it received the same values

of rand as row Y , then again when the row receiving the sponge's output was Z, and so on. For

example, M [13] corresponds to row M [1] after its cells are XORed with rot(rand) in the very �rst

iteration of the Setup phase's Filling Loop. Finally, for conciseness, we write V τ
1 and V τ

2 to denote,

respectively, the �rst and second half of: the Setup phase, for τ = 0; or the Visitation Loop during

iteration R · (τ − 1) + i of the Wandering phase's Visitation Loop, for τ > 1.

5.1.2 The Setup phase

We start our discussion analyzing only the Setup phase. Aiming to give a more concrete view of

its execution, along the discussion we use as example the scenario with 16 rows depicted in Figure

5, which shows the corresponding visitation order of such rows and also their modi�cations due to

these visitations.

5.1.2.1 Storing only what is needed: 1/2 memory usage. Suppose that the attacker does

not want to store all rows of the memory matrix during the algorithm's execution. One interesting

approach for doing so is to keep in bu�er only what will be required in future iterations of the Filling

Loop, discarding rows that will not be used anymore. Since the Setup phase is purely deterministic,

doing so is quite easy and, as long as the proper rows are kept, it incurs no processing penalty. This

approach is illustrated in Figure 6 for our example scenario.

As shown in this �gure, this simple strategy allows the execution of the Setup phase with a

memory usage of R/2+1 rows, approximately half of the amount usually required. This observation

comes from the fact that each half of the Setup phase requires all rows from the previous half and

two extra rows (those more recently initialized/updated) to proceed. More precisely, R/2 + 1

corresponds to the peak memory utilization reached around the middle of the Setup phase, since

(1) until then, part of the memory matrix has not been initialized yet and (2) rows initialized

near the end of the Setup phase are only required for computing the next row and, thus, can be

overwritten right after their cells are used. Even with this reduced memory usage, the processing

cost of this phase remains at R · σ, just as if all rows were kept in memory.

This attack can, thus, be summarized by the following lemma:

Lemma 1. Consider that Lyra2 operates with parameters T , R and C. Whilst the regular algo-

rithm's memory and processing costs of its Setup phase are, respectively, R · C · b bits and R · σ, it
is possible to run this phase with a maximum memory cost of approximately (R/2) ·C · b bits while
keeping its total processing cost to R · σ.

Figure 5: The Setup phase.

31

The Lyra2 reference guide 5 SECURITY ANALYSIS

Figure 6: Attacking the Setup phase: storing 1/2 of all rows. The most recently modi�ed rows in each
iteration are marked in bold.

Proof. The costs involved in the regular operation of Lyra2 are discussed in Section 4.3, while the

mentioned memory-processing trade-o� can be achieved with the attack described in this section.

5.1.2.2 Storing less than what is needed: 1/4 memory usage. If the attacker considers

that storing half of the memory matrix is too much, he/she may decide to discard additional rows,

recomputing them from scratch only when they are needed. In that case, a reasonable approach

is to discard rows that (1) will take longer to be used, either directly or for the recomputation

of other rows, or (2) that can be easily computed from rows already available, so the impact of

discarding them is low. The reasoning behind this strategy is that it allows the Setup phase to

proceed smoothly for as long as possible. Therefore, as rows that are not too useful for the time

being (or even not required at all anymore) are discarded from the bu�er, the space saved in this

manner can be diverted to the recomputation process, accelerating it.

The suggested approach is illustrated in Figure 7. As shown in this �gure, at any moment

we keep in memory only R/4 = 4 rows of the memory matrix besides the two most recently

modi�ed/updated, approximately half of what is used in the attack described in Section 5.1.2.1.

This allows roughly 3/4 the Setup phase to run without any recomputation, but after that M [4]

is required to compute row M [C]. One simple way of doing so is to keep in memory the two most

recently modi�ed rows, M [13−7−B] and M [B], and then run the �rst half of the Setup phase once

again with R/4 + 2 rows. This strategy should allow the recomputation not only of M [4], but of

all the R/4 rows previously discarded but still needed for the last 1/4 of the Setup phase (in our

example, {M [4],M [7],M [26],M [5]}, as shown at the bottom of Figure 7). The resulting processing

overhead would, thus, be approximately (R/2)σ, leading to a total cost of (3R/2)σ for the whole

Setup.

Obviously, there may be other ways of recomputing the required rows. For example, there is

no need to discard M [7] after M [8] is computed, since keeping it in the bu�er after that point

would still respect the R/4 + 2 memory cost. Then, the recomputation procedure could stop after

the recomputation of M [26], reducing its cost in σ. Alternatively, M [4] could have been kept

in memory after the computation of M [7], allowing the recomputations to be postponed by one

32

5 SECURITY ANALYSIS The Lyra2 reference guide

Figure 7: Attacking the Setup phase: storing 1/4 of all rows. The most recently modi�ed rows in each
iteration are marked in bold.

iteration. However, thenM [7] could not be maintained as mentioned above and there would be not

reduction in the attack's total cost. All in all, these and other tricks are not expected to reduce

the total recomputation overhead signi�cantly below (R/2)σ. This happens because the last 1/4 of

the Setup phase is designed in such a manner that the row1 index covers the entire �rst half of the

memory matrix, including values near 0 and R/2. As a result, the recomputation of all values of

M [row1] input to the sponge near the end of the Setup phase is likely to require most (if not all)

of its �rst half to be executed.

These observations can be summarized in the following conjecture.

Conjecture 1. Consider that Lyra2 operates with parameters T , R and C. Whilst the regular

memory and processing costs of its Setup phase's are, respectively, MemSetup(R) = R · C · b bits
and CostSetup(R) = R · σ, its execution with a memory cost of approximately MemSetup(R)/4

should raise its processing cost to approximately 3CostSetup(R)/2.

5.1.2.3 Storing less than what is needed: 1/8 memory usage. We can build on the previ-

ous analysis to estimate the performance penalty incurred when reducing the algorithm's memory

usage by another half. Namely, imagine that Figure 7 represents the �rst half of the Setup phase

(denoted V 0
1) for R = 32, in an attack involving a memory usage of R/8 = 4. In this case, recompu-

tations are needed after approximately 3/8 of the Setup phase is executed. However, these are not

the only recomputations that will occur, as the entire second half of the memory matrix (i.e., R/2

rows) still needs to be initialized during the second half of the Setup phase (denoted V 0
2). Therefore,

the R/2 rows initialized/modi�ed during V 0
1 will be once again required. Now suppose that the R/8

memory budget is employed in the recomputation of the required rows from scratch, running V 0
1

again whenever a group of previously discarded rows is needed. Since a total of R/2 rows need re-

computation, the goal is to recover each of the (R/2)/(R/8) = 4 groups of R/8 rows in the sequence

they are required during V 0
2 , similarly to what was done a single time when the memory committed

to the attack was R/4 rows (section 5.1.2.2). In our example, the four groups of rows required

33

The Lyra2 reference guide 5 SECURITY ANALYSIS

are (see Table 2): g1 = {M [04−8],M [9],M [26−E],M [B]}, g2 = {M [4C],M [D],M [6A],M [F]},
g3 = {M [8],M [13−7−B],M [A],M [35−9]}, and g4 = {M [C],M [5F],M [E],M [7D]}, in this sequence.

To analyze the cost of this strategy, assume initially that the memory budget of R/8 is enough

to recover each of these groups by means of a single (partial or full) execution of V 0
1 . First, notice

that the computation of each group from scratch involves a cost of at least (R/4)σ, since the rows

required by V 0
2 have all been initialized or modi�ed after the execution of 50% of V 0

1 . Therefore, the

lowest cost for recovering any group is (3R/8)σ, which happens when that group involves only rows

initialized/modi�ed beforeM [R/4+R/8] (this is the case of g3 in our example). A full execution of

V 0
1 , on the other hand, can be obtained from Conjecture 1: the bu�er size is MemSetup(R/2)/4 =

R/8 rows, which means that the processing cost is now 3CostSetup(R/2)/2 = (3R/4)σ (in our

example, full executions are required for g2 and g4, due to rows M [F] and M [5F]). From these

observations, we can estimate the four re-executions of V 0
1 to cost between 4(3R/8)σ and 4(3R/4)σ,

leading to an arithmetic mean of (9R/4)σ. Considering that a full execution of V 0
1 occurs once before

V 0
2 is reached, and that V 0

2 itself involves a cost of (R/2)σ even without taking the above overhead

into account, the base cost of the Setup phase is (3R/4 + R/2)σ. With the overhead of (9R/4)σ

incurred by the re-executions of V 0
1 , the cost of the whole Setup phase becomes then (7R/2)σ.

We emphasize, however, that this should be seen a coarse estimate, since it considers four

(roughly complementary) factors described in what follows.

1. The one-to-one proportion between a full and a partial execution of V 0
1 when initializing rows

of V 0
2 is not tight. Hence, estimating costs with the arithmetic mean as done above may not

be strictly correct. For example, going back to our scenario with R = 32 and a R/8 memory

usage, the only group whose rows are all initialized/modi�ed before M [R/2 − R/8] = M [C]

is g3. Therefore, this is the only group that can be computed by running the part of V 0
1

that does not require internal recomputations. Consequently, the average processing cost of

recomputing those groups during V 0
2 should be higher.

2. As discussed in section 5.1.2.2, the attacker does not necessarily need to always compute

everything from scratch. After all, the committed memory budget can be used to bu�erize

a few rows from V 0
1 , avoiding the need of recomputing them. Going back to our example

with R = 32 and R/8 rows, if M [26−E] remains available in memory when V 0
2 starts, g1

can be recovered by running V 0
1 once, until M [B] is computed, which involves no internal

recomputations. This might reduce the average processing cost of recomputations, possibly

compensating the extra cost incurred by factor 1.

3. The assumption that each of the four executions of V 0
1 can recover an entire group with the

costs hereby estimated is not always realistic. The reason is that the costs of V 0
1 as described

in section 5.1.2.2 are attained when what is kept in memory is only the set of rows strictly

required during V 0
1 . In comparison, in this attack scenario we need to run V 0

1 while keeping

rows that were originally discarded, but now need to remain in the bu�er because they are

used in V 0
2 . In our example, this happens with M [6A], the third row from g2: to run V

0
1 with

a cost of (3R/4)σ, M [6A] should be discarded soon after being modi�ed (namely, after the

computation of M [B]), thus making room for rows {M [4],M [7],M [26],M [5]}. Otherwise,

M [4C] and M [D] cannot be computed while respecting the R/8 = 4 memory limitation.

Notice that discarding M [6A] would not be necessary if it could be consumed in V 0
2 before

34

5 SECURITY ANALYSIS The Lyra2 reference guide

Figure 8: Attacking the Setup phase: recomputing M [6A] while storing 1/8 of all rows and keeping M [F]
in memory. The most recently modi�ed rows in each iteration are marked in bold.

M [4C] and M [D], but this is not the case in this attack scenario. Therefore, to respect the

R/8 = 4 memory limitation while computing g2, in principle the attacker would have to run

V 0
1 twice: the �rst to obtain M [4C] and M [D], which are promptly used in V 0

2 , as well as

M [F], which remains in memory; and the second for computing M [6A] while maintaining

M [F] in memory so it can be consumed in V 0
2 right after M [6A]. This strategy, illustrated in

Figure 8, introduces an extra overhead of 11σ to the attack in our example scenario.

4. Finally, there is no need of computing an entire group of rows from V 0
1 before using those rows

in V 0
2 . For example, suppose that M [04−8] and M [9] are consumed by V 0

2 as soon as they are

computed in the �rst re-execution of V 0
2 . These rows can then be discarded and the attacker

can use the extra space to build g
′
1 = {M [26−E],M [B],M [4C],M [D]} with a single run of

V 0
1 . This approach should reduce the number of re-executions of V 0

1 and possibly alleviate

the overhead from factor 3.

5.1.2.4 Storing less than what is needed: generalization. We can generalize the discussion

from section 5.1.2.3 to estimate the processing costs resulting from recursively reducing the Setup

phase's memory usage by half. This can be done by imagining that any scenario with a R/2n+2

(n > 0) memory usage corresponds to V 0
1 during an attack involving half that memory. Then,

representing by CostSetupn(m) the number of times CL is executed in each window containing m

rows (seen as V 0
1 by the subsequent window) and following the same assumptions and simpli�cations

from Section 5.1.2.3, we can write the following recursive equation:

CostSetup0(m) = 3m/2 . 1/4 memory usage scenario (n = 0)

CostSetupn(m) =

V 0
1

CostSetupn−1(m/2) +

V 0
2

m/2 +

Re-executions of V 0
1

(3 · CostSetupn−1(m/2)/4)

approximate cost of
each execution

· (2n+1)

number of
executions

(1)

35

The Lyra2 reference guide 5 SECURITY ANALYSIS

For example, for n = 2 (and, thus, a memory usage of R/16), we have:

CostSetup2(R) = CostSetup1(R/2) +R/2 + (3 · CostSetup1(R/2)/4) · (22+1)

= 7CostSetup1(R/2) +R/2

= 7(CostSetup0(R/4) +R/4 + (3 · CostSetup0(R/4)/4) · (21+1)) +R/2

= 7(3R/8 +R/4 + (3 · (3R/8)/4) · 4) +R/2

= 51R/4

In Equation 1, we assume that the cost of each re-execution of V 0
1 can be approximated to

3/4 of its total cost. We argue that this is a reasonable approximation because, as discussed in

section 5.1.2.3, between 50% and 100% of V 0
1 needs to be executed when recovering each of the

(R/2)/(R/2n+2) = 2n+1 groups of R/2n+2 rows required by V 0
2 .

The fact that Equation 1 assumes that only 2n+1 re-executions of V 0
1 are required, on the

other hand, is likely to become an oversimpli�cation as R and n grow. The reason is that factor

4 discussed in section 5.1.2.3 is unlikely to compensate factor 3 in these cases. After all, as the

memory available drops, it should become harder for the attacker to spare some space for rows that

are not immediately needed. The theoretical upper limit for the number of times V 0
1 would have

to be executed during V 0
2 when the memory usage is m would then be m/4: this corresponds to a

hypothetical scenario in which, unless promptly consumed, no row required by V 0
2 remains in the

bu�er during V 0
1 ; then, since V

0
2 revisits rows from V 0

1 in an alternating pattern, approximately a

pair of rows can be recovered with each execution of V 0
1 , as the next row required is likely to have

already been computed and discarded in that same execution.

The recursive equation for estimating this upper limit would then be (in number of executions

of CL):

CostSetup0(m) = 3m/2 . 1/4 memory usage scenario (n = 0)

CostSetupn(m) =

V 0
1

CostSetupn−1(m/2) +

V 0
2

m/2 +

Re-executions of V 0
1

(3 · CostSetupn−1(m/2)/4)

approximate cost of
each execution

· (m/4)

number of
executions

(2)

The upper limit for a memory usage of R/16 could then be computed as:

CostSetup2(R) = CostSetup1(R/2) +R/2 + (3 · CostSetup1(R/2)/4) · (R/4)

= (1 + 3R/16)CostSetup1(R/2) +R/2

= (1 + 3R/16)(CostSetup0(R/4) +R/4 + (3 · CostSetup0(R/4)/4) · (R/8)) +R/2

= (1 + 3R/16)(3R/8 +R/4 + (3 · (3R/8)/4) · (R/8)) +R/2

= 18(R/16) + 39(R/16)2 + (3R/16)3

Even though this upper limit is mostly theoretical, we do expect the Rn+1 component resulting

from Equation 2 to become expressive and dominate the running time of Lyra2's Setup phase as

n grows and the memory usage drops much below R/28 (i.e., for n � 1). In summary, these

observations can be formalized in the following Conjecture:

36

5 SECURITY ANALYSIS The Lyra2 reference guide

Conjecture 2. Consider that Lyra2 operates with parameters T , R and C. Whilst the regular

memory and processing costs of its Setup phase's are, respectively, MemSetup = R · C · b bits and
CostSetup = R · σ, running it with a memory cost of approximately MemSetup/2n+2 leads to an

average processing cost CostSetupn(R) that is given by recursive Equations 1 (for a lower bound)

and 2 (for an upper bound).

5.1.2.5 Storing only intermediate sponge states. Besides the strategies mentioned in the

previous sections, and possibly complementing them, one can try to explore the fact that the sponge

states are usually smaller than a row's cells for saving memory: while rows have b ·C bits, a state is

up to C times smaller, taking w = b+ c bits. More precisely, by storing all sponge states, one can

recompute any cell of a given row whenever it is required, rather than computing the entire row at

once. For example, the initialization of each cell ofM [2] requires only one cell fromM [1]. Similarly,

initializing a cell of M [4] takes one cell from M [0], as well as one from M [1] and up to two cells

from M [3] (one because M [3] is itself fed to the sponge and another required to the computation

of M [13]).

An attack that computes only one cell at a time would be easy to build if the cells sequentially

output by the sponge during the initialization of M [i] could be sequentially employed as input in

the initialization of M [j > i]. Indeed, in that hypothetical case, one could build a circuitry like the

one illustrated in Figure 9 to compute cells as they are required. For example, one could compute

M [2][0] in this scenario with (1) states s00,0, s
0
1,0 and s

0
2,0, and (2) two b-long bu�ers, one forM [0][0]

so it can be used for computing M [1][0], and the other for storing M [1][0] itself, used as input

for the sponge in state s02,0. After that, the same bu�ers could be reused for storing M [0][1] and

M [1][1] when computing M [2][1], using the same sponge instances that are now in states s00,1, s
0
1,1

and s02,1. This process could then be iteratively repeated until the computation of M [2][C−1]. At

that point, we would have the value of s03,0 and could apply an analogous strategy for computing

M [3]. The total processing cost of computing M [2] would then be 3σ, since it would involve one

complete execution of CL for each of the sponge instances initially in states s00,0, s
0
1,0 and s

0
2,0. As

another example, the computation ofM [4][col] could be performed in a similar manner, with states

s00,0 � s04,0 and bu�ers for M [0][col], M [1][col] and M [3][col] (used as inputs for the sponge in state

s04,0), as well as for M [2][col] (required in the computation of M [3][col]); the total processing cost

would then be 5σ.

Generalizing this strategy, any M [row] could be processed using only row bu�ers and row + 1

sponge instances in di�erent states, leading to a cost of row · σ for its computation. Therefore, for

the whole Setup phase, the total processing cost would be around (R2/2)σ using approximately

2/C of the memory required in a regular execution of Lyra2.

Figure 9: Attacking the Setup phase: storing only sponge states.

37

The Lyra2 reference guide 5 SECURITY ANALYSIS

Even though this attack venue may appear promising at �rst sight for a large C/R ratio, it cannot

be performed as easily as described in the above theoretical scenario. This happens because Lyra2

reverses the order in which a row's cells are written and read, as illustrated in Figure 10. Therefore,

the order in which the cells from any M [i] are picked to be used as input during the initialization

of M [j > i] is the opposite of the order in which they are output by the sponge. Considering this

constraint, suppose we want to sequentially recompute M [1][0] through M [1][C−1] as required (in

that order) for the initialization ofM [2][C−1] throughM [2][0] during the �rst iteration of the Filling

Loop. From the start, we have a problem: since M [1][0] = M [0][C−1]⊕Hρ.duplex(M [0][C−1], b),

its recomputation requires M [0][C−1] and s01,C−1. Consequently, computing M [2][C−1] as in our

hypothetical scenario would involve roughly σ to compute M [0][0] from s00,0. A similar issue would

occur right after that, when initializing M [2][C − 2] from M [1][1]: unless inverting the sponge's

(reduced-round) internal permutation is itself easy, M [0][1] cannot be easily obtained fromM [0][0],

and neither the sponge state s01,C−2 (required for recomputing M [1][1]) from s01,C−1. On the other

hand, recomputing M [0][1] and s01,C−2 from the values of s00,1 and s
0
1,1 resulting from the previous

step would involve a processing cost of approximately (C − 2)σ/C. If we repeat this strategy for

all cells of M [2], the total processing cost of initializing this row should be on the order of C times

higher the �σ� obtained in our hypothetical scenario. Since the conditions for this C multiplication

factor appear in the computation of any other row, the processing time of this attack venue against

Lyra2 is expected to become C(R2/2)σ rather than simply (R2/2)σ, counterbalancing the memory

reduction lower than 1/C potentially obtained.

Obviously, one could store additional sponge states aiming for a lower processing time. For

example, by storing the sponge state s0i,C/2 in addition to s0i,0, the attack's processing costs may be

reducible by half. However, the memory cuts obtained with this approach diminish as the number

of intermediate sponge states stored grow, eventually defeating the whole purpose of the attack.

All things considered, even if feasible, this attack venue does not seem much more advantageous

than the approaches discussed in the previous sections.

Figure 10: Reading and writing cells in the Setup phase.

38

5 SECURITY ANALYSIS The Lyra2 reference guide

5.1.3 Adding the Wandering phase: consumer-producer strategy.

During each iteration of the Wandering phase, the rows modi�ed in the previous iteration are

input to the sponge together with two other (pseudorandomly picked) rows. The latter two rows

are then XORed with the sponge's output and the result is fed to the sponge in the subsequent

iteration. To analyze the e�ects of this phase, it is useful to consider an �average�, slightly simpli�ed

scenario like the one depicted in Figure 11, in which all rows are modi�ed only once during every

R/2 iterations of the Visitation Loop, i.e., during V 1
1 the sets formed by the values assumed by

row0 and by row1 are disjoint. We then apply the same principle to V 1
2 , modifying each row

only once more in a di�erent (arbitrary) pseudorandom order. We argue that this is a reasonable

simpli�cation, given the fact that the indices of the picked rows form an uniform distribution. In

addition, we argue that this is actually bene�cial for the attacker, since any row required during V 1
1

can be obtained simply by running the Setup phase once again, instead of involving recomputations

of the Wandering phase itself. We also note that, in the particular case of Figure 11, we make the

visitation order in V 1
1 be the exact opposite of the initialization/update of rows during V 0

2 , while

in V 1
2 the order is the same as in V 1

1 , for the sake of illustrating worst and best case scenarios

(respectively).

In this scenario, the R/2 iterations of V 1
1 cover the entire memory matrix. The relationship

between V 1
1 and V 0

2 is, thus, very similar to that between V 0
2 and V 0

1 : if any row initialized/modi�ed

during V 0
2 is not available when it is required by V 1

1 , then it is probable that the Setup phase will

have to be (partially) run once again, until the point the attacker is able to recover that row.

However, unlike the Setup phase, the probabilistic nature of the Wandering phase prevents the

attacker from predicting which rows from V 1
1 can be safely discarded, which is deemed to raise the

average number of re-executions of V 1
1 . Consequently, we can adapt the arguments employed in

Section 5.1.2 to estimate the cost of low-memory attacks when the execution includes the Wandering

phase, which is done in what follows for di�erent values of T .

5.1.3.1 The �rst R/2 iterations of the Wandering phase with 1/2 memory usage. We

start our analysis with an attack involving only R/2 rows and T = 1. Even though this memory

usage would allow the attacker to run the whole Setup phase with no penalty (see Section 5.1.2.1),

the Wandering phase's Visitation Loop is not so lenient: in each iteration of V 1
1 , there is only a

25% chance that row0 and row1 are both available in memory. Hence, 75% of the time the attacker

will have to recompute at least one of the missing rows.

Figure 11: An example of the Wandering phase's execution.

39

The Lyra2 reference guide 5 SECURITY ANALYSIS

To minimize the cost of V 1
1 in this context, one possible strategy is to always keep in memory

rows M [i > 3R/4], using the remaining R/4 memory budget as a spare for recomputations. The

reasoning behind this approach is that: (1) 3/4 of the Setup phase can be run with R/4 without

internal recomputations (see section 5.1.2.2); (2) since rows M [i > 3R/4] are already available, this

execution gives the updated value of any row ∈ [R/2, R[and of half of the rows ∈ [0, R/2[; and (3)

by XORing pairs of rows M [i > 3R/4] accordingly, the attacker can recover any r0i>3R/4 output by

the sponge and, then, use it to compute the updated value of any row ∈ [0, R/2[from the values

obtained from the �rst half of the Setup. In the scenario depicted by Figure 11, for example, M [5F]

can be recovered by computing M [5] and then making M [5F][col] = M [5][col]⊕ rot(r0F [col]), where

r0F [col] = M [F][C−1−col]⊕M [E][col].

With this approach, recomputing rows when necessary can take from (R/4)σ to (3R/4)σ if the

Setup phase is executed just like shown in Section 5.1.2.1. It is not always necessary pay this cost for

every iteration of V 1
1 , however, if the needed row(s) can be recovered from those already in memory.

For example, if during V 1
1 the rows are visited in the exact same order of their initialization/update

in V 0
2 , then each row recovered can be used by V 1

1 before being discarded. In principle, a very

lucky attacker could then be able to run the entire V 1
1 by executing 3/4 of the Setup only once.

Assuming for simplicity that the (R/2)σ average models a more usual scenario, the cost of each of

the R/2 iterations of V 1
1 can be estimated as: 1 in 1/4 of these iterations, when row0 and row1 are

both in memory; and roughly (R/2)σ in 3/4 of its iterations, when one or a pair of rows need to be

recovered. The total cost of V 1
1 becomes, thus, ((1/4) · (R/2)+(3/4) · (R/2) · (R/2))σ ≈ (3R2/16)σ.

After that, when V 1
2 is reached, the situation is di�erent from what happens in V 1

1 : since the rows

required for any iteration of V 1
2 have been modi�ed during the execution of V 1

1 , it does not su�ce to

(partially) run the Setup phase once again to get their values. For example, in the scenario depicted

in Figure 11, the rows required for iteration i = 8 of the Visitation Loop besides M [prev0] = M [A]

and M [prev1] = 9 are M [813−7−B] and M [B6A], both computed during V 1
1 . Therefore, if these

rows have not been kept in memory, V 1
1 will have to be (partially) run once again, which implies

new runs of the Setup itself. The cost of these re-executions are likely to be lower than originally,

though, because now the attacker can take advantage of the knowledge about which rows from V 0
2

are needed to compute each row from V 1
1 . On the other hand, keeping M [i > 3R/4] is unlikely to

be much advantageous now, because that would reduce the attacker's ability to bu�erize rows from

V 1
1 .

In this context, one possible approach is to keep in memory the sponge's state at the beginning

of V 1
1 (i.e., s10), as well as the corresponding value of prev

0�prev1 used as part of the sponge's input

at this point (in our example, M [F] �M [5F]). This allows the Setup and V 1
1 to run as di�erent

processes following a producer-consumer paradigm: the latter can proceed as long as the required

inputs (rows) are provided by the former, the available memory budget being used to build their

bu�ers. Using this strategy, the Setup needs to be run from 1 to 2 times during V 1
1 . The �rst case

refers to when each pair of rows provided by an iteration of V 0
2 can be consumed by V 1

1 right away,

so they can be removed from the Setup's bu�er similarly to what is done in Section 5.1.2.1. This

happens if rows are revisited in V 1
1 in the same order lastly initialized/updated during V 0

2 . The

second extreme occurs when V 1
1 takes too long to start consuming rows from V 0

2 , so some rows

produced by the latter end up being discarded due to lack of space in the Setup's bu�er. This

happens, for example, if V 1
1 revisits rows indexed by row0 during V 0

2 before those indexed by row1,

40

5 SECURITY ANALYSIS The Lyra2 reference guide

Figure 12: Tree representing the dependence among rows in Lyra2.

in the reverse order of their initialization/update, as is the case in Figure 11. Then, ignoring the

fact that the Setup only starts providing useful rows for V 1
1 after half of its execution, on average

we would have to run the Setup 1.5 times, these re-executions leading to an overhead of roughly

(3R/2)σ.

From these observations, we can estimate that recomputing any row from V 1
2 would require

running 50% of V 1
1 on average. The cost of doing so would be (R/4+3R/4)σ, the �rst parcel of the

sum corresponding to cost of V 1
1 's internal iterations and the second to the overhead incurred by the

underlying Setup re-executions. As a side e�ect, this would also leave in V 1
1 's bu�er R/2 rows, which

may reveal useful during the subsequent iteration of V 1
2 . The average cost of the R/2 iterations of

V 1
2 would then be: σ whenever both M [row0] and M [row1] are available, which happens in 1/4

of these iterations; roughly Rσ whenever M [row0] and/or M [row1] need to be recomputed, so for

1/4 of these iterations. This leads to a total cost of (R/8 + 3R2/8)σ for V 1
2 . Adding up the cost

of Setup, V 1
1 and V 1

2 , the computation cost of Lyra2 when the memory usage is halved and T = 1

can then be estimated as Rσ + (3R2/16)σ + (R/8 + 3R2/8)σ ≈ (3R/4)2σ for this strategy.

5.1.3.2 The whole Wandering phase with 1/2 memory usage. Generalizing the discussion

for all iterations of the Wandering phase, the execution of V τ
1 (resp. V τ

2) could use V τ−1
2 (resp. V τ

1)

similarly to what is done in Section 5.1.3.1. Therefore, as Lyra2's execution progresses, it creates a

dependence graph in the form of an inverted tree as depicted in Figure 12, level ` = 0 corresponding

to the Setup phase and each R/2 iterations of the Visitation Loop raising the tree's depth by one.

Hence, the full execution of any level ` > 0 requires roughly all rows modi�ed in the previous level

(` − 1). With R/2 rows in memory, the original computation of any level ` can then be described

by the following recursive equation (in number of executions of CL):

CostWander∗` =

no re-execution of
previous levels

(1/4)(R/2)

25% of
iterations

·1 +

re-executions of
previous levels

(3/4)(R/2)

75% of
iterations

·CostWander`−1/2 (3)

The value of CostWander`−1 in Equation 3 is lower than that of CostWander∗`−1, however,

since the former is purely deterministic. To estimate such cost, we can use the same strategy

adopted in Section 5.1.3.1: keeping the sponge's state at the beginning of each level ` and the

corresponding value of prev0 � prev1, and then running level `− 1 1.5 times on average to recover

41

The Lyra2 reference guide 5 SECURITY ANALYSIS

each row that needs to be consumed. For any level `, the resulting cost can be described by the

following recursive equation:

CostWander0 = R . The Setup phase

CostWander` = R/2

internal
computations

+ (3/2) · CostWander`−1

re-executions of
previous level (`− 1)

= R · (2(3/2)` − 1) (4)

Combining Equations 3 and 4 with Lemma 1, we get that the cost (in number of executions of

CL) of running Lyra2 with half of the prescribed memory usage for a given T would be roughly:

CostLyra2(1/2)(R, T) = R+ CostWander∗1 + · · ·+ CostWander∗2T

= (T + 4) · (R/4) + (3R2/4) · ((3/2)2T − (T + 2)/2)

= O((3/2)2TR2)

(5)

5.1.3.3 The whole Wandering phase with less than 1/2 memory usage. A memory

usage of 1/2n+2 (n > 0) is expected to have three e�ects on the execution of the Wandering phase.

First, the probability that row0 and row1 will both be available in memory at any iteration of

the Visitation Loop drops to 1/2n+2, meaning that Equation 3 needs to be updated accordingly.

Second, the cost of running the Setup phase is deemed to become higher, its lower and upper bounds

being estimated by Equations 1 and 2, respectively. Third, level `− 1 may have to be re-executed

2n+2 times to allow the recovery of all rows required by level `, which has repercussions on Equation

4: on average, CostWander` will involve (1 + 2n+2)/2 ≈ 2n+1 calls to CostWander`−1.

Combining these observations, we arrive at

CostWander∗`,n =

no re-execution of
previous levels

(R/2) · (1/2n+2)

1/2n+2 of iterations

·1 +

re-executions of
previous levels

(R/2) · (1− 1/2n+2)

all other iterations

·(CostWander`−1,n)/2 (6)

as an estimate for the original (probabilistic) executions of level `, and at

CostWander0,n = CostSetupn(R) . The Setup phase

CostWander`,n =

internal
computations

R/2 +

re-executions of
previous level

(2n+1)CostWander`−1,n

= (R/2) · (1− (2n+1)`)/(1− 2n+1) + (2n+1)` · CostSetupn(R)

(7)

for the deterministic re-executions of level `.

Equations 6 and 7 can then be combined to provide the following estimate to the total cost of

an attack against Lyra2 involving R/2n+2 rows instead of R:

CostLyra2(1/2n+2)(R, T) = (CostSetupn(R) + CostWander∗1,n + · · ·+ CostWander∗2T,n)σ

≈ O((R2)(22nT) +R · CostSetupn(R) · 22nT)

(8)

Since, as suggested in Section 5.1.2.4, the upper bound CostSetupn = O(Rn+1) given by Equa-

tion 2 is likely to become a better estimate for CostSetupn as n grows, we conjecture that the

processing cost of Lyra2 using the strategy hereby discussed be O(22nTRn+2) for n� 1.

42

5 SECURITY ANALYSIS The Lyra2 reference guide

5.1.4 Adding the Wandering phase: sentinel-based strategy.

The analysis of the consumer-producer strategy described in Section 5.1.3 shows that updating

many rows in the hope they will be useful in an iteration of the Wandering phase's Rows Loop

does reduce the attack cost by too much, since these rows are only useful 25% of the time; in

addition, it has the disadvantage of discarding the rows initialized/updated during V Loop10, which

are certainly required 75% of the time. From these observations, we can consider an alternative

strategy that employs the following trick1: if we keep in memory all rows produced during V 0
1 and

a few rows initialized during V 0
2 together with the corresponding sponge states, we can skip part of

the latter's iterations when initializing/updating the rows required by V 1
1 . In our example scenario,

we would keep in memory rows M [04]−M [7] as output by V 0
1 . Then, by keeping rows M [C] and

M [4C] in memory together with state s0D, M [D] and M [7D] can be recomputed directly from M [7]

with a cost of σ, while M [F] and M [5F] can be recovered with a cost of 3σ. In both cases, M [C]

and M [4C] act as �sentinels� that allow us to skip the computation of M [8]−M [C].

More generally, suppose we keep rowsM [0 6 i < R/2], obtained by running V 0
1 , as well as ε > 0

sentinels equally distributed in the range [R/2, R[. Then, the cost of recovering any row output by

V 0
2 would range from 0 (for the sentinels themselves) to (R/2ε)σ (for rows the farthest away from

the sentinels), or (R/4ε)σ on average. The resulting memory cost of such strategy is approximately

R/2 (for the rows from V 0
1), plus 2ε (for the �xed sentinels), plus 2 (for storing the value of prev0

and prev1 while computing a given row inside the area covered by a �xed sentinel). When compared

with the consumer-produces approach, one drawback is that only the 2ε rows acting as sentinels can

be promptly consumed by V 1
1 , since rows provided by V 0

1 are overwritten during the execution of

V 0
2 . Nonetheless, the average cost of V

1
1 ends up being approximately (R/2) · (R/4ε)σ for a small ε,

which is lower than in the previous approach for ε > 2. With ε = R/32 sentinels (i.e., R/16 rows),

for example, the processing cost of V 1
1 would be 4R for a memory usage less than 10% above R/2.

We can then employ a similar trick for the execution of V 1
2 , by placing sentinels along the

execution of V 1
1 to reduce the cost of the latter's recomputations. For instance, M [98] and M [89]

could be used as sentinels to accelerate the recovery of rows visited in the second half of V 1
1 in our

example scenario (see Figure 11). However, in this case the sentinels are likely to be less e�ective.

The reason is that the steps taken from each sentinel placed in V 1
1 should cover di�erent portions of

V 0
2 , obliging some iterations of V

0
2 to be executed. For example, using the same ε = R/32 sentinels

as before to keep the memory usage near R/2, we could distribute half of them along V 0
2 and the

other half along V 1
1 , so each would be covered by ε′ = ε/2 sentinels. As a result, any row output

by V 1
1 or V 0

2 could be recovered with R/4(ε′) = 16 executions of CL on average. Unfortunately for

the attacker, though, any iteration of V 1
2 takes two rows from V 1

1 , which means that 2 · 16 = 32

iterations of V 1
1 are likely to be executed and, hence, that roughly 2 · 32 = 64 rows from V 0

2 should

be required. If all of those 64 rows fall into areas covered by di�erent sentinels placed at V 0
2 , the

average cost when computing any row from V 1
2 would be approximately 64 ·16 = 1024 executions of

CL. In this case, the cost of the R/2 iterations of V 1
2 would become roughly (1024R/2)σ on average.

This is lower than the ≈ (R2/2)σ obtained with the consumer-producer strategy for R > 1024, but

still orders of magnitude more expensive than a regular execution with a memory usage of R.

Obviously, two or more of the 64 rows required from V 0
2 may fall in the area covered by a same

1This is analogous to the attack presented in [47] for the version of Lyra2 originally submitted to the Password
Hashing Competition as �V1�

43

The Lyra2 reference guide 5 SECURITY ANALYSIS

sentinel, which allows for a lower number of executions if the attacker computes those rows in a

single sweep and keep them in memory until they are required. Even though this approach is likely

to raise the attack's memory usage, it would lead to a lower processing cost, since any part of V 0
2

covered by a same sentinel would be run only once during any iteration of V 1
2 . However, if the

number of sentinels in V 0
2 is large in comparison with the number of rows required by each of V 1

2 's

iteration (i.e., for ε/2� 64, which implies R� 8192), we can ignore such �sentinel collisions� and

the average cost described above should hold. This should also the cost obtained if the attacker

prefers not to raise the attack's memory usage when collisions occur, but instead recomputes rows

that can be obtained from a given sentinel by running the same part of V 0
2 more than once.

For the sake of completeness, it is interesting to analyze such memory-processing tradeo�s for

dealing with collisions when the cost of this sentinel-based strategy starts to get higher than the

one obtained with the consumer-producer strategy. Speci�cally, for R = 1024 this strategy is

deemed to create many sentinel collisions, with each of the ε′ = 16 sentinels placed along V 0
2 being

employed for recomputing roughly 64/16 = 4 out of the 64 rows from V 0
2 required by each iteration

of V 1
2 . In this scenario, the 4 rows under a same sentinel's responsibility can recovered in a single

sweep and then stored until needed. Assuming that those 4 rows are equally distributed over the

corresponding sentinel's coverage area, the average cost of the executions related to that sentinel

would then be (7/8)(R/2)/(ε/2) = 28σ. This leads to 16 · 28σ = 448σ for all 16 partial runs of

V 0
2 , and consequently to (448R/2)σ for the whole V 1

2 . In terms of memory usage, the worst case

scenario from the attacker's perspective refers to when the rows computed last from each sentinel

are the �rst ones required during V 1
2 , meaning that recovering 1 row that is immediately useful

leaves in memory 3 that are not. This situation would lead to a storage of 3(ε/2) = 3R/64 rows,

which corresponds to 75% of the R/16 rows already employed by the attack besides the R/2 base

value.

As a last remark, notice that the 64 rows from V 0
2 can be all recovered in parallel, using 64

di�erent processing cores, the same applying to the 2 rows from V 1
1 , with 2 extra cores. The average

cost of V 1
2 as perceived by the attacker would then be roughly (16+16)(R/2)σ, which corresponds to

a parallel execution of V 0
2 followed by a parallel execution of V 1

1 . In this case, however, the memory

usage would also be slightly higher: since each of the 66 threads would have to be associated its

own prev0 and prev1, the attack would require an additional memory usage of 132 rows.

5.1.4.1 On the (low) scalability of the sentinel-based strategy. Even though the sentinel

strategy shows promise in some scenarios, it has low scalability for values of T higher than 1. The

reason is that, as T grows, the computation of any given row depends on rows recomputed from an

exponentially large number of sentinels. This is more easily observed if we analyze the dependence

graph depicted in Figure 13 for T = 2, which shows the number of rows from level ` − 1 that

are needed in the sentinel-based computation of level `. In this scenario, if we assume that the ε

sentinels are distributed along V 0
2 , V

1
1 , V

1
2 and V 2

1 (levels ` = 0 to 3, respectively), each level will

get ε′ = ε/4 sentinels, being divided in R/2ε′ areas. As a result, even though computing a row

from level ` = 4 takes only 2 rows from level ` = 3, computing a row from level ` < 4 involves

roughly R/4ε′ iterations of that level, those iterations requiring 2(R/4ε′) rows from level ` − 1.

Therefore, any iteration of V 2
2 is expected to involve the computation of 24(R/4ε′)3 rows from V 0

2 ,

which translates to 219 rows for ε = R/32. If each of these rows is computed individually, with the

44

5 SECURITY ANALYSIS The Lyra2 reference guide

Figure 13: Tree representing the dependence among rows in Lyra2 with T = 2: using ε′ sentinels per level.

usual cost of (R/4ε′)σ per row, the recomputations related to sentinels from V 0
2 alone would take

219(R/4ε′)σ = 224 · σ, leading to a cost higher than (224 ·R/2)σ for the whole V 2
2 .

More generally, for arbitrary values of T and ε = R/α (and, hence, ε′ = ε/2T), the recompu-

tations in V 0
2 for each iteration of V T

2 would take 22T · (R/4ε′)2Tσ, so the cost of V T
2 itself would

become (α ·T)2T (R/2)σ. Depending on the parameters employed, this cost may be higher than the

O((3/2)2TR2) obtained with the consumer-producer strategy, making the latter a preferred attack

venue. This is the case, for example, when we have α = 32, as in all previous examples, R 6 220,

as in all benchmarks presented in Section 7, and T > 2.

Once again, attackers may counterbalance this processing cost with the temporary storage of

rows that can be recomputed from a same sentinel, or of a same row that is required multiple times

during the attack. However, the attackers' ability of doing so while keeping the memory usage

around R/2 is limited by the fact that this sentinel-based strategy commits a huge part of the

attack's memory budget to the storage of all rows from V 0
1 . Diverting part of this budget to the

temporary storage of rows, on the other hand, is similar to what is done in the consumer-producer

strategy itself, so the latter can be seen as an extreme case of this approach.

On the other extreme, the memory budget could be diverted to raise the number of sentinels

and, thus, reduce α. As a drawback, the attack would have to deal with a dependence graph

displaying extra layers, since then V 0
1 would not be fully covered. This would lead to a higher

cost for the computation of each row from V 0
2 , counterbalancing to some extent the gains obtained

with the extra sentinels. For example, suppose the attacker (1) stores only R/4 out of the R/2

rows from V 0
1 , using the remainder budget of R/4 rows to make ε = R/8 sentinels, and then (2)

places ε∗ = R/32 sentinels (i.e., R/16 rows) along the part of V 0
1 that is not covered anymore, thus

keeping the total memory usage at R/2 +R/16 rows as in the previous examples. In this scenario,

the number of rows from V 0
2 involved in each iteration of V 2

2 should drop to 24(R/4ε′)3 = 213 if we

assume once again that the sentinels are equally distributed through all levels (i.e., for ε′ = ε/4).

However, recovering a row from V 0
2 should not take only R/4ε′ = 23 executions of CL anymore, but

roughly (R/4ε′) · (R/4ε∗) = 25 due to the recomputations of rows from V 0
1 . The processing cost for

the whole V 2
2 would then be (218 · R/2)σ, which still is not lower than what is obtained with the

45

The Lyra2 reference guide 5 SECURITY ANALYSIS

consumer-producer strategy for R 6 217.

The low scalability of the sentinel-based strategy also impairs attacks with a memory usage

lower than R/2, since then the number of sentinels and coverage of rows from V 0
1 would both

drop. The same scalability issues apply to attempts of recovering all rows from V 0
2 in parallel using

di�erent processing cores, as suggested at the end of Section 5.1.4, given that the number of cores

grows exponentially with T .

5.2 Slow-Memory attacks

When compared to low-memory attacks, providing protection against slow-memory attacks is

a more involved task. This happens because the attacker acts approximately as a legitimate user

during the algorithm's operation, keeping in memory all information required. The main di�erence

resides on the bandwidth and latency provided by the memory device employed, which ultimately

impacts the time required for testing each password guess.

Lyra2, similarly to scrypt, explores the properties of low-cost memory devices by visiting memory

positions following a pseudorandom pattern during theWandering phase. In particular, this strategy

increases the latency of intrinsically sequential memory devices, such as hard disks, especially if the

attack involves multiple instances simultaneously accessing di�erent memory sections. Furthermore,

as discussed in Section 4.5, this pseudorandom pattern combined with a small C parameter may

also diminish speedups obtained from mechanisms such as caching and prefetching, even when

the attacker employs (low-cost) random-access memory chips. Even though this latency may be

(partially) hidden in a parallel attack by prefetching the rows needed by one thread while another

thread is running, at least the attacker would have to pay the cost of frequently changing the

context of each thread. We notice that this approach is particularly harmful against older model

GPUs, whose internal structure were usually optimized toward deterministic memory accesses to

small portions of memory [58, Sec. 5.3.2].

When compared with scrypt, a slight improvement introduced by Lyra2 against such attacks

is that the memory positions are not only repeatedly read, but also written. As a result, Lyra2

requires data to be repeatedly moved up and down the memory hierarchy. The overall impact of

this feature on the performance of a slow-memory attack depends, however, on the exact system

architecture. For example, it is likely to increase tra�c on a shared memory bus, while caching

mechanisms may require a more complex circuitry/scheduling to cope with the continuous �ow of

information from/to a slower memory level. This high bandwidth usage is also likely to hinder the

construction of high-performance dedicated hardware for testing multiple password in parallel.

Another feature of Lyra2 is the fact that, during the Wandering phase, the columns of the

most recently updated rows (M [prev0] and M [prev0]) are read in a pseudorandom manner. Since

these rows are expected to be in cache during a regular execution of Lyra2, a legitimate user that

con�gures C adequately should be able to read these rows approximately as fast as if they were read

sequentially. An attacker using a platform with a lower cache size, however, should experience a

lower performance due to cache misses. In addition, this pseudorandom pattern hinders the creation

of simple pipelines in hardware for visiting those rows: even if the attacker keeps all columns in fast

memory to avoid latency issues, some selection function will be necessary to choose among those

columns on the �y.

Finally, in Lyra2's design the sponge's output is always XORed with the value of existing rows,

46

5 SECURITY ANALYSIS The Lyra2 reference guide

preventing the memory positions corresponding to those rows from becoming quickly replaceable.

This property is, thus, likely to hinder the attacker's capability of reusing those memory regions in

a parallel thread.

Obviously, all features displayed by Lyra2 for providing protection against slow-memory attacks

may also impact the algorithm's performance for legitimate user. After all, they also interfere

with the legitimate platform's capability of taking advantage of its own caching and pre-fetching

features. Therefore, it is of utmost importance that the algorithm's con�guration is optimized to

the platform's characteristics, considering aspects such as the amount of RAM available, cache line

size, etc. This should allow Lyra2's execution to run more smoothly in the legitimate user's machine

while imposing more serious penalties to attackers employing platforms with distinct characteristics.

5.3 Cache-timing attacks

A cache-timing attack is a type of side-channel attack in which the attacker is able to observe

a machine's timing behavior by monitoring its access to cache memory (e.g., the occurrence of

cache-misses) [12, 33]. This class of attacks has been shown to be e�ective, for example, against

certain implementations of the Advanced Encryption Standard (AES) [53] and RSA [66], allowing

the recovery of the secret key employed by the algorithms [12, 59].

In the context of password hashing, cache-timing attacks may be a threat against memory-hard

solutions that involve operations for which the memory visitation order depends on the password.

The reason is that, at least in theory, a spy process that observes the cache behavior of the correct

password may be able to �lter passwords that do not match that pattern after only a few iterations,

rather than after the whole algorithm is run [33]. Nevertheless, cache-timing attacks are unlikely

to be a matter of great concern in scenarios where the PHS runs in a single-user scenario, such as

in local authentication or in remote authentications performed in a dedicated server: after all, if

attackers are able to insert such spy process into these environments, it is quite possible they will

insert a much more powerful spyware (e.g., a keylogger or a memory scanner) to get the password

more directly.

On the other hand, cache-timing attacks may be an interesting approach in scenarios where

the physical hardware running the PHS is shared by processes of di�erent users, such as virtual

servers hosted in a public cloud [65]. This happens because such environments potentially create

the required conditions for making cache-timing measurements [65], but are expected to prevent

the installation of a malware powerful enough to circumvent the hypervisor's isolation capability

for accessing data from di�erent virtual machines.

In this context, the approach adopted in Lyra2 is to provide resistance against cache-timing

attacks only during the Setup phase, in which the indices of the rows read and written are not

password-dependent, while the Wandering and Wrap-up phases are susceptible to such attacks. As

a result, even though Lyra2 is not completely immune to cache-timing attacks, the algorithm ensures

that attackers will have to run the whole Setup phase and at least a portion of the Wandering phase

before they can use cache-timing information for �ltering guesses. Therefore, such attacks will still

involve a memory usage of at least R/2 rows or some of the time-memory trade-o�s discussed along

Section 5.1.

The reasoning behind this design decision of providing partial resistance to cache-timing attacks

is threefold. First, as discussed in Section 5.2, making password-dependent memory visitations is

47

The Lyra2 reference guide 6 SOME EXTENSIONS OF LYRA2

one of the main defenses of Lyra2 against slow-memory attacks, since it hinders caching and pre-

fetching mechanisms that could accelerate this threat. Therefore, resistance against low-memory

attacks and protection against cache-timing attacks are somewhat con�icting requirements. Since

low- and slow-memory attacks are applicable to a wide range of scenarios, from local to remote

authentication, it seems more important to protect against them than completely preventing cache-

timing attacks.

Second, for practical reasons (namely, scalability) it may be interesting to o�oad the password

hashing process to users, distributing the underlying costs among client devices rather than con-

centrating them on the server, even in the case of remote authentication. This is the main idea

behind the server-relief protocol described in [33], according to which the server sends only the salt

to the client (preferably using a secure channel), who responds with x = PHS(pwd, salt); then, the

server only computes locally y = H(x) and compares it to the value stored in its own database.

The result of this approach is that the server-side computations during authentication are reduced

to execution of one hash, while the memory- and processing-intensive operations involved in the

password hashing process are performed by the client, in an environment in which cache-timing is

probably a less critical concern.

Third, as discussed in [51], recent advances in software and hardware technology may (partially)

hinder the feasibility of cache-timing and related attacks due to the amount of �noise� conveyed

by their underlying complexity. This technological constraint is also reinforced by the fact that

security-aware cloud providers are expected to provide countermeasures against such attacks for

protecting their users, such as (see [65] for a more detailed discussion): ensuring that processes

run by di�erent users do not in�uence each other's cache usage (or, at least, that this in�uence

is not completely predictable); or making it more di�cult for an attacker to place a spy process

in the same physical machine as security-sensitive processes, in especial processes related to user

authentication. Therefore, even if these countermeasures are not enough to completely prevent

such attacks from happening, the added complexity brought by them may be enough to force the

attacker to run a large portion of the Wandering phase, paying the corresponding costs, before a

password guess can be reliably discarded.

6 Some extensions of Lyra2

In this section, we discuss some possible extensions of the Lyra2 algorithm described in Section

4, which can be integrated into its core design for exploring di�erent aspects, namely: giving

users better control over the algorithm's bandwidth usage (parameter δ); and taking advantage of

parallelism capabilities potentially available on the legitimate user's platform (parameter p).

6.1 Controlling the algorithm's bandwidth usage

One possible adaptation of the algorithm consists in allowing the user to control the number

of rows involved in each iteration of the Visitation Loop. The reason is that, while Algorithm 2

suggests that a single row index besides row0 should be employed during the Setup and Wandering

phases, this number could actually be controlled by a δ > 0 parameter. Algorithm 2 can, thus,

be seen as the particular case in which δ = 1, while the original Lyra is more similar (although

not identical) to Lyra2 with δ = 0. This allows a better control over the algorithm's total memory

48

6 SOME EXTENSIONS OF LYRA2 The Lyra2 reference guide

bandwidth usage, so it can better match the bandwidth available at the legitimate platform.

This parameterization brings positive security consequences. For example, the number of rows

written during the Wandering phase de�nes the speed in which the memory matrix is modi�ed and,

thus, the number of levels in the dependence tree discussed in Section 5.1.3.2. As a result, the 2T

observed in Equations 5 and 8 would actually become (δ + 1)T . The number of rows read, on its

turn, determines the tree's branching factor and, consequently, the probability that a previously

discarded row will incur recomputations in Equations 3 an 6. With δ > 1, it is also possible to

raise the Setup phase minimum memory usage above the R/2 de�ned by Lemma 1. This can be

accomplished by choosing visitation patterns for rowd>2 that force the attacker to keep rows that,

otherwise, could be discarded right after the middle of the Setup phase. One possible approach is,

for example, to divide the revisitation window in the Setup phase into δ contiguous sub-windows,

so each rowd revisits its own sub-window δ times. We note that this principle does not even need to

be restricted to reads/writes on a same memory matrix: for example, one could add a row2 variable

that indexes a Read-Only Memory chip attached to the device's platform and then only perform

several reads (no writes) on this external memory, giving support to the �rom-port-hardness� concept

discussed in [74].

Even though the security implications of having δ > 2 may be of interest, the main disadvantage

of this approach is that the higher number of rows picked potentially leads to performance penalties

due to memory-related operations. This may oblige legitimate users to reduce the value of T to

keep Lyra2's running time below a certain threshold, which in turn would be bene�cial to attack

platforms having high memory bandwidth and able to mask memory latency (e.g., using idle cores

that are waiting for input to run di�erent password guesses). Indeed, according to our tests, we

observed slow downs from more than 100% to approximately 50% with each increment of δ in the

platforms used as testbed for our benchmarks (see Section 7). Therefore, the interest of supporting

a customizable δ depends on actual tests made on the target platform, although we conjecture that

this would only be bene�cial with DRAM chips faster than those commercially available today.

For this reason, in this document we only explore further the ability of allowing δ = 0, which

is advantageous in combination with Lyra2's multicore variant described in Section 6.2, while its

application for obtaining rom-port-hardness is not discussed.

6.2 Allowing parallelism on legitimate platforms: Lyra2p

Even though a strictly sequential PHS is interesting for thwarting attacks, this may not be

the best choice if the legitimate platform itself has multiple processing units available, such as

a multicore CPU or even a GPU. In such scenarios, users may want to take advantage of this

parallelism for (1) raising the PHS's usage of memory, abundant in a desktop or GPU running a

single PHS instance, while (2) keeping the PHS's total processing time within humanly acceptable

limits, possibly using a larger value of T for improving its resistance against attacks involving

time-memory trade-o�s.

Against an attacker making several guesses in parallel, this strategy instantly raises the memory

costs proportionally to the number of cores used by the legitimate user. For example, if the output

is computed from a sequential PHS con�gured to use 10 MB of memory and to take 1 second to

run in a single core, an attacker who has access to 1,000 processing cores and 10 GB of memory

could make 1,000 password guesses per second (one per core). If the output is now computed from

49

The Lyra2 reference guide 6 SOME EXTENSIONS OF LYRA2

two instances of the PHS with the same parametrization, testing a guess would take 20 MB and 1

second, meaning that the attacker would need 20 GB of memory to obtain the same throughput as

before.

Therefore, aiming to allow legitimate users to explore their own parallelism capabilities, we

propose a slightly tweaked version of Lyra2. We call this variant Lyra2p, where the p > 1 parameter

is the desired degree of parallelism, with the restriction that p|(R/2). Before we go into details on

Lyra2p's operation, though, it is useful to brie�y mention its rationale. Speci�cally, the idea is to

have p parallel threads working on the same memory matrix in such a manner that (1) the di�erent

threads do not cause much interference on each other's operation, but (2) each of the p slices of the

shared memory matrix depends on rows generated from multiple threads. The �rst property leads

to a lower need of synchronism between threads, facilitating the algorithm's processing by parallel

platforms. The second property, on its turn, makes it harder to run each thread separately with a

reduced memory usage and simply combine their �nal results together.

Along the discussion, we assume that δ = 0, which, according to our benchmarks, is the recom-

mended parameterization for attaining good performance with Lyra2p.

6.2.1 Structure and rationale

Lyra2p's steps are shown in Algorithm 3. First, during the Bootstrapping phase, p sponge

copies are generated. This is done similarly to Lyra2, the main di�erence being that the params

fed to each sponge Si (0 6 i 6 p − 1) must contain the values of p and i in addition to any other

information already included in line 3 of Algorithm 3. This approach ensures that each of the

p sponges is initialized with distinct internal states, even though they absorb identical values of

salt and pwd. In addition, the fact that the input absorbed by each sponge depends on p ensures

that computations made with p′ 6= p cannot be reused in an attack against Lyra2p, an interesting

property for scenarios in which the attacker does not know the correct value of p.

For the Setup phase, the p sponges are then evenly distributed over the memory matrix, be-

coming responsible for initializing p contiguous slices of R/p rows each, the said slices being hereby

denoted Mi (0 6 i 6 p − 1). More formally, slice Mi corresponds to the interval M [i · R/p] to
M [(i+ 1) ·R/p− 1] of the complete memory matrix, so that Mi[x] = M [i ·R/p+ x] for any given

value of x.

The Setup phase of each sponge Si then proceeds similarly to algorithm's non-parallelizable

version, starting with the three �rst rows and then entering the Filling Loop to initialize the

remainder rows while revisiting previously initialized rows; the latter are denoted rowp in Algorithm

3, which play the exact same role as row1 in Algorithm 2 during the Setup phase. However, Lyra2p

has one important di�erence: in each duplexing operation performed by Si, the revisited rows are

not necessarily picked from slice Mi, but from a slice Mj that changes often during the Visitation

Loop. Namely, the value of j starts at i (line 5) and is cyclically incremented whenever Si revisits

approximately
√
wnd rows from the corresponding window (line 22). This approach ensures that

each slice depends on data from other slices, enforcing the need of keeping all of their corresponding

data in memory for better performance. This speci�c choice of how often j is updated, on its turn,

was motivated by the fact that it builds upon the Setup's window visitation pattern to distribute

those visitations among the di�erent slices: if we see the window as a matrix, as discussed in Section

4.1.2, each p consecutive visitations of its diagonals and anti-diagonals happen in p di�erent slices.

50

6 SOME EXTENSIONS OF LYRA2 The Lyra2 reference guide

To prevent race conditions that might be caused by the Setup's cross-slice read/write operations,

the execution of all threads is synchronized in line 22, which is indicated by the �SyncThreads�

call. A �nal synchronization is also performed right after the end of the Setup phase (line 24),

ensuring that all rows are initialized before the algorithm enters the Wandering phase. These

synchronization points are enough to ensure that each thread's prev0, prevp and rowp variables

cover separate memory areas, so the threads can run independently until those points without the

risk of inconsistencies.

Algorithm 3 The Lyra2 Algorithm, with p parallel instances.

Param: H . Sponge with block size b (in bits) and underlying permutation f
Param: ρ . Number of rounds of f during the Setup and Wandering phases

Param: ω . Number of bits to be used in rotations (recommended: a multiple of the machine's word size, W)

Param: p . Degree of parallelism (p > 1 and p|(R/2))
Input: pwd . The password
Input: salt . A salt

Input: T . Time cost, in number of iterations

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix (recommended: C · ρ > ρmax)
Input: k . The desired key length, in bits

Output: K . The password-derived k-long key

1: for each i in [0, p[do . Operations performed in parallel, by each thread

2: . Bootstrapping phase: Initializes the sponges' states and local variables

3: params← len(k) ‖ len(pwd) ‖ len(salt) ‖T ‖R ‖C ‖ p ‖ i . Byte representation of input parameters

4: Hi.absorb(pad(pwd ‖ salt ‖ params)) . Padding rule: 10∗1. Password can be overwritten after this point

5: gap← 1 ; stp← 1 ; wnd← 2 ; sqrt← 2 ; sync← 4 ; j ← i . Initializes visitation step and window

6: prev0 ← 2 ; rowp ← 1 ; prevp ← 0

7: . Setup phase: Group of threads initialize a (R× C) memory matrix, it's cells having b bits each
8: for (col← 0 to C−1) do {Mi[0][C−1−col]← Hi.squeezeρ(b)} end for . Initializes M [0]
9: for (col← 0 to C−1) do {Mi[1][C−1−col]←Mi[0][col]⊕Hi.duplexρ(Mi[0][col], b)} end for . Initializes M [1]
10: for (col← 0 to C−1) do {Mi[2][C−1−col]←Mi[1][col]⊕Hi.duplexρ(Mi[1][col], b)} end for . Initializes M [2]
11: for (row0 ← 3 to R/p− 1) do . Filling Loop: initializes remainder rows

12: for (col← 0 to C − 1) do . Columns Loop: Mi[row0] is initialized; Mj [rowp] is updated
13: rand← Hi.duplexρ(Mj [rowp][col]�Mi[prev0][col]�Mj [prevp][col], b)
14: Mi[row0][C − 1− col]←Mi[prev0][col]⊕ rand
15: Mj [rowp][col]←Mj [rowp][col]⊕ rot(rand) . rot(): right rotation by ω bits (e.g., 1 or more words)

16: end for

17: prev0 ← row0 ; prevp ← rowp ; rowp ← (rowp + stp) mod wnd . Rows to be revisited in next loop

18: if (rowp = 0) then .Window fully revisited

19: wnd← 2 · wnd ; stp← sqrt+ gap ; gap← −gap . Updates window and step

20: if (gap = −1) then {sqrt← 2 · sqrt} end if . Doubles sqrt every other iteration

21: end if

22: if (row0 = sync) then {sync← sync+ sqrt/2 ; j ← (j + 1) mod p ; SyncThreads} end if

23: end for

24: SyncThreads

25: .Wandering phase: Iteratively overwrites (random) cells of the memory matrix

26: wnd← R/2p ; sync← sqrt ; off0 ← 0 ; offp ← wnd
27: for (wCount← 0 to (R · T)/p− 1) do . Visitation Loop: 2(R · T)/p rows revisited in pseudorandom fashion

28: row0←off0 +(lsw(rand)mod wnd) ; rowp←offp+(lsw(rot(rand))mod wnd) ; j← lsw(rot2(rand))mod p
29: for (col← 0 to C − 1) do . Columns Loop: updates Mi[row0]
30: col0 ← lsw(rot3(rand)) mod C . Picks pseudorandom column from Mi[prev0]
31: rand← Hi.duplexρ(Mi[row0][col]�Mi[prev0][col0]�Mj [rowp][col])
32: Mi[row0][col]←Mi[row0][col]⊕ rand . Updates row picked from slice Mi

33: end for . End of Columns Loop

34: prev0 ← row0 . Next iteration revisits most recently updated row from slice Mi

35: if (wCount = sync) then {sync← sync+ sqrt ; swap(off0, offp) ; SyncThreads} end if

36: end for . End of Visitation Loop

37: SyncThreads

38: .Wrap-up phase: output computation

39: Hi.absorb(Mi[row0][0]) . Absorbs a �nal column with full-round sponge

40: Ki ← Hi.squeeze(k) . Squeezes k bits with full-round sponge

41: end for . All threads �nished

42: return K0 ⊕ . . .⊕Kp−1 . Provides k-long bitstring as output

51

The Lyra2 reference guide 6 SOME EXTENSIONS OF LYRA2

As a �nal remark regarding the Setup phase, we note that the Mj [prevp], fed to Si in line 13,

certainly does not come from that sponge's cache right after j is updated, but actually corresponds to

the row most recently updated by another sponge. This should impact the algorithm's performance,

but since this situation does not occur too often (approximately O(lg(R/p) ·
√

(R/p)) times),

in practice the total impact of such cache misses should be low, which was con�rmed by our

experimental results.

Concerning the Wandering phase, an important di�erence between the non-parallelizable and

paralellizable versions of Lyra2 is that in the latter each slice Mi is seen by the sponge Si as two

halves: one half is visited by Si itself, in the positions indicated by the pseudorandomly picked

index row0; the other half, however, is meant to be freely visited by any sponge S06j<p, in the

positions indicated by the pseudorandomly picked index rowp. This separation between halves

is accomplished by (1) �xing the wnd variable to R/2p in line 26, which limits the range of the

row0 and rowp indices computed in line 28 to a half slice, and (2) combining row0 and rowp

with complementary o�sets (off0 and offp, respectively) in line 28, before feeding them to the

sponge. The pseudorandom value of j is then computed similarly to row0 and rowp, from a word

of the sponge's outer state (also in line 28). Analogously to the Setup, this makes the each slice

dependent on data from other slices, penalizing attackers that might prefer to discard part of the

data. However, since the visitation pattern during the Wandering phase is unpredictable, each Si

refrains from writing on the row taken from slice Mj , which is only read, as a way to prevent race

conditions that could emerge from such cross-slice interactions. As a result, each iteration of the

Visitation Loop updates a single row from Mi with the sponge's output, namely row0 (line 32),

while rowp remains unmodi�ed; for this reason, there is no �prevp� in this part of the algorithm, so

the duplexing operation in line 31 takes as input three rows rather than four.

To ensure that the updates made by Si on its own half slice a�ect the other parallel threads

reading from the other half, these two halves are switched after approximately
√
R/p iterations

of the Visitation Loop (line 35), at which moment all threads are synchronized. This switching

frequency is consonant with the one adopted during Setup, besides leading to a curious property:

following to the Birthday Paradox, there is a ≈ 50% chance that at least one row updated by Si

while processing a half of its slice is read by one of the p sponges when they all access that same half,

i.e., after the subsequent switch. Therefore, even though each thread may be run independently of

any other thread between synchronizations, it would be error prone to run a single thread beyond

the synchronization point if other threads have not yet �nished their own processing.

Finally, the Wrap-up phase of Lyra2p is analogous to the one used in the algorithm's non-

parallelizable version: each sponge Si absorbs a single cell from its own slice Mi and squeezes k

bits. When all sponges �nish processing, the p sub-keys generated in this manner are XORed

together, yielding then Lyra2p's output K.

6.2.2 Security analysis

The main advantage of this parallelizable version of Lyra2 is that, in theory, it allows legitimated

users to process the memory matrix p times faster than the latter. In practice, this performance

gain is unlikely to be as high as p due to the larger number of pseudorandom reads (and consequent

cache misses) performed by the algorithm, as well as to the need of eventual synchronizations

among threads. However, for the sake of the argument, consider that p is indeed the acceleration

52

6 SOME EXTENSIONS OF LYRA2 The Lyra2 reference guide

obtained. In this case, there are some ways by which legitimate users may take advantage of this

faster operation for raising the algorithm's resistance against attacks. On one extreme, legitimate

users may adopt as parameters Rp = R · p and Tp = T , which raises the algorithm's memory usage

p times while maintaining a similar processing time. On the other extreme, legitimate users may

use the multiple processing cores simply to raise the algorithm's total number of operations and

bandwidth usage, without raising its processing time, which is accomplished by making Rp = R

and Tp = T · p.

Whichever the parameterization adopted, performing a low-memory attack against the Setup

phase of Lyra2p is expected to involve costs similar to those discussed in Section 5.1.2. The reason

is that each thread of Lyra2p initializes and revisits rows during Setup just like Lyra2, the only

signi�cant di�erence being that among the rows fed to a given sponge Si there are some initial-

ized/updated by other sponges Sj 6=i running in di�erent threads. These cross-slice interactions

oblige all threads to run approximately in sync, �lling the memory with newly initialized rows, to

allow other threads to proceed their computation. This need of synchronization comes especially

from the fact that the rows revisited by Si on every sliceM06j<p are distributed all along that slice,

including rows with low and high indices. Consequently, cross-slice reads by Si on Mj following

a given synchronization point can only be performed after Sj is near that same synchronization

point, because otherwise (at least) the rows with higher indices will not be available. The group

of p threads can, thus, be seen approximately as a single thread that sequentially initializes and

updates p rows at a time, much like in the non-parallelizable version of the Lyra2 algorithm. Hence,

running the Setup phase with a peak memory usage of Rp/2 rows and no processing penalty, for

example, is still perfectly possible: since only the �rst half of each slice is revisited during the

initialization of their second halves, the rows from the latter still can be discarded right after their

computation, similarly to the attack discussed in Section 5.1.2.1. Attacks going below Rp/2 rows,

however, should involve the need of discarding rows and recomputing them only when needed, from

scratch or using intermediary results as sentinels, with processing penalties that are likely similar

to those presented in Section 5.1.2.

TheWandering phase, on its turn, has a disadvantage when compared to Lyra2's non-parallelizable

version: as a single row is updated per thread in each iteration of the Visitation Loop rather than

two, the resulting dependence graph gains extra levels only after Rp iterations of that loop. Since

this is twice slower than assumed in the original analysis of the Wandering phase (Sections 5.1.3 and

5.1.4), the main impact of this di�erence is that the equations thereby described should apply to

Lyra2p with the �2T � parameter replaced by �Tp�. A Tp > 2T parameterization could compensate

for this correction, leading to a similar resistance against both low-memory attack venues discussed

in those sections. Nonetheless, if there is enough space available at the legitimate platform, the

Rp = R · p and Tp = T parameterization would still be preferable: with Rp = R and Tp = T · p, the
memory usage of R would allow attackers to run p regular instances of Lyra2p in parallel, using a

total of R ·p rows, obtaining a performance penalty of p due to the higher value of T ; in comparison,
if we have Rp = R · p, bringing the memory cost down to R, so p instances can be run in parallel

with the same R · p rows, would involve a penalty higher than simply p.

Other di�erences of Lyra2p's Wandering phase should have only small impacts on its security

when compared with Lyra2, not in�uencing too much the asymptotic costs discussed in Sections

5.1.3 and 5.1.4. For example, in Lyra2p the group of p threads performs p times more read operations

53

The Lyra2 reference guide 7 PERFORMANCE FOR DIFFERENT SETTINGS

on the memory matrix per iteration of the Visitation Loop, so discarded rows should be recomputed

more frequently. This should not raise the cost of the consumer-producer strategy by much, since

the costs given in Section 5.1.3 already consider that recomputations occur at least 75% of the time;

the cost of the sentinel-based strategy, on the other hand, should raise at most p times due to the

number p times higher of sentinels from level `− 1 activated by level `.

Concerning slow-memory attacks, the main advantage of the parallelizable version of Lyra2 is

that it raises the memory bandwidth usage proportionally to p. Namely, the bandwidth of the

Setup phase is around p times higher, while the Wandering phase's grows up to 3p/4 times due to

the lower number of write operations per thread, as discussed above. Therefore, even if Lyra2 and

Lyra2p are con�gured to run with the same amount of memory and processing time, the latter can

impose performance penalties up to p times higher to attacks in which multiple threads performing

passwords tests share a same memory bus, besides requiring more processing cores. To avoid dealing

with such inconvenience, attackers might prefer to serialize the algorithm's execution, running each

thread in sequence instead of doing the whole computation of a given password guess in parallel.

However, this approach would itself lead to a processing cost p times higher due to the serialization.

Finally, the low- and slow-memory approaches could be combined to take advantage of the fact

that each sponge pseudorandomly visits a space of Rp/2 + Rp/p rows instead of Rp. Speci�cally,

this property allows the ≈
√
Rp iterations of the Wandering phase between two synchronizations

points to be run without recomputations even if only the Rp/2 +Rp/2p rows that are known to be

required by the thread being executed are kept in (fast) memory. If the remainder (p − 1)Rp/2p

rows are placed in a secondary storage devices instead of discarded, the only penalties to be paid in

this case would be the cost of serializing the algorithm's execution and the eventual latency due to

the data transfers between the secondary and main memory devices. The bene�ts of this approach

are, however, quite limited, since the p times higher processing cost resulting from the serialization

is not compensated by an equivalent memory reduction: after all, each individual thread will still

require (Rp/2 +Rp/p) > Rp/p rows to remain in memory.

7 Performance for di�erent settings

In our assessment of Lyra2's performance, we used an SSE-enabled implementation of Blake2b's

compression function [9] as the underlying sponge's f function of Algorithm 2 (i.e., without any

of the extensions described in Section 6) and Algorithm 3 (i.e., the parallel extension described

in Section 6.2). According to our tests, using SSE (Streaming SIMD Extensions, where SIMD

stands for Single Instruction, Multiple Data) instructions allow performance gains of 20% to 30%

in comparison with non-SSE settings, so we only consider such optimized implementations in this

document. One important note about this implementation is that, as discussed in Section 4.4, the

least signi�cant 512 bits of the sponge's state are set to zeros, while the remainder 512 bits are set

to Blake2b's Initialization Vector. Also, to prevent the IV from being overwritten by user-de�ned

data, the sponge's capacity c employed when absorbing the user's input (line 3 of Algorithm 2) is

kept at 512 bits, but reduced to 256 bits in the remainder of the algorithm to allow a higher bitrate

(namely, of 768 bits) during most of its execution. The implementations employed, as well as test

vectors, are available at www.lyra2.net.

54

www.lyra2.net

7 PERFORMANCE FOR DIFFERENT SETTINGS The Lyra2 reference guide

7.1 Benchmarks for Lyra2 without parallelism

The results obtained with a SSE-optimized single-core implementation of Lyra2 are illustrated

in Figure 14. The results depicted correspond to the average execution time of Lyra2 con�gured

with C = 256, ρ = 1, b = 768 bits (i.e., the inner state has 256 bits), and di�erent T and R

settings, giving an overall idea of possible combinations of parameters and the corresponding usage

of resources. As shown in this �gure, Lyra2 is able to execute in: less than 1 s while using up to

400 MB (with R = 214 and T = 5) or up to 1 GB of memory (with R ≈ 4.2 · 104 and T = 1); or in

less than 5 s with 1.6 GB (with R = 216 and T = 6). All tests were performed on an Intel Xeon

E5-2430 (2.20 GHz with 12 Cores, 64 bits) equipped with 48 GB of DRAM, running Ubuntu 14.04

LTS 64 bits. The source code was compiled using gcc 4.9.2.

The same Figure 14 also compares Lyra2 with the scrypt �SSE-enabled� implementation publicly

available at www.tarsnap.com/scrypt.html, using the parameters suggested by scrypt's author

in [60] (namely, b = 8192 and p = 1). The results obtained show that, to achieve a memory usage

and processing time similar to that of scrypt, Lyra2 could be con�gured with T ≈ 6.

We also performed tests aiming to compare the performance of Lyra2 and the other 5 memory-

hard PHC �nalists: Argon, battcrypt, Catena, POMELO, and yescrypt. Parameterizing each

algorithm to ensure a fair comparison between them is not an obvious task, however, because the

amount of resources taken by each PHS in a legitimate platform is a user-de�ned parameter chosen

to in�uence the cost of brute-force guesses. Hence, ideally one would have to �nd the parameters

for each algorithm that normalize the costs for attackers, for example in terms of energy and chip

area in hardware, the cost of memory-processing trade-o�s in software, or the throughput in highly

Figure 14: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and di�erent T and R settings,
compared with SSE-enabled scrypt.

55

www.tarsnap.com/scrypt.html

The Lyra2 reference guide 7 PERFORMANCE FOR DIFFERENT SETTINGS

Figure 15: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and di�erent T and R settings,
compared with SSE-enabled scrypt and memory-hard PHC �nalists with minimum parameters.

parallel platforms such as GPUs. In the absence of a complete set of optimized implementations

for gathering such data, a reasonable approach is to consider the minimum parameters suggested

by the authors of each scheme: even though this analysis does not ensure that the attack costs are

similar to all schemes, it at least shows what the designers recommend as the bare minimum cost

for legitimate users. The results, which basically con�rm existing analysis done in [17], are depicted

in Figure 15, which shows that Lyra2 is a very competitive solution in terms of performance.

Another normalization can be made if we consider that, in a nutshell, a memory-hard PHS

consists of an iterative program that initializes and revisits several memory positions. Therefore,

one can assess each algorithm's performance when they are all parameterized to make the same

number of calls to the underlying non-invertible (possible cryptographic) function. The goal with

this normalization is to evaluate how e�ciently the underlying primitive is employed by the scheme,

giving an overall idea of its throughput. It also provides some insight on how much that primitive

should be optimized to obtain similar processing times for a given memory usage, or even if it is

worthy replacing that primitive by a faster algorithm (assuming that the scheme is �exible enough

to allow users to do so).

The benchmark results are shown in Figure 16, in which lines marked with the same symbol (e.g.,

� or •) denote algorithms con�gured with a similar number of calls to the underlying function. The
exact choice of parameters in this �gure comes from Table 3, which shows how each memory-hard

PHC �nalist handles the time- and memory-cost parameters (respectively, T and M), based on the

analysis of the documentation provided by their authors [61, 62, 63]. The source codes were all

compiled with the -O3 option whenever the authors did not specify the use of another compilation

�ag. Once again, Lyra2 displays a superior performance, which is a direct result of adopting an

e�cient and reduced-round cryptographic sponge as underlying primitive.

One remark concerning these results is that, as also shown in Table 3, the implementations of

battcrypt and POMELO employed in the benchmarks do not employ SIMD instructions, which

56

7 PERFORMANCE FOR DIFFERENT SETTINGS The Lyra2 reference guide

Figure 16: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1 and di�erent T and R settings,
compared with SSE-enabled scrypt and memory-hard PHC �nalists with a similar number of calls to the
underlying function (comparable con�gurations are marked with the same symbol, � or •).

means that the comparison is not completely fair. Nevertheless, even if such advanced instructions

are able to reduce their processing times by half, their relative positions on the �gure would not

change.

Algorithm Calls to underlying primitive SIMD instructions

Argon (1 + 33/32 · T) ·M Yes

battcrypt {2bT/2c · [(T mod 2) + 2] + 1} ·M No

Catena2 (T + 1) ·M Yes

Lyra2 (T + 1) ·M Yes

POMELO
(
3 + 22T

)
·M No

yescrypt (T − 1) ·M Yes

Table 3: PHC �nalists: calls to underlying primitive in terms of their time and memory parameters, T
and M , and their implementations.

7.2 Benchmarks for Lyra2 with parallelism

To assess the performance of our scheme when executed with multiple processing cores in a

legitimate platform, we conducted tests with the parallel version of Lyra2 described in Section 6.2,

called Lyra2p.

The results for p = 2 (i.e., two processing cores) are shown in Figure 17, which indicates a gain

of roughly 46% when compared with the numbers discussed in Section 7.1. More precisely, Lyra2p

is expected to execute in: approximately 1 s while using up to 800 MB (with R = 215, T = 5 and

2The exact number of calls to the underlying cryptographic primitive in Catena is given by equation (g − g0 +
1) · (T + 1) ·M , where g and g0 are, respectively, the current and minimum garlic. However, since normally g = g0,
here we use the simpli�ed equation (T + 1) ·M .

57

The Lyra2 reference guide 7 PERFORMANCE FOR DIFFERENT SETTINGS

Figure 17: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 2, and di�erent T and R settings,
compared with SSE-enabled yescrypt. Con�gurations with a similar number of calls to the underlying function
are marked with the same symbol, � or N.

p = 2) or up to 1.1 GB of memory (with R ≈ 5.4 · 104, T = 3 and p = 2); or in less than 2.5 s

with 1.6 GB (with R = 216, T = 6 and p = 2). With p = 4 (i.e., four processing cores), the gain

becomes approximately 60% when compared with the implementation that does not take advantage

of parallelism, as depicted in Figure 18.

Figures 17 and 18 also compare the performance of Lyra2p and yescrypt, the two fastest memory-

hard PHC �nalists, when both schemes are executed with the same number of processing cores. To

allow the analysis of a broad spectrum of parameters, the notation on those �gures is such that:

(1) lines marked with a same symbol (� or N) denote algorithms con�gured to execute the same

number of calls to the underlying primitive; (2) lines marked with ∗ indicate that yescrypt has

been parameterized to execute a lower number of calls to the underlying function than Lyra2 with

T = 1; and (3) lines marked with other symbols denote the execution of Lyra2 with T ≥ 3, for

which the number of calls to the underlying function does not match any of the lines shown for

yescrypt. As shown in these �gures, Lyra2p remains quite competitive, and keeps surpassing the

performance of yescrypt for both the �minimal� and the �similar number of calls to the underlying

function� parameterizations.

It is also interesting to notice that the performance gain of Lyra2 when raising p from 2 to

4, although noticeable, is lower than the one obtained from raising p from 1 to 2. In fact, com-

plementary tests with p > 4 were also performed, but neither Lyra2 or yescrypt have shown any

substantial performance gain in our Intel Xeon E5-2430 employed as testbed. We believe that the

main reason behind this barrier lies on the hardware's memory bandwidth limitations, of 32 GB/s

[41], since a higher number of cores results in a higher occupation of the main memory bus for both

algorithms.

58

7 PERFORMANCE FOR DIFFERENT SETTINGS The Lyra2 reference guide

Figure 18: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 4, and di�erent T and R settings,
compared with SSE-enabled yescrypt. Con�gurations with a similar number of calls to the underlying function
are marked with the same symbol, � or N.

7.3 Benchmark of GPU-based attacks

Aiming to evaluate the costs of attacks against Lyra2 using a GPU, we implemented the algo-

rithm in CUDA for two di�erent settings. In the �rst, we run a single instance of Lyra2 con�gured

to use di�erent amounts of memory (from 1.5 MB to 400 MB) , emulating a scenario in which the

GPU has not enough memory to simultaneously accommodate multiple password guesses; in this

case, used the device's shared memory to hold the sponge's state, and the number of threads run is

that de�ned by the algorithm's parallelism parameter, p. In the second, we con�gure Lyra2 to run

with a small amount of memory (namely, 2.25 MB), and then evaluate the throughput provided

by the execution of several password guesses in parallel; in this scenario, aiming to maximize the

GPU's occupancy, we kept the sponge's states in global memory without any use of the GPU's

shared memory.

Regarding the implementations, the code obtained is basically a direct port of the CPU code,

with some small adaptations for ensuring compatibility and good performance on the target plat-

form, considering aspects such as the hardware characteristics and the virtual machine's instruction

set. The GPU board used as testbed is an NVIDIA GeForce GTX TITAN (Kepler architecture,

GK110) [36], which has 2688 CUDA cores (14 Multiprocessors with 192 CUDA Cores each) operat-

ing at 0.876 GHz, and a total amount of global memory of 6144 MB operating at 3 GHz. We used

the CUDA 6.5 driver with 5.0 runtime version and con�gured the architecture to 3.5, the higher

value allowed by the board.

The results obtained for the �rst scenario (i.e., the execution of a single instance), for an average

of six executions of Lyra2 with C = 256 and di�erent p, T and R settings are shown in Figure 19.

As observed in this �gure, the performance obtained in the GPU was very low: even for T = 1 and

p = 4, which corresponds to the best performance on the GPU, the execution time is approximately

59

The Lyra2 reference guide 7 PERFORMANCE FOR DIFFERENT SETTINGS

Figure 19: Performance of GPU-oriented implementation of Lyra2, for a single instance con�gured with
C = 256, ρ = 1, and di�erent T , R and p settings, on NVIDIA GeForce GTX TITAN.

100 times higher that the one with the same settings on a CPU (see Figure 18). Such performance

penalty is most likely due to the latency caused by the pseudorandom access pattern adopted in

Lyra2, since GPUs are optimized for delivering high throughput rather than low latency.

The latency observed in the single-instance scenario can usually be masked by the GPU if it runs

several threads in parallel. To measure this ability of GPUs of hiding latency and providing high

throughput, an interesting metric is the GPU's occupancy. Namely, the occupancy is calculated

as the total number of active warps (and, consequently, threads) per multiprocessor, which is a

characteristic of the code being executed, divided by the maximum number of warps that could be

active per multiprocessor, which depends on the GPU board's hardware. If the memory matrix is

too large to allow many guesses to be performed in parallel, as emulated in the �rst scenario, the

occupancy is very low. In contrast, the lower memory usage of the second test scenario, of only 2.25

MB, allows a larger number of instances to be executed in parallel by the multiple GPU cores. Not

surprisingly, as shown in Figure 20, the GPU's performance for Lyra2 con�gured with T = 1 and

p = 4 as adopted in this second case is such that the average time taken per password test drops

to 18 ms for 64 parallel instances (i.e., 256 threads), and to 1.8 ms when the GPU's memory is

completely �lled with 896 instances (for 3584 threads). One remark concerning these benchmarks

is that, given the high number of instances running simultaneously, our tests have shown that it

would not be advantageous to keep the sponges' states in the GPU's shared memory for this second

scenario. The reason is that this approach would implicate in a lower number of threads being

executed per block and, consequently, on a lower throughput due to the GPU's reduced capability

of hiding latencies.

60

7 PERFORMANCE FOR DIFFERENT SETTINGS The Lyra2 reference guide

Figure 20: Performance of a GPU-oriented attack against Lyra2, for T = 1, C = 1024, R = 24, p = 4,
ρ = 1, and di�erent number of passwords, on NVIDIA GeForce GTX TITAN.

Nevertheless, even when the GPU's memory is completely committed to the 896 password

hashing instances, the throughput provided in our tests is still 4.5 times lower than the 0.4 ms

obtained with the same parameterization of Lyra2 on the CPU employed as testbed. Whilst this

is much better than the 100 times slowdown obtained in the single-instance scenario of Figure 19,

at least in principle this GPU-friendly scenario may still not advantageous enough to justify using

a GPU as the preferred attack platform. After all, assuming similar purchasing prices for both

platforms, the GPU would not only provide a lower throughput than the CPU employed, but is

also likely to consume more energy for this task. Nonetheless, we recommend that legitimate users

adopt parameters resulting in a larger memory usage whenever the target application's requirements

and constraints allow them to do so, thus hindering an attacker's ability to take full advantage of

the parallelization and latency-hiding capabilities of commercial GPUs.

7.4 Benchmarks for Lyra2 with the BlaMka G function

Since BlaMka includes a larger number of operations than Blake2b, it is natural that the per-

formance of Lyra2 when it employs BlaMka instead of Blake2b as underlying permutation will be

lower than that reported in the previous sub-sections. Therefore, we conducted some benchmarks

to assess the impacts of BlaMka over Lyra2's e�ciency. Figure 21 shows the results for Lyra2

con�gured with p = 1, comparing it with the other memory-hard PHC �nalists. As observed in this

�gure, Lyra2's performance remains quite competitive: for a given memory usage, Lyra2 is slower

only than yescrypt con�gured with minimal settings, but remains faster than yescrypt when both

are con�gured to make the same number of calls to the underlying function (i.e., for yescrypt with

T = 3 and Lyra2 with T = 1).

61

The Lyra2 reference guide 7 PERFORMANCE FOR DIFFERENT SETTINGS

Figure 21: Performance of SSE-enabled Lyra2 with BlaMka G function, for C = 256, ρ = 1, p = 1, and
di�erent T and R settings, compared with SSE-enabled scrypt and memory-hard PHC �nalists (con�gurations
with a similar number of calls to the underlying function are marked with the same symbol, �).

When Lyra2 is con�gured to take advantage of parallelism, on the other hand, the impacts of

BlaMka over the algorithm's performance are comparatively less noticeable. Indeed, as shown in

Figure 22 for p = 2, as well as in Figure 23 for p = 4, with these con�gurations Lyra2 outperforms

yescrypt both in the �minimal� and in the �similar number of calls to the underlying function�

parameterizations.

Figure 22: Performance of SSE-enabled Lyra2 with BlaMka G function, for C = 256, ρ = 1, p = 2, and
di�erent T and R settings, compared with SSE-enabled yescrypt. Con�gurations with a similar number of
calls to the underlying function are marked with the same symbol, � or N.

62

7 PERFORMANCE FOR DIFFERENT SETTINGS The Lyra2 reference guide

Figure 23: Performance of SSE-enabled Lyra2 with BlaMka G function, for C = 256, ρ = 1, p = 4, and
di�erent T and R settings, compared with SSE-enabled yescrypt. Con�gurations with a similar number of
calls to the underlying function are marked with the same symbol, � or N.

7.5 Expected attack costs

Considering that the cost of DDR3 SO-DIMM memory chips is currently around U$8.6/GB [77],

Table 4 shows the cost added by Lyra2 with T = 5 when an attacker tries to crack a password in 1

year using the above reference hardware, for di�erent password strengths � we refer the reader to

[56, Appendix A] for a discussion on how to compute the approximate entropy of passwords. These

costs are obtained considering the total number of instances that need to run in parallel to test the

whole password space in 365 days and supposing that testing a password takes the same amount of

time as in our testbed. Notice that, in a real scenario, attackers would also have to consider costs

related to wiring and energy consumption of memory chips, besides the cost of the processing cores

themselves.

We notice that if the attacker uses a faster platform (e.g., an FPGA or a more powerful com-

puter), these costs should drop proportionally, since a smaller number of instances (and, thus,

memory chips) would be required for this task. Similarly, if the attacker employs memory devices

faster than regular DRAM (e.g., SRAM or registers), the processing time is also likely to drop,

reducing the number of instances required to run in parallel. Nonetheless, in this case the resulting

memory-related costs may actually be signi�cantly bigger due to the higher cost per GB of such

memory devices. Anyhow, the numbers provided in Table 4 are not intended as absolute values,

but rather a reference on how much extra protection one could expect from using Lyra2, since this

additional memory-related cost is the main advantage of any PHS that explores memory usage

when compared with those that do not.

Finally, when compared with existing solutions that do explore memory usage, Lyra2 is ad-

vantageous due to the elevated processing costs of attack venues involving time-memory trade-o�s,

e�ectively discouraging such approaches.

63

The Lyra2 reference guide 8 CONCLUSIONS

Password Memory usage (MB) for T = 1 Memory usage (MB) for T = 5

entropy (bits) 200 400 800 1,600 200 400 800 1,600

35 315.1 1.3k 5.0k 20.1k 917.8 3.7k 14.7k 59.1k

40 10.1k 40.2k 160.7k 642.9k 29.4k 117.7k 471.9k 1.9M

45 322.7k 1.3M 5.1M 20.6M 939.8k 3.8M 15.1M 60.5M

50 10.3M 41.2M 164.5M 658.3M 30.1M 120.6M 483.2M 1.9B

55 330.4M 1.3B 5.3B 21.1B 962.4M 3.9B 15.5B 62.0B

Table 4: Memory-related cost (in U$) added by the SSE-enable version of Lyra2 with T = 1 and T = 5, for
attackers trying to break passwords in a 1-year period using an Intel Xeon E5-2430 or equivalent processor.

Indeed, from Equation 8 and for T = 5, the processing cost of an attack against Lyra2 using

half of the memory de�ned by the legitimate user would be O((3/2)2TR2), which translates to

(3/2)2·5 · (214)2 ≈ 234σ if the algorithm operates regularly with 400 MB, or (3/2)2·5 · (216)2 ≈ 238σ

for a memory usage of 1.6 GB. For the same memory usage settings, the total cost of a memory-free

attack against scrypt would be approximately (215)2/2 = 229 and (217)2/2 = 233 calls to BlockMix ,

whose processing time is approximately 2σ for the parameters employed in our experiments. As

expected, such elevated processing costs resulting from this small memory usage reduction are

prone to discourage attack venues that try to avoid the memory costs of Lyra2 by means of extra

processing.

8 Conclusions

We presented Lyra2, a password hashing scheme (PHS) that allows legitimate users to �ne tune

memory and processing costs according to the desired level of security and resources available in

the target platform. For achieving this goal, Lyra2 builds on the properties of sponge functions

operating in a stateful mode, creating a strictly sequential process. Indeed, the whole memory

matrix of the algorithm can be seen as a huge state, which changes together with the sponge's

internal state.

The ability to control Lyra2's memory usage allows legitimate users to thwart attacks using

parallel platforms. This can be accomplished by raising the total memory required by the several

cores beyond the amount available in the attacker's device. In summary, the combination of a

strictly sequential design, the high costs of exploring time-memory trade-o�s, and the ability to

raise the memory usage beyond what is attainable with similar-purpose solutions (e.g., scrypt) for

a similar security level and processing time make Lyra2 an appealing PHS solution.

Finally, with the proposed extensions discussed in Section 6, Lyra2 can be further personalized

for di�erent scenarios, including parallel legitimate platforms (with the p parameter).

Acknowledgements

This work was supported by the Brazilian National Counsel of Technological and Scienti�c De-

velopment (CNPq) under grants 482342/2011-0, 473916/2013-4, under productivity research grants

305350/2013-7 and 306935/2012-0, as well as by the São Paulo Research Foundation (FAPESP)

under grant 2011/21592-8, and in part by the Brazilian Coordination for the Improvement of Higher

Education Personnel (CAPES) under grant 79414400249.

64

REFERENCES The Lyra2 reference guide

References

[1] L. Almeida, E. Andrade, P. Barreto, and M. Simplicio. Lyra: Password-Based Key Derivation
with Tunable Memory and Processing Costs. Journal of Cryptographic Engineering, 4(2):75�89,
2014. See also eprint.iacr.org/2014/030.

[2] E. Andreeva, B. Mennink, and B. Preneel. The Parazoa family: Generalizing the Sponge hash
functions. IACR Cryptology ePrint Archive, 2011:28, 2011.

[3] Apple. iOS security. Technical report, Apple Inc., 2012. http://images.apple.com/ipad/
business/docs/iOS_Security_May12.pdf.

[4] J-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New features of latin
dances: Analysis of Salsa, ChaCha, and Rumba. In Fast Software Encryption, volume 5084,
pages 470�488, Berlin, Heidelberg, 2008. Springer-Verlag.

[5] J-P. Aumasson, J. Guo, S. Knellwolf, K. Matusiewicz, andW. Meier. Di�erential and Invertibil-
ity Properties of BLAKE. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption,
volume 6147 of Lecture Notes in Computer Science, pages 318�332. Springer Berlin Heidelberg,
2010. See also http://eprint.iacr.org/2010/043.

[6] J-P. Aumasson, L. Henzen, W. Meier, and R. Phan. SHA-3 proposal BLAKE (version 1.3).
https://131002.net/blake/blake.pdf, 2010.

[7] J-P. Aumasson, P. Jovanovic, and S. Neves. Analysis of NORX. In Proc. of the 3rd Int. Conf.
on Cryptology and Information Security in Latin America (Latincrypt), pages 55�72, 2014. See
also https://eprint.iacr.org/2014/317.

[8] J-P. Aumasson, P. Jovanovic, and S. Neves. NORX: Parallel and scalable AEAD. In Computer
Security - ESORICS 2014, volume 8713 of LNCS, pages 19�36, 2014. See also https://norx.
io/.

[9] J-P. Aumasson, S. Neves, Z. Wilcox-O'Hearn, and C. Winnerlein. BLAKE2: simpler, smaller,
fast as MD5. https://blake2.net/, 2013.

[10] M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its application to
password-based cryptography. In Advances in Cryptology (CRYPTO 2012), volume 7417 of
LNCS, pages 312�329. Springer Berlin Heidelberg, 2012.

[11] D. Bernstein. The Salsa20 family of stream ciphers. In Matthew Robshaw and Olivier Billet,
editors, New Stream Cipher Designs, pages 84�97. Springer-Verlag, Berlin, Heidelberg, 2008.

[12] D. J. Bernstein. Cache-timing attacks on AES. Technical report, University of Illinois, 2005.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. (ECRYPT
Hash Function Workshop 2007), 2007. Also available at http://csrc.nist.gov/pki/

HashWorkshop/Public_Comments/2007_May.html.

[14] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Cryptographic sponge functions -
version 0.1. http://keccak.noekeon.org/, 2011.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3 submission.
Submission to NIST (Round 3), 2011.

[16] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication Schemes. In IEEE Symposium
on Security and Privacy, pages 553�567, 2012.

65

eprint.iacr.org/2014/030
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://eprint.iacr.org/2010/043
https://131002.net/blake/blake.pdf
https://eprint.iacr.org/2014/317
https://norx.io/
https://norx.io/
https://blake2.net/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html

The Lyra2 reference guide REFERENCES

[17] M. Broz. Another PHC candidates �mechanical� tests � Public archives of PHC list. http:

//article.gmane.org/gmane.comp.security.phc/2237, 2014.

[18] Capcom. Blanka � Capcom Database. http://capcom.wikia.com/wiki/Blanka, 2015.

[19] S. Chakrabarti and M. Singbal. Password-based authentication: Preventing dictionary attacks.
Computer, 40(6):68�74, june 2007.

[20] S. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul, and L. E. Bassham.
Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition. US Department
of Commerce, National Institute of Standards and Technology, 2012.

[21] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-Chip Heterogeneous Computing:
Does the Future Include Custom Logic, FPGAs, and GPGPUs? In Proc. of the 43rd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO'43, pages 225�236,
Washington, DC, USA, 2010. IEEE Computer Society.

[22] A. Conklin, G. Dietrich, and D. Walz. Password-based authentication: A system perspective.
In Proc. of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04),
volume 7 of HICSS'04, pages 170�179, Washington, DC, USA, 2004. IEEE Computer Society.

[23] S. A. Cook. An Observation on Time-storage Trade o�. In Proc. of the 5th Annual ACM
Symposium on Theory of Computing (STOC'73), pages 29�33, New York, NY, USA, 1973.
ACM.

[24] B. Cox. TwoCats (and SkinnyCat): A Compute Time and Sequential Memory Hard Pass-
word Hashing Scheme. Password Hashing Competition, v0 edition, March 2014. https:

//password-hashing.net/submissions/specs/TwoCats-v0.pdf.

[25] B. Crew. New carnivorous harp sponge discovered in deep sea.
Nature, 2012. Available online: http://www.nature.com/news/

new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789.

[26] J. Daemen and V. Rijmen. A new MAC construction alred and a speci�c instance alpha-
mac. In Fast Software Encryption � FSE'05, pages 1�17, 2005.

[27] J. Daemen and V. Rijmen. Re�nements of the alred construction and MAC security claims.
Information Security, IET, 4(3):149�157, 2010.

[28] Y. S. Dandass. Using FPGAs to Parallelize Dictionary Attacks for Password Cracking. In
Proc. of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008),
pages 485�485. IEEE, 2008.

[29] M. Dürmuth, T. Güneysu, and M. Kasper. Evaluation of Standardized Password-Based Key
Derivation against Parallel Processing Platforms. In Computer Security � ESORICS 2012,
volume 7459 of LNCS, pages 716�733. Springer Berlin Heidelberg, 2012.

[30] C. Dwork, M. Naor, and H. Wee. Pebbling and Proofs of Work. In Advances in Cryptology
� CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 37�54. Springer
Berlin Heidelberg, 2005.

[31] S. Dziembowski, T. Kazana, and D. Wichs. Key-Evolution Schemes Resilient to Space-Bounded
Leakage. In Advances in Cryptology � CRYPTO 2011, volume 6841 of Lecture Notes in Com-
puter Science, pages 335�353. Springer Berlin Heidelberg, 2011.

[32] D. Florencio and C. Herley. A Large Scale Study of Web Password Habits. In Proc. of the
16th International Conference on World Wide Web, pages 657�666, Alberta, Canada, 2007.

66

http://article.gmane.org/gmane.comp.security.phc/2237
http://article.gmane.org/gmane.comp.security.phc/2237
http://capcom.wikia.com/wiki/Blanka
https://password-hashing.net/submissions/specs/TwoCats-v0.pdf
https://password-hashing.net/submissions/specs/TwoCats-v0.pdf
http://www.nature.com/news/new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789
http://www.nature.com/news/new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789

REFERENCES The Lyra2 reference guide

[33] C. Forler, S. Lucks, and J. Wenzel. Catena: A Memory-Consuming Password Scrambler.
Cryptology ePrint Archive, Report 2013/525, 2013. http://eprint.iacr.org/2013/525.

[34] J. Fowers, G. Brown, P. Cooke, and G. Stitt. A performance and energy comparison of
FPGAs, GPUs, and multicores for sliding-window applications. In Proc. of the ACM/SIGDA
Internbational Symposium on Field Programmable Gate Arrays (FPGA'12), pages 47�56, New
York, NY, USA, 2012. ACM.

[35] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif. Comprehensive
Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3 Finalists Us-
ing Xilinx and Altera FPGAs. Cryptology ePrint Archive, Report 2012/368, 2012. http:

//eprint.iacr.org/2012/368.

[36] GeForce. GeForce GTX 470: Speci�cations. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-470/specifications (visited on Mar.29, 2014), 2014.

[37] J. Guo, P. Karpman, I. Nikoli¢, L. Wang, and S. Wu. Analysis of BLAKE2. In Topics
in Cryptology (CT-RSA 2014), volume 8366 of LNCS, pages 402�423. Springer International
Publishing, 2014. see also https://eprint.iacr.org/2013/467.

[38] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino, A. Feldman,
J. Appelbaum, and E. Felten. Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM, 52(5):91�98, May 2009.

[39] M. E. Hellman. A cryptanalytic time-memory trade-o�. IEEE Transactions on Information
Theory, 26(4):401�406, 1980.

[40] C. Herley, P. van Oorschot, and A. Patrick. Passwords: If We're So Smart, Why Are We Still
Using Them? In Financial Cryptography and Data Security, volume 5628 of LNCS, pages
230�237. Springer Berlin / Heidelberg, 2009.

[41] Intel. Intel Xeon Processor E5-2430 (15M Cache, 2.20 GHz, 7.20 GT/s Intel QPI). http:

//ark.intel.com/products/64616/Intel-Xeon-Processor-E5-2430-15M-Cache-2_

20-GHz-7_20-GTs-Intel-QPI, 2012.

[42] L. Ji and X. Liangyu. Attacks on round-reduced BLAKE. Technical report, Cryptology ePrint
Archive, Report 2009/238, 2009. http://eprint.iacr.org/2009/238.

[43] A. P. Kakarountas, H. Michail, A. Milidonis, C. E. Goutis, and G. Theodoridis. High-Speed
FPGA Implementation of Secure Hash Algorithm for IPSec and VPN Applications. The Jour-
nal of Supercomputing, 37(2):179�195, 2006.

[44] B. Kaliski. PKCS#5: Password-Based Cryptography Speci�cation version 2.0 (RFC 2898),
2000.

[45] P-H. Kamp. MD5Crypt. https://www.usenix.org/legacyurl/md5-crypt, 1999. See also
http://dir.gmane.org/gmane.comp.security.phc.

[46] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure Applications of Low-Entropy Keys.
In Proc. of the 1st International Workshop on Information Security, ISW '97, pages 121�134,
London, UK, UK, 1998. Springer-Verlag.

[47] D. Khovratovich, A. Biryukov, and J. Groÿschädl. Tradeo� cryptanalysis of password hashing
schemes. PasswordsCon'14, 2014. See also https://www.cryptolux.org/images/4/4f/

PHC-overview.pdf.

[48] Khronos Group. The OpenCL Speci�cation � Version 1.2, 2012.

67

http://eprint.iacr.org/2013/525
http://eprint.iacr.org/2012/368
http://eprint.iacr.org/2012/368
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-470/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-470/specifications
https://eprint.iacr.org/2013/467
http://ark.intel.com/products/64616/Intel-Xeon-Processor-E5-2430-15M-Cache-2_20-GHz-7_20-GTs-Intel-QPI
http://ark.intel.com/products/64616/Intel-Xeon-Processor-E5-2430-15M-Cache-2_20-GHz-7_20-GTs-Intel-QPI
http://ark.intel.com/products/64616/Intel-Xeon-Processor-E5-2430-15M-Cache-2_20-GHz-7_20-GTs-Intel-QPI
http://eprint.iacr.org/2009/238
https://www.usenix.org/legacyurl/md5-crypt
http://dir.gmane.org/gmane.comp.security.phc
https://www.cryptolux.org/images/4/4f/PHC-overview.pdf
https://www.cryptolux.org/images/4/4f/PHC-overview.pdf

The Lyra2 reference guide REFERENCES

[49] M. Marechal. Advances in password cracking. Journal in Computer Virology, 4(1):73�81, 2008.

[50] M. Ming, H. Qiang, and S. Zeng. Security analysis of BLAKE-32 based on di�erential proper-
ties. In 2010 International Conference on Computational and Information Sciences (ICCIS),
pages 783�786. IEEE, 2010.

[51] K. Mowery, S. Keelveedhi, and H. Shacham. Are AES x86 Cache Timing Attacks Still Feasible?
In Proc.s of the 2012 ACM Workshop on Cloud Computing Security Workshop (CCSW'12),
pages 19�24, New York, NY, USA, 2012. ACM.

[52] S. Neves. Re: A review per day - Lyra2 � Public archives of PHC list. http://article.

gmane.org/gmane.comp.security.phc/2045, 2014.

[53] NIST. Federal Information Processing Standard (FIPS 197) � Advanced Encryption Standard
(AES). National Institute of Standards and Technology, November 2001. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf.

[54] NIST. Federal Information Processing Standard (FIPS PUB 198) � The Keyed-Hash Mes-
sage Authentication Code. National Institute of Standards and Technology, U.S. Depart-
ment of Commerce, March 2002. http://csrc.nist.gov/publications/fips/fips198/

fips-198a.pdf.

[55] NIST. Special Publication 800-18 � Recommendation for Key Derivation Using Pseudorandom
Functions. National Institute of Standards and Technology, U.S. Department of Commerce, Oc-
tober 2009. http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf.

[56] NIST. Special Publication 800-63-1 � Electronic Authentication Guideline. National Institute
of Standards and Technology, U.S. Department of Commerce, December 2011. http://csrc.
nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf.

[57] Nvidia. Tesla Kepler family product overview. http://www.nvidia.com/content/tesla/

pdf/Tesla-KSeries-Overview-LR.pdf, 2012.

[58] Nvidia. CUDA C programming guide (v6.5). http://docs.nvidia.com/cuda/

cuda-c-programming-guide/, August 2014.

[59] C. Percival. Cache missing for fun and pro�t. In Proc. of BSDCan 2005, 2005.

[60] C. Percival. Stronger key derivation via sequential memory-hard functions. In BSDCan 2009
� The Technical BSD Conference, 2009.

[61] A. Peslyak. yescrypt - a Password Hashing Competition submission. Password Hashing Com-
petition, v0 edition, March 2014. https://password-hashing.net/submissions/specs/
yescrypt-v0.pdf.

[62] PHC. Password Hashing Competition. https://password-hashing.net/, 2013.

[63] PHC wiki. Password Hashing Competition � wiki. https://password-hashing.net/wiki/,
2014.

[64] N. Provos and D. Mazières. A future-adaptable password scheme. In Proc. of the FREENIX
track: 1999 USENIX annual technical conference, 1999.

[65] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get o� of My Cloud:
Exploring Information Leakage in Third-party Compute Clouds. In Proc.s of the 16th ACM
Conference on Computer and Communications Security, CCS '09, pages 199�212, New York,
NY, USA, 2009. ACM.

68

http://article.gmane.org/gmane.comp.security.phc/2045
http://article.gmane.org/gmane.comp.security.phc/2045
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://password-hashing.net/submissions/specs/yescrypt-v0.pdf
https://password-hashing.net/submissions/specs/yescrypt-v0.pdf
https://password-hashing.net/
https://password-hashing.net/wiki/

REFERENCES The Lyra2 reference guide

[66] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120�126, Feb 1978.

[67] B. Schneier. Description of a new variable-length key, 64-bit block cipher (Blow�sh). In
Fast Software Encryption, Cambridge Security Workshop, pages 191�204, London, UK, 1994.
Springer-Verlag.

[68] SciEngines. Rivyera s3-5000. http://sciengines.com/products/

computers-and-clusters/rivyera-s3-5000.html.

[69] SciEngines. Rivyera v7-2000t. http://sciengines.com/products/

computers-and-clusters/v72000t.html.

[70] M. Shand, P. Bertin, and J. Vuillemin. Hardware Speedups in Long Integer Multiplication. In
Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA'90, pages 138�145, New York, NY, USA, 1990. ACM.

[71] M. A. Simplicio, P. Barbuda, P. Barreto, T. Carvalho, and C. Margi. The Marvin Message
Authentication Code and the LetterSoup Authenticated Encryption Scheme. Security and
Communication Networks, 2:165�180, 2009.

[72] M. A. Simplicio and P. Barreto. Revisiting the Security of the Alred Design and Two of Its
Variants: Marvin and LetterSoup. IEEE Transactions on Information Theory, 58(9):6223�
6238, 2012.

[73] P. Soderquist and M. Leeser. An area/performance comparison of subtractive and multiplica-
tive divide/square root implementations. In Computer Arithmetic, 1995., Proceedings of the
12th Symposium on, pages 132�139, Jul 1995.

[74] Solar Designer. New developments in password hashing: ROM-port-hard func-
tions. [Online] http://www.openwall.com/presentations/ZeroNights2012-New-In-Password-
Hashing/ZeroNights2012-New-In-Password-Hashing.pdf, 2012.

[75] M. Sprengers. GPU-based Password Cracking: On the Security of Password Hashing Schemes
regarding Advances in Graphics Processing Units. Master's thesis, Radboud University Ni-
jmegen, 2011.

[76] B. Su, W. Wu, S. Wu, and L. Dong. Near-Collisions on the Reduced-Round Compression
Functions of Skein and BLAKE. In Cryptology and Network Security, volume 6467 of Lecture
Notes in Computer Science, pages 124�139. Springer Berlin Heidelberg, 2010.

[77] TrendForce. DRAM contract price (jan.13 2015). http://www.trendforce.com/price (visited
on Jan.13, 2015), 2015.

[78] TrueCrypt. TrueCrypt: Free open-source on-the-�y encryption � documentation. http://

www.truecrypt.org/docs/, 2012.

[79] W. D. Wallis and J. George. Introduction to Combinatorics. Discrete Mathematics and Its
Applications. Taylor & Francis, 2011.

[80] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek. Password Cracking Using Probabilistic
Context-Free Grammars. In Proc. of the 30th IEEE Symposium on Security and Privacy,
SP'09, pages 391�405, Washington, DC, USA, 2009. IEEE Computer Society.

[81] F. F. Yao and Y. L. Yin. Design and Analysis of Password-Based Key Derivation Functions.
IEEE Transactions on Information Theory, 51(9):3292�3297, 2005.

[82] J. Yuill, D. Denning, and F. Feer. Using deception to hide things from hackers: Processes,
principles, and techniques. Journal of Information Warfare, 5(3):26�40, 2006.

69

http://sciengines.com/products/computers-and-clusters/rivyera-s3-5000.html
http://sciengines.com/products/computers-and-clusters/rivyera-s3-5000.html
http://sciengines.com/products/computers-and-clusters/v72000t.html
http://sciengines.com/products/computers-and-clusters/v72000t.html
http://www.truecrypt.org/docs/
http://www.truecrypt.org/docs/

The Lyra2 reference guide REFERENCES

Algorithm 4 PBKDF2.

Input: pwd . The password

Input: salt . The salt

Input: T . The user-de�ned parameter

Output: K . The password-derived key

1: if k > (232 − 1) · h then

2: return Derived key too long.
3: end if

4: l← dk/he ; r ← k − (l − 1) · h
5: for i← 1 to l do
6: U [1]← PRF (pwd, salt ‖ INT (i)) . INT(i): 32-bit encoding of i

7: T [i]← U [1]
8: for j ← 2 to T do

9: U [j]← PRF (pwd, U [j − 1]) ; T [i]← T [i]⊕ U [j]
10: end for

11: if i = 1 then {K ← T [1]} else {K ← K ‖ T [i]} end if

12: end for

13: return K

Appendix A. PBKDF2

The Password-Based Key Derivation Function version 2 (PBKDF2) algorithm [44] was originally
proposed in 2000 as part of RSA Laboratories' PKCS#5. It is nowadays present in several security
tools, such as TrueCrypt [78] and Apple's iOS for encrypting user passwords [3], and has been
formally analyzed in several circumstances [81, 10].

Basically, PBKDF2 (see Algorithm 4) iteratively applies the underlying pseudorandom function
Hash to the concatenation of pwd and a variable Ui, i.e., it makes Ui = Hash(pwd, Ui−1) for each
iteration 1 6 i 6 T . The initial value U0 corresponds to the concatenation of the user-provided
salt and a variable l, where l corresponds to the number of required output blocks. The l-th block
of the k-long key is then computed as Kl = U1 ⊕ U2 ⊕ . . .⊕ UT , where k is the desired key length.

PBKDF2 allows users to control its total running time by con�guring the T parameter. Since the
password hahsing process is strictly sequential (one cannot compute Ui without �rst obtaining Ui−1),
its internal structure is not parallelizable. However, as the amount of memory used by PBKDF2 is
quite small, the cost of implementing brute force attacks against it by means of multiple processing
units remains reasonably low.

Appendix B. Bcrypt

Another solution that allows users to con�gure the password hashing processing time is bcrypt
[64]. The scheme is based on a customized version of the 64-bit cipher algorithm Blow�sh [67],
called EksBlow�ish (�expensive key schedule blow�sh�).

Both algorithms use the same encryption process, di�ering only on how they compute their
subkeys and S-boxes. Bcrypt consists in initializing EksBlow�sh's subkeys and S-Boxes with the
salt and password, using the so-called EksBlow�shSetup function, and then using EksBlow�sh for
iteratively encrypting a constant string, 64 times.

EksBlow�shSetup starts by copying the �rst digits of the number π into the subkeys and S-boxes
Si (see Algorithm 5). Then, it updates the subkeys and S-boxes by invoking ExpandKey(salt, pwd),
for a 128-bit salt value. Basically, this function (1) cyclically XORs the password with the current
subkeys, and then (2) iteratively blow�sh-encrypts one of the halves of the salt, the resulting cipher-
text being XORed with the salt's other half and also replacing the next two subkeys (or S-Boxes,
after all subkeys are replaced). After all subkeys and S-Boxes are updated, bcrypt alternately
calls ExpandKey(0, salt) and then ExpandKey(0, pwd), for 2T iterations. The user-de�ned pa-
rameter T determines, thus, the time spent on this subkey and S-Box updating process, e�ectively
controlling the algorithm's total processing time.

70

REFERENCES The Lyra2 reference guide

Algorithm 5 Bcrypt.

Input: pwd . The password

Input: salt . The salt

Input: T . The user-de�ned cost parameter

Output: K . The password-derived key

1: s← InitState() . Copies the digits of π into the sub-keys and S-boxes Si
2: s←ExpandKey(s, salt, pwd)
3: for i← 1 to 2T do

4: s←ExpandKey(s, 0, salt)
5: s←ExpandKey(s, 0, pwd)
6: end for

7: ctext← ”OrpheanBeholderScryDoubt”
8: for i← 1 to 64 do

9: ctext← BlowfishEncrypt(s, ctext)
10: end for

11: return T ‖ salt ‖ ctext
12: function ExpandKey(s, salt, pwd)
13: for i← 1 to 32 do

14: Pi ← Pi ⊕ pwd[32(i− 1) . . . 32i− 1]
15: end for

16: for i← 1 to 9 do

17: temp← BlowfishEncrypt(s, salt[64(i− 1) . . . 64i− 1])
18: P0+2(i−1) ← temp[0 . . . 31]
19: P1+2(i−1) ← temp[32 . . . 64]
20: end for

21: for i← 1 to 4 do

22: for j ← 1 to 128 do

23: temp← BlowfishEncrypt(s, salt[64(j − 1) . . . 64j − 1])
24: Si[2(j − 1)]← temp[0 . . . 31]
25: Si[1 + 2(j − 1)]← temp[32 . . . 63]
26: end for

27: end for

28: return s
29: end function

Like PBKDF2, bcrypt allows users to parameterize only its total running time. In addition to
this shortcoming, some of its characteristics can be considered (small) disadvantages when compared
with PBKDF2. First, bcrypt employs a dedicated structure (EksBlow�sh) rather than a conven-
tional hash function, leading to the need of implementing a whole new cryptographic primitive and,
thus, raising the algorithm's code size. Second, EksBlow�shSetup's internal loop grows exponen-
tially with the T parameter, making it harder to �ne-tune bcrypt's total execution time without
a linearly growing external loop. Finally, bcrypt displays the unusual (albeit minor) restriction of
being unable to handle passwords having more than 56 bytes.

Appendix C. Lyra

Lyra's steps as described in [1] are detailed in Algorithm 6.

Like in Lyra2, Lyra also employs (reduced-round) operations of a cryptographic sponge for
building a memory matrix, visiting its rows in a pseudorandom fashion, and providing the desired
number of bits as output. One �rst di�erence between the two algorithms is that Lyra's Setup is
quite simple, each iteration of its loop (lines 8 to 4) duplexing only the row that was computed in
the previous iteration. As a result, the Setup can be executed with a cost of R · σ while keeping
in memory a single row of the memory matrix instead of half of them as in Lyra2. The second
and probably main di�erence is that Lyra's duplexing operations performed during the Wandering
phase only involve one pseudorandomly-picked row, which is read and written upon, while two rows
are modi�ed per duplexing in Lyra2's basic algorithm. This is the reason why the processing time
of an approximately memory-free attack against Lyra grows with a RT+1 factor. In comparison, as
discussed in Section 5.1, in Lyra2's basic algorithm the cost of such attacks involves a R2T+2 factor,
or R(δ+1)T+2 if the δ parameter is also employed.

71

The Lyra2 reference guide REFERENCES

Algorithm 6 The Lyra Algorithm.

Param: Hash . Sponge with block size b and underlying perm. f

Param: ρ . Number of rounds of f in the Setup and Wandering phases

Input: pwd . The password

Input: salt . A random salt

Input: T . Time cost, in number of iterations

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix

Input: k . The desired key length, in bits

Output: K . The password-derived k-long key

1: . Setup: Initializes a (R× C) memory matrix

2: Hash.absorb(pad(salt ‖ pwd)) . Padding rule: 10∗1

3: M [0]← Hash.squeezeρ(C · b)
4: for row ← 1 to R− 1 do

5: for col← 0 to C − 1 do

6: M [row][col]← Hash.duplexingρ(M [row − 1][col], b)
7: end for

8: end for

9: .Wandering: Iteratively overwrites blocks of the memory matrix

10: row ← 0
11: for i← 0 to T − 1 do . Time Loop

12: for j ← 0 to R− 1 do . Rows Loop: randomly visits R rows

13: for col← 0 to C − 1 do . Columns Loop

14: M [row][col]←M [row][col]⊕Hash.duplexingρ(M [row][col], b)
15: end for

16: col←M [row][C − 1] mod C
17: row ← Hash.duplexing(M [row][col], |R|) mod R
18: end for

19: end for

20: .Wrap-up: key computation

21: Hash.absorb(pad(salt)) . Uses the sponge's current state

22: K ← Hash.squeeze(k)

23: return K . Outputs the k-long key

Appendix D. Naming conventions

The name �Lyra� comes from Chondrocladia lyra, a recently discovered type of sponge [25].
While most sponges are harmless, this harp-like sponge is carnivorous, using its branches to ensnare
its prey, which is then enveloped in a membrane and completely digested. The �two� su�x is a
reference to its predecessor, Lyra [1], which displays many of Lyra2's properties hereby presented
but has a lower resistance to attacks involving time-memory trade-o�s. Lyra2's memory matrix
displays some similarity with this species' external aspect, and we expect it to be at least as much
aggressive against adversaries trying to attack it. ,

Regarding the multiplication-hard sponge, its name came from an attempt to combined the name
�Blake�, which is the basis for the algorithm, with the letter �M�, for indicating multiplications. A
natural (?) answer for this combination was BlaMka, a misspelling of Blanka, the only avatar from
the Street Fighter original game series [18] that comes from Brazil and, as such, is a compatriot of
this document's authors. ,

72

	Introduction
	Background: Cryptographic Sponges
	Notation and Conventions
	Cryptographic Sponges: Basic Structure
	The duplex construction

	Password Hashing Schemes (PHS)
	Attack platforms
	Graphics Processing Units (GPUs).
	Field Programmable Gate Arrays (FPGAs).

	Scrypt

	Lyra2
	Structure and rationale
	Bootstrapping
	The Setup phase
	The Wandering phase
	The Wrap-up phase

	Strictly sequential design
	Configuring memory usage and processing time
	On the underlying sponge
	A dedicated, multiplication-hardened sponge: BlaMka

	Practical considerations

	Security analysis
	Low-Memory attacks
	Preliminaries
	The Setup phase
	Adding the Wandering phase: consumer-producer strategy.
	Adding the Wandering phase: sentinel-based strategy.

	Slow-Memory attacks
	Cache-timing attacks

	Some extensions of Lyra2
	Controlling the algorithm's bandwidth usage
	Allowing parallelism on legitimate platforms: Lyra2p
	Structure and rationale
	Security analysis

	Performance for different settings
	Benchmarks for Lyra2 without parallelism
	Benchmarks for Lyra2 with parallelism
	Benchmark of GPU-based attacks
	Benchmarks for Lyra2 with the BlaMka G function
	Expected attack costs

	Conclusions

