
Int. J. Inf. Secur. (2017) 16:313–326
DOI 10.1007/s10207-016-0318-0

REGULAR CONTRIBUTION

Broadcast anonymous routing (BAR): scalable real-time
anonymous communication

Panayiotis Kotzanikolaou1 · George Chatzisofroniou1 · Mike Burmester2

Published online: 3 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We propose BAR, a scalable anonymous Internet
communication system that combines broadcasting features
of dc-net with layered encryption of mix-nets. The main
advantage of BAR over other broadcast systems is band-
width configurability: by using selective broadcasting it
can significantly reduce the required bandwidth for a small
increase in latency, without affecting anonymity. Unlikemix-
net systems, BAR provides unlinkability protection while
minimizing the use of public key operations. BAR provides
sender, receiver and session anonymitywith forward secrecy.
We analyze the efficiency of BAR for several anonymity con-
figurations by using a prototype implementation.

Keywords Sender/receiver anonymity · Unlinkability ·
Dc-net · Mix-nets

1 Introduction

Anonymous communication systems allow users to com-
municate privately over the Internet, by hiding the relation
between a message and the IP address of its sender (sender-
anonymity) and/or its receiver (receiver-anonymity). They
may also hide the link between different messages e.g., by
making it infeasible to decide whether two messages belong

B Panayiotis Kotzanikolaou
pkotzani@unipi.gr

Mike Burmester
burmeste@cs.fsu.edu

1 Department of Informatics, University of Piraeus, Piraeus,
Greece

2 Department of Computer Science, Florida State University,
Tallahassee, FL, USA

to the same session or not (sender–receiver anonymity, or
unlinkability).
A toy example Clients communicate in a noisy crowded
bar by having bar servers broadcast messages. Messages
are encrypted for privacy (clients earlier exchanged secret
keys). Each client trusts his/her partner and the bar server
for broadcasting messages in real-time. All clients receive
the encryptions. However except for the intended receiver
who can identify the encryptions, the other clients cannot
distinguish them from noise. An eavesdropper might try to
identify sender–receiver pairs by monitoring client activi-
ties. To thwart such attempts, clients give the bar server
constant size messages: either encryptions or noise (ran-
dom bitstrings), at constant time periods. This provides (i)
sender anonymity, since it is not possible for an eavesdrop-
per to identify the actual sender (messages are encrypted), (ii)
receiver anonymity, since it is not possible to ascertain who
the intended receiver is and (iii) sender–receiver anonymity,
since it is not possible to link exchanged messages.

Our goal is to design a practical and scalable system for
real-time, concurrent anonymous communication for large
numbers of users. We model the bar servers as overlay appli-
cation layer broadcast anonymous routers, and clients are
randomly assigned to BARs, subject to threshold bounds.

Contribution Our system, BAR, provides sender, receiver
and sender–receiver anonymity in the presence of an honest-
but-curious adversary. BAR combines dc-net and mix-net
features. For receiver anonymity, it uses broadcast chan-
nels [5]. Compared to similar approaches (e.g., [22]), BAR
has lower computational costs, due to an efficient Filter
mechanism that allows clients to selectively decrypt only
those messages intended for them. More importantly, BAR
has significantly lower broadcast costs. Using a selective
broadcasting mechanism, it can be fine tuned to reduce

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0318-0&domain=pdf

314 P. Kotzanikolaou et al.

bandwidth for the same level of anonymity with a small
increase in end-to-end latency. For sender anonymity, a
mix-net approach is used. However unlike mix-nets that usu-
ally require layers of public key encryption (e.g., [4,11]),
BAR mainly uses symmetric encryption. Anonymous key
exchange is based on an embedded key management mech-
anism. For global communication between users assigned to
different BARs, random session public keys are used.

Paper structure. In Sect. 2, we describe BAR and extend it
for unreliable networks. In Sect. 3, we prove that it provides
strong anonymity against an honest-but-curious adversary.
In Sect. 4, we analyze its efficiency and we propose a selec-
tive broadcast mechanism that reduces bandwidth costs. In
Sect. 5, we review related work. Section 6 concludes this
paper.

2 The BAR communication protocol

The parties of BAR are: the users, the BAR servers and a
system coordinator whose role is to publish system para-
meters and support its operation. The coordinator and the
BAR servers must be available in real-time, but no other
trust assumptions regarding the system are made. In Table 1
we define our notation.

2.1 The components of the protocol

Let enck{·} denote the encryption functionwith key k, deck{·}
the decryption function with key k, sigsk(·) the signature
function with private key sk and ver pk(·) the verification
functionwith public keypk. Let |denote string concatenation.
We define the following operators:

AddUser(Listi ; [pk j , ki j , li j]) �→ Listi : adds entry [pk j ,

ki j , li j] of u j to Listi .
UpdateListEntry(Listi ; pk j , k′

i j , l ′i j) �→ Listi ,
updates entry [pk j , ki j , li j] inListi : ki j ← k′

i j , li j ← l ′i j .
Encrypt([pk j , ki j , li j]; k′

i j , l ′i j , m) �→ 〈li j , c j 〉, with
c j = encki j {k′

i j |l ′i j |li j |m}.
Filter(Listu; 〈li j , c j 〉) �→ {0, 1}, with output 1 if u = u j

is the intended receiver, and 0 otherwise.
Decrypt([pki , ki j , li j]; 〈li j , c j 〉) �→ (k′

i j , l ′i j , li j , m).

2.2 Registration, login and key exchange protocols

The user address space is defined by a n-bit cryptographic
hash function (e.g., SHA-256). The address space is seg-
mented into M physical partitions, and each partition is
managed by one BAR server. Each server is assigned a seg-
ment of size 2n/M that is published by the coordinator BAR0.
Depending on the current number of users, BAR0 merges (or

Table 1 Entities, system parameters and notation

Entities Description

U = {u1, u2, . . . , uN } The set of users

BAR1,BAR2, . . . ,BARM The physical broadcast servers

BAR0 The system coordinator: publishes system parameters and arranges the BARs in logical
partitions

Cluster1, . . . , Clusterμ The logical broadcast channels dynamically arranged by BAR0. Clusters may consist of
one or more adjacent BAR servers. User receive all traffic within their cluster

System parameters Description

Nmin The anonymity parameter: the minimum number of users in a cluster

Nmax (≥ 2 · Nmin) The broadcast efficiency parameter: the maximum number of users allowed by a cluster

Notation Description

nymi A friendly pseudonym used to identify an anonymous user ui

pki , ski Long-term public/private key pair of ui

ki j , li j Symmetric key and a random label of ui , u j , used for one exchange

pki , ski Bridge public/private key pair of ui , used to bridge anonymous communications between
clusters; updated in each login and not related to pki , ski

Listi Alistmaintained byui containing keyingmaterial [pk j , ki j , li j]of usersu j for anonymous
communication

UsersList A public list with entries [nymi , pki , σi] where σi = sigB AR0
(nymi |pki), for all the users

ActiveList Apublic list with entries [idi , IPi , pki], where idi and I Pi are the unique id and IP address
of ui

123

Broadcast anonymous routing (BAR): scalable real-time anonymous communication 315

Fig. 1 User login (with 8 BAR servers and 4 logical clusters). User
ui computes hi = hash(nymi |pki) with hi ∈ BAR2 (currently belong-
ing to Cluster1). Then ui selects a fresh bridge public/private key pair
pki , ski and asks BAR0 to get assigned an idi ∈ BAR2 for pki . BAR0

chooses a random and unused idi and adds [idi , IPi , pki] to ActiveList.
Although hi , idi map to the same user ui , this relation is only known
to ui . The entries related with ui in UsersList and ActiveList cannot be
linked

splits) physical servers toμ ≤ M logical broadcast partitions
(clusters), to assure that each cluster always contains from
Nmin to Nmax users. This assures at least Nmin-anonymity
for bandwidth proportional to at most Nmax .

User registration protocol

Users register by publishing anonymously via BAR0 an entry
inUserList. User ui sends an entry of the form [nymi , pki , σi]
anonymously by constructing an onion routing path to the
coordinator using the bridge public keys. Although this
provides sender anonymity only, it is sufficient during regis-
tration.

1. User ui

(a) Select a unique pseudonym nymi and generate a pub-
lic/private key pair1 pki , ski .

(b) Select at random ≥ 3 users2 from ActiveList and use
their bridge keys pk j to construct a onion routing path
to the coordinator BAR0.

(c) Use this route to send nymi , pki to BAR0.

(2) Coordinator BAR0

(a) Check if the received values are appropriate and not
already in UsersList.

(b) Compute σi = sigskBAR0
(nymi |pki).

(c) Add [nymi , pki , σi] to UsersList.

1 The public key and pseudonym should not be linked to the actual
identity of the user or used in other services.
2 Tor uses 3bydefault; an entry, a relay and an exit node.As suggested in
[2] by increasing the onion length, usersmay increase sender anonymity
protection, with a cost in latency.

User login protocol

To login to the BAR system, a registered user ui uses the
following protocol (Fig. 1).

(1) User ui

(a) Compute hi = hash(nymi |pki). Say that hi ∈ BARi .
(b) Use the public systemparameters M, μ, Nmin , Nmax ,

to find the cluster of hi , say hi ∈ Clusterx .
(c) Select a new bridge public/private key pair pki , ski

for the current session.
(d) Send to BAR0: IPi , pki ,BARi .Clusterx .

(2) Coordinator BAR0

(a) Choose a random idi ∈ BARi , not in use.
(b) Add entry [idi , IPi , pki] to the ActiveList.

In this protocol, ui is assigned idi for the current session. On
logout, the coordinator removes the corresponding entry in
ActiveList, and idi can be assigned to another user. Note that
the coordinator cannot lie about the public systemparameters
or assign users to wrong clusters, without being detected.

Remark 1 The coordinator continuously monitors the
dynamic changes in the number of users per cluster tomanage
the system clustering and prevent the thresholds Nmin, Nmax

being violated. For example, the coordinator can handoff
a BAR server from one cluster to another if the threshold
Nmax is exceeded, or split a cluster into two new clusters.
The range between Nmin and Nmax gives to the coordinator
adequate flexibility. Similar handoff stabilization procedures
are used in peer-to-peer systems (e.g., [25]), to assure that
churns in user activity do not affect the required system
parameters.

123

316 P. Kotzanikolaou et al.

Fig. 2 A high-level description
of the BCP

Key exchange protoocol

To enable BAR communication, users must first anony-
mously exchange their initial pairwise keys as follows.

(1) Newly registered user ui

(a) For each valid entry [nym j , pk j , σ j] do:
Choose a random label li j and key ki j .
Sign σi j = sigski

(nymi , pki , pk j , ki j , li j).
Generate ci j = encpk j

{nymi , pki , ki j , li j , σi j }.
(b) Select ≥ 3 users from ActiveList at random and use

the bridge keys pk j to construct an onion routing path
to BAR0.

(c) Use this route to anonymously send to BAR0 the pairs
[nym j , ci j].

(2) Coordinator BAR0

(a) Maintain a public bulletin board.
(c) Publish on the bulletin board each [nym j , ci j] that is

received through onion route paths.

(3) Other BAR users u j , j �= i

(a) At login, search the bulletin board for new entries
containing nym j .

(b) For each new entry, use sk j to decrypt ci j and get
{nymi , pki , ki j , li j , σi j }.

(c) Verify σi j . If successful, add [pki , li j , ki j] to List j .

2.3 The BAR communication protocol (BCP)

For our first communication protocol, we assume that the
network is reliable, i.e., send messages are received within
a reasonable time frame. In Sect. 2.4, we shall extend this
protocol to capture network failure.

A user ui can anonymously send a message to a user u j

identified by the pseudonym (nym j , pk j), by using the fol-
lowing protocol (see Fig. 2 for an overview).

(1) Sender ui

(a) Run User Login to get assigned to Clusterx .
(b) Compute h j = hash(nym j |pk j) to identify the log-

ical partition of the intended receiver u j . Say u j ∈
Clustery .

(c) Select inActiveList at random an “entry user” uy with
idy ∈ Clustery (the receiver’s cluster).

(d) Select in Listi an “exit user” ux �= ui in Clusterx (the
sender’s cluster) with whom secret keys ki j , li j have
been exchanged, Sect. 2.2.3

(e) Get entries [pk j , ki j , li j], [pkx , kix , li x] from Listi .
(f) Choose random keys k′

i z and labels l ′i z , z = j, x .
(g) Encrypt([pk j , ki j , li j]; k′

i j , l ′i j , m) to get 〈li j , c j 〉.
(h) Compute cy = enc pky

{li j |c j } using [idy, IPy, pky]
in ActiveList.

(i) Encrypt([pkx , kix , li x]; k′
i x , l ′i x , (IPy |cy)) to get

〈li x , cx 〉.
(j) Broadcast 〈li x , cx 〉 to Clusterx .
(k) UpdateListEntry(Listi ; [pkz, k′

i z, l ′i z]), z = j, x .

(2) All users u ∈ Clusterx

Filter(Listu; 〈li x , cx 〉): for u �= ux the output is 0 and
〈li x , cx 〉 is dropped; for ux the output is 1.

(3) Exit user ux

(a) Decrypt([pki , kix , li x]; 〈li x , cx 〉) to get k′
i x , l ′i x , li x ,

IPy |cy .

3 There is no guarantee that ux is online or willing to participate. If so,
the sender will run again the search algorithm.

123

Broadcast anonymous routing (BAR): scalable real-time anonymous communication 317

Fig. 3 Communication flows
and encryptions of the BCP

(b) Send cy to address IPy .
(c) UpdateListEntry(Listx ; [pki , k′

i x , l ′i x]).
(4) Entry user uy

(a) Decrypt cy using private key sky to get 〈li j , c j 〉.
(b) Broadcast 〈li j , c j 〉 to Clustery .

(5) All users u ∈ Clustery

Filter(Listu; 〈li j , c j 〉): for u �= u j the output is 0 and
〈li j , c j 〉 is dropped; for u j the output is 1.

(6) Receiver u j

(a) Decrypt([pki , ki j , li j]; 〈li j , c j 〉) to get k′
i j , l ′i j , li j

and message m.
(b) UpdateListEntry(List j ; [pki , k′

i j , l ′i j]).

Figure 3 shows the communication flows and encryptions of
the BCP.

Remark 2 If the sender ui and receiver u j belong to the same
cluster, then ui could use inter-cluster broadcast to send the
message to u j . However in that case sender anonymity is
subject to a collusion attack between the receiver and the
BAR server. To guarantee the same anonymity level, the
sender must run the BCP even when ui , u j are in the same
cluster.

Remark 3 Sender ui selects ux , uy in different ways: ux is
selected fromListi and soui knowsux ’s entry [nymx , pkx , σx]
in UsersList, but not its entry in ActiveList (and hence its IP
address); uy is selected in ActiveList, so ui knows its entry
in ActiveList but not in UsersList.

Remark 4 The exit user ux sends the encryption cy directly
to I P y (Steps 3a, b). A passive adversary can infer that a
user inClusterx is communicatingwith a user inClustery . To
address this, we canmodify the protocol so that all users send

at random time intervals a noise message of the same size as
cy , directly to a random IP from ActiveList belonging to a
different cluster. The noise packets are filtered and eventually
dropped by all users in the receiver’s cluster.

2.4 E-BCP: an extension for unreliable networks

We shall extend BCP to address communication failure
resulting from lost, dropped or delayedmessages by allowing
limited and controlled label reuse when there is failure.

In the extension, the keying material of each entry in
Listi has two values: the current values K cur

i j = (ki j , li j)

used to label and encrypt (decrypt) a message that is sent
(received), and K next

i j = (k′
i j , l ′i j) to be used for the next

message. The format of the entries in Listi of user ui is now:
[pk j , K cur

i j , K next
i j].

When there is communication failure then, and only then,
the sender will reuse the label in K cur

i j , to avoid label de-
synchronization. The values of keying materials are updated
in such a manner that materials shared between users at
all times have at least one common (key, label) pair. Users
Filter and Decrypt received messages using both K cur

i j

and K next
i j .

Notation for the extended-BCP

Initially K cur
i j = K next

i j = ∅. When user ui runs the Key
Exchange Protocol in Sect. 2.2, then K cur

i j is initialized:
K cur

i j ← (ki j , li j), for random ki j , li j . The operators in
Sect. 2.1 are extended as follows. TwoUpdateListEntry
operators are defined: the first is used when receiving mes-
sages while the second when sending messages. Note that
when sendingmessages the current values of keyingmaterial
cannot be discarded unless an acknowledgement is received.

123

318 P. Kotzanikolaou et al.

UpdateListEntryr (List j ; pki , k′
j i , l ′j i) �→ List j ,

updates entry [pki , K cur
ji , K next

ji] ∈ List j : K cur
ji ←

K next
ji and K next

ji ← (k′
j i , l ′j i).

UpdateListEntrys(Listi ; pk j , k′
i j , l ′i j) �→ Listi ,

updates [pk j , K cur
i j , K next

i j] ∈ Listi : K next
i j ← (k′

i j , l ′i j).
Encrypt([pk j , K cur

i j]; k′
i j , l ′i j , m) �→ 〈li j , c j 〉, with c j =

encki j {k′
i j |l ′i j |li j |m}, and ki j , li j ∈ K cur

i j .
Filter(Listu; 〈liu, cu〉) �→ {0, 1}, with output 1 if u = u j

is the intended receiver (li j is a label in [pki , K cur
ji , K next

ji]
∈ List j), and 0 otherwise.

Decrypt([pki , K cur
ji , K next

ji]; 〈li j , c j 〉) �→ (k′
j i , l ′j i ,

l j i , m), for k ji ∈ K cur
ji or k′

j i ∈ K next
ji .

FiltDecUpdate(Listu; 〈li j , c j 〉) �→ 0 or (List j , decki j

{c j }), filters, decrypts and updates the pki -entry in List j :

1. If Filter(Listu; 〈li j , c j 〉) �→ 0 then drop 〈li j , c j 〉.
2. If Filter(List j ; 〈li j , c j 〉) �→ 1 then let: Decrypt

([pki , K cur
ji , K next

ji]; 〈li j , c j 〉) �→ (k′
j i , l ′j i , l j i , m). If

li j �= l j i then drop 〈li j , c j 〉 and abort. Else:
(a) If li j ∈ K cur

ji then K cur
ji ← (k′

j i , l ′j i).
(b) If li j ∈ K next

ji then UpdateListEntryr

(List j ; pki , k′
j i , l ′j i) �→ List j .

Observe that if the label li j ∈ K cur
ji then it was used earlier

by ui , but the message was delayed/lost. In this case, only
K cur

ji is updated by the receiver u j . If li j is in K next
ji then

it is fresh. In this case, we have a full update of the keying
materials.

The extended BCP (E-BCP)

We use the same enumeration as in the BCP.

0. All users
FiltDecUpdate any received message.

1. Sender ui

(a) –(j) of BCP with the extended operators.
(k) UpdateListEntrys(Listi ; [pkz, k′

i z, l ′i z]),
z = j, x .

2. All users u ∈ Clusterx

FiltDecUpdate(Listu; 〈li x , cx 〉) and drop 〈li x , cx 〉.
3. Exit user ux

Send cy to IPy (FiltDecUpdate will output cy).
4. Entry user uy As in BCP.
5. All users u ∈ Clustery

FiltDecUpdate(Listu; 〈li j , c j 〉) and drop 〈li j , c j 〉.
6. Receiver u j

FiltDecUpdate(List j ; 〈li j , c j 〉) with output m and
the correctly updated List j .

Remark 5 E-BCP can be fine tuned to allow up to f con-
secutive failures without label reusability as follows: for the

t-th failure, 0 ≤ t ≤ f , the sender uses K cur
i j to get the

pair: (k(t)
i j = ki j , l(t)i j = hash(ki j | li j + t)). The labels l(t)i j

are pseudo-random if ki j is secret. Users Filter using all

f + 2 labels l(t)i j , l ′i j and Decrypt using the keys ki j , k′
i j , in

K cur
i j , K next

i j respectively.

3 Security analysis

We consider a typical TCP overlay network. Broadcast chan-
nels are implemented via dedicated servers, which maintain
persistent connections with the clients and whose role is
to broadcast all the received traffic to all the connected
users. The IP address of each active user is in ActiveList
and the anonymous public key in UsersList. However the
link between entries [idi , I Pi , pki] and [nymi , pki , σi] of
the same user is only known to the user.
Threat model Honest users are those that adhere to the pro-
tocol, while compromised users are those that collude with
the adversary and leak their keying material. We assume a
global honest-but-curious adversary: a passive eavesdropper
that monitors all communication channels and has access to
private keys of compromised users, sayK. The adversary can
also perform active attacks on the traffic, such as injecting
watermarked ingress flows. The goal of BAR is to provide
anonymity among the set of the honest users. To capture
realistic threat scenarios, we consider three types of adver-
sary: a sender adversary As , a receiver adversary Ar and a
sender–receiver adversaryAsr . The adversary is modeled by
a probabilistic polynomial time Turing machine (PPT).
Trust assumptions The BAR servers (including the coor-
dinator) provide a real-time reliable service. In particular,
the integrity and real-time availability of the public lists
UsersList, ActiveList is assumed. Finally, we assume that
each BAR server may contain a large fraction of compro-
mised users, but it also contains a fraction of honest users.

3.1 Sender anonymity

As monitors the communication of theBARusers and servers
and has access to the setK of keys of compromised users. The
goal ofAs is to find the address I Pi of the sender of a target
message 〈li j , c j 〉, by identifying the entry [idi , IPi , pki] of
ui in ActiveList.

Let� be the BAR communication protocol.We formalize
sender anonymity by an experiment PrivAs ,�(n) in which
As has access to an oracle Os that on input the security
parameter n (e.g., the length of the hash function), simu-
lates executions of �.As obtains fromOs the public system
parameters, the compromised keys K, and a history of sim-
ulated executions of � that includes UsersList, ActiveList,
and the transmitted messages (but not the links) for any ses-

123

Broadcast anonymous routing (BAR): scalable real-time anonymous communication 319

sion. For the test, Os simulates a new session πui u j for a
particular sender–receiver pair ui , u j forwhich ui is not com-
promised.As is given UsersList, ActiveList, the pseudonym
of the sender [nymi , pki , σi], the communication of session
πui u j , and must find the address I Pi of the sender. If As

succeeds then PrivAs ,�
(n) outputs 1, otherwise it outputs 0.

Definition 1 � provides sender anonymity if: ∀ PPT adver-
sary As , ∃ a negligible function negl such that:

advantage(As)=|Pr[PrivAs ,�(n)=1] − 1/N |=negl(n),

where N is the number of non-compromised users in the
cluster of the sender. (The probability is taken over the coin
tosses of As .) We say that � is N -sender anonymous.

Theorem 1 Suppose the communication channels and BAR
servers are reliable. Then BCP provides sender anonymity if
at least one of the bridge users ux or uy is not compromised.

Proof By the definition of sender anonymity, the sender ui

is not compromised. We shall assume that the receiver u j is
compromised, so its keys are in K: note that As can do no
better when u j is not compromised.

As cannot use traffic analysis to identify ui because all
users send constant size messages at constant rate. However
As can identify the active users in Clusterx from the pub-
lic system parameters (the address space partitioning) and
ActiveList, as well as the entries in UsersList that belong to
Clusterx by computing hx = hash(nymx |pkx). As also has
access to all encryptions sent by users in Clusterx from the
communication history. To identify the sender ui of a target
message m send to u j during a protocol run πui u j , As must
link the chain m → c j → cy → cx (see Fig. 3).

Case 1: Only ux compromised. Then As does not know the
secret keys of uy .As starts from m and uses li j , ki j to link m
to c j . From List j , As gets (nymi , pki). Since ux is compro-
mised, kix ∈ K, and thus As can link cx (broadcast by ui)
to cy (obtained from ux). However As cannot link cy to c j

since he does not know the key sky of uy . ThereforeAs will
fail to link the actual sender to m. Any user in Clusterx can
be the sender with equal probability.

Case 2: Only uy is compromised. Then As does not know
the secret keys of ux , in particular kix in Listx . As starts
from m and uses li j , ki j to link it to c j . As uses List j to find
the anonymous public key of the sender (nymi , pki), and the
history to find that c j was broadcast to Clustery by uy with
IPy (the BAR server provides this information). NowAs uses
sk j (obtained from uy) to link c j to cy . As finds from the
history that uy received cy from the user with address IPx .

Since ux is not compromised,As cannot link the message cx

broadcasted by the sender, to cy . Again As will fail.

Case 3: ux , uy are compromised. Then As knows the secret
keys of u j , ux and uy . In this caseAs will succeed in linking
the chain m → c j → cy → cx . First As uses li j , ki j to
link m to c j ; then (nymi , pki) ∈ List j and the history of
exchanged messages, to find that c j was broadcast by uy to
Clustery with IPy . NowAs uses the private key sk j of u j to
link c j to cy , and from the history finds that uy received cy

from the user with address IPx . Since ux is compromised,
As knows kix and thus finds that cx was broadcast by ui ,
and thus linked to cy . Now As uses the history to find ui ’s
address IPi .

3.2 Receiver anonymity

Adversary Ar is similar to As except that the goal is find
the IP address of the receiver. Let � be the BAR commu-
nication protocol. We formalize receiver anonymity by an
experiment PrivAr ,�

(n) in whichAr has access to an oracle
Or that on input the security parameter n simulates execu-
tions of �. Ar obtains from Or the system parameters, the
compromised keys K, and a history of simulated executions
of � that includes UsersList, ActiveList and the transmit-
ted messages for any session. For the test, Or simulates a
new session πui u j for a particular sender–receiver pair ui , u j

for which u j is not compromised. Ar is given UsersList,
ActiveList, the pseudonym of the receiver [nym j , pk j , σ j],
the communication of sessionπui u j andmust find the address
IP j of the receiver. IfAr succeeds then PrivAs ,�

(n) outputs
1, otherwise it outputs 0.

Definition 2 � provides receiver anonymity if:∀PPTadver-
sary Ar , ∃ a negligible function negl such that:

advantage(Ar)=|Pr[PrivAr ,�(n)=1] − 1/N |=negl(n),

where N is the number of non-compromised users in the clus-
ter of the receiver. We say that � is N -receiver anonymous.

Theorem 2 Suppose the communication channels and BAR
servers are reliable. Then BCP provides receiver anonymity.

Proof By the definition of receiver anonymity, the receiver
u j is not compromised. We shall assume that the sender ui

is compromised. As in the previous caseAr cannot use traf-
fic analysis to identify a receiver, but can easily identify the
entries in ActiveList and UsersList that belong to Clustery .
Ar also has access to the history of received encryptions by
users in Clustery . To identify the receiver of a target mes-
sage m send by ui ,Ar must be able to re-construct the chain
cx → cy → c j → m of instance πui u j and link it to the
receiver.Ar can re-construct this chain since it has access to

123

320 P. Kotzanikolaou et al.

the secret keys of ui , ux , uy . However this is not sufficient,
because of the broadcast nature of the receiver’s channel
(Fig. 3): since all active users of Clustery receive c j ,Ar can-
not distinguish the actual receiver from any other receiver in
Clustery (i.e., identify the entry [id j , IP j , pk j] ∈ ActiveList
of the receiver). Any active user in Clustery is equally likely
to be the receiver.

3.3 Sender–receiver anonymity

Adversary Asr is similar to As except that the goal is
to link encryptions exchanged by a sender–receiver pair
ui , u j . Let � be the BAR communication protocol. We for-
malize sender–receiver anonymity of � by an experiment
PrivAsr ,�

(n) in which Asr has access to oracle Osr that
on input the security parameter n simulates executions of
�. Asr obtains from Osr the public system parameters, the
compromised keys K, and a history of simulated executions
of � that includes UsersList, ActiveList and the transmit-
ted encryptions for any session. For the test, Osr simulates
a new session πui u j for a non-compromised sender–receiver
pair ui , u j . Asr is given UsersList and ActiveList, including
the entries for the actual pair, the communication of πui u j ,
and must decide if earlier encrypted messages {〈li j , c j 〉} are
linked to entries ui , u j in UsersList. Note that Asr is not
required to find the actual users (their IPs). If Asr succeeds
then PrivAsr ,�

(n) outputs 1, otherwise it outputs 0.

Definition 3 � provides sender–receiver anonymity if: ∀
PPT adversary Asr , ∃ a negligible function negl such that:

advantage(Asr)=|Pr[PrivAsr ,�(n)=1]−1/N |=negl(n),

where N is the number of non-compromised active users.We
say that � is N -sender–receiver anonymous.

Theorem 3 Suppose the communication channels and BAR
servers are reliable. Then BCP provides sender–receiver
anonymity.

Proof By definition ui , u j are not compromised. Since
all users broadcast encrypted messages of constant size
at constant rate, it is not possible for Asr to distinguish
noise messages from actual messages. Similarly Asr cannot
identify actual bridge messages, since all users send simu-
lated bridged messages at random time intervals to random
receivers (Remark 4, Sect. 2.3). Thus even if the actual bridge
users ux , uy of the target message are compromised, at best
Asr will learn that either a user from Clusterx is commu-
nicating with a user in Clustery or that a simulated bridge
message was sent, with equal probability.

3.4 Session anonymity

Session anonymity addresses privacy of a completed ses-
sion, i.e., duringwhich amessage is implicitly acknowledged
and keys have been properly updated. In the extended
BCP, the keying materials of the sender ui , the bridge
user ux and the receiver uy are updated in Step 0 by
using UpdateListEntryr . If a session is completed then
ui , ux , uy will receive confirmations and the keying materi-
als are updated with fresh values, so messages from earlier
sessions cannot be linked to them. In this case E-BCP reduces
to BCP. Otherwise the same labels are used. In this case mes-
sages clearly can be linked.

Let �′ be the extended BCP. To formally capture session
anonymity [3], we shall extend the definitions in Sects. 3.1,
3.2 and 3.3.

Definition 4 �′ provides session sender (receiver or sender–
receiver) anonymity if the advantage of As in Definition 1
(Ar in Definition 2, or Asr in Definition 3) in experiment
PrivAs ,�(n) (PrivAr ,�(n), or PrivAsr ,�(n)) is negligible for
any test with communication history separated by a com-
pleted session.

Theorem 4 E-BCP provides session sender, receiver and
sender–receiver anonymity.

Proof If there is communication failure, then a sender in E-
BCP will reuse the previous label. Clearly messages with the
same label are linkable. However once a session is completed
(the sender receives confirmation) then the shared keying
materials are updated with random values. Thus the adver-
sary cannot find additional information involving the secret
keys of the sender (or receiver) prior to the completed ses-
sion.After a completed sessionE-BCP is essentially the same
as BCP and the proof that we get session sender, receiver
and sender–receiver anonymity reduces to the proof of
Theorems 1, 2 and 3.

3.5 Forward secrecy

Forward secrecy [15] addresses the privacy of messages that
are exchanged prior to key compromise.

Definition 5 Let� be an anonymous communication proto-
col and xi , x j a sender–receiver pair. Suppose that the keying
material of user uz gets compromised at time tz (we allow
for tz = ∞). The definitions in Sects. 3.1, 3.2 and 3.3 are
extended to capture forward secrecy. � provides forward
sender (receiver, or sender–receiver) secrecy if the advan-
tage of As in Definition 1 (Ar in Definition 2, or Asr in
Definition 3) in the experiment PrivAs ,�(n) (PrivAr ,�(n),
or PrivAsr ,�(n)) is negligible for any test with communica-
tion history prior to ti (t j , or min{ti , t j }).

123

Broadcast anonymous routing (BAR): scalable real-time anonymous communication 321

� provides session forward sender (receiver, or sender–
receiver) secrecy if the advantage of As in Definition 1
(Ar in Definition 2, or Asr in Definition 3) in experiment
PrivAs ,�(n) (PrivAr ,�(n), or PrivAsr ,�(n)) is negligible for
any test with communication history separated by a com-
pleted session prior to ti (t j , or min{ti , t j }).

Theorem 5 BCP provides forward sender, receiver and
sender–receiver secrecy. E-BCP provides session forward
sender, receiver and sender–receiver secrecy.

Proof For BCP this reduces to the proofs of Theorems 1,
2 and 3, by observing that a fresh (label, key) pair is used
for each message exchange. A similar argument holds for
E-BCP, since a label is reused only when a session is not
completed.

3.6 Other security characteristics

Besides the formal analysis of anonymity properties, we
examine other security characteristics of BAR.

3.6.1 Resistance to positioning attacks

Since the clustering parameters are public, malicious users
may join a different cluster than the one they actually belong
to, in order to position themselves to a target cluster of either
the sender or the receiver.

Positioning attacks against the sender. An attacker position-
ing himself in the cluster of the sender, will never be selected
as an “exit user” in the protocol by any user in the sender’s
cluster. Recall from Sect. 2.3 that a sender ui chooses an exit
user ux from its Listi (which in turn has been constructed
based on theUsersList) and not fromActiveList. Thus ui will
never select a malicious user who has falsely positioned him-
self in the sender cluster in ActiveList, but whose (nym, pk)

pair does not actually correspond to the target cluster.

Positioning attacks against the receiver. An attacker posi-
tioning himself in the receiver’s cluster may be chosen by
the sender as the “entry user” uy in the protocol, since uy

is randomly selected from ActiveList. However recall from
Sect. 3.2 (Theorem 2) that a malicious entry user cannot dis-
tinguishwho is the actual receiver, due to the broadcast nature
of the receiver’s channel. Even in the extreme case where all
the users in the receiver’s cluster except u j are malicious
they still cannot deduce that u j is an actual receiver, since
ux may have sent a simulated noise bridging message (see
Remark 4).

3.6.2 Resistance to users with multiple identities

Malicious users may create multiple public keys and pseu-
donyms that belong to a cluster. Then the attacker will spoof
multiple IP addresses in order to join multiple times in the
target cluster and thus reduce its anonymity level. Although
such attacks cannot be completely prevented, the protocol
is “inherently” resistant to multiple identity attacks, due to
its broadcast nature. Note that such an attacker will have to
receive the broadcast traffic of its cluster as many times as its
identities. This limits the capabilities of a user to present
multiple accounts, since the user will practically cause a
Denial-of-Service attack to herself due to the large amount of
the received traffic. Obviously, filtering the traffic after this
is received is of no use for the attacker.

3.6.3 Resistance to active traffic analysis attacks

Due to its broadcast nature, BAR is not vulnerable to active
traffic analysis attacks. For example, it is not possible for an
attacker to inject a watermarked ingress flow and attempt to
observe it from egress flows in order to pair them.

3.6.4 Loosening trust assumptions

The security analysis of BAR relies on the trust assump-
tions of a reliable delivery service and trusted servers. The
assumption of reliable delivery (i.e., that servers will always
broadcast all messages with the correct order) can be sub-
stantially reduced, if the extended-BCP protocol described
in Sect. 2.4 is used. Recall that the extended-BCP allows
for controlled message failures. The assumption of trusted
servers can be loosened by combining local verification and
global reputation mechanisms. Since each BAR server is
expected to broadcast all messages to all users, it is easy
for every user to locally verify whether a server correctly
broadcasts its packets to others or not, by inspecting the
received broadcast traffic. Users may also test the server’s
behavior by encryptingmessages that are expected to bounce
back to themselves. Then a reputation mechanism can be
constructed in which users can rate the BAR servers based
on their local verification. BAR servers with low reputation
could be excluded from the system for a certain period or
permanently.

3.6.5 Distributing the role of the BAR servers

A possible extension would be to distribute the role of the
BAR servers among the users, who could collaboratively
broadcast packets within clusters. Such a design would raise
security issues related with corrupted or malicious users not
properly forwarding packets and would require further secu-

123

322 P. Kotzanikolaou et al.

rity analysis. One way to deal with untrusted behavior is to
use reputation-based mechanisms.

4 Implementation and efficiency analysis

To analyze the bandwidth and end-to-end delivery time for
different numbers of users, we implemented a prototype4

BAR server. Each client logs in and maintains a persistent
TCP connection with the BAR server in order to send and
receive BAR traffic. Each client sends at a constant rate its
encrypted messages (real or noise) to the BAR server. The
server broadcasts all the received traffic to all its clients,
through the established connections. We used TCP at the
transport layer in order to simulate the use of the protocol for
TCP-based application layer protocols such as HTTP. Fur-
thermore, the use of TCP simplifies issues relatedwith packet
loss.

The software is implemented in Python using the Twisted
networking library.We use SQLite to store the users’ lists and
database indexes to improve the required search operation for
the labels. All transmitted messages are encoded in the form
of netstrings to avoid illegal payloads (e.g., messages exceed-
ing the maximum allowed length). The tests were performed
on a Gigabit Ethernet LAN with three 2.13GHz machines to
simulate all the BAR servers and the users. We used 32-bit
random labels and 128-bit AES encryption keys.

4.1 Inter-cluster analysis

Initially, we analyzed the broadcast bandwidth and deliv-
ery time within a single cluster implemented with one BAR
server.

For the end-to-end delivery time, we measured all the
delays imposed by the protocol from the preparation until
the receipt of the message, including the time required for
the following: the encryption of a message with the keying
material of the receiver; sending of the message from the
sender to the BAR server; the receipt and broadcasting of the
message from the BAR server to all the users; the receipt and
filtering of the broadcast traffic by the intended receiver; and
the decryption of a successfully filtered message.

We ran 4 scenarios for N=100–400 users, assuming N/2
communicating pairs (every user is either a sender or a
receiver). For each scenario, we ran 50 tests and computed
the mean time. In all tests, all users continuously send mes-
sages (real or noise) at a constant period of 290ms, while the
message length was 0.6KB (for actual message size 0.5KB
plus 0.1KB used for the labels, keys and reserved bits). This
leads to a send rate of about 16.5Kbps (2.6KBps).

4 https://github.com/sophron/BAR/archive/master.zip.

Table 2 Inter-cluster delivery time for different user numbers

Test # BAR
users (N)

Concur.
pairs

Broadcast bandwidth
(Mbps/MBps)

Delivery
time (ms)

1 100 50 1.62/0.2 550

2 200 100 3.23/0.4 720

3 300 150 4.85/0.6 1320

4 400 200 6.46/0.8 1400

Table 2 shows the required bandwidth and the mean
delivery time within the cluster, for all the scenarios. The
delivery time is between 550 and 1400ms. The time almost
exclusively depends on the broadcast bandwidth, while the
computation costs slightly contribute to it. This is due to
the filtering mechanism that allows clients to filter out sev-
eral Mbps of broadcast traffic with minimal computational
costs. For inter-cluster traffic, each user performs only one
decryption per broadcast period (noise packets are filtered
and dropped). On the other hand, the bandwidth cost is high,
proportional to the number of users.

4.2 Bandwidth optimizations: selective broadcasting

To deal with high bandwidth costs, we propose optimizations
that reduce broadcast traffic under amuch smaller increase in
the end-to-end delivery time, for the same anonymity para-
meter.

To achieve this, we exploit the controlled label reusability
of E-BCP. Assume that each BAR server uses a broadcast
parameter 0 < q < 1. At each broadcast period, the server
randomly selects and broadcasts q N out of the N received
messages; the remaining (1 − q) N messages are dropped.

The senders of the non-selected messages will treat this as
network failure and resendmessages using the previous label.
Thus everymessagewill require, on average, q−1 broadcasts.

Let 0 < p < 1 be the fraction of users sending real traffic
so that (1− p)N users send noise messages.We consider two
cases for the non-selected messages: real or noise messages.
The probability of a realmessage being dropped by the server
is:

Pr[real message ∈ {dropped message}] = p(1 − q)

Each real message requires on average an additional delay
of p q−1(1 − q) broadcasts. Let tc(N) denote the expected
inter-cluster delivery time for a cluster of size N and tb the
time required for the operations of the bridging user in E-
BCP (public key decryption and packet forwarding). Then
the expected end-to-end delivery time for an actual message
is:

tend = 2 [1 + p q−1(1 − q)] tc(q N) + tb. (1)

123

https://github.com/sophron/BAR/archive/master.zip

Broadcast anonymous routing (BAR): scalable real-time anonymous communication 323

Fig. 4 End-to-end delivery time for all test scenarios

Fig. 5 Required broadcast bandwidth in relation to q

Note that the advantage gained is due to: (i) the (1− p)(1−q)

noise messages that are dropped, which do not impose any
delay, and (ii) the reduction of the inter-cluster delivery time
from tc(N) to tc(q N). More importantly, the bandwidth is
significantly reduced. For send rate s Kbps, users will ded-
icate only qs N (instead of s N) Kbps of their bandwidth, to
gain N -anonymity.

4.3 Efficiency analysis of the E-BCP

Using Eq. 1 and the inter-cluster delivery time computed in
Sect. 4.1, we analyze the efficiency of E-BCP for various

scenarios. Figure 4 presents the end-to-end delivery time for
N = {100, 200, 300, 400} and for varying values of p =
{0.1, 0.2, 0.3, 0.4, 0.5} and q = {0.25, 0.5, 0.75, 1}. In all
tests, we used tb = 100ms.

We also measured the required bandwidth in relation to
q (Fig. 5). Selective broadcasting provides effective trade-
offs between the required bandwidth and the end-to-end
latency. For full broadcast (q = 1) the delivery time depends
only on the size N of the cluster, regardless of p, while
the required bandwidth is proportional to N . As shown in
Fig. 4, for q = 0.25 and various values of p, the end-to-end
time is close (in some cases even lower) to the case of full
broadcast, and at the same time the required bandwidth is
substantially reduced. This is due to the fact that although
for smaller q each message will require more broadcasts on
average, at the same time the actual cluster size, and conse-
quently cost per broadcast, is reduced to tc(q N) from tc(N).
For example, for 400-anonymity, the required bandwidth per
user can be reduced from about 6.5Mbps for no optimization
(q = 1) to only 1.6Mbps for q = 0.25, with a delivery time
between 1530 and 2850ms, for p between 0.1 and 0.5. If less
users are actually communicating, then the delivery time is
reduced. Notice that for the selected parameters, latency is
even lower than the case of full broadcasting (2900ms). It is
easy to fine-tune system parameters for the same cluster (and
thus anonymity) size, by using the bandwidth versus time
ratio.

123

324 P. Kotzanikolaou et al.

Table 3 Comparison with related work

System Anonymity properties Real-time Scalable Distributed Implemented

Sender Receiver Sender–receiver

Anonymizer [27] Y1 N N Y N N Y

Mixmaster, Mixminion [10] Y Y2 Y4 N Y Y Y

BitMessage [28] Y Y N N Y Y Y

Buses [1] and variations [16,17] Y Y Y N N Y N

Cocaine anonymous broadcast [24] Y Y Y N N N N

Crowds [19] Y N N Y Y N Y

DC-net [5] Y Y Y N N Y N

Dissent [7] Y Y Y N N Y Y

Drunk Motorcyclist [29] Y Y Y N Y Y N

Hordes [23] Y N N Y Y Y Y

HORNET [6] Y N N Y Y Y Y

P5 [22] Y Y Y Y Y Y Y

Tarzan [13] Y Y3 N Y Y Y Y

Verdict [8] Y Y Y Y N Y Y

Xor-trees [12] Y Y Y N N Y Y

BAR Y Y Y Y Y Y Y

Comments
(1) Assuming a trusted proxy
(2) Assuming a nym server
(3) Using the hidden services protocol
(4) Excluding long-term attacks

5 Overview and comparison with related work

Most known and widely accepted architectures for anony-
mous online communication can be divided in two main
categories [20] (Table 3): those based on mix nets [4] and
those based on dc-net [5].

Although dc-nets provide full anonymity (i.e., sender,
receiver and unlinkability) against powerful adversaries, only
one user can send a message at a time, making these systems
unscalable, while it is possible for the participants to iden-
tify when a message was actually sent. Xor-trees [12] are
a computationally efficient system based on dc-nets. How-
ever again only one pair of users can communicate at a
time.

The Anonymizer [27] is a simple solution that provides
sender anonymity, using a trusted proxy. The Anonymizer
replaces information in the packet headers to spoof the IP
address of the sender. Obviously, the proxy server must be
trusted not to track all user activities, and hence, it is a single
point of failure.

Mixminion [10] is based on mix nets, i.e., on the reshuf-
fling encrypted messages for sender anonymity. Receiver
anonymity is based on a nym server. Although Mixminion
makes use of noise traffic between mixes, it does not use
end-to-end noise and thus is susceptible to long-term cor-
relation attacks of a global adversary. Tor [11], Hordes [23]

and Torsk [18] and HORNET [6] are systems based on onion
routing [14]. They employ application layer overlay routing
and public key cryptography, to provide sender anonymity.
However they do not provide unlinkability and are not secure
against a global passive observer who can trace packets and
mount traffic analysis attacks.

Crowds [19] is a system based on blending user traffic into
a crowd of other users, making it difficult for an eavesdrop-
per to tell whether the user is the actual sender, or a router
of a message. The system provides only sender anonymity,
since the receiver must be known to all intermediate nodes.
In Tarzan [13] and MorphMix [21], all participants gener-
ate their own traffic, or relay traffic for others using layered
encryption. However both systems encounter some practical
problems [9,26].

Systems based on broadcasting are generally known to be
secure against active attacks on traffic, for instance water-
marking attacks into traffic flows. Bitmessage [28] is a
peer-to-peer system that allowsusers to send and receivemes-
sages by subscribing to broadcasts and provides sender and
receiver anonymity. As with BAR, all users receive all broad-
cast messages. However in Bitmessage each user decrypts
every received message, without leveraging the Filter
mechanism of BAR. Moreover it is only intended for anony-
mous email exchange and may not be suitable for real-time,
low end-to-end latency communications.

123

Broadcast anonymous routing (BAR): scalable real-time anonymous communication 325

Dissent [7] offers sender, receiver and sender–receiver
anonymity, using dc-net and verifiable shuffle algorithms to
transmit variable-length messages. Verdict [8] is also based
on the verifiable dc-net primitive. It uses zero-knowledge
proofs of knowledge to proactively exclude misbehaving
users before jamming the communication. The proactive
exclusion of insider disruption attacks relieves the system
from the need to trace a disruptor after the attack; for exam-
ple in Dissent, tracing a disruptor in a group of 1000 users
will require more than 60min. In contrast to traditional dc-
net, Verdict relies on public key cryptography for message
encryption, which increases the computation cost.

Verdict is suitable for low-latency communications for
small groups of users. However it does not scale well.
According to [8], the latency for 100 users in microblogging
applications is 1 s and increases to 10s for 1000 users. BAR
has higher latency but is far more scalable, since the latency
does not depend on the number of active users, but only on the
anonymity parameters Nmin, Nmax . If we consider clusters
of size 100 users, each user would gain 100 anonymity for
a mean latency of 1.3 s. In the above example, if 10 clusters
are assumed, BAR can accommodate 1000 users capable of
communicating with each other, with the same latency.

In the Cocaine Auction Protocol [24], an efficient anony-
mous broadcast technique is proposed. Communication is
through an Ethernet or wireless medium. This protocol is
intended for local area networking environments and is not
practical for large-scale communications systems. Although
it provides full anonymity, it is susceptible to side channel
attacks.

The Buses protocol [1] is based on “bus-like” fixed mes-
sage delivery routes that can be configured for different levels
of anonymity. Different parameter settings can define differ-
ent tradeoffs between time and communication complexity.
In the original Buses protocol, the size of the bus, as well
as the need to wait for all seats (messages) to be completed
before a bus starts its route, makes the system not suitable
for scalable, real-time communications.

In [16,17], variations of practical buses protocols have
been proposed. In [17], a practical version of the buses pro-
tocol is used that maintains a fixed number of seats per user
in each bus. The protocol still suffers from scalability issues,
as the authors point out. The Taxis protocol variation [16] is
more scalable in the cost of reducing sender anonymity to
smaller sets.

The Drunk Motorcyclist Protocol [29] is a protocol pro-
viding strong anonymity properties, against a global active
adversary. Althoughmost of the otherworks cannot deal with
active adversaries, the protocol of [29] is only suitable for
connectionless anonymous messaging and not for real-time
communications.

P5 [22] is a system that aims to provide sender, receiver
and sender–receiver anonymity against a global passive

adversary. The protocol assumes a global broadcast chan-
nel, logically modeled as a broadcast tree. All participants
send fixed length messages at a fixed rate (either real or
noise). If users actually communicate they send the mes-
sage encrypted with the public key of the receiver and
every user in a broadcast channel will attempt to decrypt
all received packets. P5 uses bitmasks to balance broad-
cast costs versus anonymity: users exchange packets only
if they use an appropriate bitmask. Although P5 is scal-
able enough to support a large number of users, it requires a
root broadcast channel and thus suffers from packet loss,
if the number of active users exceeds a certain thresh-
old.

Ourwork also uses broadcast channels and is conceptually
close to [22]. However BAR is computationally more effi-
cient, by allowing users to filter out noise traffic and actually
decrypt only the packets destined for them.Moreover the use
of a mix-net-based bridge mechanism removes the require-
ment for a root broadcast channel, making BAR practical
for any number of users, provided that sufficient broadcast
servers are added. By using a selective broadcast mechanism,
BAR has lower end-to-end latency than P5, for a much lower
bandwidth. For example in [22] for 16Kbps send rate with-
out packet losses, users can gain anonymity for N = 100 by
spending 2Mbps of bandwidth, while in BAR for N = 100
and q = 0.25, users only need 0.4Mbps bandwidth for an
average connection latency 1.3 s.

6 Conclusion and future work

We have proposed an efficient, secure and scalable sys-
tem for anonymous Internet communication that provides
strong anonymity with forward secrecy against a global
eavesdropper even when there is communication failure.
The efficiency analysis shows that for N -anonymity, we can
reduce the bandwidth to a fraction q N of N by using selective
broadcast for a small increase in end-to-end communication
latency.

The system is scalable and supports anonymous com-
munication for any number of users assigned to different
clusters, using the public session keys of the built-in key
management mechanism. In future work, we plan to inves-
tigate the full distribution of the role of the BAR servers
among the users and to extend our implementation to pro-
vide a large-scale system that captures the functionality of
all the sub-protocols.

Acknowledgements The work of the first author was partially sup-
ported by the European Commission under the Horizon 2020 Pro-
gramme (H2020), as part of theOPERANDOproject (Grant Agreement
no. 653704)

123

326 P. Kotzanikolaou et al.

References

1. Beimel, Dolev: Buses for anonymous message delivery. J. Cryptol.
16(1), 25–39 (2003)

2. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or
denial of security? In: Proceedings of the 14thACMConference on
Computer and Communications security, pp. 92–102. ACM (2007)

3. Burmester, M., Munilla, J.: Lightweight rfid authentication with
forward and backward security. ACMTrans. Inf. Syst. Secur. (TIS-
SEC) 14(1), 11 (2011)

4. Chaum, D.: Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Commun. ACM 24(2), 84–90 (1981)

5. Chaum, D.: The dining cryptographers problem: unconditional
sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

6. Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.:
HORNET: high-speed onion routing at the network layer. CoRR
abs/1507.05724 (2015). http://arxiv.org/abs/1507.05724

7. Corrigan-Gibbs, H., Ford, B.: Dissent: Accountable anonymous
group messaging. In: Proceedings of the 17th ACMConference on
Computer and Communications Security. CCS ’10, pp. 340–350.
ACM, New York, NY, USA (2010)

8. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Dining in the sun-
shine: verifiable anonymous communication with verdict. CoRR
abs/1209.4819 (2012). http://arxiv.org/abs/1209.4819

9. Danezis, G., Clayton, R.: Route fingerprinting in anonymous
communications. In: Peer-to-Peer Computing, pp. 69–72. IEEE
Computer Society (2006)

10. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design
of a type iii anonymous remailer protocol. In: IEEE Security and
Privacy Symposium (2003)

11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-
generation onion router. In: Proceedings of the 13th USENIX
Security Symposium (2004)

12. Dolev, S., Ostrovsky, R.: Xor-trees for efficient anonymous multi-
cast receiption. In: Advances in Cryptology—CRYPTO’97 (1997)

13. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing
network layer. In: Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS 2002) (2002)

14. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Onion routing
for anonymous and private internet connections. Commun. ACM
42(2), 39–41 (1999)

15. Günther, C.G.: An identity-based key-exchange protocol. In:
Advances in CryptologyEurocrypt89, pp. 29–37. Springer (1990)

16. Hirt, A., Jacobson, M., Williamson, C.: Taxis: scalable strong
anonymous communication. In: Modeling, Analysis and Sim-
ulation of Computers and Telecommunication Systems, 2008.
MASCOTS 2008. IEEE International Symposium on, pp. 1–10.
IEEE (2008)

17. Hirt, A., Jacobson Jr, M.J., Williamson, C.L.: A practical buses
protocol for anonymous internet communication. In: Proceedings
of the Third Annual Conference on Privacy, Security and Trust
(PST2005), St. Andrews, New Brunswick, Canada, 12–14 Oct
2005(2005)

18. McLachlan, J., Tran, A., Hopper, N., Kim, Y.: Scalable onion rout-
ing with torsk. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, pp. 590–599.
ACM (2009)

19. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transac-
tions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

20. Ren, J.,Wu, J.: Survey on anonymous communications in computer
networks. Comput. Commun. 33(4), 420–431 (2010)

21. Rennhard,M., Plattner, B.: Practical anonymity for themasseswith
morphmix. In: Juels, A. (ed.) Proceedings of Financial Cryptogra-
phy (FC ’04), pp. 233–250. Springer-Verlag, LNCS 3110 (2004)

22. Sherwood, R., Bhattacharjee, B., Srinivasan, A.: P5: a protocol for
anonymous communications. J. Comput. Secur. IOS Press 13(6),
839–876 (2005)

23. Shields, C., Levine, B.N.: A protocol for anonymous communica-
tion over the internet. In: Proceedings of the 7th ACM Conference
on Computer and Communications Security (CCS-00), pp. 33–42.
ACM, New York (2000)

24. Stajano, F., Anderson, R.J.: The cocaine auction protocol: On the
power of anonymous broadcast. In: Pfitzmann,A. (ed.) Information
Hiding, Lecture Notes in Computer Science, vol. 1768, pp. 434–
447. Springer (1999)

25. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.,
Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Trans. Netw. 11(1),
17–32 (2003)

26. Tabriz, P., Borisov,N.: Breaking the collusion detectionmechanism
of morphmix. In: Proceedings of the 6th International Confer-
ence on Privacy Enhancing Technologies. PET’06, pp. 368–383.
Springer-Verlag, Berlin, Heidelberg (2006)

27. The anonymizer. https://www.anonymizer.com/
28. Warren, J.: Bitmessage: A peer-to-peer message authentication and

delivery system. white paper (27 Nov 2012), https://bitmessage.
org/bitmessage.pdf (2012)

29. Young,A.L., Yung,M.: The drunkmotorcyclist protocol for anony-
mous communication. In: Communications and Network Security
(CNS), 2014 IEEE Conference on, pp. 157–165. IEEE (2014)

123

http://arxiv.org/abs/1507.05724
http://arxiv.org/abs/1209.4819
https://www.anonymizer.com/
https://bitmessage.org/bitmessage.pdf
https://bitmessage.org/bitmessage.pdf

	Broadcast anonymous routing (BAR): scalable real-time anonymous communication
	Abstract
	1 Introduction
	2 The BAR communication protocol
	2.1 The components of the protocol
	2.2 Registration, login and key exchange protocols
	User registration protocol
	User login protocol
	Key exchange protoocol

	2.3 The BAR communication protocol (BCP)
	2.4 E-BCP: an extension for unreliable networks
	Notation for the extended-BCP
	The extended BCP (E-BCP)

	3 Security analysis
	3.1 Sender anonymity
	3.2 Receiver anonymity
	3.3 Sender--receiver anonymity
	3.4 Session anonymity
	3.5 Forward secrecy
	3.6 Other security characteristics
	3.6.1 Resistance to positioning attacks
	3.6.2 Resistance to users with multiple identities
	3.6.3 Resistance to active traffic analysis attacks
	3.6.4 Loosening trust assumptions
	3.6.5 Distributing the role of the BAR servers

	4 Implementation and efficiency analysis
	4.1 Inter-cluster analysis
	4.2 Bandwidth optimizations: selective broadcasting
	4.3 Efficiency analysis of the E-BCP

	5 Overview and comparison with related work
	6 Conclusion and future work
	Acknowledgements
	References

