DUO-ONIONS AND HYDRA-ONIONS —
FAILURE AND ADVERSARY RESISTANT
ONION PROTOCOLS *

Jan Iwanik, Marek Klonowski, and Mirostaw Kutylowski
iwanik@im.pwr.wroc.pl, klonowsk@im.pwr.wroc.pl, Miroslaw.Kutylowski@pwr.wroc.pl

Institute of Mathematics, Wroctaw Univ. of Technology, ul. Wybrzeze Wyspiaiskiego
27, 50-370 Wroctaw, Poland

Abstract A serious weakness of the onion protocol, one of the major tools for anonymous
communication, is its vulnerability to network failures and/or an adversary try-
ing to break the communication. This is facilitated by the fact that each message
is sent through a path of a certain length and a failure in a single point of this path
prohibits message delivery. Since the path cannot be too short in order to offer
anonymity protection (at least logarithmic in the number of nodes), the failure
probability might be quite substantial.

The simplest solution to this problem would be to send many onions with
the same message. We show that this approach can be optimized with respect to
communication overhead and resilience to failures and/or adversary attacks. We
propose two protocols: the first one mimics K independent onions with a single
onion. The second protocol is designed for the case where an adaptive adversary
may destroy communication going out of servers chosen according to the traffic
observed by him. In this case a single message flows in a stream of K onions
— the main point is that even when the adversary kills some of these onions, the
stream quickly recovers to the original bandwidth — again K onions with this
message would flow through the network.

Keywords: Anonymity, onion protocol, adaptive adversary

1. Introduction

Protocols for anonymous communication in computer networks attracted a
lot of interest. Their importance increases together with growth of the threats
in public networks. Many solutions were proposed, such as Chaum’s DC-Nets
(Chaum, 1988) and many variations of MIXes (Chaum, 1981). DC-nets pro-

*Partially supported by KBN scientific project 2003-2005 — grant number 0 TOOA 003 23

2 Jan Iwanik, Marek Klonowski, and Mirostaw Kutylowski

vide information-theoretic security, but computational overhead is very high.
For this reason, this solution is not regarded as practical for large scale appli-
cations. The second major proposal are Onions described in (Rackoff, 1993)
for the very first time. In fact, it is based on idea of MIXes introduced in
(Chaum, 1981). Anonymous communication based on onions is scalable and
in certain scenarios meets very high demands on privacy (in other scenarios it
provides essentially no protection). In order to provide anonymity, a message
is sent not directly from the source to the destination, but through a path of
randomly chosen nodes, where each node recodes the message with cryptogra-
phic tools, so that one cannot see any relationship between different versions of
the same message. This protocol has many possible variants, see for instance
(Freedman, 2002). Onions are the crucial component of Onion Routing (see
for instance (Syverson, 1998) as a starting reference point).

1.1 Provable Security of Onion Routing

In certain scenarios one can really prove that onion protocol is secure, even
if the adversary traces all traffic. The first rigid mathematical analysis was
provided in (Rackoff, 1993). However, the authors assume that a large number
of onions are sent at the same time and that the choice of intermediate nodes
is somewhat restricted. The result, very interesting from theoretical point of
view, is not sufficient for practical applications — security is guaranteed only
for the onion paths which have a length that is polylogarithmic in the number
n of servers (with a two-digit exponent). The last problem can be avoided by
using another estimation (Czumaj, 1999) — the path length can be reduced to
O(log? n).

A major breakthrough has been achieved by the change of adversary model
in (Berman, 2004) — it is no longer assumed that the adversary can see all
the traffic, but only a certain fraction of it. Even if some preferences of the
users are known to the adversary, it is shown that the onion protocol does
not reveal information through traffic analysis. Neither assumptions about the
number of onions nor special addressing limitations are necessary. The path
length required is a small degree polynomial in logn. Finally, we have proved
(Gomutkiewicz, 2004) that a path length of O(logn) is sufficient (which is
optimal).

1.2 Drawbacks of Onion Routing

A systematic overview of adversary scenarios and their capabilities in real
live situations was presented in (Syverson, 2000). The security proofs, men-
tioned above, should not give us any illusions that the onion protocol is secure
in all circumstances. There is a number of tricks that can be used here, based

DUO-Onions and Hydra-Onions 3

on the fact that connections are not static, exist over a certain time, and that the
users have a certain behavior.

A timing attack exploits the fact that closing (resp. opening) a connection
causes disappearing (resp. emerging) of one link both at the source and the des-
tination. Monitoring these two hosts reveals immediately that the connection
has closed (opened) without any complicated traffic analysis. A predecessor
attack (Wright, 2003) is a refinement of this technique. An intersection at-
tack (Berthold, 2000) may occur for instance when a user fetches a certain
Web page (in an anonymous way) every time he starts a browser. An adver-
sary records the users that are active at the time when this page is requested.
The user in question appears quite often in these records. .. New attacks, also
sophisticated ones, may emerge.

1.3 New Results

In this paper we propose how to deal with two problems. The first problem
are node failures in the network. If a path of an onion goes through a node
that is down, the message encoded inside the onion cannot be delivered. This
is a consequence of the fact that private keys of the node that is down must
be used to decode the message and to find out the next node on the path. In
Section 3.1 we show that this is not a serious problem, since at each level we
can encode alternative nodes through which the onion can be processed. Last
but not least, this protocol is as secure as the original protocol in a passive
adversary scenario considered in (Berman, 2004).

The second problem considered here is an adversary who can eavesdrop a
certain fraction of the communication lines at each step; based on this informa-
tion he may destroy all messages sent by arbitrarily chosen servers at the next
step (however, the number of such servers is bounded). Of course, the original
onion protocol is in a hopeless situation against such an adversary: he simply
kills the onions one by one (not caring about their contents and destinations).
In Section 3.2 we show how to cope with this problem. We propose a protocol
such that K onions encoding a message m travel in parallel through the net-
work. A major point in the construction is a mechanism that enables the stream
of K parallel onions to self-recover, even if the adversary succeeds in killing
all but one onion transporting m. The recovery mechanism must be not too ag-
gressive, since the traffic induced may reveal to the adversary the points where
the same message m is located. Then the recovery would bring more harm
than profit: the adversary could destroy all messages transporting m. For this
reason we propose a method that uses sparse communication, which is harder
to be detected. In Section 3.2 we discuss shortly graph theoretic motivation of
our solution.

4 Jan Iwanik, Marek Klonowskz', and Mirostaw Kutylowski

2. Onion Protocol and Anonymity

2.1 Classical Onions

We consider a network with n servers, where each pair of servers may com-
municate directly. Each server has a pair of a public and a private key, all
public keys are widely accessible.

Let us recall the onion protocol in one of the simplest versions. Assume that
a message m has to be sent from node A to node B. For this purpose node
A chooses at random A intermediate nodes, say, J1, ..., Jx (they need not to
be distinct) and random strings 71,72, ...,7 x+1. Then A builds an onion O
encoding m using the following recursive formula (Encx means encryption
with the public key of X):

O,\ = EncB (m, 7‘,\+1)
0; = EHCJi (Ji—Ha Oi+1, 7'i+l) fori < A
0O = O

Then O is sent by A to J;. Node J; decrypts the message with its private key.
The plaintext obtained contains Jp, the name of the next server on the path,
and O, — the message to be sent to Jo. This is like peeling off the onion O;:
we remove the out-most layer and forward the subonion obtained to the next
server. This process of peeling off is repeated at each subsequent server until
B gets finally the message m.

The idea behind is that each server J; cannot see what is the contents of the
subonion it sends to the next node — decryption of O;4; requires knowledge
of the appropriate private keys. So J; cannot see the destination of the mes-
sage for the subonion it possesses. However, note that additional measures are
necessary to protect anonymity of communication. For instance, without the
random strings 7; the following simple attack could be carried out: an adver-
sary traces outgoing communication from J;41. When he detects a message Z
sent from Jj41 to server U he checks whether O; 1 = Ency (U, Z). If it is so,
then U = Jj42. This test can be carried out for each single step, so finally the
adversary could detect the destination of the message encoded in O; without
breaking encryption scheme used.

In fact additional measures are necessary. For instance, the size of the pack-
ets sent could betray the path along which m is sent. So the encoding must be
combined with appropriate padding (Chaum, 1981).

2.2 Adversary Models

There are many different models for an adversary who tries to break the
onion scheme. This is a major issue, since a protocol resilient to attacks in
one model might be vulnerable in another one. Also, too strong and unrealistic

DUO-Onions and Hydra-Onions 5

assumptions about the adversary may lead to difficulties in showing security
relevance of a protocol.

A passive adversary. A passive adversary may only eavesdrop mes-
sages transported along the network. We assume that the cryptographic encod-
ing is strong enough, so the only information available is where and when the
messages have been sent. 1t is often assumed that additionally an adversary
may get information from a constant fraction of the servers.

There are few variants of the passive adversary:

1 Rackoff-Simon model: all communication lines can be traced by an ad-
versary (Rackoff, 1993)

2 Berman-Fiat-Ta-Shma model: only a constant fraction of communica-
tion lines can be traced (Berman, 2004); these lines are determined in ad-
vance (with possibility that at each step a different set of lines is tapped),

3 the same as above, but the adversary can adaptively change his choice
based on the traffic observed till this moment.

The second case is that an adversary is active and can get control over some
number of servers. In this case the adversary may detour a subonion: instead
of sending it directly to the next node J;41, a malicious server can encapsu-
late it with additional layers and send to J;4; through a path of additional
servers. This kind of attack can be traced by attaching some encoded confir-
mation that can be checked by the recipient of the message. Another idea is
to send again the same subonion and trace where we can see subonions that
have already appeared in the network. Repetitions reveal a path of the mes-
sage traced. Through careful monitoring all the traffic such an attack can be
detected, but it is unrealistic that the routers store and check all messages pro-
cessed. As a defense one can use time stamps inside the packet (Kesdogan,
1998) — the subonions that do not arrive in predicted interval of time are imme-
diately rejected. However, even with this approach not all problems are solved.
A malicious server can postpone for a short moment all incoming traffic except
one message. In place of the postponed onions it sends his own bogus mes-
sages with known routes ((n — 1) — attack from (Kesdogan, 1998)). Then
analyzing the traffic is much easier: many routes are known by the adversary.

We consider the model of an adversary who removes the packets (either due
to faults or with the aim to bring chaos into communication). This is a great
problem: in the network with n/log n malicious servers and A = logn each
packet gets killed with probability £2(1).

2.3 Vertex mixing vs. layer mixing

The adversary model has a big impact on the anonymity mechanism. The
original idea of Chaum is that when at the same time two or more onions get

6 Jan Iwanik, Marek Klonowski, and Mirostaw Kutylowski

BEFORE MIXING AFTER MIXING

Figure 1. Vertex mixing: what an adversary can see.

into the same server that is not under the adversary’s control, then this node
acts as a mix: no relationship between incoming and outgoing onions can be
found by an external observer. The problem is that if number of onions is
moderate the chances that a given onion meets another onion are small. So a
large number of onions is necessary to hide their routes.

In (Berman, 2004) Berman et al. pointed to this weakness and introduced
“layer mixing” (to distinguish it from the “vertex mixing” discussed above).
It is based on the assumption that an adversary may eavesdrop only a con-
stant fraction of all communication lines. Then some number of onions are
processed through hidden communication lines. Even if the adversary knows
which nodes have received these messages, they are perfectly mixed. So the
probability of mixing the messages within a layer of the protocol gets substan-
tially larger.

3. K-Onion and Hydra-Onion Protocols

In this section we present modifications of the onion protocol that are aimed
to make it robust against communication failures. Two kinds of failures are
considered. Either the faults occur at random, or an adversary observes the
traffic and tries to hit vulnerable points.

A general idea is that alternative routes for an onion are provided. At each
hop, there is not one but at least two servers that may process the onion. So if
one destination fails, the message can be sent to another destination.

3.1 DUO-0Onions for Random Server Faults

3.1.1 Protocol Description. First we are concerned with random
communication failures. All participants use a symmetric encryption scheme
SEn. Let SEng stand for symmetric encryption with key & and Enc x for en-
cryption under public key of X.

DUO-Onions and Hydra-Onions 7

The simplest version of the DUO-Onion protocol looks as follows: in order
to send a message m to node B, node A chooses at random A intermediate
pairs of nodes, say, (J1,1,J1,2), - - -, (Ja,1,Jx,2), random strings 71, ..., Ta41,
and keys for symmetric encryption ky, ..., kj.

For each 7, we demand that J; 1 # J; 2, but the same server may be chosen to
more than one pair. The onion DO is built via the following recursive formula.

DOy = (EncB(kz\-i-l)’ SEnkA+1 (m7"')\+1)))
DO; = (EnCJi,l (ki+1’ 1)1 EnCJi,z (ki+1, 2)7

SEng, ,, (Jit1,15 Jit1,25 DO,-H,T,-H)) fori < A,
DO = DO;.

The onions are processed in the following way: at a stage 1, either J; 1 or J; 2
has DQ;. First, using its private key, it retrieves k;y1 either from Enc, | (Ki41)
or from Ency, ,(ki+1). Then, with k;,; it deciphers the third part of DO,
getting Ji11.1, Jit1,2, DO;iy1. Then it tries to contact J;4 1. If it is down, it
contacts J;11,2. Then it sends DO; 1 to the server which has responded. If no
server responds, the transmission of the onion dies.

K -Onions Protocol works analogously — we have K possible destinations
during a single hop instead of two.

A certain drawback is that each K -subonion contains K ciphertexts of the
same symmetric key. However, this is not a problem since we expect to use
only small values of K.

3.1.2 Delivery Probability. In this section we check that K-
Onions are more efficient than just sending the same messages for many times.
Let us assume that 7 out of n servers executing the onion protocol are down.
Since the onion paths are chosen at random, the location of these servers does
not matter. Let P(\, k) denote the probability that a random k-onion reaches
its destination server.
For the case of the classical onion protocol we get

POGY) = (25) = (1= 5)*
where A denotes the length of the onion path. Choosing A = clogn (which is
a secure length for an adversary eavesdropping a constant fraction of commu-
nication (Berman, 2004)), we get P(X,1) = (1) forr = O(n/logn).
For k-onions we get:

P = (D) = (5 S5 = -0

(2) nn—1" " ""n—-k+1

8 Jan Iwanik, Marek Klonowski, and Mirostaw Kutylowski

For A = clogn, we get P(\, k) = Q(1) for r = O(n/ £/logn). For practical
values of n, we may assume something like logn < 30, so for £ = 5 we get

Viogn < 2.

On the other hand, it is worth to say that it does not make sense to take large
k, since the ratio between P(A, k) and P(A, 1) grows, but the rate of growth
goes down. The biggest change occur for ¥ = 2 and k = 1. Namely,

PAK) (1= (r/n)**
P(M1) (m)
— ((1_7'/71)(1 +7‘/n+(r/n)2+.._+(r/n)k—1)))\

1—r/n
= (I+7r/n+ /4. .+ /) D= (1 +r/n).

Practical example. Let us consider a network consisting of n servers
where the number of faulty servers equals 7 = 0.3n and the path’s length
A = 3. In this case the usual onion reaches its destination with probability
P(3,1) = 0.34 while P(3,2) = 0.75 and P(3,3) ~ 0.92.

3.1.3 Anonymity Issues.

Unlinkability. For an external adversary analyzing the traffic the k-onion
protocol behaves just as the original onion protocol. So the results from (Ber-
man, 2004) do apply. .

On the other hand, the naive solution of sending the same message us-
ing multiple onions going through different routes may lead to weakening
anonymity — traffic analysis might be facilitated by the fact that for each pair
(sender, destination) there is a prescribed number of paths.

Adaptive attacks. A malicious server J; , may send the subonion
DO;41 to Jiy1,2 instead of Jiy11, if Ji12 collaborates with J; 4. This en-
ables them to reduce a little bit the unknown parts of the onion paths. By using
similar arguments as in (Gomuikiewicz, 2004), one can show that it has the
same effect as increasing the number of malicious servers by a constant factor.

On the other hand, a malicious server may start a small repetitive attack: it
sends DO;y1 both to J;11,1 and Ji1,2. Then both of them send a message
to the same server — in this way the adversary may identify the server used on
step ¢ + 2. On the other hand, the attack and the malicious server would be
detected easily, so the attack is not attractive for the adversary.

Note that this trick does not reveal any useful information to the adversary
— the only case in which the adversary obtains additional knowledge is when
Ji+1,1 1s malicious and pretends that it is down. The only knowledge he may
gain by tracing communication sent by J; 4 is the name of J;11 . This knowl-

DUO-Onions and Hydra-Onions 9

edge is of no advantage for him, since he may get the names of J;;21 and
Ji+2,2 by executing the protocol without any tricks.

3.2 Hydra-Onions — Fighting against Active
Adversaries

Now we assume that the adversary traces a constant fraction of all commu-
nication lines and once it identifies the servers holding the same message, it
blocks the outgoing communication from these servers. Of course, it is neces-
sary that a message is transmitted via many routes — otherwise the adversary
would win by simply killing the messages one by one.

The general idea is that we send a stream of messages encoding the same m.
At each moment we have k subonions corresponding to m (provided that the
adversary has not succeeded to kill some of them). Since the adversary may
kill some of the subonions, we propose a mechanism that enables the stream to
regenerate quickly, so that again we a have k subonions corresponding to m.

The construction must be careful, since a stream of messages encoding the
same message may facilitate traffic analysis.

3.2.1 High Level Protocol Description. Assume that A has
to send a message m to B. Then K intermediate nodes J; 1, J; 2, ..., J; k are
chosen by A for each 7 < A. The main change to the previous protocol is
that each of the servers J; 1, J; 2,. .., J; x sends the onion to two servers from
the list Jit1,1,- .., Jiy1,x. Namely, J; ; sends a subonion to J;;1 ; and to a
randomly chosen server J; 1 q(j) Where a(j) # j. The choice of a(j) is made
by A during onion construction.
In this way we achieve the following goals:

= since random bipartite graphs have expansion properties, if only a frac-
tion of servers J;1,J;2,...,Ji k received the subonion encoding m,
after step 7 + 1 the fraction of servers J 11, Jit1,2,- .-, Jit1,x holding
a subonion encoding m increases with high probability;

= sending a copy of the subonion from each J; ; to all servers J;11,1,J541,2,

.., Ji+1,x would guarantee immediate recovery of the whole stream

of K copies of subonions containing m. However, the communication

pattern could betray that certain servers are holding a subonion corre-

sponding to the same message. This could make killing m much easier.

A sparse communication pattern proposed does not reveal such informa-
tion to the adversary.

3.2.2 Protocol Description. For the sake of simplicity we de-
scribe and discuss the protocol for K = 3. Server A builds an onion RO via

10 Jan Twanik, Marek Klonowski, and Mirostaw Kutytowski

the following recursive formula:

RO, = (Encp(kxt1), SEng,y ., (M, ma41))
RO; = (EnCJ,-,1 (Kit1,1,mig1,1), Ency, o (Kig1,2, miga,2), Bncy, 5 (Kiy1,3,Ti41,3),
SEnk;yy (Jit1,1, Jit1,a01)s Kiga),
SEnk, 1, 5 (Ji+1,2, Jit1,0(2)5 k£+1),
SEnk, ;15 (Ji+1,3, Jit1,0(3)1 k£+1),
SEng,, (RO;11)) fori < A
RO =RO;

In this protocol it is not the case that subonions are sent. Namely, when a
server J has to send RQO; to server J', then RQ; is encrypted together with a
random nonce with a public key of J' before it is sent to J’. Alternatively, we
may use a probabilistic asymmetric encryption scheme (such as ElGamal) for
encapsulating RO;.

Let us describe how a subonion is processed. Assume that J receives an
(encapsulated) subonion RQO;. Then J decodes R(O; and deciphers the first
three components of RQO; with the private key of J. In this way, J obtains
three symmetric keys k, k', k”. Then J deciphers the 4th, the Sth and the 6th
components of R(O; with the keys, respectively, k, k', and k”. In one case,
J obtains the valid key &, and the names of two servers J', J" for the next
hop. (If necessary, we may include some characteristic string in the plaintext
in order to detect easily which of the keys &, k', and k" is valid.) Having k§+1,
server J deciphers the last component of RO; and retrieves RO; ;. Then J
encapsulates RO, as described above and sends the results to the servers J’
and J”, respectively.

3.2.3 Recovery Properties. Assume that the adversary is not
blocking the communication at the moment and there is only one server with
a subonion holding m. Then after one step we get 2 servers with a subonion
holding m with probability 1. If there are already two servers keeping subo-
nions with m, then after one step we have still 2 such servers with probability
% and 3 such servers with probability ;i—. Since the numbers a(j) are chosen
independently at random, our experiment corresponds to Bernoulli trials with
success probability %. So there is no success within ¢ trials (meaning that we
have still only 2 servers holding m) with probability 5%;

For the case when K > 3 the arguments are more tedious. However, let
us point that the following Markov chain S converges quickly. The states of
S are nonempty subsets of {1,..., K}. The transition function of S can be
described as follows: let U be the current state of S; then for each a € U

DUO-Onions and Hydra-Onions 11

choose independently at random an element r(a) € {1,...,K} \ {a}. Then
the new state of S is the set U U {r(a)|a € U}. Due to expansion properties
of random graphs, the chain S converges quickly to the state {1,...,K}. We
skip further discussion on this problem, since we think that small values of
K are most important and for these values the convergence rate can be easily
estimated.

3.24 Resilience to Attacks. As mentioned, an adversary who
analyzes the traffic at step ¢ may locate the servers holding the same message
m and kill all packets sent from servers holding m at step ¢ + 1. In this way
m would disappear, even if the adversary does not know the contents and the
destination of m.

We assume, as in (Berman, 2004), that the adversary may eavesdrop only a
constant fraction of communication lines. Recall (Berman, 2004) that servers
Jiy...,dm and Ji,..., J}, form a crossover structure, if no communication
line (Jq, J;) for a,b < m is eavesdropped by the adversary. The number m
will be called crossover size.

The ideal situation is when the servers J; 1,...,J; g and Jiy11,...,Jiy1,x
from the definition of an onion RO form a crossover structure at step 7. Then
the adversary has no trace that they belong together to a certain message m.
What is the probability that such a case occurs? It is hard to answer this ques-
tion: the adversary may adopt some clever strategy to choose the links eaves-
dropped so that as few as possible crossover structures occur. It turns out that
there are graph theoretical limitations on the adversary. Noga Alon (Alon,
2001) (Corollary 2.1) shows the following result:

LEMMA 1 For every fixed € > 0, and every fixed integer t > 0, and for any
graph G with n vertices and at least en? edges, the number of subgraphs of G
isomorphic to Ky (bipartite complete graph with t vertices on each side) is at

least: % (1;) (Z) (2E)t2'

In our case we say that an edge (J, J') belongs to G, if the communication
link between j and J’ is not eavesdropped by the adversary. The main point in
Lemma 1 is that a lower bound on the number of crossover structures does not
depend on the structure of G, that is, on the strategy of the adversary.

In order to examine the case K = 3, let us note the following: the proba-
bility that J; 1, J; 2, Ji 3 and Jiy1,1, Jiy1,2, Jit1,3 form a crossover is at least
£2/210 for a fraction f of links that are not under the adversary’s control. In
this case the probability that the adversary kills all packets holding the message
processed by these servers is about (r/n)3, where r is the number of servers
that can be blocked at step 7 + 1.

12 Jan Iwanik, Marek Klonowski, and Mirostaw Kutytowski

Ji3 Jit1,3 Jiz ® ®Jii13 Jiy1,3

Ji2 Jit1,2 Jio @ 0Jii12 ; >0Ji112

Ji,1 Jit1,1 Ji,1 @ ®Ji11 Jit1,1

(a) communication (b) crossover (c) adversary’s
pattern view

Figure 2. Crossovers of size 2 and the viewpoint of the adversary.

The adversary may be in trouble even if no crossover of size 3 occurs.
With probability at least f4/28 a crossover of size 2 is formed by two of
the servers from J; 1, J; 2, J; 3, say J; z,, Jiz, and by two of the servers from
Jit1,z15 Jit1,2,- By a simple case inspection (see also Fig. 2) we can check
the following fact:

LEMMA 2 Assume that a crossover of size 2 is formed by two servers J; z,,
Jizy from the list J; 1, J; 2, J; 3 and by two of Jit1,¢,, Jit1,a,- Then for every
choice of a(1),a(2), a(3), the communication lines between J; 1, J; 2, J; 3 and
Jiv1,1, Jit1,2, Jit1,3 where the adversary observes a traffic corresponding to
message m does not form a connected graph.

The meaning of Lemma 2 is that when a crossover of size 2 occurs, then
the adversary cannot link together the nodes Jii1,1, Jit1,2, Jit+1,3 — at least
one of then is an orphan. Since we expect that there are many such orphans
the adversary is in trouble: killing m will succeed only if all three servers
Ji+1,1, Ji+1,2, Ji+1,3 are blocked.

For larger parameters K, the adversary should be even more confused (we
postpone the analysis to the full version of the paper). Let us explain some
intuitions behind. For the moment even assume that the adversary knows the
relationships of the kind J; ; — J;41,; and that these relationships are the same
for each onion. We draw a directed additional link multi-graph A describing
step ¢. It has m vertices, with vertex j representing the jth server. We draw
an arc JF in A when at step ¢ server J sends a message to F', where F' is the
“second location” indicated by function a. Let us consider the arcs related to

DUO-Onions and Hydra-Onions 13

processing the same onion. Since each node has out-degree at most 1, we get a
subgraph of A with some specific properties (see Fig. 3): there are exactly K
arcs, each connected component contains a single circle and some number of
directed paths leading to the circle. The unlucky case for the adversary is when
there is more than one connected component in this graph — the adversary can-
not link the servers appointed to the same message provided that there many
other components due to other messages. It is known that for large K the size
of largest connected component divided by K is a random variable with prob-
ability distribution that converges with K to a Poisson-Dirichlet distribution.

However, even if there is exactly one component, the adversary might be in
trouble, since we assume that the adversary does not eavesdrop all communi-
cation links, but only a certain fraction of them. In this case the graphs such
as depicted in Fig. 3 get disconnected, since the adversary does not know the
status of a constant fraction of communication lines (see Fig. 4).

4. Conclusions and Open Problems

We disregard the problem of different degrees of vulnerability of the servers
and communications lines. However we should be "able to assign different
elements of the network different probabilities of failure or corruption by an
adversary. It is yet unclear how to adopt the onion protocols to this situation.

14

Figure 3.

Figure 4.

Jan Iwanik, Marek Klonowski, and Mirostaw Kutytowski

Example arcs in A4 corresponding to the same message.

Adversary point of view for the situation depicted by Fig. 3.

References

Alon, N. : Testing Subgraphs in Large Graphs. ACM-SIAM FOCS 2001, 434-439.

Berman R., Fiat A., Ta-Shma A.: Provable Unlinkability Against Traffic Analysis. Accepted for
Financial Cryptography 2004.

Berthold, O., Federrath, H., Kohntopp, M.: Project “Anonymity and Unobservability in the In-
ternet.” Workshop on Freedom and Privacy by Design / CFP2000, ACM, 2000, 57-65.

Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. CACM
24(2) (1981) 84-88.

Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untrace-
ability. Journal of Cryptology 1(1) (1988), 65-75.

Czumaj, A., Kanarek, P., Kutytowski, M., Lory$ K.: Distributed Stochastic Processes for Gen-
erating Random Permutations. 10 ACM-SIAM SODA, 1999 271-280.

Freedman, J., Sit, E., Cates, J., Morris, R.: Introducing Tarzan, a Peer-to-Peer Anonymizing
Network Layer Ist International Workshop on Peer-to-Peer Systems (IPTPS02), Lecture
Notes in Computer Science 2429. Springer-Verlag, 2002, 121-129.

Gogolewski, M., Kutytowski, M., buczak, T.: Distributed Time stamping with Boomerang
Onions. Manuscript.

Gomutkiewicz, M., Klonowski, M., Kutytowski, M.: Provable Unlinkability Against Traffic
Analysis already after O(log(n)) steps!. Manuscript, 2004.

Kesdogan D., Egner J., Biischkes R.: Stop-and-Go-MIXes Providing Probabilistic Anonymity
in an Open System. Information Hiding 98 Lecture Notes in Computer Science 1525.
Springer-Verlag, 83-98.

Syverson P. F.,, Reed M. G., Goldschlag D. M.: Private Web Browsing. Journal of Computer
Security Special Issue on Web Security 5 (1997) 237-248.

Syverson P. F,, Reed M. G., Goldschlag D. M.: Anonymous Connections and Onion Routing.
IEEE Journal on Selected Areas in Communication. 16(4) (1998) 482-494.

Syverson, P., Tsudik, G., Reed, M., Landwehr., C.: Towards an Analysis of Onion Routing
Security. Workshop on Design Issues in Anonymity and Unobservability, July 2000.

Rackoff C., Simon D.R.: Cryptographic Defense Against Traffic Analysis. 25 ACM Symposium
on Theory of Computing (1993) 672-681.

Wright, M., Adler, M., Levine, B., Schields, C.: Defending Anonymous Communication Against
Passive Logging Attacks. IEEE Symposium on Security and Privacy 2003, IEEE Computer
Society, 28-38.

