
First CPIR Protocol with Data-Dependent
Computation

Helger Lipmaa1,2

1 Cybernetica AS, Estonia
2 Tallinn University, Estonia

Abstract We design a new (n, 1)-CPIR protocol BddCpir for `-bit
strings as a combination of a noncryptographic (BDD-based) data struc-
ture and a more basic cryptographic primitive (communication-efficient
(2, 1)-CPIR). BddCpir is the first CPIR protocol where server’s online
computation depends substantially on the concrete database. We then
show that (a) for reasonably small values of `, BddCpir is guaranteed
to have simultaneously log-squared communication and sublinear online
computation, and (b) BddCpir can handle huge but sparse matrices,
common in data-mining applications, significantly more efficiently com-
pared to all previous protocols. The security of BddCpir can be based
on the well-known Decisional Composite Residuosity assumption.
Keywords. Binary decision diagram, computationally-private informa-
tion retrieval, privacy-preserving data mining, sublinear communication.

1 Introduction

(Single-database) computationally-private information retrieval (CPIR) is one
of the most basic cryptographic protocols in the client-server setting. More pre-
cisely, in an (n, 1)-CPIR protocol, the client retrieves an element chosen by him
from server’s n-element database of `-bit strings, so that the server obtains no
knowledge about which element was transfered. It is always required that the
total communication of the CPIR protocol be less than n` bits. CPIR protocols
constructed in [18,12] are almost optimally communication-efficient. Unfortu-
nately, in all prior nontrivial CPIR protocols, the server’s online computational
complexity is Ω(n) public-key operations. Thus, in most of the applications, one
is restricted to databases of size say n = 210, which makes computation-efficiency
the main bottleneck in deploying CPIR protocols in practice.

In the case of multiple servers, [3] constructed several sublinear-computation
information-theoretically private information retrieval protocols. They posed as
an open problem to design a sublinear-computation single-server CPIR proto-
col. This goal has remained so elusive that many researchers have claimed linear
computation to be lower-bound for any CPIR, see for example [5, Sect. 1.2], [6,
Sect. 2.3] and [12, Sect. 3] for just a few examples. Based on empirical re-
search, Carbunar and Sion [6] argued that in the foreseeable future all linear-
communication CPIR protocols will be at least one order of magnitude slower
than the trivial CPIR protocol, where the server just transfers the whole
database to the client.

2 Helger Lipmaa

Our Contributions. Up to now, one has considered CPIR to be a basic prim-
itive where the server does a fixed amount of work that does not depend on her
concrete database. We show that one can efficiently combine noncryptographic
data preprocessing with the cryptographic protocol, such that the combination
is still secure and at the same time more efficient than the prior work. (In fact
it is clear that without preprocessing, the server has to do some online work
with every database element.) This in particular shows that (n, 1)-CPIR is not
a monolithic cryptographic primitive per se but can be seen as a combination of
a “noncryptographic” data structure (in our case, based on binary decision dia-
grams) and a more basic cryptographic primitive (in our case, a communication-
efficient (2, 1)-CPIR). In our opinion, this presents a significant paradigm shift.

Now, let x be the client’s index, let f = (f0, . . . , fn−1) be the server’s
database. In the new (n, 1)-CPIR protocol BddCpir, we write down an optimized
BDD for the function f , f(x) := fx, and then use the PrivateBDD protocol [14]
to cryptocompute f . We describe an optimized version of it in Sect. 3 in full
detail. In particular, [14] assumed that a strong oblivious transfer protocol is
used in every node. We show that a (2, 1)-CPIR protocol can be used instead.
Our variant of the PrivateBDD protocol also has communication that is linear
in the length len(F) of the constructed BDD. More precisely, when using Lip-
maa’s (2, 1)-CPIR protocol from [18], the communication complexity of BddCpir
is proportional to |x| · (|f(x)|+ len(F)); see Sect. 3. Server’s online computation
in BddCpir is dominated by size(f) public-key operations, where size(f) is the
size of the BDD that corresponds to server’s fixed input f . This should be con-
trasted to more general two-party computation protocols where the computation
is dominated by the size of the (say) circuit where server’s input f is a variable.

After that, we present two different applications. First, for ` = 1, we show
that in BddCpir, server’s online computational complexity is upperbounded by
(1+o(1))n/ log2 n public-key operations, while the communication complexity is
Θ(k · log2 n), where k is the security parameter. The offline computational com-
plexity of this variant of BddCpir is O(n) non-cryptographic operations, while
setting up the data structure, and Õ(t), when t elements are updated. Alterna-
tively, this result shows that one can implement secure function evaluation of
any f : {0, 1}m → {0, 1} with communication complexity O(m2 · k) and server’s
online computation O(2m/m). This means that say for databases of size 214,
about 7 times less public-key operations in the worst case are needed than in
Lipmaa’s (n, 1)-CPIR from [18]. Importantly, the new protocol has exactly the
same communication complexity as Lipmaa’s CPIR. In general (and again in
the worst case), about 4 to 8 times larger databases can be handled than with
Lipmaa’s (n, 1)-CPIR in the same time, which brings us closer to the practical
deployment of (n, 1)-CPIR protocols. Moreover, for any `, one can construct a
CPIR protocol with communication complexity Θ(` · log n+k · log2 n) and online
computation of Θ(n`/(log n+log `)) public-key operations. Thus, if ` = o(log n),
then BddCpir has still guaranteed sublinear online computation.

However, clearly, the BDD depends on the concrete database. If the databases
are well-structured, then one can decrease the computation much more. We show

First CPIR Protocol with Data-Dependent Computation 3

that if the database is sparse, with c � n non-zero elements, the BddCpir pro-
tocol has the same communication complexity as before, but its online computa-
tional complexity is reduced to ≈ c · log2 n. This version of BddCpir can be used
in any of the innumerable privacy-preserving data-mining applications that deal
with huge (say, 10 000 times 10 000) but very sparse Boolean matrices. Here,
linear-time CPIR protocols are clearly not applicable. However, if the matrix
is very sparse, then one can efficiently present the matrix as a BDD, and then
apply BddCpir. As an example, the BddCpir protocol can handle 20 000×20 000
permutation matrices about 700 times faster than linear-time CPIR protocols.
Moreover, representation as a BDD does not necessarily carry with itself ad-
ditional cost, since many common data-mining subroutines can be efficiently
performed on BDDs [9]. We emphasize that this example is important: the main
reason why cryptography-based privacy-preserving data mining has not taken off
is the utter inefficiency of existing cryptographic methods in handling huge but
structured data. Instead, one uses insecure but severely more efficient methods,
see e.g. [1], when processing such data.

In addition, in many existing cryptographic protocols where the server has
to cryptocompute some value and then return it to the client, because of the
lack of more efficient methods, the server precomputes a database of possible
answers and then the client and the server execute an (n, 1)-CPIR protocol. In
such cases, the database has a clear structure, and thus the BddCpir protocol
can be applied.

As a separate contribution, we show how to optimize the PrivateBDD
protocol even further. In particular, we present three versions of Lipmaa’s
(n, 1)-CPIR protocol from [18] that have the communication complexity of
2` + (2 + o(1)) log2 n · k, (1 + o(1))` + (1 + o(1)) log2 n · log log n · k and
Θ(` · log n/ log log n+k · log2 n/ log log n), respectively. The balancing techniques
are applicable also in the case of the new BddCpir protocol. In particular, the
second of those results shows that the new CPIR protocol achieves optimal rate
1 + o(1) in the case of a large `, while simultaneously achieving sublinear com-
putation in the case of a large n.

In Sect. 4 we also discuss how to modify BddCpir so that it will also protect
server’s privacy, that is, to an oblivious transfer (OT) protocol in a virtually
costless way.

2 Preliminaries

Client’s input is x ∈ {0, 1}m, server’s input is a function f : {0, 1}m → {0, 1}σ`
for suitably chosen σ and `. (See the next paragraph for the precise meaning of
σ and `, in a concrete application they are chosen so as to minimize the cost of
the BddCpir protocol.) We also denote f(x) by fx, that is, we think of f as of
the characteristic function of the vector f = (f0, . . . , f2m−1). Also, n denotes the
server’s database size, and k denotes the security parameter. If A is either a set
or a (randomized) algorithm, then a← A denotes assignment of a according to
the implicit random distribution. All logarithms have base 2.

4 Helger Lipmaa

(Integer-Valued) Binary Decision Diagrams. A binary decision diagram
(BDD, or a branching program, [24]) is a fanout-2 directed acyclic graph (V,E),
where the non-terminal (that is, non-sink) nodes are labeled by variables from
some variable set {x0, . . . , xm−1}, the sinks are labeled by `-bit strings and the
two outgoing edges of every internal node are respectively labeled by 0 and 1.
Usually, it is assumed that a BDD has 1-bit sink labels, then it can be assumed
to have two terminal nodes. A BDD with longer sink labels is thus sometimes
called multi-terminal. A BDD that has σ sources computes some function f :
{0, 1}m → {0, 1}σ`. Every source and every assignment of the variables selects
one path from this source to some sink as follows. The path starts from the
source. If the current version of path does not end at a sink, test the variable
at the endpoint of the path. Select one of the outgoing edges depending on the
value of this variable, and append this edge and its endpoint to the path. If the
path ends at a sink, return the label of this sink as the value of the corresponding
source. The BDD’s value is then equal to the concatenation of its source values.

In an ordered binary decision diagram (OBDD), an order π of the labels is
chosen, and for any edge (u, v) ∈ E it must hold that π(u) < π(v). A BDD is
a decision tree if the underlying graph is a tree. A BDD is layered if its set of
nodes can be divided into disjoint sets Vj such that every edge from a node in
set Vj ends in a node in set Vj+1. For a BDD P , let len(P) be its length (that is,
the length of its longest path), size(P) be its size (that is, the number of non-
terminal nodes). Let BDD(f)/OBDD(f) be the minimal size of any BDD/OBDD
computing f . It is known that any Boolean function f : {0, 1}m → {0, 1} has
BDD(f) ≤ (1+o(1))2m/m [4, Thm. 1] and OBDD(f) ≤ (2+o(1))2m/m [17,13,4].

Public-Key Cryptosystems. Let Π = (G,E,D) be a length-flexible
additively-homomorphic public-key cryptosystem [7], where G is a randomized
key generation algorithm, E is a randomized encryption algorithm and D is a
decryption algorithm. in a length-flexible cryptosystem, both E and D receive an
additional length parameter `, so that Epk(`, ·) encrypts plaintexts from some set
{0, 1}≤`. In the case of the DJ01 cryptosystem from [7], for every integer ` > 0,
Epk(`, ·) ∈ {0, 1}d`/ke·k+k. (In some other length-flexible cryptosystems like [8],
the resulting ciphertext is longer.) In practice, 2` < N where N is the public
key of the DJ01 cryptosystem.

Thus, in the case of the DJ01 cryptosystem, Epk(`,M) is a valid plaintext of
Epk(d`/ke · k + k, ·), and therefore one can multiple-encrypt messages as say in

C ← Epk(`+ 2k,Epk(`+ k,Epk(`,M))) ,

and then recover M by multiple-decrypting,

M ← Dsk(`+ 2k,Dsk(`+ k,Dsk(`, C))) .

Note that the length of j-times encrypted M is d`/ke · k + jk ≤ ` + (j + 1) · k
bits. Additionally, in any length-flexible additively-homomorphic cryptosystem,
Epk(`,M1) · Epk(`,M2) = Epk(`,M1 + M2), where the addition is modulo the

First CPIR Protocol with Data-Dependent Computation 5

public key N . We will also need the existence of a compression function C
that, given pk, `′ and ` for `′ ≥ `, and Epk(`′,M) for M ∈ {0, 1}`, returns
Epk(`,M) ∈ {0, 1}d`/ke·k+k. As shown in [18] and later in [14], DJ01 has a very
simple compress function that just reduces Epk(`′,M) modulo some power of N .

In the CPA (chosen-plaintext attack) game, the challenger first generates a
random key pair (sk, pk) ← G(1k), and sends pk to the attacker. The attacker
chooses two messages M0,M1 and a length parameter `, and sends them to
the challenger. The challenger picks a random bit b, and sends a ciphertext
Epk(`,Mb) to the attacker. The attacker outputs a bit b′, and wins if b = b′. A
cryptosystem is CPA-secure if the probability that any nonuniform probabilistic
polynomial-time attacker wins in the CPA-game is negligibly different from 1/2.

Clearly, because of the existence of the compress function, a CPA-secure
length-flexible cryptosystem remains CPA-secure even if the adversary sends
many message pairs (Mj0,Mj1) and length parameters `j , and has to guess b
after seeing encryptions of all Mjb under the corresponding length parameters
`j . This so-called LFCPA-security [18] of the cryptosystem is crucial for the se-
curity of the efficient PrivateBDD protocol as defined in the next section. The
DJ01 cryptosystem [7] is CPA-secure under the Decisional Composite Residuos-
ity Assumption [22].

CPIR. In a 1-out-of-n computationally-private information retrieval protocol,
(n, 1)-CPIR, for `-bit strings, the client has an index x ∈ {0, . . . , n− 1} and the
server has a database f = (f0, . . . , fn−1) with fi ∈ {0, 1}`. The client obtains fx.
The new (n, 1)-CPIR protocol BddCpir, proposed in this paper, is based on an
(2, 1)-CPIR protocol that satisfies some very specific requirements. Namely, we
say that an (n, 1)-CPIR protocol Γ = (Q,R,A,C) is BDD-friendly if it satisfies
the next four assumptions:

1. Γ has two messages, a query Q(`, x) from the client and a reply R(`, f,Q)
from the server, such that the stateful client can recover fx by computing
A(`, x,R(`, f,Q)).

2. Γ is uniform in `, that is, it can be easily modified to work on other values
of `.

3. |Q(`, ·)|, |R(`, ·, ·)| ≤ `+Θ(k).
4. The compress function C maps Q(`′, x) to Q(`, x) for any `′ ≥ ` and x.

That is, Γ = (Q,R,A,C) is a quadruple of probabilistic polynomial-time algo-
rithms, with A(`, x,R(`, f,Q(`, x))) = fx, and C(`′, `,Q(`′, x)) = Q(`, x) for any
`′ ≥ `, x and f . For related work on computation-efficient CPIR protocols, see
for example [10,2].

Let Π = (G,E,D) be a length-flexible additively homomorphic public-key
cryptosystem. Client’s private input is x ∈ {0, 1}, server’s private input is f =
(f0, f1) for f0, f1 ∈ {0, 1}`. In [18], Lipmaa proposed a (2, 1)-CPIR protocol that
consists of the next three steps:

6 Helger Lipmaa

1. The client sets (sk, pk)← G(1k), c← Epk(`, x), and sends Q(`, x)← (pk, c)
to the server.

2. The server replies with R = R(`, f, (pk, c))← Epk(`, f0) · cf1−f0 .
3. The client outputs A(`, x,R) := Dsk(`,R).

If x ∈ {0, 1}, then clearly

R(`, f, (pk,Epk(`, x))) =Epk(`, f0) · cf1−f0 = Epk(`, f0) · Epk(`, x)f1−f0

=Epk(`, f0 + (f1 − f0) · x) = Epk(`, fx) .

If Π has a compress function, then Lipmaa’s (2, 1)-CPIR protocol has also a
compress function C that just compresses both involved ciphertexts. Importantly,
|Q(`, ·)|, |R(`, ·, ·)| ≤ `+ 2k and thus, this (2, 1)-CPIR protocol is BDD-friendly.

Semisimulatable Privacy. Let Γ = (Q,R,A,C) be a 2-message (n, 1)-CPIR
protocol. As many previous papers [21,18,14], we only require (semisimulatable)
privacy in the malicious model. More precisely, client’s privacy is guaranteed in
the sense of indistinguishability (CPA-security), while server’s privacy is guaran-
teed (if at all) in the sense of simulatability. This assumption makes it possible
to design 2-message (n, 1)-CPIR protocols that are both communication and
computation-efficient. We now give an informal definition of privacy.

For the CPA-security (that is, the privacy) of the client, no malicious nonuni-
form probabilistic polynomial-time server should be able to distinguish, with
non-negligible probability, between the distributions Q(`, x0) and Q(`, x1) that
correspond to any two of client’s inputs x0 and x1 that are chosen by herself.
For server-privacy, we require the existence of an unbounded simulator that,
given client’s message Q∗ and client’s legitimate output corresponding to this
message, generates server’s message that is statistically indistinguishable from
server’s message R in the real protocol; here Q∗ does not have to be correctly
computed. A protocol is private if it is both client-private and server-private.

Any (n, 1)-CPIR protocol Γ must be client-private, that is, CPA-secure. Lip-
maa’s (2, 1)-CPIR protocol [18], when based on the DJ01 cryptosystem [7], is
CPA-secure under the DCR Assumption [22]. Because of the existence of the
compression function, if Γ is CPA-secure then it is also difficult to distinguish
between any two polynomially large sets {Q(`i, xi0)} and {Q(`i, xi1))}, even if
the same public key pk is used in all of them. A private (n, 1)-CPIR protocol is
also known as an (n, 1)-oblivious transfer protocol.

3 The PrivateBDD Protocol

Next, we describe the PrivateBDD cryptocomputing protocol from [14]. It gen-
eralizes the cryptocomputing process, done in several previous (n, 1)-CPIR pro-
tocols [15,23,18]. Our exposition is simpler than the more general exposition
of [14]. The concrete protocol has also some small differences compared to the

First CPIR Protocol with Data-Dependent Computation 7

protocol of [14]. More precisely, while the description given by us can be inferred
from the description in [14], we have opted to describe explicitly the most effi-
cient known implementation of the PrivateBDD. Moreover, Ishai and Paskin [14]
used a strong oblivious transfer protocol at every node of the underlying BDD,
while we just use an efficient (2, 1)-CPIR protocol. There are also other minor
differences.

In the PrivateBDD protocol for some set F of functions, the client has pri-
vate input x ∈ {0, 1}m, the server has private input f : {0, 1}m → {0, 1}σ`
with f ∈ F , and the client will receive private output f(x). Here, F = {f :
{0, 1}m → {0, 1}σ`} is a set of functions, where every f ∈ F can be com-
puted by some polynomial-size BDD Pf that has σ sources and `-bit sink labels.
Define len(F) := maxf∈F len(Pf). Let Γ ′ = (Q′,R′,A′,C′) be a BDD-friendly
(2, 1)-CPIR protocol. Since we are going to recursively apply Γ ′ on databases
that consist of the R′ values of some other runs of Γ ′, we need to define the next
few values. Namely, let

|Q(1)(`)| :=|Q′(`, x)| ,
|R(j)(`)| :=|R′(|Q(j)(`)|, f,Q′)| ,

|Q(j+1)(`)| :=|Q′(|R(j)(`)|, x)| .

We will assume that those values are well-defined, that is, that they do not
depend on the concrete values of x and f . Because Γ ′ has to be private, this
assumption is reasonable. If Γ ′ is BDD-friendly, then |Q(j)(`)| = |R(j)(`)| ≤
`+ j ·Θ(k).

Now, BDDs are usually evaluated in a top-down manner by following the
σ paths that are consistent with the assignment of the input variables xj . It
is unlikely that one can evaluate BDDs like this in a private manner. Instead,
following [14], we use a bottom-up way of evaluating a BDD. In the non-private
version of this process, the sinks’ output values are equal to their labels. At every
non-terminal node v that is labeled by some xj and for which the output values
Rv0 and Rv1 of both children are known, one sets the output value Rv of v to be
equal to Rvxj

. The value of the BDD is equal to the concatenation of the output
values of the sources.

In the private version, the server also executes the BDD Pf bottom-up, that
is, starting from the sinks. The output values Rv of the sinks are equal to their
`-bit labels. Initially, Rv is undefined for all other nodes. At every node v of the
BDD with label xj and children v0/v1 such that the output values Rv0/Rv1 of
v0/v1 are known but the output value Rv of v is not yet defined, the server uses
Γ to obliviously propagate the value Rvxj

upwards as Rv. The server does this
for all nodes in some ordering, and then sends the output values of the σ sources
to the client. (Ishai and Paskin [14] only considered the depth-first ordering,
while sometimes some other ordering may be more efficient.) For every source,
the client applies the decoding procedure A′ repeatedly to obtain the label of the
sink that is uniquely determined by this source and by client’s input x. Complete
description of the PrivateBDD protocol for F is given by Protocol 1.

8 Helger Lipmaa

1. Common inputs: m,σ, `,F , len(F).
2. Private inputs: the server has a function f : {0, 1}m → {0, 1}σ` from F , and the

client has bitstring x ∈ {0, 1}m.
3. Offline phase: server computes an efficient BDD Pf for f that has σ sources and

`-bit sink labels, and where len(Pf) ≤ len(F). Let `max := |Q(len(F)−1)(`)|.
4. Online phase:

(a) Client does: For j ∈ {0, . . . ,m − 1}, set Qj ← Q′(`max, xj). Send Q(`, x) ←
(Q0, . . . ,Qm−1) to the server.

(b) Server does:
i. For all sinks v of Pf , set Rv to be their label. For non-terminal nodes v,

set Rv ← ⊥.
ii. Do by following some ordering of the nodes:

A. Let v be some node with Rv = ⊥, with children v0 and v1 that have
Rv0 ,Rv1 6= ⊥; if no such node exists then exit the loop.

B. Assume that v is labeled by xi and edges from v to v0/v1 are labeled
by 0/1.

C. Compute and store Rv ← R(`∗, (Rv0 ,Rv1),C(`max, `
∗,Qi)), where

`∗ ← max(|Rv0 |, |Rv1 |). // If BDD is layered then |Rv0 | = |Rv1 |.
iii. For all σ sources v, send Rv to the client.

(c) Client does: For any source v, compute private output from Rv by applying
A′ recursively up to len(F) times.

Protocol 1: The PrivateBDD protocol

Theorem 1. Let Γ ′ = (Q′,R′,A′,C′) be a CPA-secure BDD-friendly (2, 1)-
CPIR protocol. Let F be a set of functions from {0, 1}m to {0, 1}σ` where
every f ∈ F can be computed by a polynomial-size BDD Pf . Then F has
a CPA-secure cryptocomputing protocol with the communication complexity
m · |Q(len(F))(`)| + σ · |R(len(F))(`)| = (m + σ)(` + len(F) · k). Server’s online
computation is dominated by size(Pf) public-key operations. Additionally, if Pf is
layered, then the PrivateBDD protocol is server-private in the semihonest model.

Proof. CPA-security follows by a standard hybrid argument from the LFCPA-
security of Γ ′, and thus from the CPA-security of Γ ′ and from the existence of
C′. If Pf is layered, then the client is completely oblivious to the shape of the
BDD, except the length of it: he just forms queries corresponding to his input
bits by using his knowledge of the length of the BDD (and on the output length
`), and then receives multiple-“encryptions” of the outputs. The communication
complexity part is straightforward. Server has to compute R at every node of
Pf . ut

Alternatively, this theorem shows that if any f : {0, 1} → {0, 1}σ` has an “ef-
ficient” cryptocomputing protocol, then any F : {0, 1}m → {0, 1}σ` has an
“efficient” cryptocomputing protocol.

If the compress function C does not exist, then the client has to submit up
to len(P) different queries Q(`′, xj) for every xj and every `′ = |Q(i)(`)| for

First CPIR Protocol with Data-Dependent Computation 9

i ≤ len(P)− 1. This can increase the communication by a factor of len(P). The
existence of C makes it possible to compute Q(|Q(i)(`)|, xj) from Q(`max, xj).

We assume throughout this paper that we are working with Lipmaa’s (2, 1)-
CPIR from [18], which is currently the only known (2, 1)-CPIR protocol that
allows the PrivateBDD protocol to achieve the communication complexity that
is polynomial in len(F) (thus the name “BDD-friendly”). A precise result follows:

Corollary 1. Assume that the DCR Assumption [22] is true. Let F be a set
of functions f : {0, 1}m → {0, 1}σ`, and for any f ∈ F let Pf be some σ-
source polynomial-size BDD with `-bit sink labels that computes f . Then F has
a CPA-secure cryptocomputing protocol with the communication upperbounded
by k+ (m+σ) · (`+ (len(F) + 2) ·k), and server’s online computation dominated
by size(F) public-key operations.

Proof. Let Π = (G,E,D) be the DJ01 length-flexible cryptosystem [7]. This
version of the PrivateBDD protocol generates one single (sk, pk) ← G(1k)
and uses the same pk to construct all m queries Qj . Because Lipmaa’s (2, 1)-
CPIR is BDD-friendly and CPA-secure, the CPA-security of PrivateBDD fol-
lows from a standard hybrid argument. Computation-efficiency is straightfor-
ward. To calculate the communication efficiency, note that Qj = Q′(`max, xj) =
Epk(`+ len(F) · k, xj). Thus,

|Qj | = |Epk(`+ len(F) · k, xj)| = (d`/ke+ len(F) + 1) · k ≤ `+ (len(F) + 2) · k .

Therefore, the client sends a public key (of length say k) and at most m · (` +
(len(F) + 2) · k) additional bits. The output of the BDD is equal to σ (≤
len(F))-times encryptions of sink values, where the sinks are selected by the
encrypted client inputs xj . Server’s communication consists of σ (≤ len(F))-
times encrypted messages of length ≤ `+ (len(F) + 2) · k. ut

All CPIR protocols that follow the Kushilevitz-Ostrovsky recursion tech-
nique [15,23,18] can be seen as using PrivateBDD to cryptocompute an or-
dered n′-ary decision tree, with σ = 1, m = dlogn′ ne and varying values of
n′. However, in the case of [15,23], the underlying (n′, 1)-CPIR protocol is not
very efficient and thus the communication-complexity of the resulting (n, 1)-
CPIR protocols of [15,23] is not polylogarithmic. On the other hand, Lipmaa’s
(n, 1)-CPIR protocol from [18] uses his (2, 1)-CPIR protocol in combination
with an ordered binary decision tree, to achieve the communication complex-
ity Θ(m · (`+ len(Pf) · k)) = Θ(` · log n+ k · log2 n), agreeing with Cor. 1. Note
that such CPIR protocols do not explicitly need the C function, because they
cryptocompute an ordered binary decision tree where every xi is only tested on
the ith level of the tree. More generally, the C function is not necessary if the
underlying BDD is ordered.

4 New Computation-Efficient (n, 1)-CPIR Protocol

Assume that σ = 1 and that the database size is n = 2m, that is, that the
server’s database consists of n = 2m bits. (If n is not a power of 2 then one can

10 Helger Lipmaa

round up the database size by using additional dummy elements.) In this case,
we can restate the goals of an (n, 1)-CPIR protocol as follows.

Assume that the client has an input x ∈ {0, 1}m, and that the server’s input
is a Boolean function f : {0, 1}m → {0, 1}`, such that f(x) = fx. The client
needs to retrieve f(x). Thus in this case, F is the set of all functions, F = {f :
{0, 1}m → {0, 1}`}. In the new (n, 1)-CPIR protocol, the client and the server
run PrivateBDD for this F . That is:

– In the offline phase of BddCpir, the server computes and stores an efficient
BDD Pf for the concrete f .

– In the online phase of BddCpir, the client and the server follow PrivateBDD
as specified in Protocol 1. Here, the server uses Pf .

In BddCpir, server’s online computational complexity is proportional to size(Pf)
while the communication complexity is proportional to len(F). We emphasize
once more that Pf is computed after server’s input f has been fixed.

The size (and to a lesser extent, also the length) of Pf will depend heavily
on f (and F), and not much can be said about it unless we know the concrete
database or at least some of its properties. In what follows, we will consider
two different database classes. First, we look at the case of arbitrary databases.
We show that for any possible database f , as long as ` = o(log n), the new
(n, 1)-CPIR protocol has server’s computation upperbounded by o(n) public-
key operations. Second, we look at the case where it is known that f is a very
sparse database (like in many privacy-preserving data mining applications). We
show than in the case, BddCpir is computationally significantly more efficient
than any other existing CPIR protocol.

4.1 Class 1: Arbitrary Databases

In [4], it was shown that any Boolean function f can be computed by a BDD Pf
of size (1+o(1))2m/m and length (1+o(1))m. However, this construction is rea-
sonably efficient only when m ≥ 25. Instead, we will describe an OBDD WP(f)
from [17,13,4] that meets the upperbound OBDD(Pf) ≤ (2 + o(1))2m/m. This
OBDD also has the benefit of having optimal length m. Based on this result,
even if f is an arbitrary Boolean database, the BddCpir protocol has commu-
nication complexity Θ(k · log2 n) and server’s online computational complexity
Θ(n/ log n).

Let f : {0, 1}m → {0, 1} be a Boolean function. (See Fig. 1 for the concrete
case m = 6 of the next general construction.) Prot. 2 describes the corresponding
OBDD WP(f), as found in say [24]. Briefly, the idea of WP(f) is to first branch
according to first d variables. After that, the number of possible subfunctions
on the last m − d variables will be sufficiently small, so that one can branch
according to corresponding subfunctions.

Clearly, this OBDD computes f and has lengthm. The size of WP(f) depends
on d. There are two different recommendations for d. In [4], it was recommend

First CPIR Protocol with Data-Dependent Computation 11

– The BDD starts out as a depth-d, where d is fixed later, ordered binary decision
tree where one branches on variables x0, . . . , xd−1. This part of the BDD has 2d−1
nodes.

– The BDD has 22m−d

more nodes that correspond to all subfunctions g of f on its
last m− d variables. These extra nodes are layered in m− d more levels. The node
for a subfunction that first essentially depends on the jth variable out of these
m−d variables (but not on earlier ones) is on level d+ j; nodes that correspond to
constant subfunctions are on level m. The extra nodes are labeled by corresponding
subfunctions g. Note that the m−d lowest levels have 2, 22−21 = 2, 24−22 = 12,

. . . , 22m−d

− 22m−d−1
nodes respectively.

– Let vg be an extra (non-terminal) node. Assume that g(y1, . . . , ym−d) first essen-
tially depends on yj . For i ∈ {0, 1}, let g|yj=i be the function that we get from g
when we set yj ← i. Add an i-edge from vg to vg|yj=i

.

– The above part of the construction only depends on the value of n = 2m and not on
the concrete database. The next part depends on the database: The 2d−1 nodes on
level d are labeled by subsequent 2m−d+1 = 2 · 2m−d values of the 2m-bit database
f . For a fixed level d node v′, consider the first 2m−d bits of this label to be the
truth table of some subfunction g0, and the last 2m−d bits to be a truth table of
some subfunction g1. Add a 0-edge from v′ to vg0 and a 1-edge from v′ to vg1 .

Protocol 2: The description of WP(f)

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 11010000 0001 1110 1111

2 leaves

22 − 21 = 2 nodes

24 − 22 = 12 nodes

m
−

d
=

6
le

v
e
lsF
ir

st
p
a
rt

,
d

=
4
,
2
4
−

1
=

1
5

n
o
d
e
s

0000

0001 0010 0011 0100 0110 0111 1000 1001 1011 1100 1101 1110

1111

10100101

0 1

x5?

x4?x4?x4?x4?x4?x4?x4?x4?x4?x4?x4?

x3?

x3?x3?x3?x3?x3?x3?

x2?

x2?

x2?

x1?

x5?

x4?

x2?

x1?

x3?

x0?

Figure1. Pictorial representation of OBDD corresponding to the presented upper-
bound (2 + o(1))2m/m for n = 2m = 64 and d = 4 computed according to
Eq. (2). Only blue values and edges depend on the concrete database, which is
equal to a sequence of binary presentations of all 4-bit integers. Everything else de-
pends just on the value of m. For the sake of simplicity, we use the truth tables
of corresponding subfunctions to label the extra nodes. The concrete database is
f = (0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0; 0, 0, 1, 1; 0, 1, 0, 0, . . .).

12 Helger Lipmaa

to fix
d := m− blog2(m− 2 log2m)c . (1)

For such d, as it is shown in [4], WP(f) has size upperbounded by (2+o(1))2m/m.
However, for this choice of d to work, one has to assume that m ≥ 7. Therefore,
if m is small, we follow the recommendation of [24] to take

d := m− blog2(m+ 1− log2m)c . (2)

It is known [24] that with this choice of d, the size of WP(f) is (3 + o(1))2m/m.

Example 1. If m = 6, then d = 4 according to Eq. (2). The complete ordered
decision tree (which corresponds to the use of Lipmaa’s CPIR protocol from [18])
has 2m−1 = 63 non-terminal nodes. The OBDD WP(f) has 2d−1+22m−d−2 =
15 + 16 − 2 = 29 non-terminal nodes. Thus even in this pet case, the BddCpir
protocol requires 63/29 ≈ 2 times less public-key operations than Lipmaa’s
CPIR protocol. See Tbl. 1 for 2m − 1 and the size of WP(f) for other values of
m, where an optimal d has been numerically optimized. (Note that this usually
agrees with d computed according to Eq. (2).) There we see that for m = 20,
the BddCpir protocol requires 8 times less public-key operations than Lipmaa’s
CPIR protocol.

We emphasize that it is natural to compare the efficiency of the new BddCpir
protocol and Lipmaa’s CPIR from [18] in the number of public-key operations
since in both cases, one uses the same underlying public-key primitive on the
plaintexts of the same length. Thus, one can expect that the actual running time
of the BddCpir protocol (measured in seconds) is also about 4 to 8 smaller than
the actual running time of Lipmaa’s CPIR protocol, while having exactly the
same communication complexity.

Now, let us proceed to compute the efficiency of this variation of the BddCpir
protocol. Offline computation of the BddCpir protocol (the construction of the
OBDD that corresponds to the upperbound) takes O(2m) non-cryptographic
operations. This value is not so important because the offline computation has
to be only done once per database, and not once per query. As evident from
the construction of WP(f), only the location of 2d ≈ 2m/(m + 1 − log2m) =
(1 + o(1)) · 2m/m edges depends on the database. Thus even when the database
is completely changed, one has to change O(2d) = O(2m/m) edges. This takes
O(2m/m) time in the RAM model, and can be compared to the 2m work that is
necessary to update the database itself. In the case t elements of the database
are updated, exactly the location of t edges is changed.

Online evaluation of the BDD WP(f) on concrete input x takes (3 +
o(1))2m/m public-key operations. As depicted by Tbl. 1, this is smaller than
the trivial n = 2m for any m ≥ 3. To the best of our knowledge, this is the
first (n, 1)-CPIR with this property. Note that the upperbound Θ(2m/m) is also
tight because there exist functions f with BDD(f) = (1− o(1))2m/m [4].

First CPIR Protocol with Data-Dependent Computation 13

m 2m − 1 WP(f) Opt. d Imprv.

1 1 1 1 1.0
2 3 3 1 1.0
3 7 5 2 1.4
4 15 9 3 1.66667
5 31 17 4 1.82353
6 63 29 4 2.17241
7 127 45 5 2.82222
8 255 77 6 3.31169
9 511 141 7 3.62411

10 1 023 269 8 3.80297
11 2 047 509 8 4.02161
12 4 095 765 9 5.35294

m 2m − 1 WP(f) Opt. d Imprv.

13 8 191 1 277 10 6.41425
14 16 383 2 301 11 7.11995
15 32 767 4 349 12 7.53438
16 65 535 8 445 13 7.76021
17 131 071 16 637 14 7.87828
18 262 143 33 021 15 7.93868
19 524 287 65 789 16 7.96922
20 1 048 575 131 069 16 8.00018
21 2 097 151 196 605 17 10.6668
22 4 194 303 327 677 18 12.8001
23 8 388 607 589 821 19 14.2223
24 16 777 215 1 114 109 20 15.0589

Table1. The comparison of the size of the binary decision tree and WP(f)

Theorem 2. Assume that the DCR Assumption holds. Then there exists a
CPA-secure (n, 1)-CPIR protocol for 1-bit strings with the communication com-
plexity Θ(log2 n) · k and server’s online computation of O(n/ log n) public-key
operations.

Proof. Follows from Cor. 1 and the upperbound of [17,13,4], by letting F to be
the set of all Boolean functions f : {0, 1}dlog2 ne → {0, 1}, and using the OBDD
WP(f). ut

Now, let f : {0, 1}m → {0, 1}` for some ` ≥ 1. By the already mentioned
upperbound of [17,13,4], clearly BDD(f) ≤ ` · (2 + o(1))2m/m by just evaluating
` BDDs in parallel. Thus, there exists a sublinear-computation CPIR protocol
for say any ` ≤ m/3. However, we can prove the next more precise result.

Theorem 3. (1) Let f : {0, 1}m → {0, 1}` for some ` ≥ 1. For ` ≥ 1,
OBDD(f) ≤ (2 + o(1)) · 2m · `/(m+ log2 `). (2) Assume that the DCR Assump-
tion holds. There exists a CPA-secure (n, 1)-CPIR protocol for `-bit strings with
the communication complexity Θ(` · log n+ k · log2 n) and online computation of
O(` · n/(log n+ log `)) public-key operations.

Proof (Of Thm. 3). We follow the same ideas as in constructing WP(f). The new
OBDD starts with a complete binary tree of depth d and then has 2`·2

m−d

extra
nodes that correspond to all possible subfunctions f ′ : {0, 1}m−d → {0, 1}`, with
2` of those extra nodes being the sinks. The edges are added in the natural way.
Thus, this BDD has 2d−1+2`2

m−d−2` non-terminal nodes. This value is (almost)
minimized when d = ` · 2m−d, that is, when d = W (2m` ln 2)/ ln 2. Here W (x)
is the Lambert’s W -function, that is the inverse function of f(w) = w · exp(w).
Using this value of d, we get that the constructed OBDD has then

2 · exp(W (2m` · ln 2))− 2` − 1

14 Helger Lipmaa

non-terminal nodes. Next, we use the first two elements of the series expansion of
W (z) = ln z−ln ln z+. . . , to find that the constructed OBDD has approximately

2 · exp(ln(2m` ln 2)− ln ln(2m` ln 2))− 2` − 1 =
2m+1`

m+ log2 `+ log2 ln 2
− 2` − 1

≤2 · 2m`
m+ log2 `

non-terminal nodes. Because d has to be integral, the computations are not
precise, and there will be a small additional multiplicative constant 1 + o(1)
that this expression will be multiplied with. Note that the size of this OBDD is
smaller than the trivial 2m−1 if say ` ≤ (m+log2 `)/3 or say ` ≤ (m+logm)/3.

ut

4.2 Case 2: CPIR for Sparse Matrices

In almost all real life data, there is a lot of redundancy. Otherwise, most of
the existing data-mining and machine learning algorithms would not be useful
in practice. As a concrete application area of the BddCpir protocol, consider
privacy-preserving data mining scenarios that often deal with huge (say, 20 000
times 20 000) but very sparse Boolean matrices. For example, in such applications
every row of this matrix could be a transaction (say in a supermarket) and every
column would correspond to some item sold in this supermarket. An element mij

of this matrix would be 1 exactly when during the ith transaction the jth item
was actually bought.

One of the most basic operations in such applications is private retrieval of a
single matrix element. Clearly, linear-time CPIR protocols are not applicable in
this case due to the raw size of the matrices. However, if the matrix is very sparse,
then one can efficiently present the matrix as a BDD (as was recommended say
in [9]), and then apply the BddCpir protocol. As noted in [9], BDD is a good
data structure for representing sparse matrices. In particular, if the matrix is
very sparse, then the next straightforward OBDD representation is already good
enough. Namely, assume that the Boolean matrix has dimension n1 × n2 and
contains c� n1n2 ones. We can then represent the matrix as a join of c paths of
length dlog2 n1 + log2 n2e, where every sink (and thus every path) corresponds
to exactly one 1 entry in the matrix. Thus, the size of this OBDD representation
is upperbounded by c · dlog2 n1 + log2 n2)e [9] while its length is upperbounded
by dlog2 n1 + log2 n2e. This is an upperbound, since all paths share at least
one (and usually more) nodes. Thus, in the case of sparse but huge matrices,
we can use this trivial representation and then just apply BddCpir to this. Note
that, as shown in [9], many matrix algorithms can be performed efficiently on the
OBDD representation of sparse matrices, which makes the OBDD representation
of sparse matrices reasonable in many data-mining applications and thus one
could apply more complex privacy-preserving operations on the top of CPIR.

As a concrete example, assume that we have a 20 000 × 20 000 matrix. If
this matrix has exactly one 1 in every row (like the permutation matrices), then

First CPIR Protocol with Data-Dependent Computation 15

BddCpir has server’s online computation dominated by≤ 20 000·2 log2(20 000) ≈
219.1 public-key operations, while all previous CPIR protocols need 20 0002 ≈
228.6 public-key operations. If the matrix has say 20 ones in every row in average
(this is typical in shopping-basket applications), then BddCpir is still about 35
times faster than CPIR protocols with linear computation.

More generally, we have the next result.

Theorem 4. Assume that the DCR Assumption holds. Assume that f =
(f0, . . . , fn−1) is a sparse (not necessary Boolean) database that has c � n
non-zero entries. Then there exists a CPA-secure (n, 1)-CPIR protocol for `-bit
strings with the communication complexity Θ(` · log n + k · log2 n) and server’s
online computation of ≈ c · log2 n public-key operations.

Proof (Sketch.). Similarly to the sparse matrix case, one can construct a trivial
BDD with c sinks and paths that has length ≈ log2 n and size ≈ c · log2 n.
According to Cor. 1, in this case BddCpir has communication complexity Θ(` ·
log n + k · log2 n), and server’s online computation is dominated by ≈ c · log2 n
public-key operations. ut

In particular, if c = Θ(
√
n) as in the sparse matrix case, then server’s online

computation is dominated by O(
√
n · log2 n) public-key operations. Moreover, if

c = n, then we actually have a complete binary decision tree, which corresponds
to the CPIR of [18], and therefore this solution is never less efficient than [18].

5 Discussions

Server-Privacy. Recall that an (n, 1)-CPIR protocol that also achieves server-
privacy is usually called an (n, 1)-OT protocol. As said earlier, as the minimum,
the underlying BDD has to be layered or otherwise the protocol will not preserve
server’s privacy. Most of the BDDs that appear in practice can be easily made
layered, and in fact layering makes the BDD at most quadratically larger [14].
Quadratic increase in computation time is not desirable in the case of CPIR. We
will now show that one can make WP(f) layered in a virtually costless way. For
this, first one has to add m − d − j dummy nodes per each node on bottom d
levels, or

m−d∑
j=1

(m− d− j)(22j

− 22j−1
) =

m−d−1∑
j=1

22j

+ 2 = Θ(22m−d−1
)

nodes in total. Now, if d is chosen according to Eq. (1), this will be (2 +
o(1))2m/2/m nodes. If d is chosen according to Eq. (2), this will be (

√
2 +

o(1))2m/2/
√
m nodes. Both values are negligible compared to the total num-

ber of nodes Θ(2m/m) in the BDD. In addition, for every node on the level
d—and there are (1 + o(1))2m/m2 such nodes if d is chosen according to Eq. (1)
and (1+o(1))2m/m if according to Eq. (2)—there are database-dependent edges
to nodes in bottom layers. Because the number of bottom layers is m − d, if d

16 Helger Lipmaa

is chosen according to Eq. (2), at most (1 + o(1))2m logm/m2 new edges will be
added.

After making the BDD layered, we must add privacy against a malicious
server. There are many existing CPIR-to-OT transformations. In particular, the
transformation from [16] takes m = log2 n public-key operations, and modifies
the CPIR protocol to a server-private protocol. (With the caveat that the public
key has to be rough.) See [16,14] for more discussions.

Balancing. Let f : {0, 1}m → {0, 1}σ`. In PrivateBDD, the client sends m
messages and the server sends σ messages. If m� σ and σ`� m, then one can
improve the communication complexity by balancing, as follows. Without loss
of generality, assume that σ | m. Denote b := m/σ. Then, for j ∈ {0, . . . , b− 1},
let fj : {0, 1}m → {0, 1}σ`/b. Here, f0 computes the first `/b bits of every source
(that is, computes f restricted on the first `/b bits of the sink values), f1 com-
putes the next `/b bits of every source, etc. We then execute the PrivateBDD
protocol (by reusing client’s first message) in parallel for every fj , and con-
catenate the private outputs. Thus, in this balanced version, the client sends m
messages of length ≤ (`/b + (len(F) + 2) · k). The server returns bσ messages
of the same length. Thus, the total communication complexity of the balanced
protocol is ≤ (m+ bσ)(`/b+ (len(F) + 2) · k) = 2m(σ`/m+ (len(F) + 2) · k) =
2σ` + 2m(len(F) + 2) · k. Thus, if ` � m · len(F) · k, then this version of the
PrivateBDD protocol has information rate 1/2.

If ` is even longer, then one can define b := αm/σ for some α > 1, then the
balanced protocol has communication complexity (1+1/α)σ`+(α+1)m(len(F)+
2)k, or—for large values of ` and α—information rate 1+o(1). For example, one
can take α = log2m, then the communication complexity is (1 + o(1))σ` +
(log2m+ 1) ·m · (len(F) + 2)k.

In another variant of balancing, we define `max ≈ (`+ len(F)k)/b. Then, after
every b levels of the BDD, the length of the intermediate output values grows
longer than `max, which requires us to double the remaining of the BDD like say
in [23]. Here, the total communication complexity is (m+2bσ)/b · (`+ len(F) ·k).
Defining b := log2(m/σ), this will become (m+2)/(log2m−log2 σ)·(`+len(F)·k).
For integer b, the communication complexity is (1 + o(1)) ·m/(log2m− log2 σ) ·
(`+ len(F) · k).

By using the first balancing technique, the communication complexity of Lip-
maa’s (n, 1)-CPIR protocol from [18] can be improved to 2`+(1+o(1))·log2

2 n·k.
By using the second balancing technique, the communication complexity of Lip-
maa’s (n, 1)-CPIR protocol can be improved to Θ((`·log n+k ·log2 n)/ log log n).
Balancing can also be used on some variations of the BddCpir protocol, espe-
cially when ` is large.

More Optimizations. Note that in the case of Lipmaa’s (n, 1)-CPIR protocol,
the client knows in advance in what depth every of the BDD input variable xj
is used. Thus, he does not have to send values Q(`max, xj), but can send values
Q(` + (j − 1) · k, xj) for every j. This optimization was used in [18] but it is

First CPIR Protocol with Data-Dependent Computation 17

also valid in other similar contexts, including both presented variations of the
BddCpir protocol.

Further Work. The first (though somewhat sketchy) version of BddCpir was
presented in an earlier preprint [20] in Spring of 2008, and it is based on a
very standard security assumption. In the meantime, several fully-homomorphic
public-key cryptosystems have been proposed, starting with [11]. Given a fully-
homomorphic cryptosystem where on can encrypt integers modulo a large N , it is
easy to construct a CPIR protocol with communication complexity Θ(log n+k),
see e.g. [19] or an earlier eprint version of [18] (as available from the author’s
homepage), though there might be earlier works. We are currently working on
a paper that shows that based on a fully-homomorphic cryptosystem, one can
construct a CPIR protocol with communication complexity Θ(log n + k) (note
that all trivial approaches result in communication complexity Θ(k · log n), since
Gentry’s cryptosystem makes it only possible to encrypt Boolean values) and
sublinear computation. Nevertheless, it is important to achieve sublinear com-
putation under a well-known assumption, as done in the current paper.

Acknowledgments. The author was supported by Estonian Science Founda-
tion, grant #8058, European Union through the European Regional Develop-
ment Fund and the 6th Framework Programme project AEOLUS (FP6-IST-
15964).

References

1. Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. In: Proceedings of the
2000 ACM SIGMOD Conference on Management of Data. pp. 439–450. Dallas,
TX, USA (May 2000)

2. Aguilar-Melchor, C., Gaborit, P.: A Lattice-Based Computationally-Efficient Pri-
vate Information Retrieval Protocol. In: WEWORC 2007. pp. 50–54. Bochum,
Germany (Jun 2007), http://eprint.iacr.org/2007/446

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers Computation in Private
Information Retrieval: PIR with Preprocessing. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 55–73. Springer-Verlag, Santa Barbara, USA (Aug 20–
24, 2000)

4. Breitbart, Y., Hunt III, H.B., Rosenkrantz, D.J.: On The Size of Binary Deci-
sion Diagrams Representing Boolean Functions. Theoretical Computer Science
145(1&2), 45–69 (1995)

5. Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.: Selec-
tive Private Function Evaluation with Applications to Private Statistics. In: PODC
2001. pp. 293–304. ACM Press, Newport, Rhode Island, USA (Aug 26–29, 2001)

6. Carbunar, B., Sion, R.: On the Computational Practicality of Private Information
Retrieval. In: NDSS 2007. pp. ?–?. San Diego, California, USA (Feb 27–Mar 2,
2007)

7. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer-Verlag, Cheju Island, Korea (Feb 13–15, 2001)

18 Helger Lipmaa

8. Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Appli-
cations. In: Safavi-Naini, R. (ed.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer-Verlag, Wollongong, Australia (Jul 9-11, 2003)

9. Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multi-Terminal Binary Decision Diagrams:
An Efficient Data Structure for Matrix Representation. Formal Methods in System
Design 10(2/3), 149–169 (1997)

10. Gasarch, W., Yerukhimovich, A.: Computationally Inexpensive cPIR (2007), work
in progress, available at http://www.cs.umd.edu/~arkady/, as of January, 2009

11. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Mitzen-
macher, M. (ed.) STOC 2009. pp. 169–178. ACM Press, Bethesda, MD, USA (May
31–Jun 2, 2009)

12. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer-Verlag, Lisboa, Portugal (Jul 11–15, 2005)

13. Heap, M.A., Mercer, M.R.: Least Upper Bounds on OBDD Sizes. IEEE Transac-
tions on Computers 43(6), 764–767 (1994)

14. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In:
Vadhan, S. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer Verlag, Ams-
terdam, The Netherlands (Feb 21–24, 2007)

15. Kushilevitz, E., Ostrovsky, R.: Replication is Not Needed: Single Database,
Computationally-Private Information Retrieval. In: FOCS 1997. pp. 364–373.
IEEE Computer Society, Miami Beach, Florida (Oct 20–22, 1997)

16. Laur, S., Lipmaa, H.: A New Protocol for Conditional Disclosure of Secrets And
Its Applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
207–225. Springer-Verlag, Zhuhai, China (Jun 5–8, 2007)

17. Liaw, H.T., Lin, C.S.: On the OBDD-Representation of General Boolean Functions.
IEEE Transactions on Computers 41(6), 661–664 (1992)

18. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In:
Zhou, J., Lopez, J. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer-Verlag,
Singapore (Sep 20–23, 2005)

19. Lipmaa, H.: New Communication-Efficient Oblivious Transfer Protocols Based on
Pairings. In: Wu, T.C., Lei, C.L., Rijmen, V., Lee, D.T. (eds.) ISC 2008. LNCS,
vol. 5222, pp. 441–454. Springer-Verlag, Taipei, Taiwan (Sep 15–18, 2008)

20. Lipmaa, H.: Private Branching Programs: On Communication-Efficient Crypto-
computing. Tech. Rep. 2008/107, International Association for Cryptologic Re-
search (2008), available at http://eprint.iacr.org/2008/107

21. Naor, M., Pinkas, B.: Oblivious Transfer And Polynomial Evaluation. In: STOC
1999. pp. 245–254. ACM Press, Atlanta, Georgia, USA (May 1–4, 1999)

22. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer-Verlag, Prague, Czech Republic (May 2–6, 1999)

23. Stern, J.P.: A New And Efficient All Or Nothing Disclosure of Secrets Protocol.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371.
Springer-Verlag, Beijing, China (Oct 18–22, 1998)

24. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Ap-
plications. Monographs on Discrete Mathematics and Applications, Society for
Industrial Mathematics (2000)

